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Abbstract

In modern biological physics, there is a great interest in building generative probabilistic

models for ensembles of covarying binary variables. A popular approach is to use the max-

imum entropy principle. Here, one builds generative models that use as constraints lower

level statistics estimated from the data. While extremely popular, maximum entropy models

have conceptual as well as practical issues; they rely on the modelers’ choice of constraints

and are computationally expensive to infer when the number of variables is large (n > 100).

Here, we address both these issues with Superstastistical Generative Model for binary Data

(SiGMoiD). SiGMoiD is a maximum entropy based framework where we imagine that the

data as arising from superstatistical system; individual binary variables are coupled to the

same bath whose intensive variables fluctuate from sample to sample. Moreover, instead

of choosing the constraints, in SiGMoiD we choose only the number of constraints and let

the algorithm infer them from the data itself. Notably, we show that SiGMoiD is orders

of magnitude faster than current maximum entropy-based models and allows us to model

collections of very large number of binary variables. We also discuss future directions.

Introduction: In recent years, there has been a great interest in understanding the

statistics of covarying random binary variables. Significant examples are in neuroscience

where neurons are either silent or firing (1), in protein/DNA sequence evolution where

amino acid or nucleotide positions are either wild type or mutant (2), or in presence and

absence of species in an ecosystem (3), for example, the microbiome (4). Estimating from

available samples the frequency of occurance of every possible binary configuration is not

possible for any reasonably sized collection; a system with N co-dependent binary variables

has 2N states and the number of samples available is typically orders of magnitude lower

than the number of states.

At the same time, given the complexity of interactions, it is not possible to build bottom-

up mechanistic models to describe these systems. A popular alternative has been to develop

approximate top-down probabilistic models and train those models on the data. Over the

past two decades, the maximum entropy (max ent) approach (5) has emerged as a strong

candidate for building approximate models. Here, one computes user-specified lower order

statistics from the samples and seeks a maximum entropy distribution consistent with these

data-drive constraints. These models have been used in a variety of contexts, ranging from
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illustrating the critical all or none nature of collective neuron firings (6) as well as in more

practical applications to predict physical proximity between amino acids in three dimensional

structures of proteins (7).

A key advantage of max ent models is that they are unbiased expect for the constraints

imposed by the modeler (5, 8). For binary data, constraints of averages and covariances have

become the standard (2, 9). However, learning max ent models using these constraints has

practical as well as conceptual issues issues. A system comprising N binary variables has

∼ N2 covariances and a max ent model constraining these covariances has ∼ N2 Lagrange

multipliers (parameters). Inference of these parameters from data require extensive Markov

chain Monte Carlo (MCMC) simulations and are computationally expensive. Currently,

the inference is limited to ∼ 100 binary variables (10). Conceptually, and perhaps more

importantly, max ent models require the modelers to a priori know which constraints are

appropriate for any particular problem. Indeed, different constraints lead to models that fit

data with different levels of accuracy and with different sets of predictions (11, 12).

To overcome the conceptual limitations of modeler-prescribed constraints, we recently

developed and illustrated using several examples a constraint-agnostic max ent approach,

thermodynamic manifold inference (TMI) (13). In TMI, we imagined that we had access

to a collection of distributions in the same class (several grayscale images or microbial or

mRNA abundances). We assumed that K different constraints (‘energies’) captured these

distributions but did not specify a priori the values of those constraints. From the data, we

inferred the constraints that were hypothesized to be common across all sample distributions

as well as distribution-specific Lagrange multipliers.

However, TMI needed multiple distributions from the same class to learn the constraints.

As a result, it was not suitable to be applicable when several samples are given from a

single hypothesized distribution (for example, multiple protein sequences or samples of col-

lective neuron firings). Here, we propose SiGMoiD; Superstatistical GenerativeModel for

binary Data; a hierarchical generalization of thermodynamic manifold inference using the

superstatistical framework that is applicable broadly to capture covariation in binary data.

In SiGMoiD, we assume that the data is generated in a hiearchical manner. Every

binary variable is characterized by K types of energies and is coupled to a bath which

can exchange these energies. Invoking the superstatistical approach, we assume that the

bath intensive variables vary from sample to sample according to a pre-defined distribution.
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Given that all binary variables interact with the same bath, their probabilities become

correlated with each other. Importantly, the constraints (energies) are not specified by

the user but instead inferred directly from the data itself. Given its constraint-agnostic

nature, SiGMoiD is a significant conceptual advance over previous max ent based methods

while retaining the intuitive interpretability of statistical physics-based models; the inferred

constraints/energies can be used to identify correlations and clusters. Practically speaking,

inference of SiGMoiD-based models is orders of magnitude efficient compared to the inference

of Lagrange multipliers in max ent models. As a result, SiGMoiD can be applied to very

large collections of binary variables (N ∼ 500) that remain out of the reach of max ent

models.

Below, we sketch the theoretical developments of SiGMoiD and then apply it to model

three experimental data sets (4, 14, 15). We show the utility of SiGMoiD with systems that

are too large to be modeled using max ent models. We also discuss generalizations to other

types of data.

The model: Consider N binary variables {σi} that take values 0 or 1. Let us denote

by πi the probability that σi = 1 and by πππ the vector of probabilities πππ = {π1, π2, . . . , πN}.

We imagine the following physical process: each binary variable is connected to the same

bath that can exchange K types of extensive variables (energies). The kth type of extensive

variable for each variable in the state when it is active (σi = 1) is Eki and zero when it is

inactive (σi = 0) (denoted collectively by E). Under these circumstances, the probability of

the ith variable is equal to 1 is given by the Gibbs-Boltzmann distribution:

πi =
exp(−

∑
k βkEki)

exp(−
∑

k βkEki) + 1
≈ exp

(
−

K∑
k=1

βkEki

)
. (1)

In Eq. 1, βββ ≡ {βk} are the bath intensive variables. The second approximation is valid

when πi � 1. While not required in principle, in what follows, we will assume that the

approximation holds true. This approximation greatly simplifies our calculations below. For

numerical stability, we will assume that Eki > 0 to ensure that πi always remain less than

1. The probabilities in Eq. 1 are also interpreted as the max ent probability distributions

when averages of the K types of energies 〈Eki〉(k ∈ [1, K]) are specified for each neuron

i, (i ∈ [1, N ]).

Once βββ and E are known, samples can be generated using Eq. 1 very easily. However,

the propensities πππ in Eq. 1 will be statistically independent of each other. We are however
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interested in modeling the correlated binary variables. We model the correlations using

a superstatistical framework. We posit that each instantiation of the N variable system

(each sample) has its own set of bath intensive variables. We require that the intensive

variables are distributed according to a pre-defined joint distribution. Here, for simplicity,

we assume that the intensive variables are distributed according to independent exponential

distributions:

p(βββ) =
∏
k

exp (−βk) . (2)

In Eq. 2, we have set the mean values 〈βk〉 = 1 since that Eki and βk can be multiplied by

an arbitrary constant without changing the predictions. Other more complex distributions

are possible as well. The superstatistical framework can be thought of as a hierarchical max

ent inference (16–19) wherein the distributions in Eq. 1 are identified maximum entropy

distributions that reproduce average energies and the distributions in Eq. 2 are identified

as max ent distributions that reproduce average intensive variables. In this setup, when

the energies E are known, samples can be generated by first sampling temperatures βββ using

Eq. 2, then evaluating the probabilities πi in Eq. 1, and finally sampling σi using those

probabilities.

Our goal is to infer the energies E given samples. In our hierarchical setup, the intensive

variables are unobservable (latent) variables. As a result, inference of the energies from data

using rigorous likelihood maximization will have to resort to techniques such as expecta-

tion maximization (20). Here, we propose a simpler approximate approach. Assuming the

approximation in Eq. 1 is valid, we can analytically calculate the average probability that

σi = 1 and the pairwise correlations. We have:

〈πi〉 =

∫
p(βββ)πidβββ =

∏
k

1

1 + Eki

(3)

and

〈πiπj〉 =

∫
p(βββ)πiπjdβββ =

∏
k

1

1 + Eki + Ekj

(4)

We note that the formulae in Eq. 3 and Eq. 4 depend on the specific functional form of the

superstatistical distribution.

We can find the energies E by minimizing the squared error:

E =
∑
i

(〈σi〉 − 〈πi〉)2 +
∑
i6=j

(〈σiσj〉 − 〈πiπj〉)2 . (5)
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The gradients of this error function with respect to E can be found analytically (see ap-

pendix) and used in a gradient descent set up to estimate the energies. Other error functions,

for example, the Kullback-Leibler divergence can also be implemented.

Results: Before we illustrate SiGMoiD using larger data sets, we first show a comparison

between SiGMoiD and a max ent model. To that end, we use a previously collected data

set measuring collective firing of 160 retinal neurons for duration of a movie that lasted

19 seconds (21). The details of the experiment can be found in the original article (21).

We note that inference of a max ent model for the collective firing of all 160 neurons is

currently computationally unrealistic. Therefore, we chose 15 most active neurons in the

data (15 highest firing propensities). First, we inferred a max ent model from the data that

constrained mean firing rates and pairwise correlations. The max ent model describes the

probability of any configuration σσσ ≡ {σi} as:

p(σσσ) ∝ exp

(
−
∑
i,j

Jijσiσj

)
. (6)

In Eq. 6, Jij are coupling constants that need to be inferred from the data, typically using

gradient descent (11). Given that there are only 215 ∼ 3×104 states for 15 neurons, we could

estimate model predictions and therefore the coupling constants by a brute force summation

over all possible states without resorting to MCMC simuations. This minimized the errors in

max ent inference that arises due to inaccuracies in MCMC-based estimates of average firing

rates and neuron-neuron correlations. The model had 15 +
(
15
2

)
= 120 parameters. Next, we

inferred a SiGMoiD-based model using K = 4 types of energies (a total of 60 parameters).

In Fig. 1, we compare the two models. In panel (a), we show a comparison between the

raw probabilities of individual configurations obtained from data (x-axis) to model predicted

probabilities (y-axis, red: max ent, blue: SiGMoiD). It is clear that SiGMoiD model has

lower error compared to the max ent model (mean absolute error 1.08×10−5 vs 1.22×10−5).

In panel (b), we plot the probability p(n) that n neurons fire at the same time as observed

in the data (black), predicted using SiGMoiD (blue), and using the max ent model (red).

Here too, the SiGMoiD model performs better especially when capturing the likelihood that

a large number of neurons fire together. In panels (c) and (d), we plot the three-body

correlations 〈σiσjσk〉 as observed in the data (x-axis) and as predicted by the model (y-axis,

SiGMoiD, panel (c), max ent, panel (d)). Both models capture the three body correlations

with reasonable accuracy; the mean absolute error is 0.042 vs 0.038 for the SiGMoiD and
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FIG. 1. Comparison of SiGMoiD with max ent modeling. (a) the probabilities of individual

configurations estimated from the data (pdata(σσσ), x-axis) and from the two models (pmodel(σσσ), x-

axis, red: max ent, blue: SiGMoiD) (b) the probability p≥(K) that K or more neurons fire in any

given configuration as estimated from data (black), the max ent model (red), and SiGMoiD (blue),

(c) and (d) comparison between three variable correlations 〈σiσjσk〉 estimated from data (x-axis)

and those using the models (y-axis).

the max ent model respectively. This analysis shows that the SiGMoiD approach is at least

as good, if not better, than the max ent based model at capturing the data and predictions.

Next, we analyzed neural recording data from Steinmetz et al. (15). Spiking data was

recorded across multiple brain regions of mice. The mice were shown two visual gratings with

differing level of contrast and were rewarded to select the grating with a higher contrast.

For our analysis, we combined neural data from the root region of the brain in one of

the experimental sessions (details in appendix). The data comprised collective firings of

626 neurons. We modeled this data using K = 2 − 96 types of energies. We found that

while most fits were able to reproduce the average firing rate and two body correlations

with similar degree of accuracy (not shown), the collective behavior; the probability that n

neurons firing at the same time was well captured only by the most complex model (K = 96

energies) (see Fig. A1). We note that inference of max ent models with pair correlation

constraints for this large a data set is currently not possible. In contrast, all SiGMoiD

calculations were carried out on a personal computer within a matter of minutes and did
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FIG. 2. SiGMoiD captures the statistics of a large collection of neurons. We used

K = 96 energies to model the collective firing of N = 628 neurons. (a) The average firing rates

〈σ〉 as calculated in the data (x-axis) and as predicted by SiGMoiD (y-axis). (b) The correlated

firing rates of two neurons 〈σiσj〉 as calculated in the data (x-axis) and as predicted by SiGMoiD

(y-axis). We have chosen 5000 random pairs from all pairs. (c) The probability p(n) that n neurons

fire at the same time (black: data, blue: SiGMoiD).

not require any extensive computational infrastructure. Moreover, the SiGMoiD model had

96 × 626 ≈ 6 × 104 parameters. In comparison, a pairwise Ising-type model would have a

much larger number, ≈ 2× 105, of parameters.

Another type of binary data popular in biological physics is presence and absence of

species in an ecosystem. Gut microbiomes are an ecosystems whose statistical properties

have received significant attention in the last few years (22). Bacteria in the gut live in

complex communities where they compete for nutrients and also exchange metabolites with

each other. These associations create complex spatial structures of bacterial communities in

the gut spanning several length scales. Recently, Sheth et al. (4), devised an experimental

method to probe the spatial organization of the gut microbiome at the micron length scale

allowing them to identify putative direct interactions between bacteria. In these experiments,

Sheth et al. (4) fractured mice guts into particles of a specific size and quantified membership

of ∼ 300 operational taxonomic units (OTUs) in ∼ 1500 particles with median diameter

∼ 30µm. Each particle was characterized by a binary vector representing the OTUs present

in that particle.

We used K = 8 energies to model the collective behavior of OTUs. In panel (a) of

Fig. 3 we show the probability of observing n OTUs in any particle as observed in the

data (black circles) and as predicted by SiGMoiD (blue line). It is clear that SiGMoiD
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accurately captures this co-occurrence distribution. SiGMoiD also captured the mean oc-

currence frequency and pairwise correlations accurately (see Fig. A2). Notably, SiGMoiD

characterizes each binary variable (here, OTUs) using a K dimensional vector. Therefore, it

can be used to identify OTUs who have similar occurrence profiles using hierarchical cluster-

ing. There are two types of interactions between bacteria that lead to co-occurrence in any

ecosystem (23), especially at the micron length scale (4). First, genetically related bacteria

tend to co-occur because they have similar metabolic networks and can compete for the

same resources. Second, genetically dissimilar bacteria have different metabolic networks

and can cross-feed each; one bacteria utilizing the waste products of another. Given that

co-occurrences are transitive (A co-occurs with B, B co-occurs with C ⇒ A co-occurs with

C), it is not possible to use simple co-occurrence calculations to identify putative pairs of in-

teracting bacteria (24). SiGMoiD-based clustering of OTUs is a more direct clustering that

relies on inferred inherent properties of the OTUs (the energies). Panel (b) of Fig. 3 shows

a hierarchical clustering plot of all OTUs using Ward’s linkage. Instead of the energies Eki,

we used the transformed variables rki = 1/(1 +Eki) that are related to the mean occurrence

frequencies (see Eq. 3).

Among the several identified clusters, we focus on two biologically interesting ones (details

of cluster membership can be found on github, see appendix for the link). The gut micro-

biome of mice is dominated by OTUs belonging to the family Lachnospiraceae; 53% of all

the OTUs belonged to this family. However, these OTUs were not equally dispersed across

the particles. We found one cluster of OTUs comprising 11 OTUs that was statistically

significantly enriched in Lachnospiraceae (9 out of 11, single tailed binomial distribution

p-value 0.05) and another cluster of OTUs comprising 32 OTUs that was statistically signif-

icantly depleted in Lachnospiraceae (9 out of 32, single tailed binomial distribution p-value

0.0035). This same cluster was also enriched in the family Christensenellaceae (3 out of 32

against a background frequency of 1.7%, single tailed binomial distribution p-value 0.017).

In the future, it will be interesting to identify direct metabolic interactions amongst OTUs

belonging to these clusters.

Discussion: A deluge of biophysical data in the last decade has necessitated the de-

velopment of top-down modeling. Here, instead of describing the data from first principles

mechanistic models, one constructs probability distributions that represent it. As a result,

generative models of collective behavior have become essential to modeling several biophys-
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FIG. 3. SiGMoiD captures the statistics of microbial co-occurrences. We used K = 8

energies to model the co-occurrence of N = 347 OTUs. (a) The probability p(n) that n OTUs are

observed in any particle (black: data, blue: SiGMoiD). (b) Hierarchical clustering diagram of the

OTUs identifies several clusters of OTUs with similar occurrence patterns.

ical systems. The most popular way to generate top-down models is the maximum entropy

(max ent) approach wherein one approximates the data using a probabilistic model that

reproduces lower order statistics estimated from the data. The max ent approach has a sig-

nificant conceptual advantage that it represents the simplest model consistent with the im-

posed constraints (5, 8). However, there are two significant drawbacks. First, the constraints

are hand-picked by the modeler and the model therefore depends on these constraints. For

binary data, constraints of averages and pair correlations have become popular. Second,

the inference of max ent models for large data sets can be computationally expensive and it

may be unrealistic to infer models for > 100 binary variables.

To address these issues, we developed SiGMoiD. SiGMoiD takes an agnostic approach

about the constraints. In SiGMoiD, instead of specifying the constraints, the user only

specifies the total number of constraints. SiGMoiD learns these constraints from the data.

Moreover, parameter inference in SiGMoiD is orders of magnitude faster than max ent

inference. We showed using three data sets of varying complexity that SiGMoiD not only

performs as well as max ent models in terms of accuracy but can also be applied to study

very large data sets that are currently out of the reach of max ent inference.

There are several directions in which SiGMoiD can be improved. First, we assumed

(1) an approximate expression for the probabilities (see Eq. 1) and (2) exponentially dis-

tributed independent intensive variables which greatly simplified the predictions from the
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model. A more rigorous approach would be to infer sample specific intensive variables using

the Gibbs-Boltzmann definition of probabilities by employing methods such as expectation

maximization (20). Second, we currently assumed that the intensive variables are drawn

from independent exponential distributions. However, other choices, for example, gamma

and inverse gamma distribution, are possible as well. Third, the current approach only ap-

plies to binary data, however, in many cases, a more general approach might be required.

For example, when modeling variation in DNA sequences or protein sequences (7), we may

need to model distributions of four and twenty possible outcomes respectively. SiGMoiD

can be easily generalized to model such data. Fourth, the number of energies K used to fit

the data remains a free parameter in SiGMoiD inference. However, models with different

K are nested therefore the log-likelihood ratio test or any other information theory based

criterion can be implemented to determine the optimal number of energies in SiGMoiD. Go-

ing forward, we believe that this computationally efficient and conceptually straightforward

approach will be immensely valuable in modeling collective behavior of binary and other

categorical data.
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I. APPENDIX

A. Github link

All raw data and scripts can be found on GitHub: https://github.com/dixitpd/sigmoid

B. Gradient of the error function

We define the error as:

E =
∑
i

(〈σi〉 − 〈πi〉)2 +
∑
i6=j

(〈σiσj〉 − 〈πiπj〉)2 . (A1)

To find the gradient of E with respect to Eki, we first consider the derivatives with respect

to Eki of 〈πi〉 and 〈πiπj〉. We have

∂〈πi〉
∂Eki

= − 〈πi〉λk
λk + Eki

(A2)

∂〈πiπj〉
∂Eki

= − 〈πiπj〉λk
λk + Eki + Ekj

(A3)

Therefore, we have

∂E
∂Eki

= 2 (〈πi〉 − 〈σi〉)
∂〈πi〉
∂Eki

+ 2
∑
j 6=i

(〈πiπj〉 − 〈σiσj〉)
∂〈πiπj〉
∂Eki

(A4)

We used the gradient descent algorithm to infer the energies from the data. In order to

ensure positivity of energies, the gradient descent was performed for logarithms of energies

instead of the energies themselves.

C. Details of extraction of data from Steinmetz et al. (15)

Steinmetz et al. (15) collected neural data across several brain regions in 10 mice observed

over 39 separate sessions. The goal of the experiment was to study how the mice responded

to a visual cue in the form of difference in contrast in gratings on the left and the right

side of the mice. From this large amount of data, we selected brain recordings from the

root region in the 5th session. We only focussed on those trials where the grating contrast

was higher on the right hand side compared to the left hand side. This led to recordings of
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FIG. A1. The probability p(n) that n neurons simultaneously fire in the Steinmetz et al. (15) data

(black) and SiGMoiD predictions with K = 2, 32, and 96.

FIG. A2. Panel (a) mean OTU occupancy 〈σ〉 as estimated from the data (x-axis) and as predicted

by the model (y-axis). (b) Pair correlations σiσj among OTUs as estimated from the data (x-axis)

and as predicted from the model (y-axis).

N = 628 neurons in 90 trials across 250 time points. The data used here can be found on

GitHub.

We analyzed this data using K = 2, 32, and 96 types of energies. While these reproduced

the average firing rates and pair-correlations to the same degrees of accuracy, only the

K = 96 model was able to reproduce the probability p(n) that n neurons fired at the same

time (Fig. A1). We used K = 96 for further analysis.

D. SiGMoiD reproduces mean occupancy and pairwise correlations for micro-

biome data
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