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Abstract 

Brain structure is tightly coupled with brain functions, but it remains unclear 

how cognition is related to brain morphology, and what is consistent across 

neurodevelopment. In this work, we developed graph convolutional neural networks 

(gCNNs) to predict Fluid Intelligence (Gf) from shapes of cortical ribbons and 

subcortical structures. T1-weighted MRIs from two independent cohorts, the Human 

Connectome Project (HCP; age: 28.81±3.70) and the Adolescent Brain Cognitive 

Development Study (ABCD; age: 9.93±0.62) were independently analyzed. Cortical 

and subcortical surfaces were extracted and modeled as surface meshes. Three gCNNs 

were trained and evaluated using six-fold nested cross-validation. Overall, combining 

cortical and subcortical surfaces yielded the best predictions on both HCP (R=0.454) 

and ABCD datasets (R=0.314), and outperformed the current literature. Across both 

datasets, the morphometry of the amygdala and hippocampus, along with temporal, 

parietal and cingulate cortex consistently drove the prediction of Gf, suggesting a 

novel reframing of the morphometry underlying Gf. 
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Introduction 

Pioneering work by Binet and Simon suggested that individuals with higher 

intelligence learn more quickly (faster reaction time) and effectively (higher accuracy) 

across a broad array of tasks, from naming objects to defining words, drawing 

pictures, and solving analogies (1, 2). Spearman synthesized these observations into 

the hypothesis of a generalized intelligence factor (g) which reflects abstract thinking 

and includes the ability to acquire knowledge, adapt to novelty, develop abstract 

models, and benefit from schooling and experience (3, 4). Further work by Cattell (5) 

split g into fluid intelligence (Gf), which is the capacity to solve novel problems and 

abstract reasoning, and crystallized intelligence (Gc) which relates to accumulated 

knowledge (6–8). Although Gc and Gf are related and rapidly develop in childhood 

until adolescence, Gf reaches its steady state prior to a delayed declination whereas 

Gc continues growing throughout the lifespan (9, 10). Of these, Gf has been shown to 

positively correlate with a vast number of cognitive activities, and to be an important 

predictor of both educational and professional success (11), raising questions as to 

how to optimally predict it in the context of development and senescence for 

educational and health optimization purposes, and how to do so given the variability 

of contributions to Gf from different regions of the brain, including subcortical grey 

matter regions of the medial temporal lobe and basal ganglia that are largely ignored 

in the literature but are fundamental for working memory which is associated with Gf, 

and judgment and decision-making which relates to the use of abstract modeling of 

value (12, 13).  

Recent work has sought to understand the neural substrates of Gf as one 

approach to predicting and calibrating it. This work has focused on a broad array of 

neuroimaging modalities and lesion models, each of which has its limitations. Studies 

with functional imaging of cognitive tasks, or of synchrony between resting state 

oscillations in blood-oxygen level dependent (BOLD) signal, have tended to focus on 

fronto-parietal networks responsible for integrating sensory and executive functions 
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(14) in the form of the parieto-frontal integration theory (P-FIT) (15), or combinations 

of lesion and imaging work (16) to explore multiple demand (MD) system 

contributions to Gf (17). In the context of structural brain imaging (i.e., 

morphometry), studies have evaluated the correlation between brain size and Gf (18), 

or evaluated the contribution of specific cortical areas and white matter fiber bundles 

to Gf. This research has identified associations between Gf and cortical morphology 

such as cortical thickness, cortical area, cortical volume, gyrification and grey matter 

density (19–21). Individual cortical morphological metrics have shown rather modest 

correlations with Gf, and cortical morphometric features correlating with Gf have 

shown moderate overlap as illustrated by Tadayon and his colleagues. (21). Although 

this study reports a correlation between the shape of basal ganglia structures and Gf 

(22), the relative contribution of subcortical structures involved with emotional 

memory (e.g., amygdala) and judgment and decision making components of the basal 

ganglia (e.g., nucleus accumbens) have not been investigated, nor have they been 

evaluated against cortical contributions, which include areas outside of fronto-parietal 

networks, such as the temporal cortex (23).  

Multiple approaches exist for assessing grey matter brain structure: (1) volume 

(regional volumes of deep grey matter structures) to investigate gross volumetric 

differences, (2) grey matter density using voxel-based morphometry, (3) shape 

deformation (surface topology) to investigate localized shape differences. Of these 

approaches, shape analyses allow for a comparison of surface geometrical properties 

of structures between groups or with behavior (24) that may not have had an overall 

volume change or alteration in grey matter density, and thus may be very sensitive to 

subtle changes in their relationship to behavior, diagnosis and development (25, 26). 

For instance, exposure-dependent deformations may precede more pronounced 

volumetric changes with illicit drug exposure (27). Other work has shown that 

subcortical deformations have been reported in thalami of patients with schizophrenia 

(28–31), obsessive-compulsive disorders (31), Parkinson’s disease (32), and 

Tourette’s syndrome (33). Of surface geometrical measures, thickness is a 
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topographical measure that is an indicator of the integrity of cytoarchitecture in the 

cortex (34), and of all the topographical measures that can be made, cortical thickness 

is the most invariant brain-size parameter across mammalian evolution (35, 36). 

Neocortical enlargement depends primarily on growth of surface area (35, 37, 38), 

which thus makes cortical surface measures important in considering similarities 

across cohorts with significant differences in mean age, if one is going to identify 

consistent features of brain morphometry related to Gf.   

Given these considerations, and the dearth of research on (i) both deep grey 

matter contributions and cortical contributions to Gf, (ii) absence of work of what is 

common across disparate age groups, the focus of our work was three-fold. First, we 

aimed to identify the most predictive brain morphometric features of Gf. Due to the 

challenges inherent in modeling all the relevant cortical morphologic features and the 

limited predictive power of individual cortical morphologic features, we used a data-

driven approach capable of identifying complex non-linear relationships, potentially 

across remote brain regions, and implicitly encompassing multiple morphometric 

features such as cortical thickness, cortical area and gyrification, as well the shape of 

subcortical structures. The second aim of our study was to assess the contribution of 

the subcortical structures to Gf either alone or combined with cortical morphology. 

The third aim specifically focused on investigating how age might be involved in the 

prediction of Gf. For these purposes, we developed a novel geometric deep learning 

method capable of extracting relevant cortical and subcortical morphological features 

(39). Our method was data-driven and relied on cortical and subcortical surface 

models, extracted from automated analysis pipelines, as an input for a graph 

convolutional neural network (gCNN) to infer Gf. Using a 6-fold cross-validation 

scheme and two large independent datasets, we evaluated the robustness of our 

method and the reproducibility of the predictions across two different age groups. 

Finally, a gradient-based backpropagation method allowed us to map the most 

predictive cortical and subcortical regions involved in the correct prediction of Gf. 
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Results 

HCP Dataset Fluid Intelligence Prediction 

Table 1 summarizes the comparative performance of each of the three proposed 

models used to predict fluid intelligence on the HCP testing dataset across all six 

folds. Fig. 1 shows the distribution of predictions for each model. All three models 

were able to successfully predict fluid intelligence scores. However, use of both 

cortical and subcortical surfaces together achieved the best performance (MSE = 

0.834, R = 0.454, 𝑝 =  6.2 ×  10−57), followed by using only the cortical surface 

data (MSE = 0.886, R = 0.381, 𝑝 =  2.6 × 10−39) with use of subcortical surface 

data alone producing the least accurate results (MSE = 1.014, R = 0.155, 𝑝 =

 2.3 × 10−8).  

ABCD Dataset Fluid Intelligence Prediction 

Table 2 and Fig. 2 demonstrate the prediction performance for fluid intelligence 

score using the ABCD testing dataset. Similar to findings from the HCP dataset, 

performance was significantly improved when combining surface data from both 

cortical and subcortical surfaces (MSE = 0.919, R = 0.314 𝑝 =  1.5 × 10−183) when 

using only cortical surface data (MSE = 0.927, R = 0.303, 𝑝 =  7.9 × 10−171) or 

subcortical surface data (MSE = 0.947, R = 0.265, 𝑝 =  4.8 ×  10−130). 

Interestingly, the overall performance for fluid intelligence prediction was better on 

the HCP dataset compared with ABCD dataset. 

Since we used six-fold cross-validation, we had six separate testing datasets and 

in total 15 correlations were calculated respectively for each inner-fold input and two 

correlations were calculated inter-cohort. More details can be found in Fig. S1.Table 

S1 showed the averaged correlations. In each inner-fold, cortical structures showed 

higher correlations than subcortical structures on both datasets. The correlations on 

inner-fold inputs in each dataset were higher than those on the inter-cohort 

correlations across two datasets.            

Mapping Interpretation 
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In order to provide some interpretability to our models’ performance, we applied 

a gradient backpropagation-based visualization method (grad-CAM) to visualize the 

brain areas most relevant to fluid intelligence prediction. Fig. 3 and Fig. 4 show the 

average maps of the testing sets from both the HCP and ABCD datasets.  

Fig. 3A, B and Fig. 4A, B demonstrate that cortical structures play a more 

significant role than subcortical structures in the prediction of fluid intelligence score, 

which is in keeping with our statistical results. The topographic distribution of 

relevant brain structures is largely conserved with particular weight placed on the left 

temporal and parietal lobes in the prediction across both datasets. Interestingly, the 

morphology of the left temporal lobe was weighted more heavily in the prediction 

using the HCP dataset whereas the left parietal lobe was weighted more heavily in the 

prediction using the ABCD dataset. Other cortical structures including the bilateral 

paracentral lobules and posterior cingulate gyri were also relevant to the prediction 

but to a lesser degree. As the results in Table 1 and Table 2 demonstrate, there is more 

broadly distributed involvement of the subcortical structures in the prediction of fluid 

intelligence from the ABCD dataset while the subcortical structures are somewhat 

less involved in prediction from the HCP dataset.  

Results from the models using only cortical surface data or only subcortical 

surface data were similar in distribution but variable in degree when compared to 

results from the model using both cortical and subcortical surface data together.    

Discussion  

This study had three aims. These aims were to (a) identify the most predictive 

brain morphometric features of Gf, (b) assess the contribution of the subcortical 

morphometry to Gf either alone or combined with cortical morphology, and (c) 

investigate how age might be involved in the prediction of Gf. Our Analysis utilized a 

novel deep learning model using residual gCNNs to infer Gf from cortical and 

subcortical surface models that integrated multiple morphometric features such as 

cortical thickness, cortical area and gyrification, as well the shape of subcortical 
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structures. Using two large and independent datasets of pre-adolescent (ABCD 

project) and young adults (HCP dataset) and a nested six-fold cross-validation 

scheme, this analysis predicted Gf with significant correlations (R=0.31-0.45). Across 

both datasets, the right amygdala and hippocampus, left temporal and parietal cortex, 

and bilateral cingulate morphometry consistently drove the prediction of Gf. Given 

the uniqueness of these findings, particularly for the amygdala and temporal cortex, 

localization was confirmed using grad-CAM to show reproducibility across 

subcortical surfaces and gyral folds. Divergence between the datasets was observed 

whereby the left hippocampus and amygdala, right caudate, right nucleus accumbens 

(NAc) and right pallidum also helped predict Gf for the younger ABCD cohort, with 

subcortical structures alone producing an R ~ 0.27, and cortical structures alone 

producing an R ~ 0.3. Together, subcortical and cortical structures produced an R ~ 

0.31 for the younger ABCD cohort, whereas for the older HCP cohort, the combined 

was higher (R ~ 0.45). For the older HCP cohort, furthermore, subcortical structures 

alone producing an R ~ 0.1, and cortical structures alone produced an R ~ 0.4, with 

the right rectus gyrus helping predict Gf for the older HCP cohort but not the ABCD 

cohort. In both datasets, significantly better predictions were thus obtained by 

combining the cortical and subcortical surfaces. Despite this commonality regarding 

improved Gf prediction through combining cortical and subcortical morphometric 

features, the younger ABCD cohort had a substantially larger contribution from 

medial temporal and basal ganglia brain regions than the older HCP cohort, which 

needs to be considered in the context of differences in the trajectory of brain 

development between the late latency/pre-adolescence (ABCD cohort) and late 

adolescence/young adulthood (HCP cohort).   

Predictive models of Gf 

Fluid intelligence refers to the ability to solve novel reasoning problems, which is 

considered independent of experience and education and, as such, believed to be 

biologically grounded on neurodevelopment (40). Previous studies have reported an 

age-related performance in Gf, peaking in late adolescence and declining in adulthood 
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(41). In this study, we included two datasets of subjects at distinct phases of cognitive 

maturation. The younger cohort, the ABCD dataset, included children from 9 to 11 

years, an age at which fluid intelligence has not yet reached its putative maximum. In 

this cohort, we predicted Gf with R= 0.328, which, to our knowledge, further 

improves the prediction accuracy so far reported using this dataset (42–46). Using 

Kernel Ridge Regression classifiers and CNNs, Mihalik and colleagues used 

manually extracted voxel-wise brain features (as opposed to automated morphometric 

analysis) on the ABCD dataset and predicted residualized Gf with an R = 0.17 (43), 

while Li and colleagues XGBoost classifiers on brain volumes and cortical curvatures 

to predict Gf with an R = 0.18 (47). The current work substantially builds on these 

ground-breaking reports, while also identifying brain region features, such as 

amygdala shape, not previously reported to be involved with Gf.  

More studies have attempted to predict fluid intelligence using the HCP dataset. 

The age of subjects in the HCP dataset ranges from 22 to 35 years old, which 

corresponds to a different maturational phase when fluid intelligence is close to its 

full potential (48). All previous studies predicting fluid intelligence in the HCP 

dataset have done so using functional MRI (fMRI) (49–52). For instance, using 

functional connectivity analysis of task-based fMRI (FC), Greene and colleagues 

reached an R = 0.17 (53). Combining FC with resting-state fMRI (rs-fMRI), Elliott 

and colleagues obtained an R = 0.325 (54). Jiang and colleagues integrated multi-task 

FC features, applying partial least square regression method to improve the accuracy 

to an R = 0.409 (55). The current work compares favorably with these previously 

reported state-of-the-art functional imaging methods, by achieving an R = 0.454, 

using T1 weighted anatomic MRI data without any behavioral or functional imaging 

data. Our results support an association between brain morphometry and Gf (21). 

Moreover, we found that this association was strengthened when both cortical and 

subcortical structures’ shapes informed our gCNNs, underpinning the 

interdependencies across remote brain regions that in our review of the literature has 

not been reported.    
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Cortical and subcortical regions involved in the prediction of Gf 

The degree of involvement of temporal, parietal, and cingulate cortex, as revealed 

by grad-CAM, was highly reproducible across folds and displayed remarkable 

similarities between the two independent datasets. Specific cortical regions for both 

datasets included the left posterior middle and inferior temporal gyri as well as left 

basal temporal cortex, left temporo-parietal junction at the posterior aspect of the 

Sylvian fissure, left posterior cingulate, left interhemispheric paracentral lobule and 

the right cingulate region. At the cortical level, the only differentiator between the two 

datasets was the right rectus gyrus, whose morphometry predicted Gf in the HCP 

dataset but not in the ABCD dataset. These morphometric findings of temporal, 

parietal, and cingulate cortex add complexity to current frameworks for Gf that focus 

on fronto-parietal networks involved with combining sensory and executive material 

(14) as with parieto-frontal integration theory (P-FIT)(15, 17). The fact that 

morphometric features of the temporal, parietal, and cingulate cortex were observed 

in two independent cohorts raises many issues about integrating such structural 

imaging findings with functional imaging findings that focus on other regions of the 

prefrontal cortex, particularly as the current structural findings have as strong a 

predictive outcome as any study to date using functional imaging data, and question 

the current focus of many studies of Gf just on fronto-parietal networks.  

Prior work of the neuroanatomic substrate of Gf has identified associations 

between widespread cortical areas, but relatively few relationships were reported with 

subcortical structures. The subcortical structure that appears to have had the most 

associations with Gf is the hippocampus. Raz and colleagues reported smaller 

hippocampal volume being associated with Gf (56) while Amat and colleagues 

reported smaller hippocampal volume being associated with full-scale intelligence 

quotient (IQ) and IQ subscales (57). Others reported hippocampal volume predicting 

Gf only in musically trained people (58), and the volumes of hippocampal subfields 

being more relevant for Gf than working memory (59), even though working memory 

has been linked to Gf (11). The current findings support the prior work, particularly in 
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the context that increased Gf prediction resulted when subcortical regions such as the 

hippocampus were combined with cortical regions; this work resembles but does not 

replicate others who have reported that rs-fMRI connectivity between the right 

hippocampus and medial prefrontal cortex was associated with Gf (60). The current 

work further indicates how important it is to consider hippocampus morphometry in 

the context of the morphometry of other subcortical regions, particularly those with 

minimal association to Gf in the literature, that also have been linked to other 

cognitive science literatures, such as reward processing in judgement and decision-

making and emotion regulation (e.g., nucleus accumbens and amygdala).   

It appears a relatively smaller number of studies have linked Gf to morphometric 

measures of regions of the basal ganglia, such as the caudate and NAc (22), or 

suggested that Gf can be segregated from Gc based on NAc volume (61). The current 

work adds to these studies by indicating the bilateral NAc was important for 

predicting Gf in latency stage individuals (ABCD cohort), but contributes to the 

prediction of Gf to a lesser extent than cortex in late adolescents/young adults (HCP 

cohort). The NAc has been a fundamental target of addiction research (62), social 

reward studies (63, 64) and neuroeconomics (65), with a consensus sentiment that it is 

a core region for the judgement of value, that is fundamental for decision-making (66, 

67). In this context, the NAc has also been considered important for allocation of 

effort, as with effortful cognitive tasks and motivation (12), and has been implicated 

in “grit” or the ability to persevere in a motivated fashion under adversity (68). The 

NAc is a critical target of dopaminergic cells in the brainstem (67), that make it 

important for motivated behavior, and suggest it would be important for allocating 

effort to the solution of novel reasoning problems that define Gf.  

Related to the function of motivation, and heavily interconnected with the NAc 

(12) the amygdala has been considered a core region for emotion regulation, such as 

the experience and control of fear (69). To date, we cannot find any studies in the 

literature that implicate the amygdala with Gf, despite multiple studies implicating 

other regions with Gf that are contiguous with the amygdala (e.g., hippocampus) or 
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significantly interconnected with it (e.g., NAc). Gf has been implicated with 

connectivity related to the uncinate fasciculus, a white matter bundle that connects the 

amygdala and anterior temporal cortex with frontal regions (70), but not directly 

connected to amygdala morphometry. The current findings across two independent 

cohorts of amygdala morphometry predicting Gf, might be consistent with a role in 

emotion regulation facilitating the solution of novel problems and adapting learning to 

new circumstances.  

In parallel with considering the location of morphometric changes observed in 

this study, it is important to consider the complexity involved with morphometry as a 

field, including the number of independent features measured by voxel-based 

morphometry, cortical thickness, and volumetrics (19, 23, 26, 27, 71, 72). The 

analysis of the specific contributions of cortical thickness, cortical area and 

gyrification to Gf can reveal large topologic variations depending on the cortical 

morphometry employed, and resulting in sometimes contradictory results that suggest 

limitations to the specificity of each measurement individually (21, 73, 74). Using a 

data-driven approach which is agnostic to the individual morphologic features of the 

brain’s shape, the approach used in this study identified robust and well-localized 

involvement of both cortical and subcortical regions. Although the exact nature of the 

inferred morphometric features is not known using this approach, the network has the 

ability to identify interactions across individual morphologic features including 

cortical thickness, cortical area and gyrification, as well as to integrate features related 

to the shape of subcortical structures in its learning process. It can also take into 

account subtle and non-linear inter-regional interactions that contribute significantly 

to an individual’s Gf. Multiple brain regions previously reported in the literature using 

individual morphologic feature analysis were not revealed to play a role in the 

prediction of Gf using the current approach. One explanation for this is that our 

method integrates multi-dimensional interactions across individual morphologic 

features into its prediction, and the mapped results identified the most relevant brain 

regions taking these interactions into account. 
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Differences in topographic prediction of Gf across age groups 

Gf increases rapidly from birth through late adolescence, when it reaches a 

plateau which is sustained through the third decade of life, followed by a slow decay 

over the remaining lifespan (75). This trajectory parallels that of grey matter pruning 

in the cortex, which is much more pronounced in latency-aged children (e.g., ABCD 

cohort) relative to young adults (HCP cohort). Throughout adolescence, a strong 

relationship between cortical and subcortical development has been noted with 

cognitive performance (76, 77). Stress and emotional strain from adverse familial, 

educational, and social events over childhood and adolescence can also modulate the 

rate of growth in Gf (78). One might thus expect larger inter-subject variability in a 

younger population when Gf is still in its developmental phase rather than in a young 

adult population when its changes is asymptotic. Our results could be consistent with 

this interpretation in that we achieved a higher R in predicting Gf for late 

adolescents/young adults (HCP cohort) relative to latency stage/pre-adolescent 

children (ABCD cohort). At the same time, the cortical brain regions involved in the 

prediction of Gf remained consistent across age groups as revealed by grad-CAM 

visualization, despite the differences in predictive accuracy. Two other issues also 

should be noted. Namely, that neurodevelopment impacts the capacity to modulate 

cognitive behaviors important for Gf (79, 80). Furthermore, subjects from the HCP 

dataset were all healthy adults while the ABCD dataset included children with a broad 

array of risk factors for developing mental health and addictive disorders, which can 

impact Gf (81, 82) Differences in the discrepancy in accuracy across datasets likely 

represents contributions from a combination of the brain’s developmental trajectory as 

well as potential cognitive vulnerabilities across the health spectrum.          

Between these two cohorts, subcortical structures played a more prominent role 

in the prediction of Gf in latency-stage/pre-adolescent children than in young 

adults/late adolescents. Across both cohorts, only the head of the right hippocampus 

and the right amygdala consistently contributed to the prediction of Gf. For the 

younger subjects (ABCD cohort), the left hippocampus and amygdala were also 
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important for the prediction of Gf, along with the right caudate, NAc, and pallidum. 

The observation of bilateral hippocampi with the ABCD cohort is consistent with 

suggestions that working memory may be particularly important for Gf in children 

(83). In the developing brain, associations between fluid reasoning and subcortical 

shape has been reported to be widespread, encompassing the bilateral putamen, 

pallidum and caudate (84), consistent with the current findings. Our findings 

involving the right striatum are in keeping with other reports of asymmetric right-

sided striatal dominance in younger individuals compared to older individuals (85). 

Lastly, it needs to be noted that medial temporal structures and the striatum have 

strong connections to frontal and cingulate cortices (86), and corticostriatal circuits 

(87). Through such connections medial temporal structures and the striatum have been 

implicated with executive function (88), context coding (89) and impulse control (90), 

which are important processes for adaptation to novelty with Gf.     

Materials and Methods 

Datasets 

Brain MRI and neurocognitive data from two publicly available datasets were 

used independently in this work: the Human Connectome Project (HCP) S1200 data 

release and the Adolescent Brain Cognitive Development Study (ABCD) 2.0 release 

(82, 91). The HCP dataset consists of neurobehavioral measurements and MRI scans 

from healthy subjects aged between 22 to 35 years. Subjects were defined as 

“healthy” in the absence of diagnosed neurologic or psychological conditions. All 

subjects were scanned on a custom Siemens 3T Connectome Skyra at Washington 

University using a standard 32-channel Siemens head coil. Further details pertaining 

to the included subjects, data collection parameters and preprocessing steps can be 

found on the HCP website (82, 92). The ABCD dataset consists of neurobehavioral 

measurements and MRI scans from over 11,000 children aged between 9 and 11 

years. Subjects from across the United States with diverse health, socioeconomic and 

ethnic backgrounds were included. Brain MRI data were acquired from three different 
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3T scanner platforms: Siemens Prisma, General Electric 750 and Phillips. Further 

details pertaining to the included subjects, data collection parameters and 

preprocessing steps can be found on the ABCD website (91). Minimally preprocessed 

T1-weighted MRI scans were obtained from both databases.  

In addition to brain MRI data, Gf scores, measured by the NIH Toolbox 

Neurocognition battery were collected. Specifically, the 

nihtbx_fluidcomp_uncorrected variable was included from the ABCD dataset and the 

CogFluidComp_Unadj variable was included from the HCP dataset (93). This 

Toolbox Fluid Cognition Composite score was computed by the average of the raw 

scores from six measures of fluid abilities (the Toolbox Dimensional Change Card 

Sort [DCCS] Test, the Toolbox Flanker Inhibitory Control and Attention Test, the 

Toolbox Picture Sequence Memory Test, the Toolbox List Sorting Working Memory 

Test, and the Toolbox Pattern Comparison Processing Speed Test). The raw Gf scores 

from two datasets were quantile normalized at first in order to assume the Gaussian 

distribution of each dataset. Quantile normalization was realized by sorting the scores 

of each subject from low to high and replacing them with a random standard Gaussian 

distribution which was also sorted from low to high. The characteristics of two 

datasets are summarized in Table 3. 

MRI Data Preprocessing 

For each subject, inner cortical surfaces (modeling the interface between grey and 

white matter) and outer cortical surfaces (modeling the cerebrospinal fluid/grey matter 

interface) were extracted using Freesurfer (v6.0, https://surfer.nmr.mgh.harvard.edu). 

Seven subcortical structures per hemisphere were automatically segmented using 

Freesurfer (amygdala, nucleus accumbens, caudate, hippocampus, pallidum, putamen, 

thalamus) and then modeled into surface meshes using SPHARM-PDM 

(https://www.nitrc.org/projects/spharm-pdm/). All surfaces were inflated, 

parameterized and registered to a corresponding surface template using a rigid-body 

registration to preserve the anatomy of the cortex and subcortical structures (94). No 

morphometric evaluation of subcortical structures, re-segmentation, or use of multiple 
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atlases was performed; this study sought to minimize variance from analysis of the 

feature set used for prediction. 

Surface templates were converted to graphs based on their triangulation scheme. 

Nodes of the graphs were surface vertices, and edges of the graphs were segments 

across vertices. Overall, the graphs including all structures had 47,616 nodes, 32,768 

from the cortical surfaces and 14,848 from the subcortical surfaces. Input features of 

the network were defined as the Cartesian coordinates of surface vertices in subjects’ 

native space resampled into the surface templates. As a consequence, cortical nodes 

were assigned 6 features (X, Y, Z of both the inner and outer cortical surface vertices) 

and subcortical nodes had 3 features (X, Y, Z of subcortical surface vertices) when 

they were used for separate training.  

More details about the construction of the common graphs and the organization 

of input features are provided in Supplemental material and Fig. S1-4. All subjects 

were represented using the same underlying graphs, the features assigned to the nodes 

were unique to each subject and were the input of our gCNNs. 

Preparation of the datasets 

The nested cross-validation was used in this work to assess generalizability, 

which contains an outer loop of six folds and an inner loop of five folds. Both datasets 

were split into six folds, randomly selecting one set as the outer test set and the rest 

five sets as the outer training set. This whole process repeats six times for each fold. 

The outer training set was sub-divided into five folds, including one validation set and 

four inner training sets. This inner process repeated five times and the outer test set 

was evaluated by an ensembled model averaged from those five trained models. More 

details are shown in Fig. S2. For HCP dataset, we included 1,097 subjects, i.e., in 

each fold, 914 inner training sets and 183 outer test sets and for ABCD dataset, we 

included 8,070 subjects, i.e., 6,725 inner training sets and 1,345 outer test set.       

Graph Convolution 

Traditional CNNs extract features on structured data, such as 2D images or 3D 

volumes. The convolution operations over graphs can be generalized in the spectral 
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domain, which is the multiplication of the signal on graphs with the eigenvector 

matrix of the graph Laplacian (95). We defined un undirected graph 𝐺 = {𝑉, ϵ, 𝐴}, 

where  edge ϵ connects  two vertices V, with  |𝑉| = 𝑛, and 𝐴 ∈ 𝑅𝑛 ×𝑛 is the 

weighted adjacency matrix. 𝐴 is a square symmetric matrix and 𝐴𝑖𝑗  is the weight 

assigned to edge (𝑖, 𝑗) that connects vertices 𝑖 and 𝑗. Then the graph Laplacian is 

defined as 𝐿 =  𝐷 − 𝐴 and its normalized form is given by 𝐿 =  𝐼𝑛 − 𝐷−
1

2𝐴𝐷−
1

2, 

where 𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗𝑗  is an entry of the diagonal degree matrix D of the graph and 𝐼𝑛 

is the identity matrix. 𝐿 is a diagonalizable matrix that can be factored using the 

eigen-decomposition 𝐿 = 𝑈Λ𝑈𝑇, where 𝛬 = 𝑑𝑖𝑎𝑔 ([𝜆0, 𝜆1, … , 𝜆𝑛−1 ])  ∈  𝑅𝑛 ×𝑛 is 

the diagonal matrix of eigenvalues and 𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑛−1 ]  ∈  𝑅𝑛 ×𝑛 is the matrix 

containing the set of corresponding orthogonal eigenvectors. 

The graph Fourier Transform (GFT) of our input feature matrix 𝑋 ∈ 𝑅𝑛 ×𝑓 is 

defined as �̃� = 𝑈𝑇𝑋 and its inverse as 𝑋 = 𝑈�̃�, where 𝑓 = 3, 6 𝑜𝑟 9 is the number 

of features. Given a filter 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜃) and an arbitrary graph signal 𝑥, let us 

define by 𝑦 =  𝑥 ∗  𝑔  the convolution between 𝑥 and 𝑔. This corresponds to 

multiplication in the Fourier space, that is,  

            𝑦 =  𝑔𝜃(𝐿)𝑋 =   𝑔𝜃(𝑈𝛬𝑈𝑇)𝑋 =  𝑈𝑔𝜃(𝛬)𝑈𝑇𝑋                (1) 

where 𝜃 ∈ 𝑅𝑛  is a vector of Fourier coefficient.  

In order to largely reduce the computational complexity, we approximate spectral 

filters using truncated expansions of Chebyshev polynomials (95). The 𝐾-localized 

filtering operation is defined as  

                    𝑦 =  𝑔𝜃(𝐿) ∗ 𝑥 =  ∑ 𝜃𝑘
𝐾−1
𝑘=0 𝑇𝑘(�̃�)𝑥                       (2) 

with scaled �̃� =
2𝐿

𝜆𝑚𝑎𝑥
−  𝐼𝑛, where 𝜆𝑚𝑎𝑥 denotes the largest eigenvalue of 𝛬 and 𝜃𝑘 

represents the 𝑘-th Chebyshev coefficient. 𝑇𝑘(�̃�) is the Chebyshev polynomial of 

order 𝑘, which is calculated by 𝑇𝑘(�̃�) = 2(�̃�)𝑇𝑘−1(�̃�) −  𝑇𝑘−2(�̃�), where  𝑇0 =
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𝐼, 𝑇1 = (�̃�). Then the number of trainable parameter per layer is reduced to 

𝐹𝑖𝑛  ×  𝐹𝑜𝑢𝑡  × 𝐾, where 𝐹𝑖𝑛, 𝐹𝑜𝑢𝑡 are the number of corresponding input and output 

features. 

Image Augmentation 

In order to increase the generalizability between our two datasets, we used two 

data augmentation techniques: random rotation within ±20 degrees and a random 

Gaussian noise standardized with mean 𝜇 =  0 and a standard deviation of 𝜎 =

 0.02. The augmentation parameter 𝑝𝑎 denotes the probability of the use of data 

augmentation for a single subject. In this study, both datasets had 𝑝𝑎  =  0.5, 

indicating that data augmentation was applied with a 50% probability per subject for 

each iteration of training.  

Network Architecture 

Fig. 5 shows the details of our graph networks. We used residual blocks in our 

model to facilitate the training of deeper networks inspired by (96). Using this 

approach, the output of the previous block is added to the output of the current block 

to avoid the vanishing gradient problem (97). Our model contains a pre-convolutional 

layer (Pre-Conv), four residual blocks (ResBlock) and a post residual block, followed 

by a single fully connected (Fc) layer with one output that reflects the estimated Gf 

score. Each residual block has two subblocks, including a batch normalization layer 

(BN), a non-linear activation function ReLU and a normal convolutional layer 

(Conv). The maxpooling layer is used after each residual block to downsample the 

features.  

Loss function 

The loss function used in our model is composed of three parts: the mean square 

error (MSE) between the network’s estimations and actual values, the Pearson’s 

coefficient of correlation 𝑐𝑜𝑟𝑟 and additional 𝑙2 regularization term. 𝐿𝑎𝑙𝑙 is defined 

as 

                  𝐿𝑎𝑙𝑙 = 𝑀𝑆𝐸 + 𝜆1 ∙ 𝑙2 −  𝜆2 ∙ 𝑐𝑜𝑟𝑟                           (3) 
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for 𝑐𝑜𝑟𝑟 = 
𝑐𝑜𝑣(𝑦𝑝,   𝑦𝑡)

𝜎𝑦𝑝 ∙𝜎𝑦𝑡
, where 𝜆1, 𝜆2 are the regularization parameters, 𝑦𝑝 is the 

predicted score, 𝑦𝑡 is the true label, 𝑐𝑜𝑣 is the covariance and 𝜎 is the standard 

deviation. This correlation term is added to alleviate the “regression towards or to the 

mean (RTM)” bias, where the higher the correlation, the lower the loss (98).  

Grad-CAM Visualization 

To visualize the most relevant brain areas involved in the network’s decision 

making process and to provide some interpretability to our network results, a 

graphical gradient-weighted Class Activation Map (grad-CAM) method was applied 

to generate a color-coded probability map 𝑀𝑐 (99). Grad-CAM uses the gradient 

information flowing back to the last convolutional layer of the model to generate 

heatmaps highlighting important regions upon which the model focuses and then 

performs a global average pooling operation to produce the importance weights 𝛼𝑐
𝑘  ∈

𝑅𝑐 × 𝑘, of each neuron: 

                                                            𝛼𝑐
𝑘 =  

1

𝑁
∑

𝜕𝑦𝑐

𝜕𝐴𝑛
𝑘𝑛                                (4) 

where 𝑦𝑐 refers to the score of class 𝑐, i.e. 𝑐 =  1 in this paper, and 𝐴𝑛
𝑘  represents 

the value at each node 𝑛 for feature map activations 𝐴𝑘 on the last convolutional 

layer. After getting the weights, 𝑀𝑐 is calculated with a weighted combination of 

feature maps followed by an activation function 𝑅𝑒𝐿𝑈, which is applied to only take 

positive weights into consideration and ignore the negative weights since we were 

interested in the features with positive influence on the class of interest . 

                        𝑀𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑐
𝑘

𝑘 𝐴𝑘)                              (5) 

Grad-CAM maps were obtained for Gf prediction from each testing set in all six 

folds. In our models we used four pooling layers, reducing the number of nodes by a 

factor 24. Therefore, we rescaled the generated grad-CAM maps back to the original 

size using spherical linear interpolation on the cortical and subcortical surfaces in 

order to overlay on the original graphs. 

Network implementation 
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Model performance was evaluated using nested cross-validation, with the datasets 

split into six folds each, where each fold was randomly chosen for testing and the 

remaining five folds were used for training. In each fold, the outer test dataset was 

evaluated by an averaged model ensembled from all five inner-folds models, and the 

grad-CAMs were generated using the average weighted sum on each of the testing 

subject. More details are shown in Fig. S2. 

For the ABCD dataset, the networks were trained using a batch size of 32, and a 

maximum number of epochs of 100. We used Adam optimizer with a learning rate of 

0.0005 and a decay rate of 0.99 per ten steps, the parameters 𝜆1 and 𝜆2 were both set 

to 0.0001 and the dropout ratio at the fully connected layer was set to 0.5. For the 

HCP dataset, the batch size was set to 50 and the parameter 𝜆1 was set to 0.0005. Due 

to the smaller dataset size, the maximum number of epochs for the HCP dataset was 

set to 80. The different network parameters were optimized using cross-validation and 

the training process stopped when the generalization error increased with the patience 

factor set to 5. The networks were implemented in Python (version 3.6) using 

TensorFlow and trained on a single GPU (Nvidia GeForce 2080Ti) workstation.  

Statistical Analysis 

The performance of three types of gCNNs were evaluated, using either: 1) only 

the inner and outer cortical surface nodes, 2) only the subcortical surface nodes, or 3) 

both inner and outer cortical surface and subcortical surface nodes together. The 

MSE, Pearson correlation coefficient score (R) and training time yielded for each 

testing fold and for each complete dataset were calculated. A paired t-test was 

performed to compare the performance of each of the three input types and the p-

values were adjusted for multiple comparisons using false discovery rate (FDR), 

which was considered as statistically significant if the p-values < 0.05. The 

normalized correlation (0 to 1) was calculated on the mapping results (𝑀𝑐) to compare 

the inter-fold similarity and inter-cohort similarity on the HCP and ABCD datasets. 

The closer to 1, the higher the correlation between the two groups. All statistical 
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analysis was performed using the Scikit-learn and Numpy packages in Python 

(version 3.6). 
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validation. 
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Fig. 1. Performance of fluid intelligence score on HCP dataset. A,B,C) 

prospective predictions on testing dataset using all structures, cortical only and 

subcortical only respectively. The mean absolute error (MAE) of the prediction is 

shown by the dashed line. The shaded regions imply the 95% confidence intervals 

for the regression predictions. The correlation value (R) and p-value of the 

predicted score vs. the ground truth scores are given. D) comparative boxplots of 

the R scores over all three different inputs using results across all five folds. The 

red dots correspond to the R score generated from all testing dataset. (n.s.) Non 

significant, * p < 0.05，** p < 0.01, *** p < 0.001. 
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Fig. 2. Performance of fluid intelligence score on ABCD dataset. A,B,C) 

prospective predictions on testing dataset using all structures, cortical only and 

subcortical only respectively. The mean absolute error (MAE) of the prediction is 

shown by the dashed line. The shaded regions imply the 95% confidence intervals 

for the regression predictions. The correlation value (R) and p-value of the 

predicted score vs. the ground truth scores are given. D) comparative boxplots of 

the R scores over all three different inputs using results across all five folds. The 

red dots correspond to the R score generated from all testing dataset. (n.s.) Non 

significant, * p < 0.05，** p < 0.01, *** p < 0.001. 
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Fig. 3. Grad-CAM visualizations on HCP dataset using both cortical and 

subcortical structures as input. Brain regions predictve of fluid intelligence. 

Network trained on all cortical and subcortical nodes together. The red region 

corresponds to more informative for the score prediction. A, B) Visualizations 

training with all cortical and subcortical structures (All). C, D) Visualizations 

training with only cortical (Only-cortical) or subcortical structures (Only-

subcortical).       
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Fig. 4. Grad-CAM visualizations on ABCD dataset using both cortical and 

subcortical structures as input. Brain regions predictve of fluid intelligence. 

Network trained on all cortical and subcortical nodes together. The red region 

corresponds to more informative for the score prediction. A, B) Visualizations 

training with all cortical and subcortical structures (All). C, D) Visualizations 

training with only cortical (Only-cortical) or subcortical structures (Only-

subcortical).   
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Fig. 5. The model architecture. The model contains a pre-convolutional layer, four residual blocks and a post residual block, followed by a 

fully connected layer; Each residual block has two subblocks, each with a batch normalization layer, a ReLU and a convolutional layer. 

Each residual block is followed by a maxpooling layer to downsample the features. N is the number of batch size; |𝑉| is the number of 

vertices; F is the number of features. 
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Table 1.  Model performance on HCP dataset. The models were trained with six-

fold nested cross-validation and the predictions were evaluated on the outer 

testing set of each fold. 

 

 

HCP 

dataset  

Testing Set 

All a Cor b Sub c 

R MSE Time(s) R MSE Time(s) R MSE Time(s) 

Fold 1 

(N=183) 

0.507 0.809 1969 0.445 0.870 1084 0.197 1.071 540 

Fold 2 

(N=183) 

0.465 0.915 1763 0.405 0.933 997 0.122 1.055 552 

Fold 3 

(N=183) 

0.463 0.889 1856 0.364 0.921 1165 0.105 1.140 531 

Fold 4 

(N=183) 

0.382 0.811 2041 0.343 1.033 1132 0.081 0.852 490 

Fold 5 

(N=183) 

0.404 0.906 1974 0.333 0.774 1057 0.098 0.938 558 

Fold 6 

(N=182) 

0.488 0.677 2845 0.444 0.786 1135 0.207 1.030 533 

Mean  

±  

Sd d 

0.454

± 

0.049 

0.834

± 

0.090 

1908 

± 

390 

0.381

±

0.050 

0.886

±

0.098 

1095 

± 

62 

0.155

±

0.054 

1.014

±

0.103 

534 

± 

24 

 a. All: use both cortical and subcortical nodes. b. Cor: cortical nodes only. c. Sub: 

subcortical nodes only. d. Sd: Standard deviation. 
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Table 2.  Model performance on ABCD dataset. The models were trained with six-

fold nested cross-validation and the predictions were evaluated on the outer 

testing set of each fold. 

 

 

ABCD 

dataset  

Testing Set 

All a Cor b Sub c 

R MSE Time(s) R MSE Time(s) R MSE Time(s) 

Fold 1 

(N=1345) 

0.316 0.913 8143 0.300 0.872 3900 0.265 0.917 1389 

Fold 2  

(N=1345) 

0.324 0.911 8290 0.306 0.964 4638 0.281 0.894 1897 

Fold 3  

(N=1345) 

0.328 0.946 8452 0.306 0.957 4589 0.279 0.989 1693 

Fold 4  

(N=1345) 

0.310 0.913 8340 0.299 0.872 4203 0.275 0.948 1520 

Fold 5 

(N=1345) 

0.320 0.908 8502 0.301 0.959 4739 0.259 0.969 1741 

Fold 6 

(N=1345) 

0.306 0.957 8601 0.283 0.880 4667 0.271 0.962 1642 

Mean 

 ±  

Sd d 

0.314 

± 

0.008 

0.919 

± 

0.211 

8388  

± 

164 

0.303 

± 

0.008 

0.927 

± 

0.047 

4456 

± 

331 

0.265 

± 

0.008 

0.947 

± 

0.035 

1647 

± 

177 
a. All: use both cortical and subcortical nodes. b. Cor: cortical nodes only. c. Sub: 

subcortical nodes only. d. Sd: Standard deviation. 
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Table 3. The characteristics of HCP and ABCD datasets 

 HCP  

(N = 1097) 

ABCD 

(N = 8070) 

Age 

(mean ± Sd a) 

28.81±3.70 9.93±0.62 

Sex 

(Female/male) 

596/501 3861/4209 

Fluid intelligence 

(mean ± Sd) 

115.07±11.58 92.25±10.43 

Health status All good Different conditions 

Scanner  Siemens 3T 

Connectome Skyra 

Siemens Prisma, General 

Electric 750 and Phillips 

a. Sd: Standard deviation. 
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Supplementary Materials 

Materials and Methods 

Conversion of meshes to graphs 

Template surface meshes were converted to graphs using their triangulation 

schemes (Fig. S3). Nodes of the graphs were defined as the surface vertices, and 

edges of the graphs were triangles segments across vertices. A weight 𝑊𝑖,𝑗 was 

assigned to the edge between neighbor nodes 𝑖 and 𝑗 such as: 

𝑊𝑖,𝑗 =
𝑒

−d𝑖,𝑗
2

2

√2𝜋
 

with 𝑑𝑖,𝑗 is the Euclidean distance between the nodes 𝑖 and 𝑗. 

Hierarchical decomposition of the graphs 

High-resolution template graphs underwent a hierarchical dichotomic partitioning 

using the following steps and illustrated in Fig. S4: 

1. For each structure, define the root leaf as the graph corresponding to the high-

density mesh 

2. Repeat these steps until the average distance across neighbor leaves is less 

than a threshold 𝑇 

a. Given a set of leaves at level 𝐿, partition each leaf at level 𝐿 into two 

child leaves at level 𝐿 + 1 using spectral clustering (100). The new 

leaves are therefore subgraphs of their parent leaf; 

b. Order the 2𝐿+1 leaves of level 𝐿 + 1 such that the leaves 2(𝑖 − 1) 

and 2𝑖 are partitions of leaf 𝑖 at level 𝐿; 

c. For each leaf of level 𝐿 + 1, identify its center node as the node whose 

betweenness centrality is largest (101); 

d. Defines the partition neighbor matrix 𝑀𝐿+1, of size 2𝐿+1 × 2𝐿+1, such 

that  

𝑀𝐿+1(𝑖, 𝑗) = {
𝑊𝐿+1(𝑖, 𝑗) if leaves i  and j  have neighbor vertices on the mesh

0 if i =j

0 otherwise

 

and 

𝑊𝐿+1(𝑖, 𝑗) =
𝑒

−d𝑖,𝑗
2

2

√2𝜋
 

where 𝑑𝑖,𝑗 is the geodesic distance (along the mesh) between the 

center of the leaf i and the center of the leaf j at level 𝐿 + 1;  

e. Compute the average distance across leaves’ centers and exit the loop 

if less than 𝑇, otherwise continue to step a. 

 

The average distance threshold 𝑇 was set to 3 mm for the cortical surfaces and 2 

mm for the subcortical surfaces. Therefore, the number of decomposition levels for 
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each structure was a function of their surface area. The number of nodes at the finest 

level is provided in Table S2. 

Aggregation of matrices and features 

Depending on the structures used for the prediction, the matrices 𝑀𝐿 were block 

concatenated along the main diagonal to define the whole underlying graph (Fig. S5). 

When only the subcortical structures were used for prediction, the input features 

associated to the nodes of the graph were the 3-dimensional Cartesian coordinates of 

the corresponding center node in individuals’ space [𝑋𝑠, 𝑌𝑠, 𝑍𝑠]. If the cortex only was 

used to feed the gCNN, then a 6-dimensional vector was assigned to each node of the 

graph, containing the Cartesian coordinates of the inner and outer cortical surfaces 

[𝑋𝑤, 𝑌𝑤, 𝑍𝑤, 𝑋𝑝, 𝑌𝑝, 𝑍𝑝]. Finally, when both the subcortical structures and the cortex 

were used to feed the gCNN, a 9-dimensional vector was assigned to each node of the 

graph. For nodes of the subcortical structures, the first 3 elements of the input were 

Cartesian coordinates of the nodes, and the last 6 were zeros. For cortical nodes, the 

first 3 elements of the vector were zeros, and the last 6 the Cartesian coordinates of 

the inner and outer cortical surfaces. 

Pooling operation 

By construction of the hierarchical decomposition of the graph and ordering of 

the node, the pooling operator is applied similarly to a 1-dimensional signal with a 

stride of 2 and a pooling size of 2. This is conceptually identical to the original gCNN 

study (95). However, as opposed to the METIS algorithm initially proposed, our 

approach guaranties that no singleton is ever generated. 
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Fig. S1. The inner-fold and inter-cohort correlation details of mappings (𝑀𝑐) on HCP and ABCD datasets. The closer to 1, the higher 

correlations of two groups. 
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Fig. S2. Illustration the training and evaluation process in six-fold nested 

cross-validation. The whole process contains an outer loop of six folds and 

an inner loop of five folds. The model is trained on inner training sets, 

finetuned on inner validation sets and evaluated on the outer test sets.  
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Fig. S3. Triangulation schemas of surface meshes. Visualization of the surface 

template for the subcortical structures (A) and the cortex (B), with close up 

on their high-density triangulations. 
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Fig. S4. First four level of the hierarchical decomposition of the left cortical 

surface. The initial level (0) is the whole structure, in that case the left 

cortical surface masking out non-cortical regions such as Freesurfer’s medial 

wall and parahypocampal regions. 
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Fig. S5. Block concatenation of individual structures matrices 𝑴𝑳along the 

main diagonal. A) Concatenation of the seven subcortical structures 

matrices along the main diagonal used for fluid intelligence prediction with 

the subcortical structures only; B) Concatenation of the left and right cortical 

hemisphere matrices along the main diagonal for the fIQ prediction with the 

cortex only; C) Concatenation of the subcortical (A) and cortical (B) matrices 

for the prediction using all the structures 
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Table S1. The averaged correlations of mappings (𝑴𝒄) on HCP and ABCD 

datasets   

 Inner- fold Inter- cohort 

HCP ABCD HCP & ABCD 

All a 0.996 0.988 0.742 

Cor b 0.957 0.975 0.814 

Sub c 0.841 0.960 0.721 
a. All: use both cortical and subcortical nodes. b. Cor: cortical nodes only. c. Sub: 

subcortical nodes only 
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Table S2. Number of nodes for each structure at their finest decomposition 

level 

Structure 
Number of nodes 

Per hemisphere 

Accumbens 256 

Amygdala 512 

Caudate 1024 

Hippocampus 2048 

Pallidum 512 

Putamen 1024 

Thalamus 2048 

Cortex 16384 
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