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8

Abstract9

The resolution of chromatin conformation capture technologies keeps increasing, and the recent nucle-10

osome resolution chromatin contact maps allow us to explore how fine-scale 3D chromatin organization is11

related to epigenomic states in human cells. Using publicly available Micro-C datasets, we have developed12

a deep learning model, CAESAR, to learn a mapping function from epigenomic features to 3D chromatin13

organization. The model accurately predicts fine-scale structures, such as short-range chromatin loops and14

stripes, that Hi-C fails to detect. With existing epigenomic datasets from ENCODE and Roadmap Epige-15

nomics Project, we successfully imputed high-resolution 3D chromatin contact maps for 91 human tissues16

and cell lines. In the imputed high-resolution contact maps, we identified the spatial interactions between17

genes and their experimentally validated regulatory elements, demonstrating CAESAR’s potential in cou-18

pling transcriptional regulation with 3D chromatin organization at high resolution.19

20

Introduction21

Whereas 3D chromatin organization at the large scale of topologically associating domains (TADs)22

and compartments has been well characterized in many cell and tissue types by Hi-C technology [1], our23

understanding of fine-scale 3D chromatin organization at the nucleosome resolution has just begun [2, 3, 4].24

With the increasing evidence that fine-scale chromatin organization at the nucleosome resolution is closely25

related to epigenomic state [5, 6], one intriguing question to ask is whether we can accurately extrapolate26

such high-resolution chromatin contact maps from epigenomic features such as chromatin accessibility,27

histone modifications, and transcription factor binding profiles. To explore this, we proposed CAESAR28

(Chromosomal structure And EpigenomicS AnalyzeR), a deep learning approach to predict nucleosome-29

resolution 3D chromatin contact maps from existing epigenomic features and lower-resolution Hi-C contact30

maps.31

Our model leverages cutting-edge deep learning approaches to identify representations relevant to high-32

resolution chromatin organization. In particular, 1D convolutional and graph convolutional layers [7] iden-33

tify epigenomic patterns over the linear chromatin fiber and over the 3D spatial chromatin organization that34

is relevant to impute high-resolution chromatin contact maps. With existing high-resolution Micro-C contact35

maps, Hi-C contact maps, and a number of cell-type matched epigenomic data on human H1-hESC (hESC),36

mouse ESC (mESC), and human foreskin fibroblasts (HFF), we systematically evaluated the model’s per-37

formance across different chromosomes, across different cell types, and across different species. In the38

experiments, the model accurately imputes many fine-scale chromosomal structures that Hi-C sequencing39

fails to detect, including short-range chromatin loops and stripes. The model is more accurate at imputing40

evolutionarily conserved regions, active A compartment, and early-replicating regions, which indicates that41

the fine-scale 3D chromatin organization is strongly influenced by the nature of the epigenomic factors in42

these regions. The imputed chromatin contacts also recapitulate enhancer activities previously elucidated43

by CRISPRi experiments [8], and manifest expression quantitative trait loci (eQTLs) previously profiled by44

GTEx project [9]. CAESAR is also coupled with an attribution method which identifies epigenomic features45

explanatory to these fine-scale 3D chromatin structures. The explanatory features help to further subtype46
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fine-scale chromatin structures and elucidate the interplay between histone modifications and nucleosome47

level chromatin organization.48

Our work is the first study connecting 3D genome organization with epigenomics at unprecedented reso-49

lution and scale. Our model produces high-resolution human chromatin contact maps for 57 tissue samples,50

16 cell lines, 12 primary cells, and 6 in vitro differentiated cells. The imputed high-resolution contact maps51

are shared on a web server (https://nucleome.dcmb.med.umich.edu/), which allows users to easily navigate52

these fine-scale chromatin structures and the corresponding explanatory epigenomic features.53

54

Results55

A deep learning model imputing high-resolution chromatin contact maps56

We proposed CAESAR, a supervised deep learning model to impute chromatin contact maps at nucle-57

osome resolution. CAESAR’s inputs include a lower-resolution Hi-C contact map and a number of histone58

modification features (e.g., H3K4me1, H3K4me3, H3K27ac, and H3K27me3), chromatin accessibility (e.g.,59

ATAC-seq), and protein binding profiles (e.g., CTCF) (Supplementary Note 2). CAESAR captures the Hi-C60

contact map as a graph G with nodes representing genomic regions of 200 bp long, weighted edges rep-61

resenting chromatin contacts between the regions, and N epigenomic features modeled as N -dimensional62

node attributes. The architecture of CAESAR (Figures 1a and S1; Supplementary Note 3) includes ordi-63

nary 1D convolutional layers which extract local epigenomic patterns along the 1D chromatin fiber, and64

graph convolutional layers which extract spatial epigenomic patterns over the neighborhood specified by65

G. The concatenated outputs from the convolutional layers capture all relevant features for one particular66

200 bp bin, which are further fed into two parallel output layers — a fully-connected layer predicts the67

contact profile for each 200 bp bin, and an inner product layer predicts loops between bins. The outputs68

from the fully-connected layer and the inner product layer are summed up as CAESAR’s final output. Using69

Micro-C contact maps from hESC, mESC, and HFF as the prediction target, the model was trained with70

backpropagation [10], in which the aforementioned convolutional features were learned adaptively. Other71

than leveraging a number of epigenomic features, our model architecture differs from HiCPlus [11] and72

DeepHiC [12] which treats Hi-C contact maps as images and performs grid-convolution to improve the73

resolution. With the graph convolutional networks and additional epigenomic features, CAESAR not only74

enhances the resolution of contact maps, but also predicts the structures which are not captured by Hi-C,75

including polycomb repressive regions, short-range loops and stripes (Figure 1b).76

77

Accurately predicting high resolution chromatin contact maps78

With existing Micro-C data on mESC, hESC, and HFF, we evaluated CAESAR in three different sets of79

experiments, including a cross-chromosome experiment, a cross-cell type experiment, and a cross-species80

experiment, so as to evaluate the model’s generalizability in different scenarios. In the cross-validation81

experiment on hESC, we divided the human chromosomes into a train set, a test set, and a tune set of similar82

sizes (Supplementary Notes 4 and 5). CAESAR and two baseline models, including HiCPlus [11] which83

only used low-resolution chromatin contact maps, and HiC-Reg [13] which only used epigenomic features,84

were trained with the train set and evaluated with the test set (Supplementary Note 6). We used the tune set85

to tune hyperparameters. For CAESAR and HiC-Reg, 6 epigenomic features were used, including ATAC-86

seq, CTCF, H3K4me1, H3K4me3, H3K27ac, and H3K27me3. CAESAR outperformed HiCPlus and HiC-87

Reg in terms of the stratum-adjusted correlation coefficient (SCC) with the observed Micro-C contact map88

(Figure 2a). The results demonstrated that it is necessary to leverage both the contact maps and epigenomic89

features in the prediction of high-resolution contact maps. In the cross-cell type experiment, we used the90

same train set of chromosomes to build a model on HFF, and then tested it on hESC with the same test91

set of chromosomes as in the cross-chromosome experiments. The HFF-trained model imputed almost as92

well as the hESC-trained model for chromatin contacts within 100 kb and 200 kb range (Figure 2b). In the93
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cross-species experiment, we trained the model on mESC and tested the performance on hESC. In order to94

stay consistent with cross-chromosome and cross-cell-type evaluation, we also divided mouse chromosomes95

into train, tune, and test sets of similar sizes. We trained the model with mESC’s train set and then tested its96

performance on the same aforementioned test set of hESC. It was observed that the model trained on mESC97

also moderately generalized to hESC, and the generalization deteriorates as the contact distance increases.98

In addition, we tested CAESAR’s performance in predicting fine-scale structures including loops and99

stripes. In the test set of HFF, CAESAR captured 50% of the loops and 61% of the stripes from Micro-C100

contact maps at 1 kb resolution, whereas only less than 1% were captured from the input Hi-C contact maps101

(Figures 2c and 2e; Supplementary Notes 7 and 8). Since loops called from two Hi-C replicates only agree102

∼60% [14], we believe that our imputed contact map recovers a good portion of these fine-scale structures.103

By piling up all the loop and stripe regions called from the Micro-C contact maps, we observed comparable104

enrichment from our predicted high-resolution contact maps and the observed Micro-C contact maps, but105

the pile-up results from the input Hi-C contact maps showed little enrichment (Figures 2d and 2f).106

107

Factors influencing CAESAR’s performance108

In order to optimize CAESAR’s efficiency, we next explored the factors influencing its performance. As109

CAESAR’s principle inputs are epigenomic and Hi-C data, we began by evaluating the minimum required110

number of datasets to achieve good imputed results. Four sets of epigenomic features were chosen based111

on common availability (Figure 3a), and we observed comparable performance among the 13-epi, 7-epi,112

6-epi, and 3-epi models (Figure 3b). Although the SCC of the 3-epi model (including ATAC-seq, CTCF,113

and H3K27ac) did not drop significantly, it over-predicted fine-scale structures (Supplementary Note 8).114

Therefore, we recommend using the commonly profiled 6 epigenomic features in CAESAR. We also asked115

what is the requirement for input Hi-C contact maps. Using Hi-C data from Rao et. al. [1] and Krietenstein116

et. al. [3], we tested four contact maps, including the original Hi-C contact maps with around 1 billion117

contacts, two down-sampled Hi-C contact maps with 100 million and 25 million contacts, and a surrogate118

Hi-C contact map with 1 billion contacts aggregated from four unmatched cell lines. The surrogate contact119

map acts as a replacement when no chromatin contact map is available for a particular cell type. Although120

the SCC curve does not drop significantly with the down-sampled contact maps, surrogate Hi-C performs121

better (Figure 3c). There, if the matched Hi-C contact map is unavailable to complement the epigenomic122

data in a particular analysis, a surrogate contact map can be used in CAESAR.123

We further investigated the relationship between CAESAR’s performance, measured with Spearman’s124

correlation between the imputed and the observed Micro-C contact maps, and evolutionary conservation,125

measured with phastCons scores. It was observed that the model imputed more accurately in the regions126

with higher evolutionary conservation (Figure 3d). In addition, we also discovered that the model imputes127

more accurately in A compartment than B compartment, and in early-replicating regions than late-replicating128

regions (Figures 3e and 3f). The results indicate that fine-scale chromatin organization is more closely re-129

lated to the 6 epigenomic factors at evolutionarily conserved regions, A compartment, and early-replicating130

regions.131

132

Recapitulating CRISPRi-validated enhancer activities133

With publicly available epigenomic data, we imputed high-resolution chromatin contact maps for 15134

human cancer cell lines (Supplementary Table 3b). In some cancer cell lines, noncoding regions with their135

regulating genes have been interrogated by CRISPR interference (CRISPRi) technology [8]. The profiled136

CRISPRi score indicates genomic loci’s capability to regulate an essential gene, and the peaks (both positive137

and negative) often correspond to enhancers and promoters.138

We used the CRISPRi scores profiled near two essential genes - MYC and GATA1, to validate our im-139

puted contact maps. On the imputed contact maps for the chronic myelogenous leukemia cell K562, MYC140

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.338004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.338004


gene strongly interacts with PVT1, which matches with the peaks of CRISPRi scores at PVT1 locus (Figure141

4a). The imputed contact map also showed a significant interaction between GATA1 and HDAC6, which142

matches the CRISPRi score peak at HDAC6 locus (Figure 4b). The matching of chromatin contacts and143

CRISPRi score peaks demonstrates our model recapitulates gene-enhancer interactions in cancer cell lines.144

145

Recovering eQTL-gene interactions146

With the large-scale epigenomic data available from ENCODE and Roadmap Epigenomics Project,147

we imputed the high-resolution contact maps for 57 human tissue samples and 2 cell lines – IMR-90 and148

GM12878 (Supplementary Tables 3a and 3b). With eQTLs profiled by GTEx [9], we asked whether our149

imputed chromatin contacts are enriched between genes and their eQTLs in the corresponding tissue or150

cell line. Previous works [15] have shown eQTLs are enriched in tissue-specific frequently interacting151

regions on Hi-C contact maps at 40 kb resolution, but a large portion of eQTLs reside too close to their152

gene transcriptional start sites (TSS) to be seen on a low-resolution contact map (Figure S3a). For example,153

three eQTLs that are specific in heart left ventricle (HLV) are associated with the NIFK gene, with distances154

to the TSS at 5 kb, 7 kb, and 16 kb, respectively. The interactions between the three eQTLs and their TSS155

cannot be observed on the low-resolution Hi-C contact maps, whereas they appear on the CAESAR-imputed156

contact maps (Figure 5a). Among the three loops between the TSS and eQTLs, the one anchored at eQTL157

i appears exclusively on the imputed contact map of HLV, whereas the ones anchored at eQTLs ii and iii158

are also found on the imputed contact map of lung and the HFF Micro-C contact map respectively (Figure159

5a). In another example region where six eQTLs of the TTC7A gene shared between pancreas and stomach160

reside 15 - 31 kb downstream the TSS, both loops and stripes are observed on the imputed contact maps of161

the two tissues, but not on the imputed contact map of lung tissues or the low-resolution Hi-C contact map162

(Figure 5b).163

To evaluate the overall contact enrichment between eQTLs-TSS pairs, we piled up the regions between164

tissue-specific eQTLs and their TSS. The enrichment of eQTL-TSS contacts, which does not appear on165

low-resolution Hi-C contact maps, is the most significant on the imputed contact maps of the corresponding166

tissue or cell line. The moderate enrichment on the Micro-C contact map from an unmatched cell line HFF167

demonstrates the eQTL-TSS interactions are not necessarily exclusive even if the eQTL is tissue or cell168

line-specific (Figure 5c). This suggests that some fine structural interactions are conserved across tissues or169

cell types but the regulatory functions remain specific.170

171

Identifying epigenomic features relevant to fine-scale 3D chromatin organization172

Although deep learning models are often referred to as “black boxes”, their outputs can be traced back173

and interpreted. In our model, we used integrated gradient [16] to attribute the predicted chromatin contacts174

to each genomic locus of each input epigenomic feature. The attribution results illustrate which parts of the175

epigenomic features are the most determinative for the model’s predictions. By attributing the entire contact176

map to all epigenomic features, we evaluated the overall contribution for each feature, and low attribution is177

another reason for leaving H3K4me2 out from the 7-epi model besides limited availability (Figure S4a).178

This method can be applied to arbitrary regions on the contact map, which allows us to connect fine-179

scale structures with the most explanatory epigenomic features. Surprisingly, many of the peaks in the input180

epigenomic features do not necessarily help the model to predict fine-scale structures. For example, the181

H3K27ac peaks showed negative attribution in predicting the stripe in Figure 6a and the loop in Figure 6b.182

With attribution calculated by integrated gradient, the predicted chromatin structures can be further ana-183

lyzed and subtyped (Supplementary Note 9).184

185
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Discussion186

Our study is the first effort to connect nucleosome-resolution chromatin structures with epigenomic fea-187

tures. Leveraging the currently available Micro-C contact maps for hESC, mESC, and HFF from the 4DN188

consortium and the corresponding epigenomic profiles from ENCODE and Roadmap Epigenomics Project,189

we systematically mapped 1D epigenomic profiles to fine-scale 3D chromatin structures with CAESAR.190

The mapping was validated by high SCCs with observed Micro-C contact maps and the accurate capture of191

fine-scale loops and stripes. CAESAR can be applied to generate high-resolution contact maps for any cell192

line or tissue as long as their common epigenomic features are profiled. Our model further connects tran-193

scriptome with fine-scale structures and epigenomics by identifying the spatial interactions between genes194

and regulatory elements. Therefore, the imputed high-resolution contact maps will be useful for target find-195

ing, hypotheses generating, and other downstream analyses. All imputed human chromatin contact maps196

across 57 tissues, 16 cell lines, 12 primary cells, and 6 in vitro differentiated cells have been made pub-197

licly available on our web server (http://nucleome.dcmb.med.umich.edu/) for ease of access by biomedical198

researchers to perform further analyses (Supplementary Table 1; Supplementary Note 10).199

While CAESAR presents a novel way to investigate fine details of 3D chromatin structure, we note that200

it is an evolving methodology with certain shortcomings that can be improved. First, since Micro-C data201

mostly outperforms Hi-C in the detection of short-range interactions, CAESAR also performs best at ge-202

nomic distances of less than 200 kb. As a result of this, CAESAR-imputed contact maps are not well suited203

for analyses of large 3D chromatin structures such as TADs or compartments. Second, because Micro-C and204

Hi-C generate short-read sequences, our study is still limited to pairwise chromatin contacts, and therefore205

higher-order interactions are insufficiently studied. Third, our analyses showed that CAESAR performed206

well according to multiple evaluation metrics, yet there was clear bias towards A compartment, evolutionar-207

ily conserved regions, and early-replicating regions. This is likely a reflection that the epigenomic features208

in the study are generally more enriched in these regions. As such, it is possible that including additional209

epigenomic features may shift this bias effect accordingly. Fourth, though CAESAR demonstrated clear210

relationships between epigenomic features and 3D fine-scale chromatin organization, we did not observe211

significant improvement in imputed contact maps with increasing number of epigenomic datasets. This sug-212

gests that epigenomic data may not explain all the features observed in 3D chromatin organization. There213

may be unexplored layers of genetic and/or epigenetic information that play a role in the organization of214

chromatin inside the nucleus. So far, CAESAR demonstrated a framework for jointly analyzing 3D chro-215

matin structures and 1D epigenomic features at a matched resolution, and further integration of 1D DNA216

sequences is possible. For example, our model can potentially include DNA sequences as features and elu-217

cidate 3D QTLs [17] in the context of high-resolution chromatin organization.218

219

Online Methods220

Model training221

CAESAR takes both epigenomic features and Hi-C contact maps as inputs. Based on the availability222

of epigenomic features, we trained four models with different epigenomic features — one model with 13223

epi-features including ATAC-seq, CTCF, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac,224

H3K27me3, H3K36me3, H3K79me2, Nanog, and Rad21; one model with 7 epi-features including ATAC-225

seq, CTCF, H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K27me3; one model with 6 epi-features226

including ATAC-seq, CTCF, H3K4me1, H3K4me3, H3K27ac, and H3K27me3; and one model with 3 epi-227

features including ATAC-seq, CTCF, and H3K27me3. Due to high computational burden, it is impossible228

to feed the entire contact map into the memory, and therefore we used a 250 kb sliding window with 50 kb229

step length along the diagonal (e.g., 0-250,000; 50,000-300,000; 100,000-350,000; ...) to select the regions230

and fed them one by one into the model.231

We split all chromosomes into train, tune, and test sets of similar sizes (Supplementary Note 4). We232
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used the train set to train the parameters and the tune set to choose hyperparameters (Supplementary Note233

5). During training, the parameters were optimized by minimizing the mean squared error (MSE) with Adam234

algorithm [18]. Because the model has two parts, one for predicting contact profiles and one for predicting235

loops (Figure S1 and Supplementary Note 3), we employed a sequential training strategy as follows. First,236

the loop predicting part was trained, in which the model was optimized targeting only the observed Micro-C237

contacts in loop regions (i.e, 10 kb×10 kb squares centered at Micro-C loops) instead of the entire contact238

map. Second, we trained the contact profile part with the residual contact map (i.e., the observed Micro-C239

contact map minus the outputs of the loop predicting part). The outputs from the two parts were summed up240

to generate the predicted contact maps.241

242

Evaluation experiments243

Three sets of cross-validation experiments were performed. First, the cross-chromosome model was244

trained with the train set of hESC, and tested on the test set of hESC. Second, the cross-cell type model was245

trained with the train set of HFF, and tested on the test set of hESC. Third, the cross-species model was246

trained with the train set of mESC, and tested on the test set of hESC.247

To compare CAESAR with baselines and evaluate how much they improve original Hi-C contact maps,248

we calculated the stratum-adjusted correlation coefficient (SCC) [19] between the observed Micro-C con-249

tact map and 1) the CAESAR-imputed contact map, 2) the contact maps imputed by other baseline methods250

(Supplementary Note 6), and 3) the interpolated Hi-C contact map. Other than evaluating SCC, we also251

called and compared the loops and stripes from the CAESAR-imputed contact maps, the Micro-C contact252

maps, and the Hi-C contact maps. We implemented a fast loop calling approach and a stripe calling ap-253

proach to call loops and stripes at 1 kb resolution (Supplementary Notes 7 and 8; Figure S2). We compared254

the loops and stripes called from 1) the CAESAR-imputed contact map, 2) the observed Micro-C contact255

map, and 3) the interpolated Hi-C contact map to generate a Venn diagram. We piled up all stripe and loop256

regions called from Micro-C contact maps in 1) the CAESAR-imputed contact map, 2) the observed Micro-257

C contact map, and 3) the interpolated Hi-C contact map.258

259

Correlating model performance with evolutionary conservation, A/B compartments, and260

replication timing261

We tested whether the model performance is correlated with evolutionary conservation, A/B compart-262

ments, and replication timing. The genome was split into 250 kb mutually exclusive fragments. For each263

fragment, we imputed the OE-normalized contact map at 200 bp resolution and smoothed it with a 5×5264

uniform kernel. We calculated the Spearman’s correlation coefficient between the imputed and the observed265

Micro-C contact maps to evaluate the model’s performance at this fragment.266

The 100-way hg38 phastCons scores [20] were used to quantify evolutionary conservation. We pro-267

cessed the hg38 phastCons scores into 250 kb resolution and performed a correlation test between the model268

performance (i.e., the Spearman’s correlation coefficients) and the phastCons scores. Then, the fragments269

were clustered into three groups, top 10%, top 10-50%, and the others, according to their phastCons score270

ranking. A box plot of spearman’s correlation coefficients was plotted for each group.271

The A/B compartments were called at 250 kb resolution. By checking the sign of the first eigenvector of272

the normalized contact map [21], we separated all 250 kb bins into two groups. The one with more enriched273

H3K27ac was labeled as A compartment, while the other B compartment. The two-sided student’s t-test274

was applied to identify whether the two groups have significantly different Spearman’s coefficient.275

Similarly, early-late replication timing is defined by the sign of the two-stage repli-seq signal[22]. We276

processed the repli-seq signal at 250 kb resolution and separated the fragments into two groups, early-277

replicating regions and late-replicating regions. The two-sided student’s t-test was applied to identify278

whether the two groups have significantly different Spearman’s coefficient.279
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280

Attribution by integrated gradient281

We used integrated gradient to identify each input dimension’s contribution to the output. Let X denote282

the input epigenomic signals283

X =

X(s1)
1 . . . X

(s1)
n

. . . . . . . . .

X
(sm)
1 . . . X

(sm)
n

∈Rm×n,

in which s1, . . . , sm are m epigenomic signals (e.g., ATAC-seq, CTCF, etc.) and 1, 2, . . . , n are the indices284

of 200 bp bins. CAESAR takes X as input and learns a mapping function F : Rm×n → Rn×n to predict285

n×n chromatin contacts between n bins (denoted as Y). Integrated gradient [16] attributes the output to286

each input dimension of X by calculating a path integral of the gradient ∂Y
∂X . Gradient ∂Y

∂X is a measure287

to quantify how much each dimension of X influences Y, which reveals the contribution from each input288

dimension. The path integral starts from a pre-defined “background” X0 and ends at X, and thus it accu-289

mulates the contributions of each input dimension from the background to real input X [23]. Here we used290

a matrix of all zeros as the epigenomic background. As demonstrated in [16], a straight-line path is efficient291

at disentangling the input features. Formally, the attribution of the t-th epigenomic signal st at bin i is:292

A(X
(st)
i ) =

∫ 1

α=0

∂y

∂γ
(st)
i (α)

∂γ
(st)
i (α)

∂α
dα

in which y can be Y or a part of Y, ∂y
∂γ(α) is the gradient, γ is the path, and γ(st)i (α) is the dimension293

corresponding to X(st)
i in the path.294

By calculating the attribution towards the entire output, we obtained an overall attribution from each295

epigenomic feature, in which the scale of its absolute value indicates the magnitude of its importance (Fig-296

ure S4a). Alternatively, the attribution can be calculated for an arbitrary region on the contact map, e.g., a297

chromatin loop or a chromatin stripe, and used for further subtyping of these loops and stripes (Supplemen-298

tary Note 9; Figure S4c).299

300

High-resolution contact map imputation for 91 human tissues and cell lines301

As the cross-cell type model is validated, we used the trained model to impute high-resolution chromatin302

contact maps for other human tissues and cell lines. We collected the epigenomic signals from a total num-303

ber of 57 tissue samples, 16 cell lines, 12 primary cells, and 6 in vitro differentiated cells (Supplementary304

Note 2). If the ATAC-seq signal was unavailable, DNase-seq was collected as an alternative. The 6-epi305

CAESAR model trained with both hESC and HFF’s train set was used. For IMR-90, GM12878, and K562,306

we used their deeply sequenced (above 1B contacts) Hi-C contact maps as input. For cell lines or tissues307

without Hi-C or with only shallowly sequenced Hi-C, we used the surrogate Hi-C as input (Supplementary308

Note 2).309

310

Validation of imputed contact maps with CRISPRi in cancer cell lines311

The profiled CRISPRi score indicates the strength a genomic locus regulates a gene, and the peaks (both312

positive and negative) correspond to enhancers and promoters. We binned the CRISPRi scores at 200-bp313

resolution. On the imputed high-resolution contact maps, we selected the region near MYC gene (chr8:314

12,765,000-12,785,000) and GATA1 gene (chrX: 48,725,000-48,825,000) for K562. The contacts in these315

regions were jointly analyzed with CRISPRi scores.316

317
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Validation of imputed contact maps with eQTLs in human tissues318

To process the raw eQTL data, we identified the 200 bp bin where each variant and its corresponding319

TSS locates and the contacts between the variant bin and TSS bin. We only kept the eQTL-TSS “bin pairs”320

which are 1) less than 150 kb apart, and 2) specific in only one tissue or cell line. The piled-up analysis was321

applied to the eQTL-TSS interactions in 1) the CAESAR-imputed contact map, 2) the Micro-C contact map322

of hESC and HFF, and 3) the interpolated Hi-C contact map. For each eQTL-TSS pair, a square region (51323

pixels×51 pixels) centered at their contact was collected. The regions from each contact map were piled up,324

averaged and further visualized.325

326

Code availability327

The source code is publicly available in the GitHub repository https://github.com/liu-bioinfo-lab/caesar.328
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Figure 1: Overview of the model.
a, Model architecture. The model inputs are a Hi-C contact map and a number of epigenomic features including histone modi-
fications, chromatin accessibility, and protein binding profiles. The lower-resolution Hi-C contact map is first interpolated into a
200 bp-resolution contact map, and then transformed into a graph G in which the nodes represent 200 bp genomic bins and the
edges represent the interpolated contacts between the nodes. The epigenomic features are assigned to the corresponding nodes
as node attributes. The inputs are fed into 1D convolutional and graph convolutional layers to generate hidden representations,
which extract features from both nearby genomic regions along the 1D DNA sequence and spatially-contacting regions specified
by G. The output layers take input the hidden representations and predict the contact profile at each 200 bp bin as well as the
chromatin contacts between bins. b, In an example region, the polycomb interactions are accurately predicted by CAESAR. In
another example region, loops and stripes undetected by Hi-C are accurately predicted by CAESAR.
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Figure 2: Evaluating CAESAR’s performance in multiple tasks.
a, The distance-stratified Pearson’s correlation with the observed Micro-C contact map from CAESAR and two baselines, HiC-Reg
and HiCPlus, in a cross-chromosome experiment. The black dotted lines in a and b are the correlation between the input Hi-C
contact map and the observed Micro-C contact map. b, The distance-stratified Pearson’s correlation with the observed Micro-C
contact map from CAESAR in 1) a cross-chromosome experiment (train on hESC train set and test on hESC test set), 2) a cross-cell
type experiment (train on HFF train set and test on hESC test set), and 3) a cross-species experiment (train on mESC train set and
test on hESC test set). c, The Venn diagram of the loops called from 1) the input Hi-C contact map, 2) the CAESAR-imputed
contact map, and 3) the observed Micro-C contact map. d, The pile-up visualization of the loops called from 1) the input Hi-C
contact map, 2) the CAESAR-imputed contact map, and 3) the observed Micro-C contact map. e, The Venn diagram of the stripes
called from 1) the input Hi-C contact map, 2) the CAESAR-imputed contact map, and 3) the observed Micro-C contact map. f,
The pile-up visualization of the stripes called from 1) the input Hi-C contact map, 2) the CAESAR-imputed contact map, and 3)
the observed Micro-C contact map.
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Figure 3: The relationships between CAESAR’s performance with Hi-C quality, the number of epigenomic features, evolutionary
conservation, A/B compartments, and early/late replication timing.
a, The epigenomic features in 13-epi, 7-epi, 6-epi, and 3-epi CAESAR models are listed in the table, which are chosen based
on common availability. b, The distance-stratified Pearson’s correlation with the observed Micro-C contact map from CAESAR
in a cross-cell type experiment with different numbers of epigenomic features (i.e., 13, 7, 6, and 3). c, The distance-stratified
Pearson’s correlation with the observed Micro-C contact map from CAESAR in a cross-cell type experiment when 1) using the
original Hi-C contact map with about 1 billion contacts, 2) randomly down-sampling the Hi-C contact map at different down-
sampling rates (resulting in 100 million and 25 million chromatin contacts), and 3) using a surrogate Hi-C contact map with 1
billion contacts aggregated from HFF, GM12878, IMR-90, and K562 with equal proportions. d, The model performance in a
specific region is quantified by the Spearman’s correlation coefficient between the CAESAR-imputed and the Micro-C contact
map. In cross-chromosome and cross-cell-type experiments, the model performance (i.e., Spearman’s correlation coefficient) is
significantly correlated with evolutionary conservation evaluated by sequence alignment scores. In the boxplots, the center line
indicates median; the box limits are upper and lower quartiles; the whiskers are 1.5×interquartile range; the points are outliers.
e, In cross-chromosome and cross-cell-type experiments, the correlation coefficient is significantly larger in A compartment than
in B compartment. f, In cross-chromosome and cross-cell-type experiments, the correlation coefficient is significantly larger in
early-replicating regions than in late-replicating regions.
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Figure 4: The interactions between genes and their CRISPRi-validated enhancers in CAESAR-imputed contact maps.
a, The CAESAR-imputed contact map of K562 at MYC region (chr8: 127,600,000-127,850,000) demonstrates significant contacts
between MYC and PVT1, which agree with with CRISPRi score peaks, but are not shown on the original input Hi-C contact
map. The magnitude of the epigenomic features is the observed value divided by the genome-wide average. b, The CAESAR-
imputed contact map of K562 at GATA1 region (chrX: 48,725,000-48,825,000) demonstrates significant contacts between GATA1
and HDAC6, which agree with with CRISPRi score peaks, but are not shown on the original input Hi-C contact map.
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Figure 5: The enrichment of eQTL-gene interactions in CAESAR-imputed contact maps.
a, The loops between gene NIFK’s TSS and its three eQTLs specific in heart left ventricle (HLV), which cannot be observed on
the low-resolution Hi-C contact map, appear on the CAESAR-imputed contact map of HLV. Although all three eQTLs are HLV-
specific, only the loop between NIFK TSS and eQTL i is HLV-exclusive; while the other two loops can also be observed on the
CAESAR-imputed contact map of lung and the Micro-C contact map of HFF, respectively. b, A series of gene TTC7A’s eQTLs
are shared by stomach and pancreas, and both loops and stripes are observed on the CAESAR-imputed contact maps of the two
tissues. As a reference, the contacts are not observed on the low-resolution Hi-C contact map of pancreas and less enriched on
the CAESAR-imputed contact maps of lung. c, Pile-up analysis of the chromatin contacts between eQTLs and their corresponding
gene TSS for 12 different human tissues and cell lines demonstrates highly enriched interactions on the CAESAR-imputed contact
maps, but not on original Hi-C contact maps or HFF’s Micro-C contact maps.
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Figure 6: Attributing CAESAR outputs to epigenomic features via integrated gradient. Larger attribution magnitudes indicate more
contribution to the model’s prediction.
a, The significant attribution of the particular stripe are from its anchor. Although all 6 epigenomic features have peaks at the
anchor locus, the model predicts the stripe mostly from 1) ATAC-seq and CTCF peaks at the anchor, and 2) H3K4me1 modification
surrounding the anchor. b, The significant attribution of the particular loop are from its two anchors. Although H3K27ac have
peaks at the left anchor locus, its contribution is negative towards predicting the loop. The CTCF binding at the anchors and
H3K4me1/H3K4me3 modifications next to the anchors have positive attribution in predicting the loop.
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