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Abstract: The tumour microenvironment is the collection of cells in and surrounding1

cancer cells in a tumour including a variety of immune cells, especially neutrophils and2

monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between3

a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found4

in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on5

tumour progression is highly important. In this paper, we perform a comprehensive analysis of a6

macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage7

polarization network based on literature, extending it to include important stimuli in a tumour setting,8

and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of9

different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented10

macrophage phenotypes and their dependencies on specific receptors and transcription factors, while11

also elucidating the formation of a special type of tumour associated macrophages in an in-vitro12

model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the13

cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new14

therapeutic targets that could control the formation of tumour associated macrophages in patients.15

Keywords: Boolean model, tumour associated macrophage, macrophage polarization, Nurse Like16

Cells, Chronic Lymphocytic Leukaemia17

1. Introduction18

As all living cells, macrophages perceive and respond to intra- and extracellular signals in19

order to maintain their functions (endocytic, phagocytic and secretory, for example) by displaying a20

wide spectrum of specific phenotypes (polarizations) in different inducer environments. Based on21

their activity and the expression of specific proteins, markers and chemokines, two major subsets22

of macrophages have been identified, namely classically activated macrophages (M1) exhibiting a23

pro-inflammatory response, and alternatively activated macrophages (M2, themselves subdivided24

into 4 subclasses: M2a, M2b, M2c, M2d [1–3]) exhibiting an anti-inflammatory response. Additionally,25

multiple studies support the idea that M1 and M2 macrophages represent, in fact, the extremes26

of a continuous polarization spectrum of cells deriving from the differentiation of monocytes[4].27

Macrophages have a plastic gene expression profile that is determined by the type, concentration and28

duration of exposure to the polarization stimuli in an inflammatory environment [3,5–8].29
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Macrophages are also found inside tumours, as part of the tumour micro-environment (TME), a30

complex ecology of cells that are found surrounding cancer cells including also other immune cells such31

as lymphocytes and neutrophils and other normal cells. In many tumours, infiltrated macrophages32

display mostly an M2-like phenotype, which provides an immunosuppressive microenvironment. In33

cancer, these tumour associated macrophages (TAMs) secrete several cytokines, chemokines and proteins34

which promote tumour angiogenesis, growth and metastasis [9–12]. Interestingly, it has been observed35

that, in established tumours, signals originating from cancer cells can cause phenotypic shifts in36

macrophages, leading to alternative functions that do not correspond to either M1 or M2 phenotypes37

[13]. Several studies have demonstrated that TAMs directly suppress CD8+ T cell activation in-vitro38

[14–17]. Mechanisms that orchestrate this process, either directly or indirectly, remain unclear [18] and39

warrant further exploration due to macrophages’ important impact on tumour progression.40

In any given environment, the cellular processes that determine a cell’s phenotype consist in a41

cascade of interactions, which can be represented as a regulatory network, in which nodes represent42

proteins, enzymes, chemokines, etc., while the connections represent the type (activation or inhibition)43

and direction of interactions of different types (transcriptional and post-translational activations).44

Network modelling has found numerous applications in studying the structure and dynamic behaviour45

of different biological systems in response to environmental stimuli and internal perturbations46

[19–22]. Several computational models of different pathways involved in the inflammatory immune47

response have been previously published, such as: continuous, logical and multi-scale model of T cell48

differentiation [23–25], logical models of macrophage differentiation in pro- and anti-inflammatory49

conditions [26], multi-scale models of innate immune response in tumoural conditions [27], etc.50

An important computational model of macrophage polarization was able to detect 4 different M251

subgroups of macrophages, as a result of various combinations of pro- and anti-inflammatory52

extra-cellular signals [26], using exclusively literature-based knowledge on the intra-cellular regulatory53

interactions and pathways involved in the polarization process. Nevertheless, many important54

questions remain to be explored regarding the polarization states, especially in a tumour setting. More55

specifically, it is important to identify the pathways involved in TAM formation and to understand to56

what extent the macrophage plasticity facilitates this process in a TME. On the other hand, despite57

the wealth of quantitative information from bulk and single-cell sequencing datasets, the inference of58

regulatory networks based on experimental data remains a difficult challenge, with most approaches59

proposing a combination of both literature- and data-driven methods [28–30].60

In Chronic Lymphocytic Leukemia (CLL), a B-cell malignancy in which patients accumulate61

large quantities of malignant CLL cells in their lymph nodes, an interesting ecology of cancer cells62

and immune cells is established. CLL cells are able to educate surrounding monocytes, through63

direct contact and cytokine signals, turning them into TAMs, which in this disease are referred to64

as Nurse Like Cells (NLCs) [31]. NLCs are derived from CD14+ monocytes and are characterised65

by a distinct set of antigens (CD14lo, CD68hi, CD11b, CD163hi) [32,33]. Moreover, NLCs express66

stromal-derived-factor-1alpha, a chemokine which promotes chemotaxis and activates mitogen67

activated protein kinases, ultimately leading to more aggressive cancers and better survival of these68

cells in-vitro. Through direct contact, the NLCs are able to protect the cancer CLL cells from apoptotic69

signals, and stimulate environment mediated drug resistance. Interactions between NLCs and CLL70

cells appear to be mediated by the B cell receptor, which, when stimulated, activates production of71

CCL3/4, initiating the recruitment of other cells, including CD4+ T cells and more NLCs. Another72

pathway that has been associated with NLCs and TAMs more in general is that of CSF-1 (MCSF).73

Patients with high expression of this factor usually show faster CLL progression and this gene was74

implicated in the production of NLCs. Also the more M1- or M2-like profile of NLCs in specific patients75

correlates with active and controlled disease, respectively. Analyses of the transcriptomic profile of76

NLCs suggest their high similarity to the macrophage M2 profile described in solid tumours, which77

makes studying the formation of NLCs all the more relevant in the quest of controlling TAMs in other78

malignancies.79
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NLC formation can be studied through an in-vitro system in which heterologous co-cultures80

of healthy monocytes and patient-derived CLL cells can be established to produce NLCs in81

absence of any other cell type. This system is particularly suited to mathematical modelling, as82

experimental conditions are well controlled controlled and the cell types present are limited to83

monocytes/macrophages and cancer cells, without the confounding effects of immune or other84

healthy cells.85

Boolean models are discrete dynamical models, in which each component (gene, transcription86

factor, chemokine, cytokine, receptor, etc.) is associated with a discrete (binary) variable, representing87

its concentration, activity or expression. Despite the complex processes relating the transcription of88

a gene into an mRNA and its subsequent translation into a protein with possibly post-translational89

modifications, in this paper we consider a single node for gene, mRNA and protein, such that a link90

between two transcription factors signifies that one of them affects transcription of the gene of the other.91

The future states of each component are determined by the current states of its regulators, as given by92

a Boolean function that represents the regulatory relationships between the components according to93

the logic operators AND, OR and NOT. The state of the system at each time point is given by a binary94

vector, in which each element represents the state of the corresponding component (ON/OFF) [23,34].95

Starting from an initial state, as time passes the system will follow a trajectory of states reaching one of96

many attractors that can be a single stable state (fixed point) or a set of recurrent states (limit cycle).97

Attractors usually represent specific phenotypes, such as cellular differentiated states, cell cycle states,98

etc. Despite their coarse-grained description, Boolean models have been successfully used to capture99

real-world biological features like, for example, the mechanisms of cell fate decision [35], hierarchical100

differentiation of myeloid progenitors [36], dynamical modelling of oncogenic signalling [37], amongst101

many other applications [38–40]. One of their main advantages is the simplicity of performing in-silico102

experiments simulating a variety of mutant and knockout conditions, and the possibility of obtaining103

qualitative or semi-quantitative results without requiring experimentally-derived parameter values, as104

needed by differential equations. Starting from a pathway diagram describing a biological process,105

and adding logic rules, Boolean models allow us to model the process, uncover the main regulators,106

and run simulations.107

Understanding the mechanisms of TAM formation is of particular interest because of their108

pro-tumoural activity which hampers T cell cytotoxic activity. In this study, we therefore follow two109

lines of enquiry: (i) we reconstruct a macrophage polarization regulatory network using literature and110

extend it based on transcriptomic data from an in-vitro model of NLC formation, (ii) we implement a111

Boolean model of monocyte differentiation into NLC simulating these in-vitro cultures.112

2. Results113

2.1. Reconstruction of the regulatory network leading to NLC formation114

To reconstruct the gene regulatory network (GRN) governing the formation of NLCs, we115

started from a previous macrophage polarization GRN [26] and extended it in order to include116

specific extracellular signals found in the Chronic Lymphocytic Leukaemia (CLL) context and other117

intra-cellular components involved in NLC formation. The network extension was based on extensive118

literature review and transcription factor (TF) activities estimation for each phenotype. Briefly, we119

used transcriptomics data for monocytes, M1, M2 and NLCs to calculate the TF activities in each120

condition, and chose the TF with the highest activities in each phenotype (see Methods, Section 5.3).121

For NLCs, we identified specific TFs using a set of 17 microarray expression profiles [33], which122

interestingly have higher activities than in M1 and M2. Particularly, HMGB1 and HIF1 are linked to123

the pro-tumoural activity of NLC (Appendix), and were considered as key regulators that determine124

the distinct phenotypes between M2 and NLC.125

The main characteristics of these 3 types of macrophages are given in Table 1. A short description126

of the profiles for the main macrophage phenotypes is given in Appendix, however, a detailed127
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Table 1. The main charecteristics of M1, M2 and NLC phenotypes according to (i) activators, (ii)
secreted cytokines or expressed genes, and (iii) functions in tumoural environments (see Appendix).

M1 M2 NLC
Activated by IFNγ

LPS
Immune complexes
IL-4
IL-13
IL-10

IL-10
TGF-β
CSF-1

Secrete Th1 inducing cytokines
TNFα
IL-12
IL-18
IFNα/β
IL-1β
IL-6

IL-10
TGF-β
VEGF
EGF

IL-10
TGF-β
IL-1Ra
HIF1/2
PD-L1; B7-H4;
TNFSF13/B;
VEGF
chemokines: CXCL12, CXCL13

Function Anti-tumoural
activity:
releasing nitric oxide
(NO);
presenting tumour
antigens to CD4+ Th1
cells;
driving the activity of
cytotoxic CD8+ T cells
at the tumour site

Anti-infammatory
processes:
Th2 responses(M2a);
Downregulation of
immune response
(M2b); matrix
deposition and tissue
remodelling (M2c)

Promote tumour growth:
secretion of soluble
immunosuppressive agents;
expression of contact-dependent
immunosuppressive receptors (PD-L1,
B7-H4) leading to enhancing CD8+ T
cell infiltration
high levels of HIF1 and HIF2 which
leads to expression of genes associated
with pro-tumoural activity

References [1,41–43] [1–3,43] [12,13,17,42,44]

explanation of the mechanisms, pathways and components involved in the polarization process can be128

found in the cited papers and the references therein.129

The inferred regulatory network of macrophage polarization is given in Figure 1. It contains 10130

extracellular signals, 30 intra-cellular components, most of them being TFs and interleukins, and 3131

outputs, which are used as readouts, namely M1 polarization, M2 polarization and NLC. Pathway132

enrichment analysis [45] showed that most of the components are involved in the JAK-STAT signalling133

pathway, pathways related to cancer, Th17 cell differentiation, cytokine receptor interaction and other134

inflammatory conditions.135

2.2. A Boolean model of macrophage polarization136

Starting from the regulatory network in Figure 1, the Boolean functions for each component are137

given in Table 2. Here, the Boolean functions were based on published experimental evidence from the138

literature. The numerical simulations were performed considering all the possible initial intracellular139

conditions and combinations of stimuli, while applying the synchronous updating method to calculate140

the system’s attractors (section 5.1). The simulation results show that the system reaches 1384 fixed141

point attractors, while other cyclic attractors of length 2 and 3 were also present. For our scope, in the142

following paragraphs we focus only on the fixed point attractors. It is important to note that fixed point143

attractors are time invariant, i.e. the number of fixed points is not affected from the updating method144

chosen, while the number of cyclic attractors and their characterisitcs (period, basin of attraction)145

depend on the updating method (section 5.1). Here and throughout the paper, we will refer to an146

attractor as the binarized expression profile which we assign to a polarization state (or a phenotype). To147

attribute the attractors to certain phenotype categories, we removed all the input nodes (extracellular148

signals) from the attractors, thus reducing the attractors’ space to 214 fixed points.149
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Figure 1. The regulatory network of macrophage polarization: Nodes in green represent the
extra-cellular signals, classified as M1, M2 and NLC inducers; nodes in purple represent receptors in
the macrophage membrane, usually activated upon contact with cells in the outer environment; nodes
in yellow represent the transcription factors and chemokines involved in the polarization process, as
an intermediate step or as an output. The interactions between components can be either activation
(black) or inhibition (red). The dashed arrows indicate indirect effects, in which the targets are the
end-products, i.e. intermediate interactions are involved but not represented in the network.

Table 2. Boolean rules of the 30 intra-cellular nodes of the macrophage polarization network

Node Boolean function

IFNGR IFNG or IFNAB and not (SOCS1)
CSF2RA GMCSF
IL1R IL1 or IL1b
TLR4 LPS and not (FCGR)
FCGR IC and (LPS or IL1)
IL4RA IL4 and IL13
IL10R IL10 or IL10s1

MCSFR MCSF(also known as CSF-1)

1 secreted
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Table 2. Boolean rules of the 30 intra-cellular nodes of the macrophage polarization network

Node Boolean function

STAT1 IFNGR or STAT1 and not (STAT6)
STAT5 (CSF2RA and not (STAT3 or IRF4)
NFKB (STAT1 or TNFA or TLR4 or IL1R) and not (STAT6 or FCGR or PPARG or KLF4)
PPARG IL4RA or MCSFR or ERK and not (STAT6)
STAT6 IL4RA or MCSFR
JMJD3 IL4RA or MCSFR
STAT3 (IL10R or EGF or STAT3) and not (FCGR or PPARG)
IRF3 TLR4
ERK FCGR
KLF4 STAT6
SOCS1 STAT6 or STAT1
IRF4 JMJD3
IRF5 STAT5 and not (IRF4)
IL1b NFKB or TNFA
IFNAB IRF3
EGF ERK or STAT3
IL12 STAT1 or STAT5 or NFKB
IL10s (PPARG or STAT3) and not (IRF5 or TNFA)
TNFA IRF5 and not (IL10s)
TGFB STAT3 and (not TNFA)
HIF1A (STAT3 or IL10s) and (not STAT1)
RAGE HMGB1

2.3. Phenotype identification through interpretation of the attractors150

The large attractors’ space raises the challenge of interpreting its biological meaning. To categorize151

the attractors in specific polarization states, two different methods were used: 1) a supervised152

literature-based method using the expression profiles of the macrophage phenotypes taken from153

the literature, and 2) an unsupervised method grouping attractors based on their similarity and then154

applying clustering algorithms to assign them to specific phenotypes.155

2.3.1. Intepreting attractors based on a supervised method156

To identify the main phenotypes detected by the model, we categorized all the attractors according157

to the expression profiles of M1, M2 and NLC known from the literature, as described in Table 1 and158

Appendix:159

• M1: IL-12, NF-κB, TNFα and STAT1 or STAT5 active;160

• M2: IL-10, STAT3 or STAT6, PPARγ active;161

• NLC: TGFβ, HIF1α, EGF, RAGE active;162

• M0: M0 attractors + Attractors not falling in any of the above categories.163

It is important to note that the M1, M2 and NLC categories were considered as mutually exclusive;164

therefore the rest of the attractors were categorized together with M0, in a cateogry apart that includes165

all the attractors exhibiting characteristics of both M1 and M2 phenotypes, or corresponding to166

states without biological significance. Interestingly, we found that most of the attractors fall into167

the M2 (≈67.3%) category, followed by the M1 (≈4.7%) category and NLC (≈2%) subset (Figure168

2), indicating the high likelihood for the system to reach one of the anti-inflammatory polarization169

states. The similarities between attractors falling in each category were estimated by calculating the170
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Jaccard-Needham distances (dist_values ∈ [0, 0.5]). Considering the low values of binary distances171

between attractors in each category, we then calculated the average attractor states (Figure 2 (b)-(e)).172

Importantly, we observe that these averaged attractors largely correspond to the expected expression173

profiles for M1, M2 and NLC defined above. A principal component analysis shows the main identified174

clusters of attractors corresponding to each phenotype (Figure 3). From the plot, we can easily observe175

that NLC attractors are not well separated from M0, which can be explained considering that a large176

number of attractors in our M0 category have profiles intermediate between M1 and M2 and NLCs are177

also thought to have an intermediate profile.178

(a)

(b) (c)

(d) (e)
Figure 2. (a) Heatmap of 214 attractors. (b)-(e) Averaged attractors for each category: M0, M1, M2 and
NLC.

2.3.2. Interpreting attractors based on an unsupervised method179

Alongside with the supervised method, we also performed unsupervised clustering on the180

attractor space, in order to investigate whether the main phenotypes we expect in this system can be181
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Figure 3. PCA of 214 attractors: M1 and M2 attractors are observed in distinct clusters, while NLC
attractors appear in between the two extremes of the polarization spectrum.

recovered in an unbiased way just exploring the structure of the attractors’ space. We hypothesise182

that the attractors corresponding to the same phenotype category will be characterized by a small183

binary distance and consequently will fall into the same cluster. To this end, we first estimated the184

similarity among the attractors by calculating the Jaccard-Needham distance [46]. We then applied185

hierarchical density based clustering on the Jaccard-Needham distances (Figure 4) to identify the main186

attractor clusters. As can be seen from the heatmap, 5 main clusters are detected: one of them (Cluster187

4) corresponds to the zero-attractors (attractor 1: all the components in OFF state, attractor 2: all the188

components in OFF state, except from exprRAGE = 1) and it was not considered for further analysis. A189

closer look at the averages of the attractors falling in each cluster highlights the detected expression190

profiles (Figure 4 (b)-(e)). Based on the averaged expression profiles of attractors in each cluster, we191

observe a clear representation of M1, M2 and NLC phenotypes, respectively Cluster 5→M1: IL-12,192

IL-1R, NF-κB, STAT1, TNFα highly expressed, Cluster 2 → M2: IL-10, IL-10R, JMJD3, KLF4, IRF4,193

PPARγ and STAT6 highly expressed, and Cluster 3 → NLC: EGF, HIF1α, RAGE, TGFβ and IL-10194

highly expressed. Considering the high expression of both M1, M2 and NLC components, we attribute195

Cluster 1 to M0.196

2.3.3. Robustness of attractor interpretation independent of annotation method197

While choosing between supervised and unsupervised methods one must consider some198

advantages and disadvantages. Supervised approaches can ensure a specific match between the199

observed attractors and prior biological knowledge of each phenotype, which can be an issue when the200

attractors can correspond to uncharacterised biological states and can be limited to the use of existing201

knowledge. On the other hand, unsupervised methods offer the simplicity of detecting the different202

state categories in a more unbiased way and possibly to identify unknown intermediate phenotypes in203

the polarization spectrum of the macrophages.204
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For a more quantitative comparison between the supervised and the unsupervised methods,205

we calculated the Pearson correlation coefficient between the averaged expression profiles obtained206

from each phenotype and each cluster (Figure 5). Our results show the accuracy of the unsupervised207

method in capturing the M1 (corr_coe f f = 0.92), M2 (corr_coe f f = 1) and NLC (corr_coe f f =208

0.91) phenotypes, while the M0 category matches best with Cluster 1 with corr_coe f f = 0.97, not209

corresponding to any phenotype.210

(a)

(b) (c)

(d) (e)
Figure 4. (a) Heatmap of Jaccard-Needham distances of 214 attractors: 5 main clusters can be observed.
Cluster 4 contains the attractor with all nodes in the OFF state and was not considered for further
analysis. (b)-(e) Averaged attractors for each cluster in (a).
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Figure 5. Matrix of Pearson correlation between M0, M1, M2 and NLC categories and the 4 biologically
relevant clusters.

3. Model validation through in-silico perturbations211

To validate the model, we performed several simulations mimicking specific environmental212

conditions consisting of M1, M2 or NLC signals only. Previous wet-lab experiments have shown that213

in co-cultures of monocytes and CLL cells, the CLL signal will elicit the differentiation of monocytes214

into NLCs. We studied the attractor space in the presence of only CLL signals (M-CSF and HMGB1)215

while considering all the possible combinations of intra-cellular signals. We then hypothesised that the216

presence of only a specific phenotype signal inducer (M1, M2 or NLC) would shift the macrophages217

polarization towards the corresponding phenotype and performed different simulations setting the218

signals favouring a certain phenotype to the ON state. Indeed, our simulations showed that the219

presence of specific signals (grouped as M1, M2 and NLC signals) would activate certain pathways220

that subsequently lead to the corresponding polarization state. Table 3 recapitulates the simulations221

performed by selecting only specific stimuli, the observed attractors’ categories, the expression profiles222

of each polarization state and the network representation of active/inactive nodes/edges under these223

conditions. Interestingly, we observed that while the presence of M1 and M2 signals leads to the224

activation of their corresponding phenotypes, NLC signals activate both M2 and NLC polarization225

states, which reinforces the shared pro-tumoural activity of both phenotypes in the TME.226

Additionally, several experimental studies on the effects of mutants and knock-outs on227

macrophage polarization states have been previously published [47–50]. Here, we performed228

simulations of knock-outs, as summarized in Table 4. Analysing the attractors’ space, we observed a229

complete loss of M2 phenotype in STAT6−/−, IRF4-JMJD3 axis KO and a significant decrease of M2230

attractors in PPARγ−/− and IL-4Rα−/−, a complete loss of M1 phenotype in IRF5−/− and STAT5−/−,231

and a significant decrease in M1 attractors in STAT1−/−. Additionally, we observed a complete loss232

of NLC phenotype in STAT3−/− and EGF−/−. These results show that our model recapitulates the233

experimental observations in mutant conditions, as well as polarization outputs in the presence of234

different extra-cellular signals.235

4. Discussion236

The results reviewed in the previous sections highlight the various ways in which network-based237

dynamic models can be used to recapitulate the known characteristics of biological systems, as238

well as to predict new behaviours in specific conditions. Particularly, despite their limitations to239

a qualitative description, Boolean models yield a comprehensive picture of a system’s dynamics,240
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Table 3. Simulations of environmental signals consisting of M1-, M2- and NLC-inducing signals only.

Simulations Attractors Network representation

M1 stimuli ON:
IFNγ, GM-CSF, IL-1,
LPS.

Attractor category:
18 M0, 5 M1

M2 stimuli ON:
IC, IL-4, IL-13, IL-10.

Attractor category:
6 M0, 1 M2

NLC stimuli ON:
M-CSF, HMGB1.

Attractor category:
4 M0, 1 M2, 4 NLC

including all the attractors of the system and the effects of mutants. Here, our main focus lies in241

identifying the mechanisms that trigger the formation of NLCs in Chronic Lymphocytic Leukaemia,242

a macrophage polarization state distinct from the ones that can be obtained with monocyte in-vitro243

differentiation. Despite a large body of work on macrophage polarization, the phenotypic profile and244

formation of tumour associated macrophages have not been fully elucidated yet, due to the difficulty245

of isolating these cells from tumours. For this reason, we extend a previously published Boolean246

model of macrophage polarization [26], by including specific nodes (genes, transcription factors and247

receptors) that characterise the NLC profile. We then apply Boolean rules to the regulatory network to248
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Table 4. In-silico experiments with knock-outs [50].

Knock-out Expected effect on polarization Model results

STAT6 Complete knock-out
Loss of M2 [51]

Complete loss of M2
M1 and NLC attractors not affected

PPARγ Conditional knock-out
Loss of M2 [49]

Decrease number of M2 attractors
M1 and NLC attractors not affected

IL-4Rα Conditional knock-out
Loss of M2 [52]

Decrease number of M2 attractors
M1 and NLC attractors not affected

IRF5 Complete knock-out
Loss of M1 [53]

Complete loss of M1
M2 and NLC attractors not affected

STAT5 Complete knock-out
Loss of M1 [54]

Complete loss of M1
M2 and NLC attractors not affected

IRF4 - JMJD3 axis Complete knock-out
Loss of M2 [55]

Complete loss of M2
M1 and NLC attractors not affected

Other simulations
STAT3 Complete loss of NLC

Increase of M1 attractors
M2 attractors not affected

EGF Complete loss of NLC
M1 and M2 attractors not affected

STAT1 Significant loss of M1
M2 and NLC attractors not affected

study the system’s asymptotic behaviour, when starting from all the possible initial conditions. The249

main macrophage polarization states (phenotypes) were matched to the attractors first by applying250

constraints on the value of specific network components (literature-based constraints) and subsequently251

using unsupervised clustering of the attractors according to their (binary) similarities. Importantly,252

the model results show that the attractor categories obtained by both supervised and unsupervised253

methods, qualitatively match the M1, M2 and NLC profiles, while highlighting specific characteristics254

of NLCs that distinguish them from M2 macrophages. In addition, the unsupervised method, although255

less accurate than the supervised approach in characterizing the phenotypes, was shown to correctly256

separate the phenotypic profiles in the absence of any constraint or previous knowledge. Clustering257

of attractors with more powerful techniques [56,57]) would make the unsupervised method suitable258

especially in Boolean modelling of large networks for which prior biological knowledge is not available.259

It is important to note that both the network extension and the Boolean functions were based on260

extensive literature review, which raises the difficulty of literature-based network inference methods261

for large regulatory networks. A more data-driven approach to network inference will be considered262

for future work [58,59].263

The ultimate test of the model presented would be to compare our in-silico signatures for the264

different attractors with experimental data measuring the state of each of our model components,265

possibly through transcriptomic or proteomic characterization of each cell type. However, the266

multiple levels at which the state of a component can be experimentally determined (gene expression,267

protein level, protein activation state) reduce our expectations for finding a clear match. Even for268

the well-characterised biological processes of macrophage polarization, all experimentally derived269

readouts of the different phenotypes come from the detection of proteins on cell membranes, leaving270

gaps in our understanding and justifying the need for data-driven approaches.271

Taken together, our model can describe macrophage polarization in different environments272

and mutant conditions. The inflammatory and cancer environments are characterized by a complex273

combination of stimuli, which drive the polarization process of monocytes towards specific macrophage274

phenotypes. In our network, we include the most significant pro- and anti-inflammatory signals, as275

well as important cytokines that are involved in NLC polarization, like CSF-1 (M-CSF in our model)276
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and HMGB1. Despite the specific characteristics of the tumour micro-environments in solid cancers277

compared to the in-vitro model considered here, we believe that common polarization pathways are278

also involved in the formation of tumour associated macrophages (TAMs) in solid tumours, which279

have so far been modeled with a stronger emphasis on the inter-cellular aspects than on the molecular280

details [60–62]. Further work will be needed to establish whether our model can be useful more281

generally in different cellular environments. Overall, we hope that our model will encourage new282

empirical investigations on the complex nature of cell-cell interactions in the TME and the role of283

TAMs in cancer prognosis and treatment.284

5. Methods285

5.1. Boolean model Implementation286

In the Boolean model each component (gene/mRNA, protein, chemokine) is associated with a287

discrete (binary) variable, representing its concentration, activity or expression. Time is considered288

to be implicit and the future states of each component were determined by the current states of their289

regulators, given by a Boolean function of mi = 1, 2, . . . , N regulators of component Xi. Each Boolean290

function represents the regulatory relationships between the components and is expressed via Boolean291

operators AND, OR and NOT. The state of the system at each time point is given by a binary vector,292

whose ith element represents the state of the component Xi [23,34]. The set of all possible states and293

their transitions can be represented by a state transition graph, in which the nodes are the system’s294

states (represented as binary vectors) and the directed edges are the transitions between them. The295

exponential function between the number of components and the state space size makes the graphical296

representation possible for only small networks. In Boolean models time is discrete and implicit:297

starting from an initial state, the system will follow a trajectory of states and, because of the finite state298

space, it reaches an attractor (stable states or limit cycles). To evaluate the state of each node at each299

timestep, two main updating methods have been proposed [21,63]:300

• synchronous updating method: at each time step, all the nodes are updated simultaneously, assuming301

that all the interactions in the system require the same time to occur. Importantly, the state space302

is characterized by non-overlapping basins of attractions.303

• asynchronous updating method: at each time step, the updated nodes are chosen randomly (General304

Asynchronous, Random Asynchronous) or according to their characteristic updating time, while305

the system’s state will be characterized by overlapping basins of attractions.306

It is important to note that fixed point attractors are time invariant, i.e. do not depend on the updating307

method. Our network is composed of N = 40 components and has 240 possible states. Choosing the308

synchronous update method we obtain all transitions between them and consider the final attractors.309

The model was implemented using the BoolNet [48] R package [64].310

5.2. Calculating the attractor similarity matrix311

Given Ω a space of binary N-dimensional vectors Z defined as312

Z = (z1, z2, ..., zN), zi = {0, 1}, ∀i ∈ {1, 2, ...N} (1)

we define Z = 1− Z to be the complement of the binary vector Z. For each set of binary vectors313

Z1, Z2 ∈ Ω let Sij be the number of occurrences of matches, with i ∈ Z1 and j ∈ Z2 being in the314

corresponding positions. In this way S11(Z1, Z2) = Z1 · Z2 and S00(Z1, Z2) = Z1 · Z2.315

Based on Sij, different measures exist, to calculate the similarity/dissimilarity between two binary316

vectors [46]. For our purpose, we calculated the Jaccard-Needham measures, defined as follows:317

S(Z1, Z2) =
S11

S11 + S10 + S01
(similarity) D(Z1, Z2) =

S10 + S01

S11 + S10 + S01
(dissimilarity) (2)
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5.3. Calculating the transcription factor activities318

Microarray data used in this publication were downloaded from the NCBI repository Gene319

Expression Omnibus (GEO) database. M1 and M2 Macrophages microarray data accession number is320

GSE5099. Our previously published NLC microarray dataset can be found under accession number321

GSE87813 and was processed as described in [33]. Raw microarray datasets were then normalized using322

the RMA (Robust Multi-arrays Average) normalization method and batch corrected. Transcription323

factors activities were estimated using the Dorothea R package. Dorothea is a TF-regulon interaction324

database giving each interaction a confidence level. Here, levels of confidence of interactions from A to325

E were taken into account. The VIPER algorithm was used to estimate TF activities based on Dorothea326

interactions and our expression data [65,66].327
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Appendix A338

Appendix A.1 M1 pathway339

The M1-like pro-inflammatory polarization state is applied to pro-inflammatory macrophages and340

can be obtained upon stimulation of those cells with IFNγ or LPS which cause release of Th1-inducing341

cytokines including tumour necrosis factor α (TNFα), IL-12, IL-6, IL-1β, IL-18 and IFNα/β [1,41,42].342

The M1 macrophages metabolism rely on oxidative glycolysis [67] and intrinsically their polarization343

is linked with activation of STAT1, IRF5 and NF-κB [68]. M1-like macrophages are linked in fighting344

bacterial infections and intracellular pathogens. Additionally they show potent anti-tumoural activity345

which manifests mainly through: (i) release of large amount of nitric oxide (NO), which in turn is able346

to kill the cancer cells as a result of DNA damage, disruption of mitochondrial activity and limitation347

of iron availability, and (ii) presentation of tumour antigens to CD4+ Th1 cells and driving the activity348

of cytotoxic CD8+ T cells at the tumour site [43].349

Appendix A.2 M2 pathway350

M2-like macrophages include a wide variety of phenotypes involved in resolving of the351

inflammation. The M2 activation can be induced by stimulation with IL-4, IL-13, immune complexes352

and IL-10. The anti-inflammatory and regenerative activity of M2 macrophages come from abundant353

release of IL-10, TGF-β, VEGF and EGF [1,43]. M2 macrophages depend strongly on oxidative354

phosphorylation [67] and the main TFs driving their polarization-state are: STAT6, PPARγ/δ, IRF4,355

JMJD3 [68]. Depending on the anti-inflammatory processes M2-like macrophages are involved in,356

they manifest diverse phenotypes including: M2a - Th2 responses and killing and encapsulation of357

parasites, M2b – immunoregulation, M2c – matrix deposition and tissure remodeling [1–3].358

Tumor-associated macrophages belong to the group of cells that arise upon the contact with359

cancer cells and tumor microenvironment (TME). They can show characteristics of both M1 and M2360

state, nevertheless upon prolonged presence in the TME the M2 characteristic becomes prevalent.361

TAMs influence the properties and dynamics of TME, although the precise factors that promote TAM362

activation have yet to be elucidated, as each TME is characterized by unique physical and chemical363

conditions [13,43]. However, certain common features may be identified. For example, CSF1, IL-10364
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and TGF-β released from tumour cells and Treg cells, are powerful promoters of TAM polarization,365

which in turn support tumour progression by various mechanisms, like: (i) secretion of soluble366

immunosuppressive agents (IL-10, TGF-β, IL-1β), (ii) expression of Immune Checkpoint Inhibitors367

(PD-L1, B7-H4), and (iii) high levels of hypoxia-inducible factor 1 and 2 (HIF1, HIF2) which leads to368

expression of genes associated with pro-tumoural activity [12,13,43,69].369

In the context of Chronic Lymphocytic Leukaemia (CLL) it has been proposed that Nurse-like370

cells (NLC), which are specific form of TAMs identified in this malignancy, are polarized in response to371

CSF-1 and HMGB1 proteins released by CLL cancer cells. In turn NLCs can stimulate and protect CLL372

cells by antigen presentation which stimulates BCR signaling, and also by both direct contact through373

membrane proteins and release of soluble factors including: [42]374

• membrane proteins: CD2 (interacts with LFA-3 expressed on CLL cells [70]), CD31 (ligand of375

CD38 expressed on CLL cells), BAFF, APRIL (both BAFF and APRIL can be also released as376

soluble factors) [42,70]377

• soluble factors: BDNF [71], WNT5A [72], CXCL12, CXCL13, IL6/8, IL-10 [42].378
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