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Abstract 

The wealth of high-quality genomes for numerous species has motivated many investigations 

into the genetic underpinnings of phenotypes. Comparative genomics methods approach this task by 

identifying convergent shifts at the genetic level that are associated with traits evolving convergently 

across independent lineages. However, these methods have complex statistical behaviors that are 

influenced by non-trivial and oftentimes unknown confounding factors. Consequently, using standard 

statistical analyses in interpreting the outputs of these methods leads to potentially inaccurate 

conclusions. Here, we introduce phylogenetic permulations, a novel statistical strategy that combines 

phylogenetic simulations and permutations to calculate accurate, unbiased p-values from phylogenetic 

methods. Permulations construct the null expectation for p-values from a given phylogenetic method 

by empirically generating null phenotypes.  Subsequently, empirical p-values that capture the true 

statistical confidence given the correlation structure in the data are directly calculated based on the 

empirical null expectation. We examine the performance of permulation methods by analyzing both 

binary and continuous phenotypes, including marine, subterranean, and long-lived large-bodied 

mammal phenotypes. Our results reveal that permulations improve the statistical power of phylogenetic 

analyses and correctly calibrate statements of confidence in rejecting complex null distributions while 

maintaining or improving the enrichment of known functions related to the phenotype. We also find 

that permulations refine pathway enrichment analyses by correcting for non-independence in gene 

ranks. Our results demonstrate that permulations are a powerful tool for improving statistical confidence 

in the conclusions of phylogenetic analysis when the parametric null is unknown. 
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Introduction 

Despite the availability of complete genomes for many species, identifying the genetic elements 

responsible for a phenotype of interest is difficult because there are millions of genetic differences 

between nearly every species.  One strategy to link genotypes and phenotypes is to take advantage of 

convergent evolutionary events in which multiple unrelated species have evolved similar 

characteristics.  Such events represent natural biological replicates of evolution during which species 

may have experienced similar genetic changes driving similar phenotypic changes.  When lineages 

independently evolve or lose a shared phenotype, parallel shifts in selective constraints acting on a set 

of genetic elements indicate that those elements may be involved in the phenotypic shift.   

Taking this strategy, several methods have been developed to address the task of linking genetic 

elements to phenotypes.  We have previously developed a method called RERconverge (Kowalczyk et 

al. 2019; Partha et al. 2019) to link genetic elements to convergently evolving phenotypes based on 

evolution across a sequence of interest.  Our method has been successfully used to identify the genetic 

basis of adaptation to a marine habitat (Chikina et al. 2016), regression of ocular structures in a 

subterranean habitat (Partha et al. 2017), and evolution of extreme lifespan and body size phenotypes 

(Kowalczyk et al. 2020) in mammals.  Other groups have developed similar methods that identify the 

genetic elements underlying a phenotype by identifying similarities in genomes from species that have 

independently evolved said phenotype.  HyPhy RELAX uses sophisticated branch-site models in a 

likelihood ratio framework to identify genes under relaxation of evolutionary constraint or directed 

evolution (Wertheim et al. 2015).  PhyloAcc calculates substitution rates along a phylogeny in a 

Bayesian framework to identify convergent rate acceleration in association with phenotypic 

convergence (Hu et al. 2019).  Forward Genomics performs calculations of percent sequence change 

along a phylogeny to detect similar changes among phenotypically similar species (Hiller et al. 2012).  

These methods can be broadly categorized as approaches for correlating evolutionary rates (ERs) with 

species phenotypes and are powerful tools to associate genetic elements with phenotypes. However, our 

recent work indicates that thorough statistical handling is required when performing analyses on these 

genomic datasets to avoid both overstating and understating confidence in their results. 

Problems 

Problem 1: A non-uniform null distribution for p-values from association statistics linking 

sequence evolution to phenotype evolution 

The common approach adopted by all the methods listed above is to use a statistical test to 

calculate the association between convergent rate acceleration and convergent phenotypic evolution, 

followed by multiple hypothesis testing corrections to control for Type I error.  If an enrichment of 

small p-values is observed, then it is presumed that some genes (or other genetic elements) are truly 

associated with the phenotype.  This conclusion rests on the assumption that no such relationship existed 

(i.e., the null hypothesis holds for all genes) and a uniform distribution would be observed.  However, 
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our analyses using RERconverge show atypical statistical behavior in which the expected uniform 

distribution is not observed when null phenotypes are analyzed for gene-phenotype associations (Figure 

1A).  This observation implies that there is considerable data structure (non-independence) among 

branch-level evolutionary rates that results in correlated test statistics and biased adjusted p-values 

(Allison et al. 2002; Nettleton et al. 2006; Hu et al. 2010).  This problem invalidates statements of 

significant gene-phenotype correlations that are based on standard multiple hypothesis testing 

corrections.  In other words, a gene may show an apparently significant adjusted p-value in the absence 

of any true association with the phenotype studied. 

Problem 2: Non-independence among genes gives rise to false positives in pathway enrichment 

analyses. 

Standard pathway enrichment analyses, such as those implemented in GOrilla and 

GO::TermFinder, interrogate whether whole groups of functionally related genes are over-represented 

among a statistically determined subset of ranked list (Boyle et al. 2004; Eden et al. 2007; Eden et al. 

2009). These methods can be easily applied to the output of evolutionary rate analysis in the hope that 

they will yield insight into which pathways and functional annotations are enriched among convergently 

evolving genes. However, in the case of measuring evolutionary rates, it is clear that genes are not 

independent because functionally related genes experience correlated evolutionary rate shifts both due 

to interacting protein products and changes in constraint on their shared function (Juan et al. 2008; Clark 

et al. 2012; Clark et al. 2013).  Therefore, many functionally related genes “travel in packs” in 

association with a phenotype (Figure 1B).  In other words, if one gene in a group appears to be 

associated with a phenotype, the other genes in the group will as well because of their connection to the 

first gene.  The result is that a function could appear as associated with the phenotype due to actual 

involvement, but also potentially by random chance, causing an erroneous inference of enrichment. 

Because the genes travel in packs, simple enrichment tests assign undue confidence to an essentially 

spurious enrichment. 

To tackle these problems, we have developed a novel strategy that combines permutations and 

phylogenetic simulations to generate null phenotypes, termed “permulations”. The strategy addresses 

the issue of a complex null empirically by generating simulation-based permutations that account for 

the phylogenetic information in the observed phenotype, both for the binary and continuous contexts.  

It also more accurately mimics the null expectation for a given phenotype by exactly matching the 

distribution of observed phenotype values, for continuous phenotypes, and exactly matching number 

and structure of foreground branches, for binary phenotypes.  We use these permulated phenotypes to 

calculate empirical p-values for gene-phenotype associations and pathway enrichment related to a 

phenotype. In doing so, we have created a statistical pipeline that accurately reports confidence in 

relationships between genetic elements and phenotypes at the level of both individual elements and 

pathways. 
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Figure 1. Permulations reveal statistical anomalies in gene- and pathway-level analyses. (A) p-value histograms 

comparing observed/parametric p-values to the empirical null p-value distribution from permulations for a binary 

phenotype (marine) and a continuous phenotype (long-lived large-bodied). In both cases, the empirical null 

(shown in blue) is non-uniform. As a result, for the binary phenotype genes have artificially inflated significance 

and for the continuous phenotype genes have artificially deflated significance. (B) Pathway enrichment statistics 

demonstrate artificially inflated significance because genes in many pathways are non-independent. Permulations 

correct for non-independence by quantifying the frequency at which significant pathway enrichment occurs due 

to chance. 

 

New Approaches 

Permulation: A Hybrid Approach of Using Permutation and Phylogenetic Simulation to Generate 

Null Statistics 

The goal of permulations is to empirically calibrate p-values from phylogenetic methods by 

producing permutations of the phenotype tree that account for the structure in the data, resulting in what 
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we term “permulation p-values”. The permulation method requires a master species tree and a species 

phenotype (either continuous or binary). The method then returns a set of phenotypes that are random 

but preserve the phylogenetic dependence of the input phenotype. 

We typically generate 1,000 such permulated phenotypes which are then used in the 

RERconverge framework to compute gene-trait associations, resulting in 1,000 empirical null statistics 

for each gene. Similarly, we can also run enrichment analyses using the permulated phenotypes to 

produce 1,000 empirical null statistics for each pathway. Finally, for each gene or pathway, we calculate 

the permulation p-value as the proportion of empirical null statistics that are as extreme or more extreme 

than the observed parametric statistic for that gene or pathway. Since empirical null statistics capture 

the true null distributions for genes and pathways, the permulation p-values represent the confidence 

we have to reject the null hypotheses of no association, correlation, or enrichment given the underlying 

structure of our data. Our permulation methods for binary and continuous phenotypes have been 

included in the publicly available RERconverge package for R (Kowalczyk et al. 2019) (published on 

github at https://github.com/nclark-lab/RERconverge), with a supplementary walkthrough (see 

Supplementary Walkthrough) also available as a vignette included in the RERconverge package. 

Phylogenetic Permulation for Continuous Phenotypes 

For continuous traits, the permulation is a two-step process. Given the master tree, representing 

the average evolutionary rates across all genetic elements, and phenotype values for each species, we 

simulate a random phenotype using Brownian motion model.  The simulated values are then assigned 

the real phenotype values based on ranks. The species with the highest simulated value is assigned the 

highest observed value, the species with the second-highest simulated value is assigned the second-

highest observed value, and so on. By doing so, observed phenotypes are shuffled among species with 

respect to the underlying phylogenetic relationships among the species, so more closely related species 

are more likely to have more similar phenotype values than more distantly related species. (Figure 2). 

In the RERconverge package, the function simpermvec generates a permulated phenotype given the 

original phenotype vector and the underlying phylogeny with appropriate branch lengths.  The master 

tree from the RERconverge readTrees function is appropriate to use for simulations.  In most cases, the 

user will not have to use the simpermvec function directly – instead, the getPermsContinuous function 

that calculates null empirical p-values for genes correlations and pathway enrichments will call 

simpermvec internally. 

Phylogenetic Permulation for Binary Phenotypes 

For binary traits, the critical feature is the number of foreground species and their exact 

phylogenetic relationship, and hence the inferred number of phenotype-positive internal nodes or 

equivalently phenotypic transition. The two-step process proposed above does not guarantee to 

perfectly preserve this structure.  Instead we employ a rejection sampling strategy where the simulation 

is used to propose phenotypes which are accepted only if they match the stricter requirements. Using  
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Figure 2. Permulated phenotypes were generated by simulating phenotypes and then assigning observed 

phenotype values based on the rank of simulated values. Simulations were performed using Brownian motion 

phylogenetic simulations and a phylogeny containing all mammals with branch lengths representing the average 

evolutionary rate along that branch genome-wide. For binary phenotypes, foreground branches for permulated 

phenotypes are assigned based on the highest-ranked simulated values while preserving the phylogenetic 

relationships between foregrounds. For continuous phenotypes, observed numeric values were assigned directly 

to species based on ranks of simulated values. 

 

 

the simulation as the proposed distribution ensures that phylogenetically dependent phenotypes are 

generated and thus speeds up the construction of null phenotypes over what can be achieved from 

random selection. Specifically, the simulation outcome is used to choose the same number of binary 

foreground species and preserve the phylogenetic relationships among chosen foregrounds, as observed 

in the actual foregrounds (Figure 2, Binary Phenotype). 

We present two binary permulation strategies that account for requirements of different 

software packages for the topology of the input phenotype tree. The strategies also encompass the trade-

off between computational feasibility and statistical exactitude—in some cases, it may not be possible 

to perform one method, in which case the other method is a viable alternative. The complete case (CC) 

method is the first and simpler strategy.  The CC method performs permulations using the master tree 

in which all species are present and therefore generates permulated trees that contain the complete set 

of species.  Since the CC method produces one set of permulated phenotypes for all the genes, the exact 

number of foreground and background species per genetic element may not be preserved because of 

species presence/absence in those alignments (Figure 3).  Thus, the CC method is an imperfect but fast 

method to generate null phenotypes, but we recommend use of the SSM method whenever feasible. 
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Figure 3. When permulating binary phenotypes, missing species are handled using either the complete case (CC) 

method or the species subset match (SSM) method. For the CC method, top-ranked simulated values are assigned 

as foreground regardless of gene-specific species absence. For the SSM method, top-ranked simulated values are 

assigned as foreground after considering gene-specific species absence so the number of foreground and 

background species for each gene is consistent across every permulated phenotype. Note that in the case of genes 

with all species present (e.g., Gene 1), CC and SSM methods are identical. 

 

In contrast, the species subset match (SSM) method accounts for the presence/absence of 

species in different gene trees.  For each permulation, the SSM method generates separate null 

phenotypes for each tree in the set of genetic elements.  Since genetic element-specific trees contain 

exactly the species that have that genetic element, the null phenotypes exactly match the observed 

phenotypes for that genetic element in terms of number of foreground and background species (Figure 

3).  Additionally, unlike the CC method, null phenotypes for a single permulation iteration are distinct, 

and potentially unique, from each other because they are generated on a genetic element-by-genetic 

element basis.  Although the SSM method is statistically more ideal than the CC method, it is much 

more computationally intense and may not be feasible for very large datasets. In RERconverge, CC and 

SSM permulations can be performed using the getPermsBinary function, setting the “permmode” 

argument as “cc” and “ssm”, respectively. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338608doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338608
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Results 

Permulation of Binary Phenotypes Improved Power and Type I Error Control 

To evaluate the performance of the permulation methods compared to the parametric method 

for binary phenotypes, we use RERconverge to find genetic elements that demonstrate convergent 

acceleration of evolutionary rates in response to the marine environment. For all the ensuing analyses, 

we use the set of protein-coding gene trees across 63 mammalian species previously computed in 

(Partha et al. 2019). These trees have the “Meredith+” tree topology (Kowalczyk et al. 2020) (Figure 

4), a modification of the tree topologies published in (Meredith et al. 2011) and (Bininda-Emonds et al. 

2007), resolved for their differences across various studies as originally reported in (Meyer et al. 2018). 

We set marine mammals evolving from three independent lineages as foregrounds (blue branches in 

Figure 4): pinnipeds (Weddell seal, walrus), cetaceans (bottlenose dolphin, killer whale, the cetacean 

ancestor), and sirenians (West Indian manatee) (Chikina et al. 2016).  We consider three p-value 

calculation methods: parametric, complete case (CC) permulations, and species subset match (SSM) 

 

 

Figure 4. Meredith+ tree topology and the binary and continuous phenotypes evaluated. Binary phenotypes 

include the marine mammal phenotype and the subterranean mammal phenotype (foreground branches are 

indicated in blue and red, respectively). The continuous phenotype evaluated is the long-lived large-bodied 

phenotype as constructed based on the first principal component between species body size and maximum 

longevity (Kowalczyk et al. 2020). 
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permulations. Resulting p-values are corrected for multiple hypothesis testing using Storey’s correction 

(Storey and Tibshirani 2003; Storey et al. 2020). 

We see in Figure 1A that the parametric p-values for the association of genes with the observed 

marine phenotype (red histogram) are enriched with small p-values.  According to the standard 

parametric approach, which assumes a simple null hypothesis with uniformly distributed p-values, the 

enrichment of low p-values indicates the possible presence of genes with evolutionary rate shifts that 

are significantly correlated with marine adaptation.  However, when we construct the empirical null p-

value distribution by permulating the marine phenotype, we see that the null distribution is not 

uniform.  In fact, the enrichment of low p-values is also present in the null distribution (blue histogram), 

albeit a lesser enrichment than the observed, meaning that observing low p-values by chance is more 

likely than expected.  Thus, if we use standard multiple testing procedures directly on the parametric p-

values, we will identify more positive genes than the true number of positives, in other words causing 

an undercorrection of p-values.  

In order to demonstrate that our permulation method effectively corrects for the background p-

value distribution, we plot histograms of parametric and permulation p-values obtained from the 

parametric and permulation methods, respectively (Figure 5A). Compared to the parametric method, 

the histograms for the CC and SSM permulations have steeper slopes at low p-values, indicating that 

the permulation methods have better Type I error control. Furthermore, the histograms for the 

permulation methods plateau at higher π0 than the parametric method, consistent with the postulation 

that the parametric method would reject more (possibly false) positives. These findings are also 

observed when we identify genes with significant evolutionary acceleration in marine mammals by 

setting a rejection threshold of Storey’s FDR ≤ 0.4 (the high threshold is set considering the high 

minimum FDR from the parametric method), as is shown in Figure 5B. For the permulation methods, 

as the number of permulations increases, the number of identified marine-accelerated genes increases 

and eventually stabilizes after ~400 permulations.  The asymptotic numbers of marine-accelerated 

genes identified by permulations (~350 genes for CC permulation and ~450 genes for SSM 

permulation) are much smaller than the ~700 genes identified through parametric statistics, 

demonstrating improved Type I error control. 

Surprisingly, while the permulation methods reject fewer regions, we have greater confidence 

in these rejections. Figure 5C shows the minimum corrected p-values achieved by the permulation 

methods with increasing number of permulations.  The figure shows that the permulation methods 

provide better control of FDRs compared to the parametric method with only a few permulations (above 

~125 permulations). With increasing permulations, the minimum FDRs continues to drop to reach levels 

below 0.1 at 1000 permulations, while the minimum FDR from parametric statistics is higher at above 

0.3 for Storey’s correction. Use of the permulation null significantly improves the statistical power of 

the method and provides much higher confidence in detecting true correlations between evolutionary 

rate shifts and the convergent phenotype of interest. 
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Figure 5. Permulation of binary phenotypes corrects for inflation of statistical significance in finding 

evolutionarily accelerated genes in marine mammals. (A) Histogram of parametric and permulation p-values from 

the parametric, complete case (CC) permulation, and species subset match (SSM) permulation methods. (B) 

Permulation methods identify fewer accelerated genes in marine mammals compared to the parametric method, 

correcting for the inflation of significance. The rejection region of the multiple hypothesis testing is set to be 

Storey’s FDR ≤ 0.4, considering the weak power of the parametric method. (C) Binary permulation methods have 

greater statistical power compared to the parametric method, as shown by the minimum false discovery rate (FDR) 

calculated using Storey’s method. (D) Permulation methods can identify accelerated genes that are missing in 

many species (gene tree size ≤ 30), whereas the parametric method fails to do so. 

 

 

Lastly, we find that permulation methods can identify marine-accelerated genes that are missing 

in many species, i.e., genes with phylogenetic trees containing few species.  In contrast, the parametric 

method fails to reject any such gene (Figure 5D). 

Binary Permulation Methods Improved Gene-level Detection of Functional Enrichment 

We have demonstrated that the permulation methods show favorable statistical properties based 

on the distribution of p-values.  We expect that this approach also improves the biological signal of rate 

convergence analysis. In order to address this question, we ask if the marine-accelerated genes identified 

by binary permulations are enriched with functions that are consistent with the marine phenotype. Our 

group previously identified marine-specific pseudogenes that should be undergoing accelerated 
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evolution in marine mammals due to relaxation of evolutionary constraint (Meyer et al. 2018). Putative 

pseudogenes associated with marine mammals were identified using Bayes Traits software (Pagel and 

Meade 2006) to find signals of coevolution between marine status and pseudogenization.  In addition, 

our group also previously found that many marine-accelerated genes that evolve under relaxed 

constraint are enriched with genes responsible for the loss of olfactory and gustatory functions (Chikina 

et al. 2016).  Thus, to represent the “ground truth”, we select a collection of gene sets relevant to 

olfactory and gustatory functions from the Mouse Genome Informatics (MGI) database and top-ranking 

marine-specific pseudogenes with Bayes Traits FDR values less than 0.25. 

 We then perform the one-tailed Fisher’s exact test to measure the enrichment of the functions 

in the marine-accelerated genes from the parametric and permulation methods.  The Fisher’s exact test 

odds ratios indeed show that the CC and SSM permulation methods generally magnify or maintain the 

effect sizes of enrichment across the gene sets compared to the parametric method (Figure 6A).  At 

worst, the permulation methods match the performance of the parametric method (e.g., “taste/olfaction 

phenotype” gene set). The improved performance of the permulation methods is also demonstrated in 

the example precision-recall curves for the marine-associated pseudogenes in Figure 6B. 

To see if this observation generalized to other phenotypes, we repeat the whole analysis to find 

genes that are accelerated due to subterranean adaptation, defining three independent mole species 

(naked mole rats, star-nosed moles, and cape golden moles), for which high quality genomes are 

available in our dataset, as foreground species (red branches in Figure 4).  As subterranean-accelerated 

genes have been found to be enriched in ocular functions (Prudent et al. 2016; Partha et al. 2017; Partha 

et al. 2019), we pick gene sets relevant to vision-related functions as the “ground truth”.  In general, the 

signals we obtained from RERconverge for this phenotype are much weaker than in the marine 

phenotype case, but the enrichment is still captured in the rankings of the genes.  Similar to the marine 

phenotype, permulation methods generally improve or match the performance of the parametric method 

(Figure 6C and D). 

Binary Permulation Method Corrects for False Positives in a Related Approach 

We apply CC permulations to Forward Genomics, an alternate method that tests for an 

accelerated evolutionary rate in a set of foreground species. The SSM method is not tested because 

Forward Genomics does not allow for unique foreground specification across individual genes, but 

instead uses one set of foreground species across all genes.  We generate 500 CC-permulated trees, but 

because Forward Genomics only works for tree topologies where there are at least 2 foreground species, 

the true number of permulations tested was 417, as some of the permulated trees did not contain 2 or 

more trait loss species.  

Forward Genomics’ “global method” uses substitution rate with respect to each tree’s root to 

correlate with trait loss and identify convergent relaxed selection; therefore, it does not correct for 

evolutionary relatedness.  The “local branch method”, an improvement on the original approach, uses  
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Figure 6. Binary permulation methods have matching or improved power compared to the parametric method in 

detecting enrichments of functions consistent with known phenotypes. (A) Fisher’s exact test odds ratios showing 

that marine-accelerated genes identified by the permulation methods have greater enrichment of gustatory and 

olfactory genes, compared to the parametric method. (B) Precision-recall curves for the enrichment of the marine 

pseudogenes in the identified marine-accelerated genes. (C) Fisher’s exact test odds ratios showing that 

subterranean-accelerated genes identified by the permulation methods have greater or comparable enrichment of 

ocular genes, compared to the parametric method. (D) Precision-recall curves for the enrichment of the visual 

perception genes in the identified subterranean-accelerated genes. 

 

 

substitution rate with respect to the most recent ancestor to identify relaxed selection, which 

substantially improves its power (Prudent et al. 2016).  We used both methods to demonstrate that 

applying a permulation correction to each method’s p-values improves performance even for a statistic 

with known flaws. 

Both the global and local methods had unusual p-value distributions. The local method 

identified high proportion of positives with significant p-values (Figure 7A), while p-values from the 

global method were highly concentrated around 0.5 (global p-values not shown). Adjusting for multiple 

testing further exaggerated this issue.  For the global method, due to the number of genes with very low 

p-values, the lowest possible Benjamini-Hochberg (BH) corrected parametric p-value is 0.531, and for 

the local method, the lowest possible corrected p-value is 0.4647. For the local method, out of 18,797 
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genes, more than half of the genes (12,438) have the lowest possible corrected parametric p-value.  As 

such, it is impossible to designate a significance cut-off, because it will either include no genes or 

include most of the genes. Applying the permulation strategy to Forward Genomics, output we  find 

that of the same set, 889 have a corrected permulation p-value that is less than or equal to 0.465 (the 

minimum observed), allowing for a more reasonable selection of a rejection threshold. 

In addition to analyzing results at the individual gene level, we also used the marine 

pseudogenes as a “ground truth” set of genes that should be undergoing accelerated evolution in marine 

species, to test our ability to detect these genes. As shown in Figure 7B, the global and local parametric 

test statistics show slight enrichment for elements that are pseudogenized in marine mammals, and the  

 

 

 

Figure 7. Binary permulation methods improve Forward Genomics’ positive-predictive value and power. (A) 

Distribution of the empirical null p-value and the parametric p-value for Forward Genomics’ local method.  Note 

that the empirical null distribution (in blue) is highly non-uniform and observed parametric p-values are strongly 

right skewed, both of which increase false positive rate. (B) Distributions of Forward Genomics statistics and 

corresponding permulation p-values for local and global methods.  Both global and local statistics show slight 

shifts (to the left for global statistics and to the right for local statistics) indicating enrichment of marine mammal 

pseudogenes under accelerated evolution (global AUC=0.6235; local AUC=0.6196).  Permulation p-values show 

a more dramatic shift toward significant values for marine pseudogenes under accelerated evolution for the global 

method (AUC=0.6653) and about the same shift for the local method (AUC=0.6086) compared to parametric 

statistics. (C) Precision-recall curves for the enrichment of pseudogenes in marine-accelerated genes using 

parametric statistics and permulation p-values for both local and global methods.  Permulated values represent a 

unique ranking in which ties in permulation p-values for genes are broken based on parametric statistics. 
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difference is improved when permulation p-values are computed. Figure 7C shows the same data as a 

precision-recall plot, clearly demonstrating that the permulation correction improves the predictive 

power of both methods. 

Permulations Improve Power to Detect Genes Correlated with a Continuous Phenotype 

   To evaluate the permulation strategy for continuous phenotypes, the long-lived and large-

bodied phenotype is used as defined in previous work (Kowalczyk et al. 2020).  The numerical 

phenotype is constructed by calculating the first principal component between body size and maximum 

lifespan across 61 mammal species (Figure 4, Continuous Phenotype).  The first principal component 

therefore represents the agreement between body size and lifespan – species like whales with long 

lifespans and large sizes have large phenotype values and species like rodents with short lifespans and 

small sizes have small phenotype values. 

One thousand permulations are performed to generate 1,000 null statistics and p-values for each 

gene, as well as to calculate permulation p-values as the proportion of null statistics that were as extreme 

or more extreme than the observed statistic per gene.  As shown in Figure 1A, the empirical null p-

value distribution for genes associated with the long-lived large-bodied phenotype is non-uniform, and 

in fact slopes down at low p-values. This indicates that observing small p-values due to chance alone 

happens less often in our dataset than we would typically expect compared to the standard uniform 

expectation.  In practice, the result of the non-uniform null is overcorrection of parametric p-values 

using a standard multiple hypothesis testing correction.  In other words, for this dataset, corrected 

parametric p-values are larger than they should be when using multiple hypothesis testing correction 

(such as a Benjamini-Hochberg correction) that assumes a uniform null.  The null distribution of 

permulation p-values, however, does follow a standard uniform null, so Benjamini-Hochberg corrected 

permulation p-values represent our true, higher confidence in a correlation between gene evolutionary 

rate and phenotypic evolution. We observe this increased confidence in our data – after multiple 

hypothesis testing correction, only 24 parametric p-values remain significant at an alpha threshold of 

0.15 while 305 permulation p-values remain significant.  Regardless of the increase in power, 

permulation p-values provide a more accurate representation of confidence in rejecting the null 

hypothesis, and thus are a more valid metric than parametric p-values. 

Permulations Correct Pathway Enrichments for Genes with Correlated Evolutionary Rates 

After generating null p-values and statistics from permulations for either binary or continuous 

traits, those values can be used to calculate null pathway enrichment statistics.  Permulation p-values 

for pathways are then calculated as the proportion of null pathway enrichment statistics as extreme or 

more extreme than the observed statistic.  This procedure corrects for gene sets with correlated 

evolutionary rates, that is genes whose rates will “travel in packs” regardless of any relation to the 

phenotype (Figure 1B).  Such groups of genes will tend to show enrichment more often than would be 
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observed if the genes rates were independent after conditioning on phenotype, resulting in false signals 

of pathway enrichment.  

Figure 1B demonstrates how correlated evolutionary rates can cause problems in pathway 

enrichment analyses.  Each vertical bar represents all genes in the genome and horizontal black lines 

represent genes in a pathway of interest.  Genes are ranked based on gene-phenotype associations, so 

clusters of genes either at the top or bottom of the lists indicates enrichment.  Different vertical bars 

represent either the observed phenotype or different permulated phenotypes.  In the case of 

independently evolving genes, the typical null expectation holds—permulated phenotypes show a 

random distribution of ranks with non-significant enrichment statistics.  On the other hand, in the case 

of genes that do not evolve independently, the typical null expectation does not hold.  Even when using 

a fabricated phenotype (a permulation phenotype), genes appear to cluster at the extremes of the ranked 

list.  The clustering, and resulting enrichment, is caused by the genes “traveling in packs” – if one gene 

in a pack is associated with a phenotype, all the genes in that pack will appear to be associated with the 

phenotype because they are not truly independent observations. 

This phenomenon is well described in the context of gene expression and is typically handled 

by performing label permutations (Subramanian et al. 2005; Majewski et al. 2010; Ritchie et al. 2015) 

and in certain cases parametric adjustments (Wu and Smyth 2012). However, simple label permutations 

are not applicable to associations involving a phylogeny as they would not preserve the underlying 

phylogenetic relationships, thereby producing false positives. Our permulation strategy avoids this 

pitfall by sampling permutations from the correct covariance structure that captures the underlying 

phylogenetic dependence.  

Permulations account for the non-independence problem by explicitly incorporating it into the 

null distribution used to calculate permulation p-values.  In the demonstrated case of the Coenzyme Q 

Complex, only one permulation out of the ten depicted shows enrichment due to random chance 

(indicated by an asterisk * below the vertical bar in Figure 1B), which would correspond to a 

permulation p-value of 0.1 in this toy example.  This interpretation is identical to the standard p-value 

interpretation—the proportion of times we expect to see a statistic as extreme or more extreme than 

observed assuming that the null expectation is true.  In the case of permulations, we simply explicitly 

calculate the null expectation rather than using a predefined distribution (t-distribution, F-distribution, 

etc.).  In the case of enrichment for a pathway with non-independent genes, the significance of the 

permulation p-value will agree with the significance of the parametric p-value because the null 

expectation from permulations agrees with the typical null expectation. 

In the case of a pathway with genes with non-independent evolutionary rates, the permulation 

p-value will be larger than the parametric p-value because the permulation p-value will penalize for 

non-independence.  An example with “Structural Maintenance of Chromosomes” genes shows that, 

although there is an apparent enrichment based on the observed phenotype, half (5 out of 10) of 

permulated phenotypes show at least as strong enrichment for a permulation p-value of 0.5.  Therefore, 
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although the pathway does appear to be enriched from parametric statistics, its enrichment is actually 

not exceptional given the null expectation for that set of genes. 

Permulation p-values are calculated for every pathway individually.  Table 1 shows top 

enriched pathways under accelerated evolution and decelerated evolution in association with the long-

lived large-bodied phenotype. While most significantly enriched pathways under decelerated evolution 

based on parametric p-values also demonstrate significant permulation p-values, many pathways under 

significant acceleration show non-significant permulation p-values.  Thus, this phenotype shows little 

evidence for accelerated pathway evolution associated with phenotypic evolution. 

Comparison of Phylogenetic Simulations, Permutations, and Permulations 

   At the pathway level, permulations result in p-values that are about equally as conservative 

as phylogenetic simulations alone and more conservative than permutations alone (Figure 8).  Both 

permulations and simulations are preferred to permutations because null phenotypes generated from 

permulations or simulations reflect the underlying phylogenetic relationships among species, while null 

phenotypes from permutations do not.  Therefore, the empirical null generated from permulations or 

simulations more closely represents the true null expectation for phenotype evolution.  Although 

permulations and simulations show similar performance, we prefer permulations because permulated 

phenotypes exactly match the distribution of observed phenotypes, and thus create null phenotypes 

uniquely tailored to a particular continuous phenotype of interest.  Such matching eliminates statistical 

anomalies that can arise due to discrepancies in range and distribution of permulated phenotypes 

compared to observed phenotypes. 

 

 

Table 1. Top-enriched pathways with quickly evolving genes and slowly evolving genes in association with the 

long-lived large-bodied phenotype according to parametric p-values. Note that due to the number of pathways, 

the lowest possible Benjamini-Hochberg corrected permulation p-value is 0.0913. Boxes in green show 

significance at alpha = 0.25. Note that many accelerated pathways that appear to be enriched based on parametric 

p-values are not enriched based on permulation p-values. 
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Figure 8. Permulations p-values are more conservative than permutation p-values and about equally as 

conservative as simulation p-values.  All plots demonstrate enrichment for canonical pathways associated with 

the long-lived large-bodied phenotype. (A) Density plots representing the empirical p-value distributions for the 

three methods to generate null p-values. Permulation and simulation curves are very similar, while the permutation 

curve demonstrates a stronger enrichment of low p-values and therefore less conservative p-values. (B) Q-Q plots 

comparing empirical p-values from permulations to empirical p-values from simulations and permutations also 

demonstrate that permulation p-values are more conservative than permutation p-values and about equally as 

conservative as simulation p-values. 

 

Discussion 

In the present work, we have developed novel empirical methods for addressing atypical 

statistical behavior in phylogenetic analysis, which we term permulations.  The methods use 

phylogenetic relationships among species alongside known values of an observed phenotype to inform 

Brownian motion simulations, based on which permuted phenotypes are then generated.  By doing so, 

the methods empirically construct the null distribution, which is possibly composite, and account for 
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this complexity in multiple hypothesis testing.  For permulation of binary phenotypes, the phylogenetic 

characteristics preserved are the number of foreground branches and the underlying relationships among 

foreground branches.  For continuous phenotypes, the exact distribution of phenotype values is 

preserved in addition to the underlying phylogenetic relationships among species. 

From testing the strategy on binary and continuous phenotypes, we find that our permulation 

strategy is an effective approach for overcoming challenges in multiple testing with composite nulls in 

comparative phylogenetic studies.  We discuss with examples how our binary and continuous 

permulation methods fix issues of both undercorrection and overcorrection of p-values for specified 

phenotypes, and subsequently improve the quality and confidence of prediction.  Note that although our 

examples demonstrate the usefulness of permulations, they are not necessarily representative of how 

empirical null distributions will deviate from the typical null for all phenotypes over all phylogenies for 

all sets of genetic elements.  In fact, we expect permulations to behave differently as those variables 

change, and thus the best way to determine how permulations will affect a particular data set is to run 

the permulation analyses. 

Devising a systematic solution for such problems is difficult because the causes of complex 

null distributions in phylogenetic studies are mostly unclear.  Non-uniform null distributions could arise 

from a faulty statistical test, or when there are groups of the p-value that are correlated (Allison et al. 

2002; Hu et al. 2010).  In our case, one possible source of gene evolutionary rate correlations is when 

non-independent clusters of interacting proteins coevolve, where a substitution in one protein alters the 

selective pressure on other proteins it interacts with, causing them to evolve in packs (Fraser et al. 2004).  

Systematic solutions such as using mixture models have been developed to handle non-independence 

issues in genomics and phylogenetics studies (Allison et al. 2002; Stone et al. 2011).  In such models, 

the null distribution is explicitly constructed by assuming that the distribution results from a mixture of 

multiple components with distinct distributions.  However, these models require assumptions that each 

component follows a specific distribution, which may not be accurate.  For example, (Allison et al. 

2002) assumes that the null distribution is a mixture of multiple beta distributed components.  With the 

lack of understanding of other factors that can play a role in causing the complex null distributions we 

see in our data (e.g., number of foregrounds versus backgrounds, missing species, highly conserved 

genes biasing the calculation of master branch lengths, etc.), empirically correcting p-values using 

permulation methods allows us to circumvent the need to artificially deconstruct this unknown 

correlation structure in the data. 

For binary phenotypes, our permulation methods choose permuted foreground sets by matching 

the number of foregrounds and their underlying relationships to those observed in the actual phenotype.  

This approach of defining null phenotypes can be justified by phylogenetic non-independence, a notion 

that arises from the implications of shared ancestry (Felsenstein 1985).  At the time of divergence, 

closely related species diverging from a common ancestor are likely to experience similar selective 

pressures as the ancestor, as well as similar genetic predispositions to respond to the selection pressures.  
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With progressing evolutionary time, the daughter species will evolve independently in response to their 

respective environments.  Such similarities in environmental pressures and genetic predispositions 

diminish with increasing evolutionary distance between species, meaning that the variance in phenotype 

values will increase with increasing divergence in evolutionary time.  Considering this phylogenetic 

non-independence and that adaptations to selection pressures are often assumed to be reflected in 

evolutionary rates, it is reasonable to preserve the pattern of divergence between foreground species to 

construct hypothetical null phenotypes, in finding correlations between evolutionary rates and 

phenotypes.  It is impossible to pick a new set of foreground branches with perfectly matching 

divergence times, but matching divergence patterns can serve as a justifiable workaround because the 

general implications of shared ancestry on phylogenetic non-independence among the new set of 

foregrounds would apply in a similar way. 

We developed two versions of permulation methods for binary phenotypes.  The complete case 

(CC) algorithm produces one permuted phenotype from the master tree to apply for all genes 

simultaneously, while the species subset match (SSM) algorithm produces distinct permuted trees for 

each gene, accounting for the differences in species membership in different gene trees.  This makes 

the CC method statistically imperfect.  For example, a gene that is missing in some species will have a 

phylogenetic tree that is missing some branches.  As a consequence of producing permuted trees from 

the master tree that contains all species, the CC method may not conserve the number and relationships 

of foregrounds across the permulations of the example gene (e.g., genes 3 and 4 in Figure 3).  In 

contrast, the SSM method accounts for differences in numbers and patterns of foregrounds among 

different genes and addresses each gene independently.  This means that the SSM method is the ideal 

implementation of our concept of binary permulations.  However, the CC and SSM methods were 

developed to account for the fact that existing comparative genomics methods take in phenotype inputs 

in different forms.  For example, Forward Genomics requires one phenotype tree to apply for all genes, 

while HyPhy RELAX requires multiple phenotype trees with matching topology to each gene.  

Regardless of the statistical flaw, our results demonstrate that applying the CC method on Forward 

Genomics is beneficial for improving prediction (Figure 7).  In addition, the CC method is significantly 

faster than the SSM method because it only produces one permuted tree for each permulation, instead 

of a heterogeneous set of permuted trees applying to different genes.  Therefore, in the case of limited 

computational resources or very large datasets in which using the SSM method is infeasible, the CC 

method can serve as a good alternative. 

Our results also demonstrate that binary permulations improve the sensitivity of RERconverge 

to identify significantly accelerated genes that are missing in many species (Figure 5D), i.e. genes with 

small trees.  By construct, genes with small trees suffer from lower statistical power compared to genes 

with large trees (for example, the number of ways to permute a small tree is much fewer compared to a 

large tree).  As such, pooling all the p-values together to perform multiple testing correction unfairly 

penalizes genes with small trees.  Calculating permulation p-values from multiple empirical 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338608doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338608
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

permutations is a way to correct for this imbalance in power by indirectly incorporating important 

covariates, which accounts for the number of foregrounds, backgrounds, the ratio and phylogenetic 

relationship between them.  Indeed, the pooled null permulation p-values have a uniform distribution, 

establishing the validity of applying standard multiple testing methods to identify significant divergence 

in evolutionary rates. Future work can evaluate if such benefits are similarly observed when applied to 

other comparative genomics methods. 

Permulations grant increased power to detect genes associated with a continuous phenotype as 

suggested by the shape of the empirical null distribution (Figure 1).  Since permulation p-values are 

more conservative than p-values from permutations alone and equally as conservative as p-values from 

simulations alone, they offer a valid alternative to phylogenetic simulations that exactly preserve the 

distribution of phenotypes.  Importantly, in doing so permulations preserve the exact range of phenotype 

values, a critical characteristic related to the power of the correlation calculated between gene evolution 

and phenotype evolution.  Thus, permulations more accurately match the power between observed and 

permulated statistics compared to observed and simulated statistics. 

Although many of our tests of the permulation strategy were performed using RERconverge, 

permulations are applicable to any similar methods.  When using permulations to calculate empirical p-

values using Forward Genomics, an alternative evolutionary rates-based method, we show that we can 

quantify a realistic confidence level at which we believe a gene is under accelerated evolution in a 

subset of species.  Even when using the Forward Genomics global method, a deprecated method that 

does not account for phylogenetic relationships among species, permulations improved the ability to 

detect accelerated evolution in marine pseudogenes (Figure 7B).  The improvement is likely due to 

permulations indirectly capturing phylogenetic information through their construction.  For the Forward 

Genomics local method, permulations captured realistic confidence levels without losing the ability to 

detect accelerated evolution in marine pseudogenes (Figures 7B and C).  Theoretical p-values directly 

from the Forward Genomics method (Figure 7A) show over half of the genome under significantly 

accelerated evolution related to the marine phenotype (12,438 out of 18,797 genes with the lowest 

possible Benjamini Hocberg corrected p-value), which is biologically highly unlikely (Eyre-Walker and 

Keightley 1999; Eyre-Walker et al. 2002; Eyre-Walker et al. 2006; Kryukov et al. 2007).  Permulations 

reduce the number of genes under significantly accelerated evolutionary rates to a more modest number 

(889 genes if using the same confidence level cut-off) to more accurately reflect both the biology of the 

system and our confidence in identifying genes with significant evolutionary rate shifts. 

Finally, permulations demonstrate a crucial correction to pathway enrichment statistics that 

corrects for coevolution among genes in a pathway of interest.  Since pathways often contain 

functionally related genes that evolve at similar rates, performing pathway enrichment treating each 

gene as an independent observation is statistically incorrect and will result in erroneous conclusions.  

Performing permulations at the pathway level identifies pathways that are falsely shown to be enriched 

and correctly quantifies the confidence at which we may state that a pathway is enriched.  We argue 
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that a strategy like permulations is essential in virtually all cases of pathway enrichment calculations to 

account for gene non-independence driven by correlated evolutionary trends. 

Overall, permulations are an important statistical consideration that should be undertaken to 

accurately report results from evolutionary rates-based analyses as presented here.  Regardless of 

whether permulation p-values allow for greater or fewer null hypothesis rejections at a given threshold, 

they are an accurate depiction of statistical power given a data structure.  In the absence of a known 

parametric null that accurately represents a data set, a permulation-style approach is an important tool 

to calculate statistical confidence. 

Materials and Methods 

RERconverge 

RERconverge finds associations between genetic elements and phenotypes by detecting 

convergent evolutionary rate shifts in species with convergent phenotypes.  The method operates on 

any type of genetic element and has been used successfully for both protein-coding and noncoding 

regions.  Prior to running RERconverge, phylogenetic trees for each genetic element are generated using 

the Phylogenetic Analysis by Maximum Likelihood (PAML) program (Yang 2007) or related method, 

with branch lengths that represent the number of substitutions that occurred between a species and its 

ancestor.  Raw evolutionary rates are converted to relative evolutionary rates (RERs) using 

RERconverge functions readTrees and getAllResiduals, which normalize branches for average 

evolutionary rate along that branch genome-wide and correct for the mean-variance relationship among 

branch lengths (Partha et al. 2019).  RERs and phenotype information are then supplied to 

correlateWithBinaryPhenotype or correlateWithContinuousPhenotype functions to calculate element-

phenotype associations.  Kendall’s Tau associations are calculated for binary phenotypes, and Pearson 

correlation values are calculated for continuous phenotypes, both by default. 

After calculating association statistics, signed log p-values for associations are used to calculate 

pathway enrichment using the rank-based Wilcoxon Rank-Sum test.  The fastWilcoxGMTAll function 

in RERconverge calculates pathway enrichment statistics over a list of pathway annotations using all 

genes in a particular annotation set as the background. 

Alternate Methods 

In addition to performing permulations using RERconverge, we attempted to test our method 

using PhyloAcc, HyPhy RELAX, and Forward Genomics.  Unfortunately, it was not feasible to perform 

permulation analyses for PhyloAcc and HyPhy RELAX because they were prohibitively 

computationally expensive.  They would require tens of millions of computational hours to generate 

500 permulations, the minimum number to accurately represent the null distribution.  Therefore, we 

applied permulations only to the Forward Genomics method to demonstrate the broader applicability of 

permulations. 
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Similar to RERconverge, Forward Genomics tests for an accelerated evolutionary rate in 

foreground branches.  The method correlates a normalized substitution rate with the phenotypes using 

Pearson correlation. Forward Genomics works only for binary phenotypes and has demonstrated 

success in coding and non-coding elements (Hiller et al. 2012).  We used the most recent version of 

Forward Genomics’ global method, which identifies elements in which all phenotype loss species that 

have a normalized substitution rate that is higher than in all phenotype-preserving species, and the most 

recent version of Forward Genomics’ local method, which uses percent identity values per branch to 

calculate gene-phenotype associations with respect to the underlying phylogeny. 

Phylogenetic Simulations 

As shown in Figure 2, each permulated phenotype is generated by first performing a 

phylogenetic simulation using an established phylogenetic topology. To generate the master tree, whose 

branch lengths represent the average evolutionary rates of all genetic elements in the dataset for each 

species, the function readTrees in RERconverge can be used. Next, the master tree and the trait values 

(binary or continuous) are used to compute the expected variance of the phenotype per unit time, and 

subsequently perform a Brownian motion simulation to simulate branch lengths; the R package 

GEIGER (Harmon et al. 2008) is used to perform both operations. Simulated values are then used in 

different ways for binary and continuous phenotypes to generate permulated phenotypes. 

Details on Binary Permulation 

In RERconverge, CC and SSM permulations are performed using the getPermsBinary function, 

by setting the argument “permmode” to “cc” or “ssm”, respectively. The function requires the user to 

supply information on the original foreground species and their relationships by specifying 1) the names 

of the extant (tip) foreground species and 2) an R list object containing pair(s) of sister species whose 

common ancestor(s) is to be included in the foreground set as well (see examples in Supplementary 

Walkthrough).  Using these inputs, the function infers the original phenotype tree and assigns the 

phenotype values to the correct branches (1 for foreground, 0 for background), which is subsequently 

used as constraints for the permulation.  Phylogenetic simulations are then run using the master tree to 

assign simulated branch lengths to the tree branches.  

For the CC permulation, the n tip branches with the highest trait values from the simulation, 

where n is the number of observed tip foregrounds, are selected as the new foregrounds.  The function 

then calls the foreground2Tree function in RERconverge with “clade” set to “all” to construct a binary 

tree with a foreground set that includes all branches (tip and internal) in the foreground clades.  This 

simulation is repeated until the number of foregrounds and the phylogenetic relationships among the 

foregrounds are the same in the observed phenotype and the simulated phenotype. 

The SSM permulation matches the tree topology of the permulated phenotypes to the tree of 

individual genes. To do this, the SSM permulation follows the same steps as described above, with an 

additional step of trimming off branches that are missing in the gene tree. In this case, the m longest tip 
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branches (where m is the number of observed tip foregrounds in the gene tree) are chosen as new tip 

foregrounds to run foreground2Tree.  Thus, in the SSM method, genes with different tree topologies 

will have different sets of permulations.  However, for each unique topology, the number and 

phylogenetic relationships of the foregrounds are preserved. Figure 4 shows examples of CC- and 

SSM-permulated trees for 4 genes with distinct topologies.  

Permulation p-values 

After calculating empirical null statistics and p-values, permulation p-values per gene are 

calculated by finding the proportion of null statistics from permulated phenotypes that are as extreme 

or more extreme than the statistic calculated using the real phenotype.  This proportion represents the 

proportion of times that we observe a concordance between gene and phenotype evolution as strong as 

we observed due to random chance given the underlying structure of the data.  In RERconverge, the 

permpvalcor function calculates the permulation p-values for a given set of permulation association 

statistics. 

Note that since permulation p-values are a proportion of total permulations, the precision of 

permulation p-values is based on the total number of permulations performed.  For example, with 1,000 

permulations, the lowest reportable p-value is 0.001 and permulation p-values calculated as 0 must be 

reported as <0.001 because we only have precision to report p-values to the thousandths place.  

Permulation p-values for Pathway Enrichment 

Empirical null statistics and p-values for pathways are calculated using the empirical null 

statistics and p-values for individual genes.  For each set of empirical null statistics generated from a 

particular permulated phenotype, genes are assigned the log of the empirical null p-value times the sign 

of the empirical null statistic for that permulation.  Empirical null pathway statistics are calculated for 

each permulation using those values with the RERconverge function fastWilcoxGMTall that performs 

a Wilcoxon Rank-Sum test comparing values from genes in a pathway to values in background genes.  

The function getEnrichPerms calculates null enrichment statistics given a set of null correlation 

statistics, or, alternatively, getPermsBinary and getPermsContinuous calculate both null correlation and 

null pathway enrichment statistics simultaneously by default for the binary and continuous phenotypes, 

respectively.  Permulation p-values for pathway enrichment are then calculated as the proportion of 

empirical null statistics that are as extreme or more extreme than the observed enrichment statistic using 

the permpvalenrich function. Pathways that show significant parametric p-values and non-significant 

permulation p-values are likely cases of genes “moving in packs” and are not truly significantly 

enriched. 

Data Availability Statement 

The data underlying this article are available in the RERconverge repository on github 

(https://github.com/nclark-lab/RERconverge). The data for the long-lived large-bodied phenotype are 
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publicly available on Anage (https://genomics.senescence.info/species/index.html), and has been 

previously published in (Kowalczyk et al. 2020). 
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