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ABSTRACT 

Bone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-

derived cells such as monocytes and macrophages are known to influence their behavior.  

However, precisely how these multiple cell types coordinate and regulate each other over time to 

repair injured bone is difficult to dissect using biological approaches. Conversely, mathematical 

modeling lends itself well to this challenge. Therefore, we generated an ordinary differential 

equation (ODE) model powered by experimental data (osteoblast, osteoclast, bone volume, pro- 

and anti-inflammatory myeloid cells) obtained from intra-tibially injured mice. Initial ODE results 

using only osteoblast/osteoclast populations demonstrated that bone homeostasis could not be 

recovered after injury, but this issue was resolved upon integration of pro- and anti-inflammatory 

myeloid population dynamics. Surprisingly, the ODE revealed temporal disconnects between the 

peak of total bone mineralization/resorption, and osteoblast/osteoclast numbers. Specifically, the 

model indicated that osteoclast activity must vary greatly (>17-fold) to return the bone volume to 

baseline after injury and suggest that osteoblast/osteoclast number alone is insufficient to predict 

bone the trajectory of bone repair. Importantly, the values of osteoclast activity fall within those 

published previously. These data underscore the value of mathematical modeling approaches to 

understand and reveal new insights into complex biological processes. 

 

KEYWORDS: Bone injury, bone ecology, orthopedic trauma, osteoclast, osteoblast, monocyte, 

macrophage, pro-inflammatory, anti-inflammatory, mathematical modeling, ordinary differential 

equations 
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INTRODUCTION  

Bone healing subsequent to injury or trauma is a significant clinical problem in orthopedics and 

rehabilitation1-3. Understanding the processes involved and how cells coordinate and control each 

phase of injury repair can reveal opportunities to accelerate healing and improve patient outcomes 

while reducing cost. Currently, the phases of bone injury repair in diaphyseal, epiphyseal or 

metaphyseal fractures have been well characterized1, 4-7. For example, in critical non-union 

fractures, a rapid inflammatory response is followed by callus formation. The callus is then 

mineralized by infiltrating mesenchymal stromal cells (MSCs) that differentiate into cartilage, and 

bone-forming chondrocytes and osteoblasts respectively1, 2. Subsequently, activated osteoclasts 

mediate resorption and clearing of the ossified callus1. In addition to osteoblasts and osteoclasts, 

other cell types are also involved in the bone healing process, such as resident and infiltrating 

immune cells that exert pro- and anti-inflammatory activities depending on environmental cues1, 

8-10. This is evidenced by the fact that acute pro-inflammatory factor administration (e.g TNF𝛼) 

can improve bone repair while prolonged administration has the opposite effect11-15. Monocytes 

and macrophages are major components of the bone immune infiltrate subsequent to injury1, 8, 9, 

16. Previous studies using genetic or pharmacological depletion of myeloid cells such as 

macrophages demonstrated significantly delayed time to bone repair 10, 16-19. However, precisely 

how these multiple cell types coordinate and regulate osteoblast and osteoclast activity over time 

is challenging to dissect using traditional in vitro and in vivo biological approaches.  

 A potential approach to overcome this hurdle is the integration of experimental data with 

computational models that allow for the analysis of multiple cells types at any time point during 

bone injury repair. Previous reports, including from our group, have successfully demonstrated 

the feasibility of mathematical modeling approaches to enhance our understanding of how cells 

interact in the bone ecosystem to coordinate homeostasis and cancer-bone interactions20-29. 

There are a number of mathematical model approaches that can be employed such as ODEs that 

can be used to model bone cell populations in normal and disease processes30-35. Individual 

cellular dynamics can also be considered by representing the cell populations as either a 

continuous spatial field whose dynamics are described by a set of partial differential equations 

(PDE)36, 37, or as individual agents in an agent-based model approach30. Although these models 

have been used to examine bone injury repair and homeostasis, they have largely focused on the 

interaction between bone-building osteoblasts and bone-resorbing osteoclasts30-32, 34, 37. Some 

models have considered immune populations but these are theoretical and are not driven by 

biological data that provides quantitative information for each population and various timepoints 

throughout the bone injury repair process 38, 39.  
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To address this, we used an in vivo model of bone injury to longitudinally measure changes 

in pro-and anti-inflammatory monocytes and macrophages in addition to osteoblast and 

osteoclast numbers and bone volume at the site of injury. We then used the obtained biological 

data combined with empirically-derived parameters from the literature to power an ODE model of 

bone injury repair and examine the impact of infiltrating immune cells on osteoblast and osteoclast 

activity over time in regard to bone volume dynamics. The ODE model generated herein, 

demonstrated that the temporal interplay between myeloid derived pro- and anti-inflammatory 

populations are critical in driving osteoblast and osteoclast response but interestingly, using a 

constant rates of bone formation and resorption, the mathematical model failed to recapitulate the 

bone volume dynamics. Further interrogation of the model demonstrated that the rate of 

osteoclast resorptive activity must vary greatly over the course of injury resolution to return the 

bone volume to homeostasis. This insight has not been considered to date and underscores the 

value of mathematically modeling complex multicellular biological process.  
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RESULTS 

 

Osteoclast and osteoblast numbers fluctuate dynamically in response to bone injury 

The stages and duration of non-critical bone injury largely follow the same program, whereby 

subsequent to injury, early inflammation and hematoma occur rapidly, followed by the formation 

of a callus that is subsequently mineralized by bone-forming osteoablasts4, 5, 40. The callus is then 

remodeled via the activity of bone resorbing osteoclasts1, 18, 41-46 (Fig. 1a). Osteoblasts and 

osteoclasts are critical mediators of these steps and their numbers shift accordingly during each 

phase of repair. Existing theoretical models of bone remodeling assume osteoblast and osteoclast 

activities are constant over time and therefore, their numbers directly predict bone dynamics31, 32, 

34, 37. To evaluate this prevailing assumption, we first asked if modeling osteoclast and osteoblasts 

alone was sufficient to accurately predict corresponding bone remodeling dynamics using 

experimental data. To generate parameters to power such an ODE model, we used an 

experimental model of bone injury repair: non-critical injury resulting from direct intratibial 

penetration via the knee epiphysis into the medullary canal47-50 (Fig. 1b). Tibias from mice were 

collected prior to injury at baseline (day 0), and at day 1, 2, 3, 7 and 14 (n = 5 mice/time point) 

following injury. High-resolution μCT analysis of uninjured tibia established baseline bone volume 

(BV/TV) (Fig. 1c and d). Our data show that after injury, bone volume around the injury site 

diminished over a 48-hour period, prior to a robust increase in mineralized bone content between 

days 2 and 7. By day 14, the bone volume returned toward baseline values. We directed our μCT 

and histological analyses on the area surrounding the bone injury rather than the entire bone 

marrow since our goal was to quantify cellular dynamics and changes specifically in response to 

injury; values that could be diluted by measurements in non-injured areas of the medullary canal 

(Supplemental Fig. 1). Focusing on the site of injury and surrounding area, histologically, we 

observed sequential increases in osteoblasts followed by osteoclasts, findings that are 

qualitatively consistent with our BV:TV μCT analyses and are in line with previous published 

observations50-52 (Fig. 1c and d). 

 

Bone repair dynamics cannot be computationally recapitulated using constant osteoblast 

and osteoclast activity rates  

To date, bone resorption and formation rates have been difficult to measure in vivo. Despite 

various in vitro studies showing that osteoblast and osteoclast activity can be controlled by 

inflammatory factors and cytokines15, 53-64, existing theoretical mathematical models of bone 

remodeling largely assume that resorption and formation rates per cell are fixed/constant over 
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time. Since measuring whether osteoblast and osteoclast activities vary over time in vivo during 

bone injury repair is experimentally challenging, we employed an integrated experimental and 

mathematical approach to address this knowledge gap. 

Using the obtained biological data and publicly-available parameter values regarding 

osteoblast and osteoclast behavior (Fig. 1c, Supplemental Fig. 2 and Table 1), we developed an 

initial mathematical data-driven ODE model to recapitulate the control of bone repair exclusively 

by these two populations (Fig. 2a). This initial ODE model simulated the bone injury event as a 

transient osteoblast (OBL) expansion and a decrease in osteoclast (OCL) population from day 0 

to 2 (see mathematical and computational methods). Fits to the rest of the OCL and OBL 

population data were optimized within the parameter space defined by published literature, such 

as regarding cellular lifespan and proliferation rates (Fig. 2b and Table 1). Optimal fits with 

greatest R2 value and number of residuals less than 1 (#R<1) were subsequently used for 

estimating bone volume dynamics. Using these OCL and OBL optimized fits, the ODE model 

attempted to recapitulate experimental bone dynamics by sampling constant bone resorption 

rates within a range previously described in literature50, 53, 65, 66. A corresponding bone formation 

rate was estimated in each sampling as to ensure a return to baseline bone volume at the end of 

the injury repair process (Fig. 2a #). Interestingly, using this iterative approach, the ODE 

predictions largely overestimated the bone volume dynamics compared to the experimental data 

(Supplemental Fig. 3). In fact, the best-fitted iteration, that used the lowest published OCL 

resorption rates66, only achieved an R2 value of 0.4554, and #R<1 of 2/5 (Fig. 2c). This indicated 

that either published measurements of in vitro bone resorption/formation parameters do not reflect 

in vivo rates, and/or that bone resorption/formation rates by osteoclasts and osteoblasts are 

variable over time during the course of injury repair. To address this, we alternatively fitted the 

model to bone dynamics data while allowing the optimization algorithm to freely determine an 

optimal combination of constant bone resorption and formation rates that were not forced to return 

to baseline bone volume subsequent to injury (Fig. 2a &). This resulted in improved bone volume 

dynamic fits during injury repair but, of note, the final bone volume reached by the ODE was 70% 

lower compared to that of baseline (Fig. 2d). Taken together, these data suggest that osteoclast 

and osteoblast activity rates must vary greatly during injury response in order to return the bone 

to homeostasis during injury repair time-frame. This raised the question as to what 

cellular/environmental cues are potentially responsible for controlling their activity. 

 

Polarized pro- and anti-inflammatory monocytes and macrophages emerge in distinct 

temporal waves during bone injury repair 
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Monocytes and macrophages are key cellular species in the bone ecosystem and their pro- and 

anti-inflammatory functions have been implicated in the bone injury repair process and in the 

regulation of osteoblast/osteoclast activity8, 18, 19, 50, 67, 68.  Studies have shown for example that, 1) 

myeloid cells are polarized in bone injury and inflammation, 2) pro-inflammatory factors and 

myeloid cells stimulate osteoclast activity, and 3) anti-inflammatory/wound-healing factors and 

myeloid cells stimulate osteoblast activity (Supplemental Fig. 4)1, 9, 11, 45, 51, 67-69. Based on this 

rationale, we therefore hypothesized that fluctuations in the number and polarization status of 

myeloid populations control osteoclast and osteoblast activity during bone repair. To test this 

hypothesis, we reanalyzed the non-critical bone injury experiment. Tibias from mice were 

collected at baseline prior to injury (day 0), and at day 1, 2, 3, 7 and 14 (n = 5/time point) post-

injury. Flow cytometry was used to measure changes in myeloid populations over time 8, 17, 70-80 

(Fig. 3a-c and Supplemental Fig. 5). Our results show that there are significant increases in pro-

inflammatory monocytes and macrophages within the first 48 hours that are subsequently rapidly 

depleted upon the infiltration of anti-inflammatory macrophages between 24 and 72 hours (Fig. 

3c). Interestingly, in accordance with observations from other in vivo studies, we observed a 

smaller second wave of pro-inflammatory monocytes between days 6 and 881-83 (Fig. 3c and d). 

 

Integration of polarized myeloid cells control of bone remodeling activity recapitulates 

bone healing dynamics 

Previous studies have reported pro- and anti-inflammatory myeloid control of osteoclast and 

osteoblast activity; however, these observations are largely derived from in vitro settings 54, 67, 84-

93. To address this, we integrated the experimental quantitative data collected from each of these 

populations via flow cytometry into the framework of the ODE model (Fig. 4a and b). Specifically, 

we allowed osteoclast activity to be stimulated from baseline in proportion to the presence of pro-

inflammatory cells by a model-estimated constant factor of α. Likewise, we allowed osteoblast 

activity to be stimulated from baseline in proportion to the presence of anti-inflammatory cells by 

a model-estimated constant factor of β. These assumptions are based on empirical data from 

published in vitro experimental data54, 67, 84-86, 88-93. We then asked the expanded ODE model to 

optimize for levels of α and β that are needed to recapitulate bone volume dynamics. Of note, we 

did not integrate anti-inflammatory monocyte data as the experimental data demonstrated this 

population remains consistently low levels that did not fluctuate throughout the course of bone 

injury repair (Fig. 3c). Importantly, in our model optimization, the range of osteoblast and 

osteoclast activities that could be influenced by infiltrating myeloid cells were limited to published 

values (Supplemental Fig. 2). Given these restraints, the model nevertheless estimated an 
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optimal set of parameters that significantly recapitulated the bone volume dynamics (R2= 0.9362; 

#R<1 =5/5) (Fig. 4c). The optimized model reveals that while osteoblast activity remains relatively 

constant, osteoclast activity changes dramatically over time. Furthermore, in this expanded ODE 

model, the bone volume returned to baseline levels subsequent to injury, underscoring the 

biological validity of our model assumptions and reinforcing the importance of myeloid-derived 

infiltrating cells in controlling the activity of osteoblasts and in particular osteoclasts in the process.  

 

Osteoclast resorption activity does not correlate with osteoclast number during bone 

injury repair 

Upon further analysis of the results generated by our expanded ODE model, we noted a 

disconnect between the dynamics of osteoblast and osteoclast activity versus their population 

numbers (Fig. 5a). The model predicts that osteoblast mineralizing activity varies slightly over 

time 1.21x10-6 to 2.63x10-6 mm3/cell/day; however, the model predicts that a range of 4.26x10-7 

to 7.28x10-6 mm3/cell/day is required for osteoclast activity (Fig. 5a and b). These data suggest 

that, while osteoblast activity only increases by 2 folds, a 17-fold increase in osteoclast activity is 

required to recapitulate injury dynamics and also return to the bone volume to homeostasis. 

Importantly, the noted ranges for osteoclast activity fall within those values reported in 

independent studies53, 65, 66 (Fig. 5b and Supplemental Fig. 2). Our model is the first to posit that 

the rate at which osteoclast resorbs mineralized matrix in bone healing can vary greatly depending 

on cues from the surrounding microenvironment.  

We also submit that this variation in resorptive activity is driven by infiltrating pro- and anti-

inflammatory monocytes and macrophages. To this end, we returned to our initial ODE model 

(Fig. 2) and asked how would osteoclast activity change overtime in order to fit to the bone data. 

In this agnostic approach, we no longer restricted osteoclast resorption to constant rates over 

time, but defined a piecewise linear function of time for osteoclast resorption rate (Supplemental 

Fig. 6a and b, Mathematical and Computational Methods). Independent of the parameters chosen 

for the initial piecewise slope conditions, the optimization algorithm identified a functional form 

composed of two waves: initially intense and transient between days 1 and 2, followed by a milder 

but persistent wave starting after Day 3 (Supplemental Fig. 6c; orange line). We noted this 

temporal profile was very similar to that of experimental data regarding the pro-inflammatory 

monocytes and macrophages populations (Fig. 3c and Supplemental Fig. 6c). This result further 

supports that pro-inflammatory cells contribute significantly to osteoclast behavior and therefore 

bone healing dynamics (Supplemental Fig. 6). We used a similar approach to determine variable 

osteoblast activity and defined a piecewise linear function of time, for the bone formation rate 
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(Supplemental Fig. 7a). Interestingly, this model did not recapitulate bone volume dynamics 

despite the freedom to change bone formation rate over time (Supplemental Fig. 7b; R2=0.6796). 

These data further support a role for pro-inflammatory myeloid cells in controlling osteoclast, and 

less so osteoblast activity, and therefore bone volume during injury repair.  
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DISCUSSION 

The complex cellular mechanisms that control bone injury repair can be difficult to dissect given 

the complexity of the bone marrow microenvironment using traditional biological approaches but 

key insights have been made. For example, genetic and pharmacologic approaches reveal that 

macrophages play important roles in bone healing as well as osteoclast differentiation51, 68, 93-95. 

Yet, how macrophage populations quantitatively interact with each other or other cell types in the 

bone environment directly or indirectly over time can be challenging to identify with this approach. 

For instance, though polarized macrophages have been observed at sites of bone injury alongside 

osteoblasts and osteoclasts, the rates at which polarized macrophages stimulate the activities of 

these bone cells remained difficult to evaluate and furthermore, quantitate. Computational 

approaches allow simultaneous interrogation of multicellular systems in which a mathematical 

model can infer parameter values that may be otherwise unknown. Despite this advantage, 

existing mathematical models of bone remodeling largely focus only on osteoclast, osteoblast and 

the bone; and those which integrate additional populations are theoretical 28, 30-38. As shown here, 

we have integrated both our experimental and published data into a mathematical framework 

which models interactions between myeloid cells, osteoclasts and osteoblasts, and the bone from 

published literature. We have concluded that bone repair cannot be recapitulated if we assume 

osteoclast osteoblast activities are constant over time. Our initial ODE model failed to derive 

accurate bone fits despite using both published and freely estimating constant activity rates. 

Therefore, based on the literature, we subsequently focused on myeloid-derived monocytes and 

macrophages that have noted roles in contributing to bone injury repair51, 68, 93-95, and the 

expanded ODE demonstrated that the dynamic waves of polarized monocytes and macrophages 

and their temporal control of bone remodeling activity sufficiently allowed for the accurate 

recapitulation of bone repair.  

  Another major finding from our analyses is the extent to which osteoclast resorptive 

activity can be modulated subsequent to osteoblast mineralization of the injury site. Existing 

empirical data have recorded osteoclast resorptive activities in the range of 1x10 -8 to 5x10-5 

mm3/cell/day53, 65, 66. Here, our estimations suggest that osteoclast activity varies by 17-fold 

magnitude over time within this published range and that pro-inflammatory monocyte and 

macrophages are critical for regulating this effect. These data underscore how mathematical 

modeling can provide important biological insights. It should be noted that though other 

mathematical models have been proposed to explore mechanisms of bone repair dynamics30, 32, 

34, 36, 38, the study presented herein, to our knowledge, is the first to leverage longitudinal biological 

data on multiple cellular populations and integrate this information into a mathematical model. 
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Additional quantitative insights provided by the ODE model include estimations on 

monocyte and macrophage proliferation rates as well as the rates at which pro- and anti-

inflammatory cells polarize and modulate osteoclast and osteoblast activity, respectively, during 

the repair process. This information can be critical for therapies that target specific myeloid 

populations during bone injury repair in a bid to accelerate bone healing. Our study also reveals 

rapid expansion of pro-inflammatory monocytes and macrophages in the first 24 hours with anti-

inflammatory macrophages emerging shortly thereafter and persisting for up to 48 hours. 

Interestingly, pro-inflammatory cells moderately rebound upon the clearance of anti-inflammatory 

cells (between days 6 and 8, Fig. 3c), suggesting a second wave of inflammation that is in keeping 

with other reports81-83. Conflicting reports suggest this could be due to 1) emergence of anti-

inflammatory macrophages having an inhibitory effect on pro-inflammatory population, or 2) 

myeloid plasticity and repolarization68, 72, 96-101. Our next efforts with the ODE generated herein will 

focus on the interplay between macrophages and how their polarization states control not only 

each other, but also how osteoblasts and osteoclasts coordinate bone injury repair.  

 One caveat of our study is that the flow cytometric analysis is performed on cells isolated 

from the whole bone marrow, as opposed to only the volume of interest in histological datasets 

(See Supplemental Fig. 1). An alternative could be to perform multiplex image cytometry of the 

site of injury for the various myeloid populations of interest. We suspect that, while this would 

allow for more accurate quantitation of the myeloid cell populations infiltrating the site of 

information, the overall trends and shifts in those populations over time would remain similar to 

our flow cytometry data. Additionally, our model does not consider the potential roles of other cell 

types in the bone ecology that could contribute, such as T cells. Our results suggest that modeling 

myeloid populations provides enough resolution to satisfactorily explain the process of non-critical 

bone injury repair. Importantly, our unbiased test (Supplemental Fig. 6 and 7) yielded osteoclast 

activity dynamics that qualitatively resonated with the population dynamics of pro-inflammatory 

monocytes and macrophages, supporting the importance of the myeloid population in regulating 

bone volume resorption. Our theoretical framework is flexible enough however that the effects of 

other immune cells such as T cells could be included in future iterations of our ODE model.  

Through our unbiased data-driven testing approach, we have integrated experimental data 

into a physiologically-relevant mathematical model exploring non-critical bone injury repair. A 

potential application of our modeling approach is to determine how bone healing times 

subsequent to injury can be improved via therapeutic intervention. Previous reports have 

demonstrated that modulating pro- and anti-inflammatory macrophages can alter the time taken 

for bone injury repair14, 19, 50, 89. Because of the ability of the ODE model to recapitulate the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.338335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.338335
http://creativecommons.org/licenses/by-nc/4.0/


temporal dynamics of the cellular populations involved in bone injury repair, we can investigate 

the precise timing at which to administer therapies in order to further shorten bone-healing time. 

Likewise, we can examine cellular behavior in response to a different sized injury, or even in a 

different bone injury context, such as non-union fractures. These points will be best addressed 

once we are able to enhance our ODE model with reciprocal mechanisms and fully couple the 

system.  

In conclusion, we have developed an ordinary differential equation (ODE) model of osteoclast, 

osteoblast and bone dynamics, that considers the influences of polarized myeloid cells during 

bone injury. The model faithfully recapitulates bone volume dynamics during injury repair and 

returns to homeostasis. It further yields a number of novel insights regarding myeloid control of 

osteoclast- and osteoblast-mediated bone resorption and formation over time. To our knowledge, 

this model is the first to recapitulate longitudinal in vivo data of simultaneously measured bone 

and myeloid cell populations, as well as bone volume during bone healing. A better understanding 

of bone healing will have clinical translatability, allowing, for instance, accelerating the process 

and improve patient outcomes. 
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MATERIALS AND METHODS 

Intratibial Bone Injury Model 

All animal studies were performed in accordance with Guidelines for the Care and Use of 

Laboratory Animals published by the National Institutes of Health, under IACUC Protocol R5857 

(CCL). Additionally, studies abided by relevant ARRIVE guidelines. 5-6-week-old male immune-

competent C57BL/6 mice were purchased from Jackson Laboratory with consideration for study 

statistical significance and power (n=30). Surgically prepared mice (n=25) were sterilized with 

chlorhexidine and subject to non-critical bone injury by intratibial injection using a 28-gauge 

(0.3062mm diameter) syringe by penetration through the knee epiphysis to mid-shaft. Five mice 

remained uninjured and were euthanized at baseline, and, subsequently, randomly selected 

injured mice were euthanized at days 1, 2, 3, 7 and 14 (n=5/time point) for histological and flow 

cytometry analyses. Histological and FACS data were obtained in a blind manner to parameterize 

subsequent mathematical models. 

 

Micro-Computed Tomography 

Injured tibias harvested from mice from all time points were centralized and were subjected to 

micro-computed topography (μCT) scanning using Scanco μ35 scanner to derive bone volume 

data. Individual bone scans were deidentified using numerical codes during, and reidentified 

following data analysis in a blinded fashion. A gap of 100μm from the tip of growth plate towards 

the midshaft was avoided to ensure the high bone density nature of the growth plate does not 

mask potential differences in bone volume associated with the injury. Each bone was then 

scanned every 6μm for a total span of 1000𝜇m along the midshaft. Trabecular bone 

histomorphometry was subsequently performed after contouring each slice scan and 

reconstructing the 3-dimension volume of interest structure of each bone using the built-in morph 

function (n=30 bones; 5/time point). This process was performed repeatedly using different 

contours to generate bone status dynamics of the whole trabeculae, the region surrounding the 

injury, and of the injury itself (Supplemental Fig. 1). 

 

TRAcP Staining 

Tibia bones from all time points were decalcified with 14% EDTA every other day for 3 weeks for 

further staining quantitation and analyses following μCT scans. Formalin fixed paraffin embedded 

(FFPE) bones were sectioned at 4μm thickness. Multiple slides sectioned at different depths from 

each bone were pooled for all time points, and were baked at 42°C overnight to improve adhesion 

while retaining enzymatic activity for tartrate-resistant acid phosphatase (TRAcP) enzyme-based 
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staining for osteoclast numbers. Deparaffined and rehydrated sections were pre-incubated in 

basic stock solution with napthol-ether substrate for 1 hour at 37°C and developed in 

pararosaniline dye and sodium nitrite for 10mins, also at 37°C. Sections with red osteoclasts were 

further counterstained with hematoxylin to visualize bone tissue morphology. Fixed slides were 

imaged at 20X using Evos Auto brightfield microscopy to include injury site and its immediate 

periphery. All TRAcP positive (red) multinucleated osteoclasts within 5𝜇m radius from injury were 

counted, and mathematically converted to osteoclasts / bone marrow volume (#OCL/μm3) for 

each slide for each bone at each time point. This region of is consistent in area with the μCT 

analysis parameters to ensure consistency in data. 

 

Immunofluorescence Staining and Quantitation 

Additional FPPE tibia bone sections were baked at 56°C in preparation for immunofluorescence 

staining of osteoblast (RUNX2 at 1:500; Abcam Cat. No. ab81357) and nuclear staining (DAPI). 

Slides were processed in batch similar to TRAcP staining methodology. Deparaffined and 

rehydrated slides were subject to heat-induced antigen retrieval method. Sections were then 

blocked and incubated in primary antibodies diluted in 10% normal goat serum in TBS overnight 

at 4°C. Subsequently, slides were stained with secondary Alexa Fluor 568-conjugated antibody 

at 1:1000 at room temperature for 1 hour under light-proof conditions. Stained slides were stained 

with DAPI for nuclear contrast and mounted for imaging at 20X using Zeiss upright fluorescent 

microscope to include the injury site as well as the immediate peripheral tissue. All RUNX2 

positive cells (red staining colocalizing with DAPI) within 5𝜇m radius from injury were counted and 

mathematically converted to osteoblasts / bone marrow volume (#OBL/μm3) for each bone at 

each time point. Again, this methodology ensured consistency across all acquired datasets. 

 

Flow Cytometry and Analysis 

Harvested contralateral injured tibias (n=30; 5/time point) had ends removed and were subjected 

to centrifugation at 16,000g for 5 seconds for isolation of whole bone marrow for flow cytometry 

staining and analysis. Red blood cells were lysed using RBC Lysis Buffer from Sigma Aldrich 

(Cat. No. R7757-100ML) as per manufacturer’s guidelines. Live bone marrow cells were subject 

to FcR-receptor blocking (1:3; BioLegend; Cat. No. 101319) and viability staining (1:500; 

BioLegend; Cat. No. 423105). Samples were then stained by cell-surface conjugated antibodies 

from BioLegend diluted in autoMACS buffer (Miltenyi; Cat. No. 130-091-221) for phenotyping 

myeloid cells: CD11b-BV786 (1:200; Cat. No. 101243), LY-6C-Alexa Fluor 488 (1:500; Cat. 

No.128021) and LY-6G-Alexa Fluor 700 (1:200; Cat. No. 561236). Cells were then fixed with 2% 
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paraformaldehyde in dark prior to intracellular staining. Fixed cells were permeabilized using 

intracellular conjugated antibodies to assess polarization status: NOS2-APC (1:100; eBioscience; 

Cat. No. 17-5920-80) and ARG1-PE (1:100; R&D; Cat. No. IC5868P). Appropriate compensation 

and fluorescence-minus-one (FMO) controls were generated in parallel either with aliquots of 

bone marrow cells or Rainbow Fluorescent Particle beads (BD Biosciences; Cat. No. 556291). All 

antibody concentrations were titrated prior to injury study using primary bone marrow cells to 

ensure optimal separation and detection of true negative and positive populations. Stained 

controls and samples were analyzed using BD Biosciences LSR flow cytometer (Supplemental 

Figure 4). All datasets were batch analyzed to ensure optimal consistent gating stringency. 

 

MATHEMATICAL AND COMPUTATIONAL METHODS 

 

Model Parameterization 

Initial ODE model The initial Osteoblast/Osteoclast/Bone ODE model is presented in equation 

Fig. 2a. OB, OC and B represent osteoblasts, osteoclasts and bone volume, respectively. 

Osteoblast and osteoclast equations are composed of a homeostatic source term, a clearance 

term, and an injury-triggered expansion term. The osteoblast clearance parameter δOB was fixed 

from literature and in order to ensure osteoblast homeostasis level, the source term HOB was fixed 

at δOB*OB0, where OB0 represents the initial level of osteoblasts. The osteoblast proliferation rate 

γOB and duration of expansion Tanab were calibrated in fitting the osteoblast dynamics to the 

experimental data. The osteoclast decrease rate (InhibOC), the decrease duration (TantiCatab), the 

replenishment time (TCatab) and the replenishment rate (ROC) were calibrated in fitting the 

osteoclast dynamics to the experimental data. The homeostatic clearance parameter was fixed 

to ROC/OC0 in order to ensure homeostasis back to the initial osteoclast level.  

The bone equation comprises two terms: a bone resorption term, proportional to the 

number of osteoclasts and proportional to bone volume, and a bone formation term, proportional 

to osteoblast number. The resorption term is proportional to bone volume since less bone 

translates to less bone available for osteoclast resorption. On the other hand, osteoblast-mediated 

bone formation is independent of available bone. A range of possible resorption rates was derived 

from published measurements. Equation on Fig. 2a # shows how bone formation parameter is 

fixed at δBOC0B0/OB0, where B0 is the initial bone level, in order to ensure that bone level remains 

at homeostasis when osteoclast and osteoblast levels are at homeostasis (Corresponding 

predictions on Fig. 2c). Equation on Fig.2a & shows the case where both δB and ΠB are freely 

optimized (corresponding fit on Fig. 2d). 
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Piecewise linear temporal variation of bone resorption and formation rates The initial ODE model 

was further used to study time-dependent bone resorption rate. It was defined as an explicit 

piecewise linear function of time (Supplemental Fig. 6a and 7a). The dynamics of osteoclast and 

osteoblast was imposed from the previous fit. The successive slopes of the piecewise linear 

function and the initial resorption rate were all estimated from fitting the resulting bone dynamics 

to bone experimental data. The parameter space for the optimization was defined as follows: The 

slopes were allowed to be positive or negative, with the constrain that the resorption rate cannot 

become negative or go beyond the upper bound defined from literature. Using the same 

approach, model sought to recapitulate bone dynamics by optimizing osteoblast activity dynamics 

(Supplemental Fig. 7). 

 

Enhanced ODE model including polarized monocytes/macrophages For the polarized 

macrophage part (Fig. 4), cells clearances/lifespans were fixed from literature and all the other 

parameters were calibrated to fit the experimental data. The osteoblast and osteoclast fits were 

kept the same as in the initial model. For the bone equation, homeostatic bone resorption rate δB 

(before and after injury), pro-inflammatory monocytes/macrophages-mediated bone resorption 

stimulation parameter (α) and anti-inflammatory macrophages-mediated bone formation 

stimulation parameter (β) were all calibrated to fit the experimental bone dynamics. The 

homeostatic bone formation rate ΠB was fixed such that ΠB =δBOC0B0/OB0 so bone level is 

ensured to remain at homeostasis when osteoclast and osteoblast levels are at homeostasis in 

absence of injury (no polarized monocytes and macrophages). 

 

ODE Solver 

The ODE45 function of Matlab was used to solve the differential equation system. The 

experimental baseline values (time 0) were used as initial conditions.  

 

Parameter estimation method 

To estimate parameters facilitating goodness of fit, we defined the following objective function: 

𝐿𝑆(𝛼) = 𝑀𝑎𝑥{𝑗}∑

𝑁

𝑖=1

(𝑓𝑗(𝑡𝑖 , 𝛼) − 𝐷𝑖𝑗)
2

𝜎𝑖2
 

Where i represents the time point index and j the variable index, 𝛼 represents the parameter set 

used to evaluate the model function f, 𝐷𝑖𝑗  represents the experimental data of variable j at time 

point i, and 𝜎𝑖 represents the experimental error. The choice of this functional form instead of the 

sum of the squares of the residuals was motivated to avoid that one fit variable would be 
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“sacrificed” to the benefit of another one. This way, we ensure that all variables are equally well 

fitted.  

● In order to minimize this function representing the error estimate between data and model, 

we used the Matlab function fminsearch with a penalization term to stay in a parameter 

range set with reasonable boundaries.  

● AIC criterion is defined as follows: 

𝐴𝐼𝐶(𝛼) = 2𝑝 + 𝐿𝑆(𝛼) 

Where p is the number of parameters. 
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FIGURES AND LEGENDS 

  

Fig. 1. Osteoblast (OBL) and osteoclast (OCL) numbers temporally fluctuate dynamically 
as bone heals from injury. a schematic summarizing published dynamics of OBL and OCL 
following bone injury. b schematic depicting the experimental workflow to induce bone injury 
in mice and generate bone, osteoblast and osteoclast dynamic data. c representative 
images of micro-computed tomography revealed trabecular bone status (BONE). 
Decalcified bones were stained and quantified for OBL by RUNX2 immunofluorescence 
staining (OBL), and OCL by tartrate-resistant acid phosphatase (TRAcP) staining (OCL). d 
quantitation of temporal dynamics of bone volume, osteoclast and osteoblast population. 
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Fig. 2. Osteoblast (OBL) and osteoclast (OCL) activities as measured at homeostasis do not allow 

accurate bone prediction during injury repair in vivo. Histological quantitation of tibia bones 

parameterizes mathematical ordinary differential equation (ODE) model of bone injury repair. a 

ordinary differential equations (ODE) describing dynamics of OCL and OBL population are paired 

with published parameters to form an initial ODE model to predict bone repair dynamic. Schematic 

depicts OCL resorb (red line) and OBL form bone (green line). ODE expressions with unknown 

value (red) were estimated as the model optimizes fits to in vivo data. b model produces accurate 

fits to OCL and OBL dynamics. c model falsely predicts bone dynamics given OBL and OCL fits 

in the first 14 days following bone injury when it samples various publication-derived OCL 

resorption rates (each dashed line represents one sampling). OBL bone formation rates are 

mathematically estimated in each sampling to ensure predictions will eventually return to 

homeostasis (#). d alternatively, ODE model was allowed to freely seek out a combination of 

resorption and formation rates to best fit data within the 14-day time period (&). 
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Fig. 3. Transient waves of pro- and anti-inflammatory monocytes and macrophages 
alternate dynamically during bone injury repair. Flow cytometry performed on tibia bone 
marrow harvested from C57BL/6 mice at various time points after injury (n=30; 5/ time point) 
reveals diverse myeloid dynamics and polarization. Time points corresponds to time points 
from histological data. Total monocyte (CD11b+ LY-6CHI LY-6G-; a) and macrophage 
(CD11b+ LY-6CLO LY-6G-; b) and their respective pro- and anti-inflammatory subsets (c) 
each uniquely fluctuates following bone injury (Student t-test compares all time points to its 
Day 0 for each subset; *p<0.05 **p<0.005 ***p<0.0005 ****p<0.00005 nsp>0.05). d temporal 
dynamics of pro and anti-inflammatory monocytes and macrophage numbers are 
normalized as fold change relative to levels at homeostasis. Dashed lines show timings of 
pro- and anti-inflammatory polarization are mutually exclusive. 
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Fig. 4. Integration of pro- and anti-inflammatory myeloid populations to modulate OCL and 
OBL activity sufficiently improves model fit to experimental bone data. a ODE expands to 
six populations and allows manually-fitted pro- and anti-inflammatory cells to enhance bone 
resorption and formation rates, respectively. Individual equations are shown next to 
schematic of ODE framework, model estimates amount of influence polarized myeloid cells 
have on bone remodeling activity to optimize fit to data (expressions in red). b Manual fits 
to pro- and anti-inflammatory monocytes (Pro- and Anti-MONO, respectively), anti-
inflammatory macrophages (Anti-MAC) are represented by solid lines through error bar of 
data. c myeloid data was used to predict bone dynamics given OBL and OCL fits. Statistical 
analysis of resulting fits on OCL, OBL and bone are shown (R2). 
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Fig. 5. OCL and OBL activities and numbers do not correlate and vary distinctly across in 
bone injury repair. a OBL and OCL activity rate dynamics (filled curves plotted on the right 
y-axis) are plotted against their population dynamics (unfilled curves plotted on the left y-
axis). Activity is temporally distinct from population dynamics, both combine to recapitulate 
bone dynamics. b table detailing the known parameters used by model to estimate/infer 
unknown parameters. 
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Table 1. Parameters extracted from published literature were combined with temporal 
dynamics data in ODE model to estimate previously unknown parameters needed to fit bone 
data. apposition rates from confined model (#) were calculated in fashion to offset resorption 
rates derived from publication, to maintain constant bone volume at homeostasis.  
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