
 1 

Climbing up and down binding landscapes: a 
high-throughput study of mutational effects 

in homologous protein-protein complexes 
  
 

Michael Heyne1,2, Jason Shirian1, Itay Cohen2, Yoav Peleg3, Evette S. 
Radisky4, Niv Papo2*, and Julia M. Shifman1* 

 
 

 
 

1Department of Biological Chemistry, The Alexander Silberman Institute of Life 
Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 

 
2Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and 
the National Institute of Biotechnology in the Negev, Ben-Gurion University of the 

Negev, Beer-Sheva, Israel 
 

3Life Sciences Core Facilities (LSCF) Structural Proteomics Unit (SPU), 
Weizmann Institute of Science, Rehovot, Israel 

 
4Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 

Jacksonville, Florida, USA 
 
 

* To whom correspondence should be addressed. E-mail: jshifman@mail.huji.ac.il; 
papo@bgu.ac.il 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338756


 2 

Abstract  

Each protein-protein interaction (PPI) has evolved to possess binding affinity that is compatible 

with its cellular function. As such, cognate enzyme/inhibitor interactions frequently exhibit very 

high binding affinities, while structurally similar non-cognate PPIs possess substantially weaker 

binding affinities. To understand how slight differences in sequence and structure could lead to 

drastic changes in PPI binding free energy (ΔΔGbind), we study three homologous PPIs that span 

nine orders of magnitude in binding affinity and involve a serine protease interacting with an 

inhibitor BPTI. Using state-of-the-art methodology that combines protein randomization and 

affinity sorting coupled to next-generation sequencing and data normalization, we report 

quantitative binding landscapes consisting of ΔΔGbind values for the three PPIs, gleaned from tens 

of thousands of single and double mutations in the BPTI binding interface. We demonstrate that 

the three homologous PPIs possess drastically different binding landscapes and lie at different 

points in respect to the landscape maximum. Furthermore, the three PPIs demonstrate distinct 

patterns of coupling energies between two simultaneous mutations that depend not only on 

positions involved but also on the nature of the mutation. Interestingly, we find that in all three 

PPIs positive epistasis is frequently observed at hot-spot positions where mutations lead to loss of 

high affinity, while conversely negative epistasis is observed at cold-spot positions, where 

mutations lead to affinity enhancement. The new insights on PPI evolution revealed in this study 

will be invaluable in understanding evolution of other biological complexes and can greatly 

facilitate design of novel high-affinity protein inhibitors.  
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Significance  
 

Protein-protein interactions (PPIs) have evolved to display binding affinities that can support their 

function. As such, cognate and non-cognate PPIs could be highly similar structurally but exhibit 

huge differences in binding affinities. To understand this phenomenon, we studied the effect of 

tens of thousands of single and double mutations on binding affinity of three homologous protease-

inhibitor complexes. We show that binding landscapes of the three complexes are strikingly 

different and depend on the PPI evolutionary optimality. We observe different patterns of 

couplings between mutations for the three PPIs with negative and positive epistasis appearing most 

frequently at hot-spot and cold-spot positions, respectively. The evolutionary trends observed here 

are likely to be universal to all biological complexes in the cell.  
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Introduction Protein function is determined by the protein amino acid sequence, which has 

undergone millions of years of evolution while subjected to various selection pressures. Native 

proteins have evolved not only to perform their main function but also to satisfy a number of 

criteria such as solubility (1), low propensity for aggregation, stability, resistance to stress 

conditions (2), etc. As a result, proteins usually function below their maximum capacity (3). 
Multiple experiments on enzymes and binding domains proved that protein fitness could be 

enhanced by several orders of magnitude by applying an appropriate pressure and selecting the 

fittest protein sequences (4-7).  
Fitness landscapes explore the effects of all possible mutations on the ability of proteins to 

perform their main function. Such landscapes reveal how far a particular protein is from its 

functional maximum, what fraction of mutations leads up and down the “fitness hill”, how large 

the mutational steps are and which residues are the most critical to protein function (8 ). Mapping 

of fitness landscapes is thus an attractive strategy for approaching various protein engineering 

projects with the goal to improve or modify protein function since the best mutations could be 

easily identified from the fitness landscape (9, 10). Development of new strategies for protein 

randomization and advances in Next Generation Sequencing (NGS) enabled several exciting 

studies that report fitness landscapes for a number of biological systems (1, 11-22). In these 

studies, the effects of mutations on enzyme catalysis, fluorescence, thermostability, and other 

functions have been reported, giving invaluable insights on how different biological functions have 

evolved.  

One out of many important protein functions is binding between two or more protein 

partners. Binding is crucial in many cellular activities such as signal transduction, protein 

regulation, transcription/ translation and others. Mutations in protein-protein interactions (PPIs) 

frequently result in a change in free energy of binding (DDGbind), sometimes weakening and 

sometimes stabilizing the interaction (23). A mutation resulting in substantial DDGbind in one PPI 

could translate into remodeling of the whole PPI network, frequently leading to dysregulation of 
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signal transduction pathways and disease (24, 25). Therefore, understanding how mutations in 

PPIs affect their binding affinity is of great importance to both basic biology and to biomedical 

sciences, where inhibition or activation of a particular PPI might help to treat the related disease.  

At the present moment, comprehensive binding landscapes have been mapped for only a 

handful of proteins(9, 26-30), while for most PPIs only a few DDGbind data points have been 

measured, most frequently corresponding to mutations to alanines (31-35). Comparison of the 

available sparse DDGbind data from different studies let us hypothesize that different classes of PPIs 

possess principally different binding landscapes and lie at different points relative to the binding 

landscape maximum, i. e. the amino acid sequence with the highest possible affinity. While in 

some PPIs, the majority of single mutations lead to large destabilization of the protein-protein 

complex (28, 36-38), in other PPIs frequent affinity-enhancing mutations are observed (27, 39). 

The magnitude of DDGbind due to mutation is likely to depend on the nature of the PPI under study 

as well as on the location of the mutation within the protein. It has been demonstrated that a few 

critical positions termed hot-spots of binding contribute the most significantly to the PPI binding 

energy with mutations at those positions usually leading to large drop in affinity (40-42). Cold-

spot positions, on the other hand, present multiple possibilities for PPI affinity improvement (43). 
To investigate the relationship between PPI structure/function and the corresponding 

binding free energy, we set to compare comprehensive binding landscapes of three homologous 

PPIs that span nine orders in magnitude in binding affinity (KD). These complexes include Bovine 

Pancreatic Trypsin Inhibitor (BPTI) interacting with three serine proteases: Bovine trypsin (BT) 

(KD = 10-14 M) (38), Bovine α-Chymotrypsin (ChT) (KD = 10-8 M) (38) and Human Mesotrypsin 

(MT) (KD = 10-5 M) (44). In spite of such large differences in KDs, the binding interfaces of the 

three complexes are highly similar, exhibiting nearly identical physicochemical properties (Figure 

1). 

In attempt to explain drastic differences in binding affinities of the three homologous PPIs, 

we explored DDGbind values between the three proteases and all single and double binding interface 

mutants of BPTI. To measure DDGbind values for tens of  thousands of mutants in these three PPIs, 

we employed a recently developed by our group strategy that relies on yeast surface display (YSD) 

technology,  NGS analysis and subsequent normalization of NGS data using a small dataset of 

DDGbind values measured of purified proteins (45). Applying such a protocol to the BPTI/BT 
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interaction, yielded a very high (R > 0.9) correlation between NGS-based and actual experimental 

values of DDGbind and allowed us to predict the effect of all single mutations in the BPTI/BT 

interaction on the PPI binding affinity (45). In the present study, we extended the above approach 

to quantify DDGbind values for single and double mutants of BPTI interacting with CT and MT and 

for double mutants of BPTI interacting with BT.  

Our data demonstrate that the three homologous BPTI/protease complexes possess 

drastically different binding landscapes and lie at different points in respect to the binding 

landscape maximum. Additionally, these differences in landscape contour and placement underlie 

correspondingly different energetic consequences of mutation, including asymmetrical 

directionality and different tendencies toward positive or negative epistasis. 

 

 
 

Results   
To map binding landscapes of the three homologous BPTI/protease complexes, we first 

incorporated the wild-type BPTI (BPTIWT) gene into the pCTCON vector, compatible with YSD 

technology. In such a construct, BPTIWT is expressed on the surface of a yeast cell with a C-

terminal myc-tag for monitoring protein expression (Figure 2A). Binding of a protease to BPTIWT 
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was accessed by monitoring fluorescence of the FITC fluorophore conjugated to the protease via 

neutravidin. The assessment of binding of BPTIWT to the three proteases by Fluorescently 

Activated Cell Sorting (FACS) showed a diagonal narrow distribution, demonstrating that BPTIWT 

is well expressed on the surface of yeast cells, is properly folded, and binds to each of the proteases 

(Figure S1).  

We next generated a library of BPTI mutants that contained all single and double BPTI 

mutants at positions that comprise the direct binding interface with proteases in the BPTI/protease 

structures. We randomized twelve BPTI positions to twenty amino acids while leaving two 

cysteines that participate in a disulfide bond intact to preserve BPTI folding (Figure 2B). In 

addition, all possible combinations of double mutations encompassing these twelve positions were 

encoded in the library. The BPTI library, referred to as the naïve library, contained 228 single 

mutants and all possible pairs of such mutations, resulting in the total theoretical diversity of 

26,400 BPTI sequences. The naïve library was transformed into yeast and sequenced by NGS. 

Sequencing results showed that all possible single mutations and 89% of all double mutations were 

covered in the naïve library (60% when a cutoff of 5 sequencing reads was applied).  
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We next expressed the BPTI library on the yeast surface and measured expression and binding of 

the BPTI library to the three proteases using FACS (Figure 2C). Concentration of each protease 

was optimized to exhibit a considerable spread of the FACS binding signals from different BPTI 

mutants (Supplementary Figure S2). For each protease, we performed a sorting experiment and 

collected yeast cells with BPTI mutants belonging to four different affinity groups: higher than 

WT affinity (HI), WT-like affinity (WT), slightly lower than WT affinity (SL), and strongly lower 

than WT affinity (LO) (Figure 2C and Supplementary Figure S3-S5). The cells from each affinity 

gate were grown and sequenced with NGS, resulting in 300-900K reads per each population. For 

each BPTI mutant and each protease, we next calculated the enrichment value, which represents 

the ratio between the mutant’s frequency in a particular affinity gate to its frequency in the naïve 

library. We thereby obtained heatmaps of the enrichment values for all positions as shown on 

Figure 3 for the CT/BPTI interaction.  

While the enrichment maps give us qualitative measures of affinity changes due to various 

mutations, our goal was to construct and compare quantitative binding landscapes of the 

BPTI/protease interactions. We thus utilized the methodology developed in our recent paper that 

allows us to normalize the NGS-based enrichments using a small dataset of experimental DDGbind 

values measured by biophysical techniques on purified proteins (45). We first compiled such 

normalization datasets for the three complexes, collecting 34 and 33 DDGbind data points from 

literature for the ChT/BPTI and BT/BPTI interactions, respectively (38, 45-48). For the MT/BPTI 

interaction, where only a few DDGbind data points have been reported (44, 49), we produced the 
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normalization dataset by expressing and purifying 12 BPTI mutants and measuring their binding 

affinities to MT (Figure S6). The above datasets were used to obtain a normalization formula for 

each protease that converts the four enrichment values from the NGS data into the predicted 

DDGbind values. For all three enzymes, high correlation was found between the DDGbind values 

predicted from NGS and those experimentally determined using purified proteins (R= ~0.9; Figure 

S7).  

We next used the acquired normalization formulas to predict DDGbind values for all single 

and double BPTI mutants that have been detected by NGS for the three PPIs. While nearly all 

BPTI single mutants have been sequenced in all four affinity gates for the three proteases, the 

double mutants were covered less extensively in the NGS results with only 576, 3393, and 636 

double mutants appearing in all four affinity gates for ChT, BT and MT, respectively. To increase 

the coverage of DDGbind predictions for the double mutants and to complete the predictions for 

single mutants, we examined whether normalization formulas could be obtained from subsets of 

three, two, and one affinity gates. While all subsets of gates were examined, only those subsets 

that produced high correlation with experimental data on pure proteins were selected for the final 

predictions. For each DDGbind prediction, we estimated the uncertainty in DDGbind predictions using 

the bootstrapping of the NGS data as described in detail in our previous work (45). Overall, we 

were able to make reliable predictions for 13,113 double mutants for the BT/BPTI interaction 

(50% of all binding interface double mutations), 12,537 for ChT/BPTI interaction (47%), and 4317 

for MT/BPTI interaction (16 %). We thus constructed full single-mutant binding landscapes and 

partial-double mutant binding landscapes for BPTI interacting with the three homologous 

proteases with highly divergent KDs.  

Analysis of the single-mutant binding landscapes. To compare how single mutations affect free 

energy of binding in the 3 PPIs, we summarized our results in a histogram that includes DDGbind 

values from all 228 single mutations for each PPI (Figure 4A-C). While all the three histograms 

show predominance of destabilizing mutations (DDGbind> 0), the magnitude of destabilization due 

to single mutations differs substantially among the three PPIs. For the high-affinity BT/BPTI 

complex, very high ~12 kcal/mol destabilizations were observed due to some single mutations, 

medium destabilizations (up to 6 kcal/mol) were observed in the ChT/BPTI complex and small 

destabilizations (up to ~3 kcal/mol) were observed for the low-affinity MT/BPTI complex (Figure 

4 and Figure S8). On average, a single mutation destabilized BT/BPTI interaction by 4.5 kcal/mol, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338756


 10 

ChT/BPTI interaction by 1.6 kcal/mol and MT/BPTI interaction by 0.82 kcal/mol. On the contrary, 

affinity-enhancing mutations appeared more frequently in the low-affinity MT/BPTI complex (50 

mutations or 22%), less frequently in the medium-affinity ChT/BPTI complex (37 mutations or 

16%), and only once (<1%) in the high-affinity BT/BPTI complex. Per-position analysis of 

DDGbind values revealed that all but one position on BPTI are absolute hot spots in the BT/BPTI 

interaction, exhibiting only positive DDGbind values. In contrast, only four absolute hot-spots are 

present in the ChT/BPTI interaction (positions 12, 16, 36, 37) and only two in the MT/BPTI 

interaction (position 16 and 36). The spatial distribution of cold-spot and hot-spot positions 

showed different patterns among the three complexes (Figure 5). Interestingly, position 15, which 
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is central to the binding interface, is a cold spot in the ChT/BPTI interaction with all hydrophobic 

amino acids leading to improved affinity. The same position contains highly destabilizing 

mutations in both the BT/BPTI and the MT/BPTI complexes, except for one mutation K15R that 

leads to affinity improvement in both complexes. These differences in the position 15 preferences 

are in complete agreement with previous studies on purified proteins for the BT/BPTI and 

ChT/BPTI complexes (47). Additionally, amino acid preferences at position 15 of BPTI 

discovered here reflect the preferences for substrates that these enzymes cleave (Lys and Arg for 

trypsins and hydrophobic amino acids for chymotrypsins), indicating that these enzymes have 

evolved to possess optimal binding pockets for these amino acids.  

Analysis of the double-mutant binding landscapes. We next compared the double-mutant 

binding landscapes for the three PPIs. We first plotted the histograms of DDGbind for the double 

mutations, for which DDGbind predictions were available (Figure 4D-E). Our results show that on 

average a double mutation destabilizes the high-affinity BT/BPTI complex by 5.9 kcal/mol, the 

medium affinity ChT/BPTI complex by 2.9 kcal/mol and the low-affinity MT/BPTI complex by 

0.3 kcal/mol, showing the same tendency of increased destabilization due to double mutation with 

increasing affinity of the PPI as was observed for single mutants. When comparing an average 

effect from a double and a single mutation, BT/BPTI and ChT/BPTI exhibited higher DDGbind 
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value for a double mutation, consistent with a majority of single mutations being destabilizing in 

these two PPIs. For the low-affinity MT/BPTI complex, the double mutant average was slightly 

lower compared to that of the single mutant average. This could be due to the fact that a large 

fraction of single mutants for this PPI leads to affinity improvement or due to the relatively small 

coverage of double mutants for this PPI in our study (only 16% of double mutations had DDGbind 

predicted).  

 Using the extensive DDGbind data for double mutations, we further explored how a single 

mutational step from a WT sequence alters the distribution of DDGbind values for the second 

mutation. For this analysis, we selected three representative single BPTI mutants in the highest-

affinity BPTI/BT complex: BPTI_K15R that shows slight improvement in affinity compared to 

BPTIWT (DDGbind= -1.4 kcal/mol), BPTI_A16S whose affinity to BT is considerably weaker in 

comparison to BPTIWT (DDGbind= +4.5 kcal/mol) and BPTI_K15A that shows dramatically 

reduced affinity in comparison to BPTIWT (DDGbind= +11.1 kcal/mol). We next compared the 

DDGbind distributions for single mutations taken on the background of each of the three specified 

first mutations. While only partial single-mutant landscapes could be constructed for these three 

BPTI mutants interacting with BT (as we have the data for ~50% of the double mutants), for the 

detected mutants we observe significant differences in the binding landscapes of the three BPTI 

mutants with BT ion (Figure S9). K15R that improves the fitness of the BT/BPTI interaction 

produces a histogram with mostly destabilizing mutations going as far as +12 kcal/mol, yet some 

affinity-enhancing mutations are also observed. The medium-destabilizing mutation A16S results 

in a landscape that contains both stabilizing and destabilizing steps with magnitudes ranging from 

-6 to +8 kcal/mol. The highly destabilizing mutation K15A exhibits a landscape that mostly 

contains stabilizing mutations with the highest stabilization of -6 kcal/mol. Note that for the K15A 

mutant we do not observe a mutational step that would reach the affinity of the WT BT/BPTI 

complex. This is likely due to the fact that position 15 is the most important energetically for the 

BPTI/protease interaction, thus destroying the favorable interaction at this position could not be 

fully compensated by any other mutation on BPTI. Our results hence indicate that with every 

mutational step taken from the WT BPTI sequence the binding landscape would be changed 

depending on the first mutation; this change is a result of non-additivity of some of single 

mutations in BPTI.   
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   Next, using the extensive quantitative data on DDGbind for single and double mutants, we 

investigated the extent of coupling between various point mutations in BPTI when it interacts with 

the three proteases. We have classified mutations into three classes: additive, exhibiting positive 

and negative epistasis according to the magnitude of the coupling energy DGi upon two mutations 

X and Y:  

                                       ∆𝐺# 		= ∆∆𝐺&#'() + ∆∆𝐺&#'(+ − ∆∆𝐺&#'()+                                                                 (1) 

Here, ∆∆𝐺&#'() and ∆∆𝐺&#'(+ 	represent the change of the binding free energy of the single mutants 

X and Y, respectively, ∆∆𝐺&#'()+  represents the change of binding free energy of the double mutant 

containing mutations X and Y. Two mutations were defined as additive if ∆𝐺# is zero within the 

uncertainty of our DDGbind predictions (see Methods for details). Positive epistasis was defined 

when  ∆𝐺# > 0, i .e the double mutation exhibits higher fitness compared to what is expected from 

additivity of two single mutations. Negative epistasis was defined when  ∆𝐺# < 0, i .e the double 

mutation exhibits lower fitness compared to what is expected from additivity of the two single 

mutations.  

Coupling energy analysis shows that in the BT/BPTI interaction, 59% of the detected 

mutations are additive, 40% of mutations show positive epistasis, and only ~1% of mutations show 

negative epistasis. In the ChT/BPTI interaction, 74% of mutations are additive, 18% of mutations 

show positive epistasis and 8% of mutations show negative epistasis. Finally, among the detected 

mutations in the MT/BPTI interaction we observe 70% of mutations are additive, 26% exhibit 

positive epistasis and 4% - negative epistasis. Note that the smaller fraction of mutations with 

negative vs. positive epistasis observed for all complexes could be in part due to the fact that we 

do not see highly destabilizing double mutations in our experiment and such mutations are likely 

to be among those exhibiting negative epistasis. We further constructed the per-position correlation 

matrices displaying coupling energy between all detected mutations in the three PPIs (Figure 6). 

Figure 6 shows that the sign of the epistasis depends not only on a pair of positions but also on the 

mutation type. Yet, certain preference for either negative or positive epistasis frequently dominates 

coupling at certain position pairs as some squares are predominantly red or blue on Figure 6. To 

analyze which positions exhibit higher degree of coupling, we averaged DGi values over all 

detected mutations at each pair of positions (Figure 7). Figure 7 shows that different proteases 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338756


 14 

exhibit different patterns of coupling between pairs of mutations. Interestingly, positions where 

highest destabilization is observed for single mutations show high degree of positive epistasis with 

all other positions (such as for example positions 15 and 16 in the BPTI/BT complex, position 12 

in the ChT/BPTI complex and positions 35, 36 in the MT/BPTI complex). On the other hand, cold 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338756


 15 

spot positions tend to exhibit negative epistasis with many other positions in the protein (see for 

example, positions 13, 18, 34, 39 in the ChT/BPTI complex and 34 in the MT/BPTI complex). 

The average coupling energies are larger for the highest affinity BT/BPTI complex, medium for 

the CT/BPTI complex and the lowest for the MT/BPTI complex (Figure S10). We further tested 

whether the degree of coupling between the two mutations depends on the distance between the 

mutated positions (Figure S11). Our results show that mutations at two closely-located positions 

could exhibit various degrees of coupling from high to low. As the distance is increased between 

positions, the average coupling between the two mutations at these positions decreases (Figure 

S11). A similar trend has been observed for all three PPIs and is in agreement with previous studies 

in various biological systems (50).  

 

Discussion  
In this study we measured quantitative effects of tens of thousands of single and double mutational 

steps in three homologous enzyme-inhibitor complexes. While the complexes are similar in their 

sequences and structures, they differ greatly in binding affinities that range from ultra-high to low. 

We find that the binding landscape of each PPI depends strongly on the interaction KD. In 

particular, the ultra-high affinity BT/BPTI complex is highly evolutionary optimized. 

Accordingly, the sequence of WT BPTI lies nearly at the maximum of the binding landscape, with 

only one mutation leading to significant affinity improvement. The landscape also exhibits a steep 

gradient, with a majority of single mutations leading to large steps down the hill with a maximum 

drop of ~12 kcal/mol and an average drop of 4.5 kcal/mol (45) (Figure 8). Such high 

destabilizations from single mutations are extremely rare. For example, the SKEMPI database (51) 
that reports 5079 single mutant binding affinity changes in various PPIs contains only 16 single 

mutations (0.3%) with  DDGbind values greater than 8 kcal/mol, and all of them belong to high-

affinity complexes (with a KD of 10-12 M or better). The medium-affinity ChT/BPTI complex 

shows lower degree of evolutionary optimality, with a larger fraction of mutations leading to 

affinity improvement (16%) and a maximum improvement of 2.6 kcal/mol. Yet even in this 

complex, single mutational steps could lead to high complex destabilization of up to 6 kcal/mol. 

Thus, the landscape of the ChT/BPTI complex exhibits a medium gradient and the WT sequence 

lies about 2/3 up the landscape hill (Figure 8). One might expect that the low-affinity MT/BPTI 

complex would exhibit DDGbind distribution that is the opposite of that observed for the BPTI/BT 
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complex, with high number of mutations that lead to very large improvement in binding affinity. 

Yet, this is not what we observe in the present study. The MT/BPTI complex indeed exhibits the 

highest fraction of mutations leading to affinity improvement among the three complexes (22%) 

but the largest improvement due to a single mutation does not exceed 1.9 kcal/mol, smaller than 

what is observed for the ChT/BPTI complex. Yet, the reduction in binding affinity due to single 

mutations is also the smallest for the MT/BPTI complex not exceeding 3 kcal/mol. Thus, we 

conclude that the difference between the MT/BPTI and BT/BPTI complexes is not only the 

location of their sequences relative to the maximum of the binding landscape, but the landscapes 

themselves show different gradients, high for the high-affinity complex and low for the low-

affinity complex (Figure 8).  

 
The binding landscape characteristics of the three studied PPIs have been dictated by their 

evolutionary history. BPTI is a cognate inhibitor of BT, thus both proteins have coevolved in one 

organism to optimize their affinity for each other. ChT and MT bind to BPTI only due to homology 

to BT. ChT has other cognate inhibitors with which it interacts with much higher affinity, such as 

turkey ovomucoid third domain (OMTKY3) (KD of 1.9×10-11) (52). MT, by contrast, appears to 

have evolved for widespread natural resistance to the tight-binding mechanism of the 

proteinaceous canonical trypsin inhibitors such as BPTI (53),(54). Furthermore, by binding to 

these inhibitors orders of magnitude more weakly than other trypsins, mesotrypsin has evolved the 

capability to cleave many proteinaceous trypsin inhibitors as substrates (55-59). This functional 

role of the MT/BPTI interaction agrees with our finding that no single or double mutation on the 

BPTI side could convert this complex into a high-affinity PPI.  
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Analysis of cold spots   In this study we identified a number of cold spot positions in 

ChT/BPTI and MT/BPTI complexes at which multiple mutations lead to affinity improvement. In 

our previous study we identified two scenarios of how cold spots occur either through removal of 

unfavorable interaction with the partner protein or through introduction of a new favorable 

interaction, where no interaction exists (43). Cold spots discovered here could be easily fit into 

these two scenarios. We observe the first scenario occurring in the MT/BPTI complex at position 

17, where an Arg on BPTI is found in close proximity to an Arg 193 on MT. Substituting Arg 17 

with a small and/or hydrophobic amino acid results in affinity improvement. On the contrary, Arg 

17 of BPTI is found in a largely hydrophobic environment in the BPTI/ChT complex; its 

replacement with a hydrophobic Met and Leu results in slightly negative DDGbind values.   

We observe the second scenario for cold spot formation at position 34 in the ChT/BPTI 

and MT/BPTI complexes. V34 at this position does not form any interactions with these proteases.  

Its replacement with larger hydrophobic amino acids that bury additional surface area increases 

affinity to ChT. Its replacement with polar or negatively charged residues improves affinity to MT 

by likely forming new hydrogen bonds to Tyr 151 and/or Gln 192 on MT.  

Epistasis in protease/BPTI complexes 

Using the data for tens of thousands of double mutants we were able to analyze how two mutations 

are coupled in the three protease/BPTI complexes. Our data shows that in the high-affinity 

BT/BPTI complex a large proportion of double mutations results in positive epistasis and only a 

minority of mutations produces negative epistasis. More equal distribution of mutations with 

positive and negative epistasis is observed for the ChT/BPTI complex. Note, that we only observe 

~50% of all double mutations for these two PPIs; the remaining 50% that are invisible in our 

experiment are likely to be highly destabilizing, which would put them in the category of either 

additive or showing negative epistasis. The abundance of positive epistasis in the BT/BPTI 

interaction could be explained from the perspective of binding landscape theory (Figure 8). Due 

to the steepness of the gradient in the area of the wild-type BPTI sequence, the first mutation in 

this PPI leads to a large step down the hill into the area of low-gradient. Second mutation from this 

point could lead up or down, but the change would be relatively small, resulting in positive 

epistasis, i.e., better DDGbind compared to what would be predicted from additivity of the two 

highly destabilizing mutations. Positive epistasis particularly predominates at positions where the 
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largest affinity drops are recorded (such as at positions 15 and 16 for the BT/BPTI complex or 

position 12 for the ChT/BPTI complex), where the gradient is steep.  

Positive epistasis could be also explained from the structural perspective. Highly optimized 

PPIs usually retain their original binding conformation upon introduction of a single mutation due 

to the abundance of favorable interactions generated at non-mutated positions. Yet, if any of the 

hot-spot residues is mutated, substantially weakening the interaction, then the impact of a second 

deleterious mutation may be mitigated by an increase in flexibility at the interface, enabling the 

protein to adopt alternative conformations that introduce new favorable intermolecular contacts 

and enhance affinity. If the same mutation would occur on the background of the wild-type residue 

in the hot-spot position, the new conformation would not be accessible and the affinity 

enhancement would not be achieved. Thus, such a double mutant would possess better DDGbind 

compared to the sum of single mutants, exhibiting positive epistasis.  

On the contrary, negative epistasis is more frequent for medium and low-affinity PPIs and 

appears mostly when one mutation is performed at a cold-spot position. If the first mutation 

improves binding affinity and thus makes a step up the binding landscape towards the maximum, 

the second mutation would be made from the point of steeper gradient and is likely to make a large 

step down, thus resulting in negative epistasis. Structurally that means that if at one cold spot 

position a new favorable interaction was created, this interaction might lock the PPI into a new 

slightly different conformation. Another conformation might be acquired upon introduction of a 

different affinity-enhancing mutation. But the two favorable conformations could not be achieved 

simultaneously, resulting in worse DDGbind for a double mutation compared to the sum of two 

single mutations (negative epistasis).   

 In summary, in this study we report DDGbind values for tens of thousands of single and 

double mutations in three protease/BPTI complexes with similar structures but highly variable 

binding affinities, thus generating an unprecedented amount of mutational data that could be used 

as benchmark for testing new computational methodology and for design of new high-affinity 

protease inhibitors. Using the obtained data, we demonstrate striking differences between the 

binding landscapes of the three PPIs that could be explained by the level of the PPI evolutionary 

optimality. Furthermore, we study how two single mutations in these PPIs couple to each other 

and demonstrate that the coupling energy depends not only on positions of mutations but also on 

the identities of the mutated amino acid. Furthermore, we observe that mutations at hot-spot 
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positions generally exhibit positive epistasis with other mutations while mutations at cold-spot 

positions generally exhibit negative epistasis and explain this phenomenon from the perspective 

of binding landscape theory. Our powerful experimental methodology could be used to access the 

binding landscapes in many additional PPIs with different structures, functions, and affinities and 

to probe whether the reported evolutionary trends hold in other biological systems.  
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Methods 
BPTI library construction. Twelve positions on BPTI that lie in the binding interface with BT 

(PDB ID 3OTJ) were subject to randomization: T11, G12, P13, K15, A16, R17, I18, V34, Y35, 

G36, G37 and R39. A BPTI library was constructed that randomized two positions at a time with 

an NNS codon (where N = A/C/G/T DNA base, S = C/G DNA base); encoding all amino acids at 

the randomized positions, including the WT amino acid. The library was divided into 66 sub-

libraries that each incorporates all possible pairs of the twelve randomized positions. TPCR 

protocol(60) was used to create each library using two primers that either combined two mutations 

in one primer or divided them into two primers depending on their proximity to each other 

(Supplementary Note 1 in Supplementary information). These primers were used in a PCR 
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together with BPTIWT plasmid to incorporate these mutations at the specific positions in BPTI and 

to amplify the whole plasmid. Agarose gel analysis was used to confirm the success of each TPCR 

reaction. The TPCR- amplified plasmid DNA was treated with DpnI (New England Biolabs, 

Ipswich, MA) to remove any parental plasmid used as a template to construct the library, cleaned 

up with magnetic beads (AMPure XP, Beckman coulter, Brea, CA), transferred into E. coli and 

selected colonies were sequenced to confirm the successful generation and transformation of the 

BPTI library. The vectors containing the BPTI library were extracted using QIAprep Spin 

miniprep (Qiagen, Hilden, Germany) and all the sub-libraries were pooled together and balanced 

by their DNA amount to use the same amount of DNA from each sub-library (~3.6µg). Then, the 

pooled library was transferred into S. cerevisiae using 20 transformations resulting in 60,000 – 

70,000 colonies for the complete library as estimated by plating 1/20 amount of the library sample 

and counting the colonies after transformation on a SDCAA plate. 

NGS analysis. The paired-end reads from the NGS experiments were merged(61) and their 

quality scores were calculated in the FastQC tool 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). In the Matlab script, the sequences 

were aligned, and sequences containing extra mutations at non-randomized positions were filtered 

out. The number of each remaining BPTI mutant i was counted in the sorted and the naïve 

populations and its frequency fi in the libraries was calculated (Eq. 2). Using the frequency of the 

mutant in one of the sorted populations and the naïve population, the enrichment ei of each BPTI 

mutant was calculated (Eq. 3).  

  

𝑓# = 123'45

123'467689
         (2) 

 𝑒# = ln	(
>?5@A7B6CD
>?5@E8ïGC

)       (3) 

To estimate the uncertainty in BPTI mutant frequencies we applied a bootstrapping method to the 

NGS data for all sorted gates and the naïve library as described in(62). Briefly, the original NGS 

data was used to randomly draw sequences to obtain a resampling data set of the same size and to 

calculate the frequency of each BPTI mutant in each population. The resampling process was 

repeated 1000 times and the average frequency and the standard deviation was calculated from 

1000 resampling data sets for each BPTI mutant in each sorting gate and in the naïve library. The 
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error was propagated into equations 2 and 3 to calculate the error in enrichment values as described 

in(45).  

Predicting DDGbind values from NGS data. All available experimental data on ΔΔGbind for the 

BPTI/protease complexes was used to obtain the best normalization formulas for each complex 

for converting enrichment values from the four sorted populations into ΔΔGbind values. To this 

end, we used a linear regression model function in Mathematica (Wolfram Research) with 5 

parameters (Y= aX1+bX2+cX3+dX4+f) if all four enrichment values were available in our NGS data 

for this particular mutation. The parameters a, b, c, d, f were optimized using the experimental data 

set as values of Y and the set of X1, X2, X3, X4 enrichment values. The obtained normalization 

formula (different for each protease) was used to calculate ΔΔGbind values for all the remaining 

single and double BPTI mutants that had four enrichment values recorded in the NGS experiment. 

To make DDGbind prediction for mutants where fewer than 4 enrichment values were available, we 

repeated the normalization procedure using different subsets of enrichment values (such as X1 and 

X4; X1, X2, X3; etc.). Accordingly, we varied the number of parameters in the normalization 

formula. We checked whether high correlation with the experimental data set of DDGbind values 

could be obtained using this particular subset of variables as predictors. If a correlation of R>0.80 

was obtained between the predicted and the experimental DDGbind values, the set of gates was 

selected as good for making predictions. Additional cross check for validity of predictions from 

this subset of gates was performed by comparing DDGbind predictions for all single mutants based 

on all four gates and based on the selected subset of gates and confirming high correlation between 

the two predicted DDGbind values over all single mutations. For each of the mutant, we used the 

available enrichment values to make separate predictions from all possible “good” subset of gates. 

First all predictions were recorded for mutants where enrichment values were available for all 4 

gates. For mutants where predictions were available for only gates X1, X2, and X4, predictions 

were made based on these 3 gates providing that this set of gates was defined as good. For mutants 

where predictions were available in only gates X1 and X4 predictions were made based on these 

two gates if this set of gates was defined as good for predictions.  For each prediction from each 

subset of gates, the uncertainty of the prediction was calculated using the procedure outlined 

above. Finally, for each mutation, DDGbind prediction was selected from all the predictions 

according to the subset of gates where the highest correlation with experimental data was observed. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.14.338756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338756


 22 

The dataset of final DDGbind predictions for all single and double mutants for the three PPIs could 

be found in the Dataset S1 file.  

Production of BPTI variants.  

The BPTIWT sequence was cloned into a pPIC9K vector (Invitrogen, Carlsbad, CA), TPCR was 

used for site-directed mutagenesis to create the sequences of all variants, transformed, expressed 

in P. pastoris (GS115 strain; obtained from Invitrogen, Carlsbad, CA) and purified by nickel 

affinity chromatography, followed by size-exclusion chromatography, as described in a previous 

work85. The correct DNA sequence of each produced protein was confirmed by extracting the 

plasmidic DNA from P. pastoris after protein purification by nickel chromatography, amplifying 

the BPTI gene and sequencing it. Protein purity was validated by SDS-PAGE on a 20% 

polyacrylamide gel, and the mass was determined with a MALDI-TOF REFLEX-IV (Bruker) mass 

spectrometer (IKI, BGU; data not shown). Purification yields for all BPTI variants were 2-15 mg 

per liter of medium. The concentration of purified BPTI variants was determined by an activity 

assay. 

For MT, values of the inhibition constant (Ki) were determined using a general enzyme activity 

essay for PPIs characterized by medium to low affinity62. Here, 304 µL BPTI (4 different 

concentrations ranging from 5.2 to 52.6 µM) was mixed with 8 µL of the substrate Z-GPR-pNA 

(Sigma-Aldrich, St. Louis, MO) (5 different concentrations ranging from 0.4 to 10 mM). The mix 

was incubated for three minutes. Then, the reaction was initialized by adding 8 µL MT (10nM) 

and the absorbance of the samples was measured at a wavelength of 410 nm for 5 minutes. A 

negative control was added replacing BPTI with 304 µL buffer (10 mM Tris, pH8, 1 mM CaCl2). 

The range of concentrations of BPTI was adapted when the determined Ki was not in the range of 

these BPTI concentrations. 

 For MT, the Ki could be determined from Eq. 4, as described previously (63).  

𝑣 = 	 JK86[M]O[P]

JQRST
[U]
V5
WT[P]

        (4) 

 The change in experimental binding energy ΔΔGbind was calculated from Eq. 5 using the 

Ki of the WT and the mutant, the temperature T at which the affinity was measured and the ideal 

gas constant R. 

∆∆𝐺&#'( = 𝑅 ∗ 𝑇 ln J5([34\'4)
J5(]^)

      (5) 
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Analysis of additivity and cooperativity For each double mutation with available DDGbind 

prediction, we calculated the interaction energy between the two single mutations according to eq. 

(1).  

The mutation was defined as exhibiting negative epistasis if DGi was negative within the 

uncertainty of the predictions, that is: 

∆𝐺# = ∆∆𝐺&#'() + ∆∆𝐺&#'(+ + _𝛿∆∆𝐺&#'() a + 𝛿∆∆𝐺&#'(+ a −	∆∆𝐺&#'()+ − 𝛿∆∆𝐺&#'()+ < 0    (6). 

Here, 𝛿∆∆𝐺&#'() , 𝛿∆∆𝐺&#'(+ and 𝛿∆∆𝐺&#'()+  are uncertainties in prediction of ΔΔGbind for mutation 

X, Y, and XY, respectively.  

The mutation was defined as exhibiting positive epistasis if DGi was positive within the uncertainty 

of the predictions, that is: 

∆𝐺# = ∆∆𝐺&#'() + ∆∆𝐺&#'(+ − _𝛿∆∆𝐺&#'() a + 𝛿∆∆𝐺&#'(+ a −	∆∆𝐺&#'()+ + 𝛿∆∆𝐺&#'()+ > 0  (7). 

If the value of DGi fell between the values of positive or negative epistasis the mutation was defined 

as additive.  
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