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Abstract 

Obesity is a disease characterized by chronic low-grade systemic inflammation and has been 

causally linked to the development of 13 cancer types. Several studies have been undertaken to 

determine if tumors evolving in obese environments adapt differential interactions with immune 

cells and if this can be connected to disease outcome. Most of these studies have been limited to 

single cell lines and tumor models and analysis of limited immune cell populations. Given the 

multicellular complexity of the immune system and its dysregulation in obesity, we applied high-

dimensional suspension mass cytometry to investigate how obesity affects tumor immunity. We 

used a 36-marker immune-focused mass cytometry panel to interrogate the immune landscape 

of orthotopic syngeneic mouse models of pancreatic and breast cancer. Unanchored batch 

correction was implemented to enable simultaneous analysis of tumor cohorts to uncover the 

immunotypes of each cancer model and reveal remarkably model-specific immune regulation. In 

the E0771 breast cancer model, we demonstrate an important link to obesity with an increase in 

two T cell suppressive cell types and a decrease in CD8 T-cells. 

 

Keywords: tumor immunology, suspension mass cytometry, batch correction, obesity, breast 

cancer, pancreatic cancer 

 

Introduction 

Obesity is a risk factor for at least 13 types of cancer including breast and pancreatic cancer 

(Genkinger et al, 2011; Picon-Ruiz et al, 2017; Pierobon & Frankenfeld, 2013; Renehan et al, 

2015). In addition to being associated with risk of cancer, obesity correlates with worse prognosis 

and higher mortality rates among breast and pancreatic cancer patients (Calle et al, 2003; Chan 

& Norat, 2015; Chan et al, 2014; Choi et al, 2016; Yuan et al, 2013). The mechanisms by which 

obesity contributes to cancer development and outcome are currently incompletely understood 

(Donohoe et al, 2017). Obesity leads to local and systemic inflammation and immune system 

dysregulation characterized by increased levels of pro-inflammatory cytokines and pro-

inflammatory and immunosuppressive immune cells (Apostolopoulos et al, 2016). Specific 

obesity-induced changes include increased abundance of immunosuppressive myeloid derived 

suppressor cells (MDSC), pro-inflammatory M1 and metabolically activated (MMe) macrophages, 

and associated crown-like structures found in obese adipose tissue (Coats et al, 2017; Hale et al, 
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2015; Kratz et al, 2014; Pawelec et al, 2019; Tiwari et al, 2019; Weisberg et al, 2003; Xu et al, 

2003). Breast and pancreatic tumors are likely impacted by the local and systemic effects of 

obesity since these tumors develop in close proximity to mammary and omental adipose tissue, 

respectively. 

Immunocompetent models of obesity and cancer are necessary to study immune changes in 

cancer in the obese environment. The C57Bl/6 mouse strain has been shown to have an obese 

phenotype when fed a high fat diet (HFD) including increased body mass, elevated blood sugar 

levels, and insulin resistance (Coats et al, 2017; Tiwari et al, 2019). When paired with such diet-

induced obesity (DIO), syngeneic tumor cell lines can be used to study cancer associated immune 

system changes during obesity. Increased tumor incidence and accelerated tumor growth have 

been demonstrated in multiple obese murine models (Chung et al, 2020; Cranford et al, 2019; 

Incio et al, 2016a; Incio et al, 2016b; Khasawneh et al, 2009; Qureshi et al, 2020; Tiwari et al, 

2019; Wang et al, 2019). However, the immune cell compartment of the tumor microenvironment 

and its possible impact on obesity-induced tumors has not been systematically characterized at 

the single-cell level.  

Cancer progression is an evolutionary process where the fitness of cancer cells is dependent on 

reciprocal interactions between tumor -intrinsic and -extrinsic factors, including immune cells. In 

particular, CD8 T cells are central to tumor immunity and tumor-infiltrating CD8 T cells are 

associated with increased patient survival (Liu et al, 2012; Mahmoud et al, 2012; Martínez-Lostao 

et al, 2015). In the tumor microenvironment, MDSC possess strong T cell suppressive capacity 

inhibiting T cell function and proliferation (Bronte et al, 2016; Parker et al, 2015). Tumor 

associated macrophages with the often oversimplified M1/M2 characterization, along with T cells, 

NK cells, DCs, B cells, and eosinophils have complex and often inconsistent functions in cancer 

(Gonzalez et al, 2018; Noy & Pollard, 2014; Varricchi et al, 2017; Wylie et al, 2019).  

Because of this intricate immune cell composition, conventional methods fail to reach the number 

of parameters required to profile the tumor immune microenvironment. High dimensional single 

cell approaches, such as mass cytometry, enable the simultaneous characterization of these 

varied cell types with multi-dimensional resolution. 

Suspension mass cytometry (CyTOF) analysis of dissociated tumors can detect the multiple 

immune cell subsets required for an in-depth tumor immunotyping, but these data sets tend to be 

large and time consuming to collect. It is common to have data sets in multiple batches that are 

prepared, stained, and collected on different days due to the length of time needed to process 
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and stain the samples and subsequently collect the data. Palladium-based metal barcoding of up 

to 20 samples has allowed for simultaneous collection of multiple samples without run/batch 

differences (Zunder et al, 2015). This is a great improvement; however many studies are 

composed of more than 20 samples. Therefore, it is common to end up with data in multiple 

batches that need to be compared. Having a common, or anchor, sample used in every batch can 

assist in the removal of batch effects but is not always available.  

Here we have implemented a robust mass cytometry analysis pipeline to correct for batch effects 

between unanchored batches with multistep clustering to maximize phenotyping and minimize 

bias. We have immunophenotyped tumor immune infiltrate from two syngeneic pancreatic and 

three syngeneic breast cancer models and present that data as an immunotype atlas containing 

21 immune cell metaclusters present across the five tumor models. Additionally, we report 

immunotyping of tumors grown in obese mice for all five models. Our findings demonstrate that 

the tumor immune infiltrate composition is highly model, and cancer type specific. One model, 

E0771 tumors, had significant immune cell differences between lean and obese mice. This breast 

cancer model showed an increase in G-MDSC and PD-L1+ DCs and a decrease in CD8 T cells 

in tumors from obese mice, making it a clinically relevant model (Jin & Hu, 2020; Mahmoud et al, 

2012; Mahmoud et al, 2011).  

 

Results 

Tumor immune infiltrating cells were identified for 7 CyTOF batches from obese and non-obese 

mice 

To mimic an obese environment, both male and female C57Bl/6 wild type mice were fed HFD or 

chow for 10 weeks prior to orthotopic transplantation of cancer cells (Fig 1A). High fat feeding 

resulted in higher body weights compared to the chow fed mice for male and female mice (Fig 

1B). Murine cancer cells were then implanted orthotopically and tumors allowed to form while the 

mice were kept on their respective diets. To compile a model-independent systematic analysis of 

the tumor immune effects of the obese environment we investigated five syngeneic cell line tumor 

models in 2 cancer types (mammary adenocarcinoma: E0771, TeLi, and Wnt1; pancreatic ductal 

adenocarcinoma: C11 and UN-KC; Table 1). Consistently across the 7 batches, tumors grown in 

the obese environment displayed larger tumor mass than those grown in non-obese environments 

(Fig 1C).  
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Tumors grown in obese or non-obese environments were then dissociated and 

immunophenotyped with a 36-marker immune-focused panel (Table 2) and analyzed by Helios 

CyTOF mass cytometry (Fig 1A). Single cell data from the five tumor models was collected in 7 

individually barcoded batches (Fig 1A) allowing for samples in a single batch to be readily 

compared. FCS files were pre-processed and live CD45+ cells were gated separately for each 

batch (Fig 1A, D). 2.6 to 13.2 million total raw events were collected for each experimental cohort 

(see Table 3 for details). Tumor samples were not enriched for immune cells in advance to avoid 

experimental bias and preliminary data indicated that the immune cells comprise roughly 5% of 

the total collected events. With this in mind, the goal was to collect 100,000 to 1 million events 

per barcoded sample. Because of the lower percentage of target cells, the maximum number of 

barcodes used for a single batch was limited to 14. The percent immune cells per batch ended 

up ranging from approximately 1% to 12% (Table 3). In all tumor models, except TeLi, less than 

5% of events collected were gated as live CD45+ single cells (Fig 1E).  

 

Unanchored range-based batch correction enabled successful co-analysis of CyTOF data from 

multiple barcoded batches 

Streamlined analysis between batches is limited by technical issues such as staining intensity 

and machine variation (Kleinsteuber et al, 2016; Leipold, 2015; Leipold et al, 2018; Schuyler et 

al, 2019). To enable streamlined cross-analysis between tumor batches and models we tested 3 

unanchored batch correction algorithms available through Cydar (Lun ATL, 2017). To test the 

robustness of the batch correction, we combined our 7 batches with 2 additional batches of tumor 

immune cells from 4T1 syngeneic tumors grown in BalbC mice with a different cell history and 

staining panel. We first tested batch correction using warp, quantile, and range batch correction 

approaches on the 9 testing batches with 18 shared markers (Fig 1A, EV1, Table 4). The need 

for batch correction can be seen in the variable distribution of CD11b and F4/80 positivity in the 

uncorrected plots (Fig 2A, EV1A). Pre batch correction, the CD11b signal is low for C11_1, Wnt1, 

and TeLi and high for both 4T1 batches. The signal intensity becomes more normalized with warp 

and range batch correction applied. Quantile batch correction, on the other hand, performed 

poorly and caused an increase in noise and a distortion of the density distribution in the samples, 

as indicated by the black arrows (Fig EV1A). This distortion of the data is most clearly observed 

for Ly6-G, where the need for batch correction was minimal as seen by the closely aligned peaks 

in the uncorrected Ly6-G plot. Warp and range correction had similar performance to each other 

and were therefore further evaluated with the 9 testing batches (Fig EV1B-D, 2A).  
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Warp and range corrected datasets resulted in almost identical viSNE maps when run together 

(Fig EV1B) and separately with the same seed (Fig EV1C). The marker signal intensity varied 

somewhat between warp and range corrected files run in the same viSNE but the cell placement 

on the viSNE map was almost identical (Fig EV1B). This alignment of cell placement can also be 

seen in the linear regression of the tSNE1 and tSNE2 channels between warp and range (Fig 

EV1D). While the warp correction algorithm closely aligns the density peaks (Fig EV1A), it also 

added distortion artifacts to the data. The warp correction distorted the CD11c signal in the TeLi 

plot making the signal higher than in the uncorrected data and higher than in the other batches 

(Fig 2A, EV1C black arrow). The range corrected plots showed a more consistent max intensity 

for CD11c. The warp correction also resulted in an unexplained bunching artifact for the E0771_2 

plot wherein the cells in the lower left of the map were stacked in a small area (Fig EV1C pink 

arrow). To make the final determination between warp and range correction, the 4T1 batches 

were removed and the 7 experimental batches were batch corrected by warp and range methods 

for 35 markers and the density plots for key markers were evaluated (Fig 2B). For several 

markers, including F4/80 and CD3, the warp correction created an artificial gap in the data around 

zero as indicated by the black arrows (Fig 2B). Because of this and previously mentioned warping 

artifacts, Cydar’s range correction algorithm was chosen as the batch correction method for the 

7 experimental batches. With successful batch correction, the data from the 5 models could then 

be analyzed in concert and a uniform analysis pipeline was implemented.  

viSNE-based immunotyping revealed diverse myeloid and lymphoid immune infiltrate across the 

tumor models 

Having successfully batch corrected the experimental data, we next moved into the analysis 

pipeline beginning with dimensionality reduction using the Cytobank viSNE implementation of BH-

tSNE (Amir el et al, 2013; Kotecha et al, 2010). 5206 live CD45+ immune cells from each of 57 

experimental files and 10 control files from the 7 batches were run together in a single viSNE 

analysis with a final KL divergence of 4.75. 26 phenotyping markers were used to generate the 

viSNE map (see Table 2 for details). Cell density was plotted onto the viSNE map to visualize the 

overall cell distribution and heterogeneity of the tumor immune infiltrate (Fig 3A, B). The presence 

of the multiple density “islands” indicates a successful viSNE run and a diverse range of immune 

cells present across tumor types and diet groups. When assessing density differences between 

the plots, the largest differences appear to be between tumor models rather than between diet 

groups (Fig 3A).  
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To enable visualization of the all the data in one plot, the files were concatenated (Fig 3B-F). 

Interrogating the viSNE map by marker intensity revealed the top half (denoted by pink line in first 

plot in Figure 3C) to be dominated by areas of distinct myeloid marker expression (CD11b, CD11c, 

F4/80, CD206, Ly6-G, Ly6-C, MHC-II, and CD14) indicating a diverse myeloid cell tumor infiltrate. 

Similarly, the bottom half of the map consists of diverse lymphocyte populations which can be 

identified by the marker heats for CD19, CD3, CD8, CD4, GITR, IL-7Ra, and NK1.1 (Fig 3D). 

Cells can be further characterized by looking at the marker expression for activation and 

exhaustion markers (Fig 3E) and additional phenotyping markers (Fig 3F) on the viSNE map.  

 

Cross model immunophenotyping of tumor immune cell metaclusters 

We next wanted to identify and characterize the different immune cell subsets to compare cell 

type abundances between tumor models. To perform this analysis with minimal bias and without 

manual gating, we performed a series of clustering and curating steps to establish 21 biologically 

meaningful metaclusters. tSNE1 and tSNE2 were used as the input parameters for SPADE-based 

K-means clustering so that the results of the dimensionality reduction would be preserved in the 

clusters. We used a k of 40 for this first step to capture the immune diversity while reducing the 

possibility of under-clustering. The 40 clusters were then manually curated to reduce obvious 

over-clustering by combining clusters within small islands for G-MDSC and NK cells, resulting in 

a total of 37 clusters. To phenotypically characterize the 37 clusters and to hierarchically cluster 

them into metaclusters, we next used 26 markers to generate the MEM enrichment scores and to 

perform hierarchical clustering of the SPADE clusters and markers based on their MEM scores 

(Fig 4A, Table 2) (Diggins, 2016). MEM provides insight into how a cluster is positively (yellow) 

or negatively (blue) enriched for a specific marker compared to the other cells from the other 

clusters (Diggins et al, 2017). The cluster dendrogram (left hand side of Figure 4A) was used to 

create 21 metaclusters (MC) (Fig 4B). The MEM heat map and scores, median heat map (Fig 

EV2A), and viSNE plots (Fig 3B-E) were subsequently used to identify and label the 21 

metaclusters. Automated clustering instead of manual gating within the CD45+ cells means that 

no cells were excluded or double counted and user bias was minimized. The multistep clustering 

pipeline (k-means clustering, followed by manual curation, and then dendrogram metaclustering) 

ensured accurate placement for each cell while minimizing over- and under-clustering. CD11b, 

F4/80, MHC-II, CD11c, Ly6-C, CD3, and GITR had the largest contribution to the MEM 

hierarchical clustering as determined by the marker dendrogram at the top of Figure 4A. These 

are bright markers present on many cells with large expression differences between the clusters. 
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This analysis pipeline allowed us to confidently identify 6 macrophage, 6 T-cell, 4 DC, and 2 

MDSC metaclusters in addition to B cells, NK cells, and eosinophils. All samples were 

represented in all 21 of the metaclusters. An overview of the mean percent metacluster 

abundance for the non-obese group in each model is shown in the bubble graph (Fig 4B) and 

immune cell populations from the chow control groups in the different tumors are displayed as pie 

charts in Figure 4C. The concatenated metacluster data was plotted onto the viSNE map for 

visualization (Fig 4D). 

Of the six macrophage metaclusters, MC8 was M2-like and MC2 was M1-like in phenotype. The 

CD206+ macrophages in MC8 were also enriched for CD14 and CD169 and had decreased 

expression of MHC-II. The M1-like CD11c+ macrophages (MC2) were more abundant in 

pancreatic cancer models and in the Wnt1 breast cancer model. The M2-like macrophages (MC8) 

were more abundant in the E0771 and TeLi models (Fig 4B). The other macrophage subsets are 

discussed below. The E0771 tumors had the largest abundance of Sca-1+ macrophages (MC9) 

with approximately 10% while they were minimally observed in the other models. MC3 

macrophages were especially enriched for F4/80 while MC13 macrophages had no strong 

identifying markers. TeLi tumor infiltrate was dominated by macrophages, specifically from MC3 

F4/80hi macrophages, with 73% of TeLi chow immune infiltrate falling into the 6-macrophage 

metaclusters (Fig 4B, C). The other tumor models had a more diverse immune infiltrate makeup 

(Fig 4B, C). MC14 was a small subset of Ly6-C+ macrophages with the greatest abundance in 

the E0771 and Wnt1 models. The breast cancer tumor immune infiltrate was dominated by 

myeloid cells while pancreatic cancer was dominated by T cells (Fig EV2B, C).  

Of the six T cell metaclusters, two were CD8+, two were CD4+, and two were double negative 

(DN). The CD8+ T cell metaclusters MC6 and MC7 were touching on the viSNE map and quite 

similar in phenotype (Fig 4A, B, D). MC6 contained Ly6-C+ and Sca-1+ CD8 T cells. MC6 and 

MC7 were most abundant in the pancreatic tumor models, with C11 average chow infiltrate at 9% 

and 11% and UNKC chow infiltrate at 12% and 9%, respectively (Fig 4). Both CD8 T cell subsets 

were present across tumor models and expressed similar levels of PD-1 (Fig 3E).  The CD4 T 

cells fell into an activated GITRhi subset (MC1) and an effector subset that was GITRlow (MC15). 

The DN T cell metaclusters were phenotypically distinct on the viSNE map and in the MEM 

heatmap with MC5 consisting of L6-C+ DN T cells and MC20 consisting of IL-7Ra+ DN T cells 

(Fig 4A, B, D). 

Four Dendritic cell (DC) metaclusters were identified in the five tumor models. DCs in the four 

metaclusters were CD11c+, F4/80-, CD206-, and CD14-. MC21 was composed PD-L1+ DCs that 
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were also enriched in MHC-II, CD86, ICAM-1, IL7Ra, and GITR (Fig 4A, EV2A) (ten Broeke et al, 

2013). MC21 was a small metacluster with less than 1% abundance in most cohorts and the 

largest abundance in E0771, which was less than 4% (Fig 4B). Plasmacytoid DCs (pDCs) (MC10) 

were the least abundant of the DC metaclusters across all models, less than 2% for Wnt1 tumors 

and less than 1% for all other models (Fig 4B, C). An ICAM-1+ DC metacluster (MC11) was the 

second largest DC metacluster for the Wnt1 model and the largest metacluster for the other four 

models. Wnt1 had the most DCs of the tumor models with DCs primarily falling into MC16 and 

MC11. MC16 was composed of CD11b+ DCs and was the most abundant metacluster for the 

Wnt1 model with approximately 8% for chow tumors.  

MDSC were subsetted into two metaclusters, G-MDSC (also known as PMN-MDSC) in MC19 

and M-MDSC in MC18. Both cell types are CD11b+; G-MDSC are Ly6-G+ and Ly6-Clow while M-

MDSC are Ly6-C+ and Ly6-G- (Bronte et al, 2016). MDSC are known suppressive cells with G-

MDSCs resembling granulocytes and M-MDSCs resembling monocytes. The G-MDSCs in MC19 

were particularly abundant in the E0771 chow tumors (Fig 4B, C). 

For the non-obese groups, this unbiased analysis highlights a remarkable heterogeneity between 

the syngeneic models. The overall myeloid cell abundance was 50% or greater for the breast 

cancer models and less than 40% for the pancreatic cancer models. In the pancreatic tumor 

models, over 50% of the infiltrate was T cells. (Fig 4C, EV2C). A comparison of breast and 

pancreatic cancer immune infiltrate for the non-obese groups revealed multiple significant 

differences in metacluster abundance (Fig EV2B). However, a limitation is that additional 

variables such as sex, cancer cell line, and tumor location have not been controlled for in this 

analysis.  

 

The obese microenvironment leads to model specific alterations in immune cell populations  

Having defined 21 phenotypically relevant metaclusters, we next asked if an obese environment 

was associated with differential abundance in immune cell types. Metacluster percentages out of 

total tumor infiltrating immune cells were plotted for chow and HFD tumors for each model (Fig 

5A, B).  

Surprisingly, the two Wnt1-driven mammary tumor models (Wnt1 and TeLi) displayed no 

significant differences between chow and HFD in tumor immune infiltrate (Fig 5A). However, in 

the E0771 breast cancer model, we observed significant differences in a small PD-L1+ DC 
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metacluster (MC21) and the large G-MDSC metacluster (MC19), both showing increased 

abundance in HFD (Fig 5A). The E0771 tumors from obese mice contained the highest 

percentage of G-MDSC which was significantly more than the tumors from non-obese mice (Fig 

5A).  Both CD8 T cell metaclusters (MC6 and MC7) were trending towards a decrease in HFD 

(Fig 5A). In the pancreatic cancer models, the obese tumor microenvironment did not lead to any 

major alterations in the tumor immune infiltrate. 

 

Diet-induced obesity led to an increased abundance of G-MDSC and a decrease in CD8 T cells 

in the E0771 triple negative breast cancer model 

To further explore the connection between the obese microenvironment and immune infiltrate in 

the E0771 model, we examined the ratio between CD4 and CD8 T cells. This ratio has been used 

in peripheral blood and tumor tissue as a measure of immune health (Das et al, 2018). In breast 

cancer an elevated CD4/CD8 ratio has been associated with tumor progression and poor survival 

(Wang et al, 2017; Yang et al, 2017). Here we found that the CD4/CD8 ratio was higher in tumors 

that evolved in obese compared to non-obese mice in the E0771 model (Fig 6A). Further, the 

CD8 T cell percentage out of the total T cells was significantly decreased in HFD tumors in the 

E0771 model (Fig 6B). We did not detect differences for the CD4 T cell population in the E0771 

model (Fig EV3A). For E0771, the total T cells out of the CD45+ cells were trending towards a 

decrease in HFD but the results were not significant (Fig EV3B).  

To independently validate the E0771 findings, we next ran a CITRUS analysis on the E0771 

cohort (Bruggner et al, 2014). Consistently, the CITRUS SAM model found significant cell 

abundance differences for the three groups described above, G-MDSC, CD8 T cells, and MHC-

IIhi DCs (Fig 6C, D). A subset of the significant clusters were mapped onto the viSNE map for cell 

type identification and visualization (Fig 6D). The abundance differences were in the same 

direction as identified in the metaclusters in Figure 5A, with G-MDSC and MHC-IIhi DCs increasing 

in HFD and CD8 T cells decreasing in HFD (Fig EV3C). G-MDSC have been reported to inhibit 

CD8 T cell function and proliferation (Youn & Gabrilovich, 2010). We thus hypothesized that the 

increased G-MDSC population was inhibiting CD8 T cell effector function and proliferation 

resulting in larger tumors in the obese E0771 model.  

To functionally test this, we implanted E0771 cancer cells into the mammary gland of C57Bl/6 

mice deficient in T-, B- and NK-cells (Rag2-/-::CD47-/-::Il2rg-/-; TKO) and compared the tumor 

growth to tumors in wild type (WT) C57Bl/6 mice. Interestingly, the tumor growth advantage 
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observed in the obese environment of wild type mice, was abrogated in the immune deficient 

environment in the TKO mice (Fig 6E, F). Consistent with our immune profiling, this suggests 

E0771 cancer cells that evolve in the obese environment have the ability to attract G-MDSC to 

overcome T-cell cytotoxicity. This renders tumor growth independent of T cell infiltration in the 

obese state. In the non-obese state, however, E0771 tumor growth is affected by cytotoxic T cells 

and tumor growth is therefore enhanced in the non-obese TKO mice. In addition to the E0771 

model, we also performed the TKO experiment in the C11 pancreas tumor model. Our 

immunotyping of this tumor did not suggest any deregulated immune populations in HFD (Fig 5B). 

Consistently, the C11 tumor growth advantage in the obese environment was sustained in the 

TKO model (Fig 6G). Combined, this demonstrates that in the E0771 model, tumor evolution in 

obese environments are linked to a functional differential immune interaction and that such 

interaction is highly model dependent. 

 

Discussion 

Here we compared the tumor infiltrating immune cell populations from 7 unanchored batch 

corrected Helios CyTOF runs collected from two different tumor types adapted to obese and non-

obese environments. The batches were then combined to form 5 tumor models for in depth 

immunotype analysis.   

While anchored batch correction is the new gold standard for batch correction methods, there are 

many datasets that do not have this luxury. Our unanchored batch correction implementation here 

enabled the implementation of a single comprehensive analysis pipeline and provides a path 

forward for the streamlined analysis of other unanchored multi-batch mass cytometry datasets. 

Being able to analyze datasets together provides a great advantage over analyzing them in 

parallel. Batch corrected datasets can be gated, clustered, visualized, and statistically analyzed 

in unison making for stronger conclusions. Application of unanchored batch correction could allow 

for the meaningful reanalysis of previously collected data sets that may have been set aside due 

to batch effects and lack of anchor or reference samples. 

The implementation of automated clustering approaches over manual gating have introduced a 

shift in cell subset classification rendering clustering less reliant on the+/- classification system 

traditionally used for characterizing cell types (Misharin et al, 2013; Zaynagetdinov et al, 2013). 

Cluster subsetting herein was performed with dimensionality reduction and a multistep clustering 

approach that minimized bias due to a lack of manual gating. For example, CD11b+ DCs (seen 
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in MC16) have typically been described as F4/80 positive or negative (Misharin et al, 2013), but 

because we used F4/80 to classify cells, F4/80 positive cells are separated from F4/80 negative 

cells. Here, F4/80+ cells were classified as macrophages, eosinophils, or M-MDSC and all of the 

DC subsets were F4/80-. 

Macrophages and DCs form a complex family of myeloid cells with overlapping functions and 

phenotypes (Misharin et al, 2013). Their highly plastic nature and tissue specific phenotypes make 

identification difficult (Leopold Wager & Wormley, 2014). We chose to name the metaclusters with 

the most likely cell type based on standard marker classifications and by the marker that most 

distinguished them from the other metaclusters of that cell type. Additionally, we included a wide 

range of phenotyping data in the figures to act as a resource for others to identify cell types of 

interest regardless of the name used to define them. This study identified multiple tumor infiltrating 

macrophage and DC subsets. 

Macrophages, identified by high expression of CD11b, F4/80, and MHC-II, fell into 6 metaclusters 

representing macrophages of differing phenotypes and function. CD206 expression is associated 

with an M2 or pro-tumor phenotype (Haque et al, 2019; Nawaz et al, 2017). CD11chi macrophages 

(MC2) were phenotypically similar to an M1, known to be an anti-tumor phenotype macrophage 

(Gautier et al, 2012; Noy & Pollard, 2014; Zhu et al, 2017). The CD11chi macrophages were also 

high for MHC-II, indicating an activated state (ten Broeke et al, 2013). MC14 was composed of 

Ly6-C+ macrophages, which have been described in the literature as playing a detrimental role 

in multiple disease states (Gibbons et al, 2011; Kimball et al, 2018). The Ly6-C+ macrophages 

may also represent newly infiltrating monocytes which may further differentiate into other 

macrophage phenotypes (Movahedi et al, 2010; Noy & Pollard, 2014; Rahman et al, 2017). Sca-

1+ macrophages (MC9) were additionally enriched for ICAM-1 and PD-L1. ICAM-1 has been 

reported to have anti-tumor effects while PD-L1 is associated with T cell inhibition with pro-tumor 

effects (Han et al, 2020; Patsoukis et al, 2012; Yang et al, 2015) Sca-1 expression is associated 

with stemness and a self-renewing state (Walasek et al, 2013), making this macrophage 

phenotype particularly complex.. These six metaclusters reveal the complexity of tumor 

associated macrophages and quantify their contributions to the tumor microenvironment. 

It is interesting to note that the Wnt1 and TeLi immunotypes are so different with TeLi infiltrate 

being dominated by macrophages. These models only differ by passaging method; Wnt1 cells 

are passaged in vivo while TeLi cells are Wnt1-derived cells that have been established and 

passaged in vitro.  
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Surprisingly, this extensive and unbiased analysis did not reveal any differences in tumor 

infiltrating macrophage populations between either breast or pancreas tumors grown in obese 

and non-obese environments. This is in contrast to literature describing the influx of macrophages 

in obese adipose tissue (Weisberg et al, 2003). There is an assumption that increased 

macrophages in adipose tissue will correspond to increased macrophages in tumors. This has 

not been well documented and direct comparisons with the literature are difficult to make. Tumor 

infiltrating macrophage increases are often determined by changes in gene or protein expression 

and not at the single cell level (Cranford et al, 2019). The inclusion of different tumors models and 

their knockout counterpart analyses also make it difficult to compare macrophage abundance 

between obese and non-obese tumor microenvironments (Incio et al, 2016b). It is possible that 

tumor infiltrating macrophage differences are not in abundance and that a more macrophage 

focused panel might reveal macrophage phenotypic differences between the obese and non-

obese setting. 

DC are major antigen presenters and good targets for anti-tumor immunity therapy (Wculek et al, 

2020). This mass cytometry study was not specifically designed to subset dendritic cells, but the 

analysis pipeline still managed to identify and characterize four DC metaclusters with distinct 

phenotypes. The MC21 DCs are characterized by high PD-L1 positivity indicating that this subset 

is T cell suppressive (Oh et al, 2020). Although the shift was small, MC21 was significantly 

increased in the obese E0771 group. The CD11b+ DCs found in MC16, are likely conventional 

cDC2 dendritic cells and are strong activators of CD4 T cells (Binnewies et al, 2019). pDC (MC10)  

are associated with tumor aggressiveness and poor prognosis (Wylie et al, 2019). While they 

were present in all groups, there was no measurable difference in abundance between the 

different groups, indicating that pDC do not play a major role in obesity associated cancer. The 

addition of CD103 to the panel would enable the identification of cDC1 subsets as well which are 

important for activating CD8 T cells and play a large role in anti-tumor immunity (Wylie et al, 

2019).  

The published research on the cancer-obesity link is sizable and growing. There are many 

different models and experimental designs in use. One key feature of our experimental design is 

the live cryopreservation of the tumor cells. This approach depletes the neutrophils, enabling a 

definitive identification and characterization of G-MDSC (Graham-Pole et al, 1977; Kotsakis et al, 

2012). Neutrophils and G-MDSC are almost phenotypically indistinguishable by fluorescence and 

mass cytometry (Zhou et al, 2017; Zilio & Serafini, 2016). Since Neutrophils do not survive the 

freeze thaw process, CD11b+ Ly6-G+ cells in our analysis are G-MDSC and not neutrophils 
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(Graham-Pole et al, 1977; Kotsakis et al, 2012). The multistep clustering pipeline provides useful 

insight into the phenotypic relatedness of these cell types. Due to differing Ly6-G expression, G-

MDSC (MC19) and M-MDSC (MC18) are quite distant on the viSNE map. The strong Ly6-G 

staining on the G-MDSC population contributed to those cells being placed in a separate viSNE 

island for that metacluster. The similarity of expression for the other markers (mainly CD11b and 

Ly6-C) resulted in the MDSC metaclusters being very close in the hierarchical clustering. With the 

data available here, it would be a mistake to combine the MDSC subsets into a single metacluster. 

The metacluster spacing on the viSNE map makes it clear that they are distinct populations of 

cells, which is consistent with the literature; however a less stringent metaclustering using the 

dendrogram would have resulted in a single MDSC metacluster which would have been far less 

informative and counter to the cell spacing on the viSNE map and the literature. Although we 

attempted to minimize bias in this analysis pipeline, expert knowledge was still crucial for correctly 

subsetting these cell types. Here, we found that the G-MDSC were increased in abundance in the 

obese E0771 group, meaning that for the E0771 model, there are two distinct T cell suppressive 

cell subsets. 

T cells, specifically CD8 T cells, are major players in tumor immunity. While tumor infiltrating CD8 

T cells, often called TILs, are the most studied T cell type in cancer, CD4 and DN T cells are both 

commonly found in the tumor microenvironment. T cells play various roles in the tumor 

microenvironment. Here we found two phenotypically distinct and perhaps functionally distinct 

CD4 T cell subsets. The GITRhi CD4 T cells in MC1 were also enriched for Sca-1. Both of these 

markers indicate an activated phenotype (Nocentini & Riccardi, 2009; Whitmire et al, 2009). GITR 

is also high on Tregs but there were very few CD25+ cells in this metacluster so it is unlikely that 

there were many Tregs in MC1. Low GITR indicates naïve or effector T cells which characterizes 

the second CD4 T cell metacluster, MC15. It is notable here that two distinct DN T cell populations 

were identified. The two DN T cell metaclusters are phenotypically distinct and far apart on the 

viSNE map. The Ly6-C+ DN T cells (MC5) were near the NK cells between the CD4 and CD8 T 

cells, while the Il-7Ra+ DN T cells (MC20) are in a separate island on the far side of the map. DN 

T cells are known suppressor cells and have been shown to suppress cancer cell growth in culture 

(Lu et al, 2019; Young et al, 2003).   

CD8 T cells are the primary tumor-cytotoxic lymphocyte (Martínez-Lostao et al, 2015). CD8 T 

cells in cancer are often exhausted and no longer capable of cancer cell killing. Checkpoint 

blockade immunotherapy (CBI), such as anti-CTLA-4 and anti-PD-1/PD-L1, works to reactivate 

the CD8 T cells and can lead to better patient outcomes in multiple cancer types (Christofi et al, 
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2019). CBI only works in a small subset of patients though and it is not clear why (Zugazagoitia 

et al, 2016). Understanding the CD8 T cell contribution to the tumor microenvironment is key to 

taking full advantage of checkpoint blockade therapies. Previous reports have suggested that 

obese patients tend to have worse responses to traditional cancer therapies but do better with 

immunotherapy than non-obese patients (Wang et al, 2019). It is not clear why obese patients 

respond so well to checkpoint blockade immunotherapies but it may be due to the existing immune 

dysregulation and chronic low-grade inflammation in obese patients (Naik et al, 2019).  It has 

been shown that patients with lower CD8 expression in the tumor microenvironment tend to have 

worse outcomes in response to traditional therapies (Liu et al, 2012; Mahmoud et al, 2012). It is 

not clear how intratumoral CD8 levels relate to CBI success or to obese patient outcome.  

Here we were able to provide an in-depth characterization of multiple T cells subsets which could 

be invaluable for future studies in determining the therapeutic value of checkpoint blockade 

therapies across patients and cancer types. The two CD8 T cell subsets we found were quite 

similar in phenotype and both metaclusters were decreased in the obese E0771 group. This fits 

well with the increased abundance of two T cell suppressive cell types, G-MDSC and PD-L1+ 

DCs.  

While diet induced obesity led to tumor immune infiltrate changes in the E0771 model, it did not 

have an effect across all models. Despite the systemic nature of the obese phenotype, our results 

suggest the interplay between obesity and tumor immune infiltrate is very cancer subtype specific. 

Different treatment approaches might be needed depending on the cancer subtype’s ability to 

alter the tumor immune infiltrate in the obese setting. It is possible that there were detectable 

obesity-dependent immune changes outside this 36-marker CyTOF panel. Investigating 

additional activation, inactivation markers, chemokine receptors, and cytokine production may 

shed light on those changes. But overall, our broadly defined immune panel performed well, and 

provided deep and robust tumor immune phenotype across models. High dimensional positional 

data such as imaging mass cytometry might further help unravel the obesity effect. Several recent 

studies have indicated that tumoral cell-cell interactions and local neighborhoods play a role in 

cancer severity (Jackson et al, 2020; Keren et al, 2018; Schürch et al, 2020), indicating that such 

spatial information add phenotypic information compared to cell frequencies obtained with 

suspension-based mass cytometry. The limited data from the TKO mice would suggest that the 

obese immune system may play a stronger role in breast cancer than in pancreatic cancer, at 

least at the tumor immune infiltrate level. Several studies support this concept showing that non-
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immune cell components contribute strongly to pancreatic cancer prognosis in obesity (Chung et 

al, 2020; Eibl & Rozengurt, 2019). 

 

Here, we have presented a pipeline for analyzing large mass cytometry datasets collected across 

multiple time points without anchor samples. This is a powerful approach for analyzing data 

collected before the use of anchor samples was introduced. The multistep clustering approach 

allows for a reduction of biases while still allowing for expert input to guide the final metaclusters. 

The detailed characterization of immune infiltrate across five tumor models provides a valuable 

resource for planning tumor immunity studies. We found that while cell subsets were conserved 

across models, subset abundance was highly model specific. The inclusion of tumor immune 

infiltrate from obese groups, provides insight into cancer models that may or may not be relevant 

for studying immune infiltrate differences in obesity. We propose that the E0771 breast cancer 

model is a clinically relevant model for assessing immune infiltrate in obesity. G-MDSC and PD-

L1+ DC suppression of T cells is clinically relevant in regard to patient care and treatment options. 

 

Materials and Methods 

Experimental mouse models 

The Norwegian Animal Research Authority approved all animal experiments. Experiments were 

carried out according to the European Convention for the Protection of Vertebrates Used for 

Scientific Purposes. The Animal Care and Use Programs at the Faculty of Medicine, University of 

Bergen is accredited by AAALAC international. Male and female C57BL/6J (stock number: 

000664) mice were purchased from Jackson laboratories. Mice were kept in IVC-II cages 

(SealsafeÒ IVC Blue Line 1284L, Tecniplast) and housed in the laboratory animal facility at the 

University of Bergen. Up to 6 mice were housed together and maintained under standard housing 

conditions at 21°C ± 0.5°C, 55% ± 5% humidity, and 12h artificial light-dark cycle. Mice were 

provided with food and water ad libitium.  

At 6 weeks of age, mice in the obese cohort were placed on a high fat diet (HFD, 60% kcal from 

fat, 20% from protein, and 20% from carbohydrates, Research Diets, D12492) for 10 weeks, while 

lean mice were kept on a standard chow diet (7.5% kcal from fat, 17.5 % from proteins and 75% 

from carbohydrates, Special Diet Services RM1, 801151). At 16 weeks of age, mice were weighed 

and breast cancer cell lines were orthotopically injected in the 4th inguinal mammary fat pad for 
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female mice, and pancreatic cancer cell lines were orthotopically injected into the lower body of 

the pancreas of male mice (Fig 1A). Feeding regimens were maintained throughout the 

experiment. Tumor growth and mouse weight were monitored over time. Cells in Phosphate 

Buffered Saline (PBS) were mixed 1:1 by volume with Matrigel (Corning, 356231) and injected in 

a total volume of 50 μl for fat pad injections and 30 μl for pancreas injections. The experiment 

was stopped when the first mouse showed signs of distress. At endpoint, the mice were 

euthanized by cervical dislocation while anaesthetized, and tumors harvested for weight 

measurements and downstream analysis (Fig 1A). See Table 1 for tumor model cell line details 

and cell injection numbers. 

The C11 and UN-KC cell lines were kindly provided by Dr. Rolf Brekken and Dr. Surinder Batra, 

respectively. The E0771 cell line was acquired from CH3 BioSystems. The in vivo passaged 

MMTV-Wnt1 cells were kindly provided by Stein-Ove Døskeland, University of Bergen. The TeLi 

cell line was generated in house by in vitro passaging of dissociated cells from the MMTV-Wnt1 

cell line injected in the mammary fat pad. The tumor was dissociated using Mouse tumor 

dissociation kit (Miltenyi Biotec, 130-096-730) according to manufacturer’s instructions. 

Dissociated MMTV-Wnt1 tumor cells were cultured in vitro for two months to obtain pure tumor 

cells now referred to as TeLi. E0771, TeLi, C11, and UN-KC cells were cultured at 37°C, 5% CO2 

in high-glucose DMEM (Sigma, D5671) supplemented with 10% FBS (Sigma, F-7524), 100 U/mL 

penicillin and 100 μg/mL streptomycin (pen/strep, Sigma, P-0781) and 2 mM L-glutamine (Sigma, 

G-7513).   

 

Tumor processing and dissociation 

Tumors were collected from seven different mouse cohorts. A subset of the tumors collected from 

those 7 cohorts became the data for the 7 batches collected on the Helios CyTOF (Table 1). 

Tumors were collected, weighed, minced, and incubated with collagenase II (Sigma, C6885) and 

DNase I (Sigma, DN25) based on the Leelatian protocol (Leelatian et al, 2017). Changes to 

incubation were as follows, minced tumors in RPMI-1640 (Sigma, R7388) were incubated with 

enzymes in capped 15 mL conical tubes in a warm water bath with periodic inversion while waiting 

for all tumors to be collected. Tumors were then placed in a 37°C incubator and rotated on a 

Ferris wheel for 1 hour. DNase was used throughout the dissociation protocol and was especially 

important for pancreatic tumors where free DNA was observed without the continuous use of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.338806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338806


  18 

DNase. Live cells in 10% FBS, 90% DMSO were cryopreserved with CoolCell (Sigma, 

CLS432001) at -80°C overnight before transfer to liquid Nitrogen.  

 

Determining the number of samples to barcode and number of cells to collect 

Before data collection it is imperative to know the size of the target population to enable a robust 

analysis– particularly in heterogeneous populations. Preliminary testing on E0771 tumors 

suggested that the CD45+ target cells were approximately 5% of the total events collected; that 

held roughly true for the barcoded batches (Table 3).  The following equations were used to guide 

the number of samples barcoded together and the time spent at the Helios for collection. The 

event rate was approximately 500 events per second. 

Ideal	cell	number	of	target	population
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑒𝑣𝑒𝑛𝑡𝑠

∗ 𝐵𝑎𝑟𝑐𝑜𝑑𝑒𝑑	𝑠𝑎𝑚𝑝𝑙𝑒	𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑇𝑜𝑡𝑎𝑙	𝑒𝑣𝑒𝑛𝑡𝑠	𝑡𝑜	𝑐𝑜𝑙𝑙𝑒𝑐𝑡 

Total	events	to	collect
event	rate	*	3600

= 𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	(ℎ𝑜𝑢𝑟𝑠) 

 

Cell staining and running on Helios 

Cells were thawed in warm water bath at 37°C. 1 mL of warm DNase supplemented media (RPMI-

1640 with 10% FBS, 1% pen/step, and DNase was added to each thawed cryovial). Contents 

were then dumped into labeled 15 mL conical tubes containing 8 mL of warm DNase media. 

Cryovials were washed with 2 mL warm DNase media and added to contents to corresponding 

15 mL conical tube. Cells were then rested for 5 minutes (min) followed by centrifugation at 200xg 

for 5 min at room temperature (RT). Cells were counted with trypan blue using a Countess 

automated cell counter (Invitrogen) and stained with cisplatin (Fluidigm, 201064) in the DNase 

media using the Fluidigm protocol. Cells were kept in warm DNase media until fixed with PFA at 

1.6% final concentration. Following fixation, cells were barcoded using palladium cell barcoding 

kit (Fluidigm, 201060) and vendor protocol with the modification of incubating with barcodes for 

45 min instead of 30 min. After barcoding, combined cells were kept in PBS + 1% BSA (Sigma 

A7030) and were blocked with anti-CD16/CD32 Fc block (eBoscience, 16-0161-82) and stained 

with a premade cocktail of antibodies shown in Table 2. Following surface staining, cells were 

permeabilized with 2-3 mL 100% pure cold methanol overnight at -20°C. Cells were vortexed 

vigorously before and after methanol addition to prevent clumping. The next day, 2 mL PBS was 
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added to dilute methanol. Cells were spun down at 900xg and methanol/PBS mixture was pipetted 

off. Cells were washed with PBS again and decanting was performed as usual. Intracellular 

staining was performed in DPBS + 1% BSA for 30 min. After 20 min, DNase and iridium 

intercalator (Fluidigm, 201192B) were added. DNase was used on fixed and permed cells to 

reduced clogging on the Helios and cut down on visible clumping when running samples. This 

was especially important for the pancreatic tumors that seemed to have a high level of cell death 

and free DNA.  

All staining was performed in capped facs tubes on a moving platform or with manual agitation to 

prevent cells from fully settling. Final washes were all with 3 mL followed by vortex, centrifugation 

at RT at 900xg, and decant: 3 PBS+1% BSA washes, 3 PBS washes, 3 milliQ washes. Cells were 

kept in the void volume plus 100 uL of 1X beads in MilliQ water at 4°C until ready to run. 25 µL of 

cells were removed at a time and added to 2 mL of diluted 1X Fluidigm EQ calibration beads in 

MilliQ water immediately before running on the Helios. Cell concentration was adjusted as needed 

so cells were running between 300 and 600 events/second. Cells were run on the Fluidigm Helios 

mass cytometry machine using a narrow bore injector. 

A control sample was included in every batch and was used to manually check for antibody 

staining and machine performance. Control samples were from two different E0771 tumors that 

had already been phenotyped and used to test the staining panel. Controls were not used as 

anchor samples for batch correction because more than one control was used across the batches.  

4T1 tumor model used for batch correction testing 

Control group 4T1 breast cancer tumors from female BalbC mice from two batches were used to 

test the robustness of the batch correction algorithms. The 4T1 cell line was purchased from 

ATCC and cultured in a humidified atmosphere (37°C, 5% CO2). 4T1 cells were cultured in RPMI-

1640 medium (Sigma) with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin and 100 μg/ml 

streptomycin (Sigma). MycoAlert (Lonza, LT07-318) was continuously used to confirm that the 

cell line was mycoplasma-free throughout the study. Female BALB/c mice (Envigo) were fed a 

standard chow diet. At 4-6 weeks old, 2.0 × 105 4T1 cells were mixed 1:1 with BD Matrigel Matix 

Growth Factor Reduced (BD Bioscience) and injected into the right mammary fat pad.  

Upon sacrifice, tumors were harvested and dissociated using a mouse tumor dissociation kit 

(Miltenyi Biotec, 130-096-730). After dissociation erythrocytes were lysed with Red Cell Lysis 

Buffer (Miltenyi Biotec, 130-094-183) according to manufacturer’s protocol.  
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The dissociated 4T1 tumor cells were stained with cisplatin for viability with RPMI1640 (10% FBS, 

0.25μM cisplatin, RT) for 5 min and fixed with PFA (1.6%, Paraformaldehyde 16% solution EM 

grade, Electron Microscopy Sciences, 15710) before freezing. After 10 min incubation, samples 

were centrifuged and supernatant was aspirated before being placed in -80°C freezer until 

analysis. 

The panel contained 18 mass tagged antibodies with the same target as the 7 experimental 

batches. Many of the same antibody targets were on different channels (marked sdc in Table 4) 

and 1 was a different clone. A similar protocol, detailed below, was used for staining and cells 

were run on the same Helios CyTOF machine.  

Prior to staining, samples were thawed at RT and resuspended in cell washing buffer (CWB, 

Dulbecco’s PBS (DPBS), (Thermo Fisher Scientific, 14040-133) with 1% BSA, 0.02% NaAzide, 

and 0.025% DNaseI (Sigma Aldrich, DN25-1G)). Cells were counted using Countess™ 

Automated Cell Counter (Invitrogen) and approximately 3 x 106 cells per sample were used for 

barcoding. Counted cells were washed in 1X perm buffer (Fluidigm, 201057) twice, before being 

resuspended in 1X perm buffer (195 µl). Samples were then mixed with 5 µl barcoding solution 

(Fluidigm, 201060) or 1 µl (500 µM) Intercalator-103Rh (Fluidigm, 201103A) for the control and 

incubated for 30 min at RT. After incubation, cells were washed in CWB twice, then pooled with 

CWB and before washing in Maxpar® Cell Staining Buffer (CSB, Fluidigm, 201068).  

Surface antibodies were diluted in CSB, while antibodies targeting intracellular proteins were 

diluted in CSB/perm (10% 10X perm buffer). Samples were blocked on ice for 10 min using anti-

CD16/CD32 (75 µl per 3x106 cells) diluted in CSB. The surface staining antibody cocktail was 

prepared to total 40 µl per 3 million cells. Samples were incubated with the antibody cocktail for 

30 min (RT) before washing in CWB with a 10 min (RT) incubation. Samples were then washed 

in PBS (2 mM EDTA) and fixed with 200 µl 2% PFA per 3 million cells for 30 min (RT, in the dark). 

Fixed cells were then washed in CSB/perm twice and blocked with anti-CD16/CD32 in CSB/perm 

as described above. Samples were incubated with the intracellular staining antibody cocktail for 

30 min (RT) before being washed in CWB and subsequently in 2 mM EDTA/ PBS. Cellular DNA 

was stained by incubating the samples in Ir191/193 Intercalator (0.33 µl 500 µM Intercalator-Ir 

per 2x106 cells, Fluidigm, 201192B) mixed with 2% PFA (1 ml per 20x106 cells) overnight (4°C). 

The following day, samples were centrifuged and resuspended in CWB with 10 min incubation 

(RT). Samples were then washed in PBS (2 mM EDTA) and kept on ice until the mass cytometer 

was ready. Before acquisition, an aliquot of cells was washed in MilliQ water four times (400xg, 5 

min, RT). The aliquot was then resuspended in 1X EQ Four Element Calibration Beads solution 
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(Fluidigm, 201078) to a final concentration of about 1-2x106 cells per mL, and strained through a 

40 µm cell strainer. The cells were then acquired on the Helios mass cytometer (Flow Cytometry 

Core Facility, Department of Clinical Science, University of Bergen). All centrifugation steps were 

performed with swing-bucket rotor at 900xg for 5 min at RT unless otherwise specified. 

Data preprocessing 

Raw Helios FCS files were bulk normalized in the Fluidigm CyTOF software version 6.7.1014 

using the bead normalization passport EQ-P13H2302_ver2 (Fluidigm®, 2018). The Fluidigm 

normalization tool was chosen so that all data sets could be normalized to the normalization 

passport. The “Original data” box was checked and the files were not concatenated at this time. 

The randomization was set to uniform negative distribution (UND) with linear output values, 

conversion compatible with FlowJo, and the default time interval normalization of 100 seconds. 

Beads were not removed. After normalization, the MATLAB debarcoding tool was used to 

simultaneously debarcode and concatenate the samples, with the exception of batch C11_1 

(Zunder et al, 2015). The C11_1 raw batch files were concatenated using the Fluidigm software 

before debarcoding because the multiple large files were too much for the MATLAB debarcoding 

tool to open. Each batch was debarcoded separately with the same filter values set to minimum 

separation of 0.12 and a maximum Mahalanobis distance of 30. 

After debarcoding, the R premessa package was used to resolve a channel naming conflict (Fig 

1A) (Gherardini, 2019). The Wnt1 cohort was not stained for IRF4 so that channel was excluded 

for all 7 batches/cohorts. “155Gd_IRF4” was changed to “155Gd” for all FCS files and the channel 

was ignored during analysis. The signal was low to negative in all stained cohorts so there was 

minimal potential for spillover. Premessa was used more extensively in the supplemental data (9 

batch dataset) to merge two very different panels so that the 18 common markers could be 

analyzed even if they were on different channels or had different naming conventions. The code 

“sdc” for shared different channel was created to denote shared antibody targets on different 

channels between the panels. The supplementary data also required the use of the R package 

cytofCore to reorder channels in the different panels (Bruggner et al, 2019). 

After channel renaming with Premessa, all the newly written FCS files were uploaded to Cytobank 
to check for panel discrepancies and to gate for live CD45+ cells. Gating was performed manually 

to obtain a population of live CD45+ events (Fig 1D). The four Helios Gaussian parameters, 

Event_length, 140-bead channel, and Iridium (193) were gated on versus time using the cleanup 

strategy recommended by Fluidigm (Fluidigm®, 2019). Iridium intercalator was used to mark intact 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.338806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338806


  22 

cells; cisplatin was used as a membrane exclusion stain to differentiate live and dead cells, 

Cleaved-Caspase3 (c-Cas3) was used to exclude apoptotic cells and CD45 as a pan-leukocyte 

marker (Fig 1D).  

Gated sample files that contained fewer than 5000 live CD45+ singlets were excluded from further 

analysis. Because of the low viability of the pancreatic tumors, especially those from HFD, we 

had to remove samples from all three pancreatic cancer tumor cohorts (Fig 1C, open X means 

removed). Three HFD samples were removed from the C11_1 cohort, two chow and three HFD 

were removed from the C11_2 cohort and four HFD tumors were removed from the UN-KC cohort. 

No tumors were removed from the four breast cancer cohorts (Table 1). 

Live CD45+ cells from the remaining 67 files (including 10 controls files) from 7 batches were 

exported to new FCS files and downloaded from Cytobank. The CD45+ FCS files were imported 

to R/RStudio for batch correction using Cydar with ncdfFlow and flowCore used as support 

packages (Ellis et al, 2019; Jiang et al, 2019; Lun ATL, 2017; R Core Team (2020), URL 

https://www.R-project.org; RStudio Team (2020), URL http://www.rstudio.com/). 35 markers were 

arcsinh transformed with a scale argument/cofactor of 5 before batch correction. c-Cas3 was not 

batch corrected since it was used only during pregating and was no longer relevant. Cydar offers 

three batch correction algorithms: warp, range, and quantile. All three algorithms were tested 

without the use of common group/anchor files. Initial batch correction algorithm testing was 

performed on the chow files from the 7 experimental batches and the control group files from 2 

batches of 4T1 tumors from Balbc mice stained with a different panel and under different 

conditions to test for algorithm robustness. The 7 experimental batches were additionally batch 

corrected separately from the 2 testing batches using warp and range correction. Range 

correction was then chosen as the best algorithm for this use case and the range corrected data 

was used throughout the rest of the analysis. New FCS files were created binding together the 

original and transformed range corrected data. The 35 new corrected channels were marked with 

“c_” as the prefix. 

Analysis pipeline 

The range corrected files were uploaded to Cytobank for analysis. viSNE was run using 26 of the 

corrected markers (Table 2) (Fig 3). viSNE settings were 4000 iterations on 348802 events (5206 

events per FCS file) and the default settings for perplexity (30) and theta (0.5) were used. The 

automatic seed was 21258186. The run time was 5.58 hours and the final KL divergence was 

4.75. SPADE was used for clustering with tSNE1 and tSNE2 as the clustering channels. This 
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preserved the viSNE dimensionality reduction in the clustering process. All cells from viSNE were 

put into SPADE with 40 nodes/clusters chosen and the default 10% downsample. Cytobank 

automatic cluster gating was used to gate the events in all 40 SPADE clusters. Clusters were then 

manually curated and combined to reduce overclustering for G-MDSC and NK cells. The new 

cluster count was 37 clusters. Cell data for all experimental files was concatenated into one file 

for each of the 37 clusters using Premessa to concatenate the files. That data was imported into 

R to generate MEM scores, MEM heat map, median heat map, and hierarchical clustering (Fig 

4A, EV2A). Event count numbers for clusters/metaclusters were exported for all FCS files. Excel 

was used to calculate abundance percentages for each metacluster out of the total CD45+ cells. 

In addition to exporting cluster/metacluster events counts, some manual gating was performed 

on the viSNE map and event counts were exported for statistical analysis (Fig 6A, B; EV3A, B). 

Total CD3 cells were gated on the viSNE map using CD3 marker intensity and subsequent CD3 

subsets (CD4, CD8, and DN T cells) were biaxially gated using the CD4 and CD8 channels.  

CITRUS was run on the E0771 data after viSNE analysis as a confirmative analysis for the 

metacluster statistics. CITRUS clustering was performed in Cytobank on the same 26 channels 

as viSNE. There were 9 files in the chow group and 8 files in the HFD group. All events were 

sampled with a minimum estimated cluster size of 1% (~885 events). The Significance Analysis 

of Microarrays (SAM) association model was used for analysis. Select significant CITRUS clusters 

were plotted onto the viSNE map for visualization. 

Statistics 

Abundance percentages calculated in Excel were put into GraphPad Prism to perform statistics. 

GraphPad Prism 8.4.3 was used to plot the data and to calculate p values using multiple unpaired 

t tests. Consistent standard deviation was not assumed for metacluster abundance and cell 

subset calculations. Statistics were not applied for UN-KC and C11 due to the limited sample 

numbers due to low cell viability. The two batches for both C11 and E0771 were combined so that 

large trends would be observed and noise would be minimized.  

Data Availability 
Mass cytometry data from this publication is available and can be accessed through Flow 

Repository (https://flowrepository.org/id/FR-FCM-Z32G). 
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Figures 

 
Figure 1 - Experimental design and analysis pipeline for mass cytometry data for immune 
infiltrate of 7 CyTOF batches from 5 murine tumor models.  

A Cartoon and timeline of experimental design, data collection, data preprocessing, and analysis.  

B  Representative mouse weights for male and female C57Bl/6 mice on chow and HFD. Weights 

were collected at age 16 weeks before tumor cell injection.  

C Tumor masses from the 7 batches for all experimental tumors run on CyTOF.  

D Representative gating strategy for identifying live CD45+ tumor infiltrating leukocytes.  

E Sankey plot visualization of CD45+ live cells out of total raw events collected for each 
experimental batch.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.338806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338806


  34 

Figure 2 - Batch correction algorithm testing.  

All plots were generated from normalized arcsinh transformed live CD45+ cells. Transformed 

datasets were warp and range corrected resulting in three datasets, incluing the uncorrected 

(uncorr.) dataset.  

A Biaxial contour density plots from the 9 testing batches with 18 common markers. The files 

displayed are the first chow/control sample from each batch. The quadrant gate is shown to assist 

in visual comparison between plots.  

B Cydar batch correction density plots of 4 representative markers showing the 3rd file from each 

of the 7 experimental batches with 36 common markers total. Black arrows indicate a gap in the 

density near zero created by the warp correction algorithm. 
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Figure 3 - Immune infiltrate phenotyping using viSNE.  

All range corrected experimental files were run together in the same viSNE run to generate one 

universal viSNE map.  

A Cell density on viSNE plots for concatenated experimental files for chow and HFD groups in 

each cohort.  

B-F The total concatenated data was used to generate viSNE plots.  

B Density plot of total concatenated cells. 
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C-F are viSNE plots showing marker intensity on a spectrum heat scale. Heat scales are specific 

to individual markers.  

C Marker heat for key myeloid phenotypic markers. The pink line on the CD11b plot indicates the 

phenotypic divide between myeloid and lymphoid cells.  

D Marker heat for key lymphocyte phenotypic markers.  

E Marker heat for activation/exhaustion markers.  

F Marker heat for additional phenotyping markers. 
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Figure 4 - Immune infiltrate metacluster characterization of murine breast and pancreatic 
cancers.  

A Hierarchical clustering of MEM scores for 37 curated clusters and 26 markers. The dendrogram 

on the left was used to create 21 metaclusters. MEM scores and marker heat were used to label 

the metaclusters (labels in B).  

B Bubble graph using area to show the mean percent abundance out of the total CD45+ cells for 

each metacluster for immune infiltrate of chow-fed non-obese each tumor type.  
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C Pie charts showing mean percent abundance of the 21 metaclusters across the 5 models for 

the chow tumors.  

D Annotated viSNE map of concatenated data showing the metaclusters by number. The black 

line indicates the divide between myeloid and lymphoid lineage cells/clusters. 
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Figure 5 - Analysis and quantification of metacluster abundance differences between 
chow and HFD.  
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A Min to max box and whiskers plots with all points showing comparing chow and HFD 

metaclusters for the breast cancer cohorts. Significant p values are shown in the figure. The 

blue T indicates p values less than 0.07 that are trending towards significance.  

B Box and whiskers plots for pancreatic cancer cohorts. There were too few HFD tumors with 

live immune cells so statistics could not be performed for those cohorts.
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Figure 6 - CD8 T cells were decreased in the HFD DIO E0771 model of TNBC and tumor 
growth advantage was lost when the T cell compartment was lost in the TKO model.  

A Box and whiskers plots of CD4/CD8 ratio for each tumor model.  

B Percent of CD8 T cells out of total T cells.  

C CITRUS SAM results for E0771 model. CITRUS Clusters that are significantly different between 

chow and HFD are not blue and are circled with a gray background.  

D Select significant CITRUS clusters were plotted back onto the viSNE map. Plotted clusters are 

color coded to match the CITRUS plot in C. viSNE data shown is concatenated data for the 10 

CITRUS clusters and total cell numbers for the E0771 model. 

E-F Tumor growth volume over time for E0771 WT (E), and E0771 TKO (F) cohorts. 

G Final tumor masses for C11 tumors grown in TKO mice showing that the HFD tumor growth 

difference remains. The appropriate comparison is to the C11 tumor masses for C11_1 and 

C11_2 batches shown in Figure 1C. 
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Tables and their legends 

Cell line/ 
Model Cancer type Model details 

No. of cells 
injected 

E0771 breast cancer basal-like spontaneous murine tumor 1000 

Wnt1 breast cancer 

Wnt1 tumors were passaged in vivo with MMTV-Wnt1 cells 
derived from tumors from MMTV-Wnt-1 transgenic mice (Li et 

al, 2000) 20,000 

TeLi breast cancer 

TeLi cell line was derived from culture dish passaged MMTV-

Wnt1 cells in the Halberg lab 40,000 

C11 

pancreatic 

cancer 

C11 (TR) cell line was derived from spontaneous tumors in 

KPC (KrasLSL-G12D; Trp53f/f; Pdx1Cre/+) mice 10,000 

UN-KC 
pancreatic 
cancer 

UN-KC-6141 (TR) was derived from tumors in KC 
(KrasG12D;Pdx1-Cre) mice (Torres et al, 2013) 10,000 

Table 1. Cancer models. Tumor cells are syngeneic with C57Bl/6 mice and were orthotopically 

implanted into immunocompetent C57Bl/6 mice. E0771 cells and C11 cells were additionally 

implanted into TKO mice. Breast cancer cells were injected into female mice and pancreatic 

cancer cells were injected into male mice. TR: triple reporter-labeled 

 

Isotope 
tag 

Target Notes/expression/lineage Target 
site 

Dilution 
factor 

Clone/ (Cat. Nr.) 

089Y CD45 Pan leukocyte marker Surface 100 30F11 

141Pr Ly-6G (v,m) Myeloid lineage, G-MDSC Surface 400 1A8 

142Nd c-Caspase 3 Apoptosis marker IC* 500 D3E9 

143Nd CD357/GITR (v,m) Activation marker for T cells Surface 100 DTA1 

144Nd MHC I/H-2Db MHC-I on C57BL/6 Surface 600 28-14-8 

145Nd CD4 (v,m) T helper cells Surface 100 RM45 

146Nd F4/80 (v,m) Macrophage marker Surface 200 BM8 

147Sm CD36/FAT (v,m) Scavenger receptor Surface 200 No. 72-1 

148Nd CD11b/Mac-1 (v,m) Macrophages and MDSC Surface 500 M1/70 

149Sm CD19 (v,m) B cells Surface 100 6D5 

150Nd Ly-6C (v,m) Ly-6C+ monocytes, M-MDSC Surface 200 HK1.4 

151Eu CD25/IL-2R (v) T regs Surface 100 3C7 

152Sm CD3e (v,m) T cells Surface 100 1452C11 
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Isotope 
tag 

Target Notes/expression/lineage Target 
site 

Dilution 
factor 

Clone/ (Cat. Nr.) 

153Eu CD274/PD-L1 (m) Ligand of PD-1 (marker of 

activation or exhaustion) 

Surface 400 10F.9G2 

154Sm CD73 (v,m) B, T cells and macrophages. Surface 700 TY/11.8 

156Gd CD14 (v,m) LPS co-receptor on monocytes 

and macrophages 

Surface 100 Sa142 

158Gd CD9 (v) Cancer cells, eosinophils, 

activated T cells  

Surface 1000 KMC8 

159Tb CD279/PD-1 (m) Immune-inhibitory receptor on T 

cells, activation or exhaustion 

Surface 200 J43 

160Gd CD5 T cells and some B cells Surface 500 537.3 

161Dy CD40 (v,m) Mature B cells, DCs and M1-like 

macrophages 

Surface 200 HM403 

162Dy CD11c (v,m) Dendritic cells, NK cells and 

macrophages 

Surface 300 N418 

163Dy CD54/ICAM-1 (m) B cell, T cell, monocytes, 

macrophages, NK and DCs 

Surface 600 YN1/1.7.4 

164Dy Ly-6A/E/Sca-1 (v,m) Hematopoietic stem cells and 
activated T cells 

Surface 900 D7 

165Ho CD161/NK1.1 (v,m) NK cells and NKT cells Surface 100 PK136 

166Er CD326/EpCAM (v) Cell adhesion in inflammation and 

carcinogenesis 

Surface 300 G8.8 

167Er CD335/Nkp46 (v) NK cells Surface 100 29A1.4 

168Er CD8a (v,m) Cytotoxic T cells Surface 200 53-6.7 

169Tm CD206/MMR (v,m) Mannose receptor, M2-like 

macrophages 

IC/Surfac

e 

200 C068C2 

170Er CD169/Siglec-1 

(v,m) 

Macrophage restricted Surface 300 3D6.112 

171Yb CD44 (v,m) Cell-cell interactions, adhesion, 

homing and migration 

Surface 1000 IM7 

172Yb CD86 (v,m) T cell responses binds CTLA-4 
and CD28, M1-like macrophages 

Surface 200 GL1 

173Yb CD117/c-kit Mast cells and hematopoietic 

stem cells 

Surface 100 2B8 

174Yb CD223/LAG-3 T cell activation and NK cells Surface 100 C9B7W 
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Isotope 
tag 

Target Notes/expression/lineage Target 
site 

Dilution 
factor 

Clone/ (Cat. Nr.) 

175Lu CD127/IL-7Ra (v,m) Memory T cells Surface 100 A7R34 

176Yb CD278/ICOS (m) Activated T cells Surface 100 7E.17G9 

209Bi MHC II/I-A/I-E (v,m) APCs Surface 1000 M5/114.15.2 

Ir191/193 Nucleic acid Iridium DNA intercalator IC  (201192B) 

Pt196_Cis Membrane 

exclusion 

Cisplatin, cell viability stain IC  (201064) 

Palladium Non-specific 
covalent 

BarCode kit, 102, 104:106, 108, 
110 

IC  (201060) 

Table 2: Panel of antibodies for mass cytometry staining  

All compounds were purchased from Fluidigm 

*IC = Intracellular 

(v) Markers used as parameters when running viSNE and CITRUS 

(m) Markers used as parameters when running MEM 

IRF4-155Gd (IC) was not included in the Wnt1 batch and was therefore removed from analysis. The 

staining intensity was low in the other stained batches. 
 

Batch 

days 
of 
tumor 
growth 

non-
obese 
tumors 
analyzed 
by 
CyTOF 

Obese 
tumors 
analyzed 
by 
CyTOF 

total 
barcoded 
samples 
including 
controls 

Total 
raw FCS 
files 
collected 

Raw 
data 
size 
in GB 

total raw 
events 

total 
CD45+ 
cells 
including 
controls 
and low 
count 
samples 

Percent of 
CD45/total 
raw 
events 

E0771_1 31 4 4 9 7 4.27 5479930 180207 3.3 

E0771_2 23 5 4 10 9 2.05 2636328 100935 3.8 

TeLi 41 5 5 11 8 7.43 9544773 1102767 11.6 

Wnt1 27 6 6 14 17 4.89 6284192 193650 3.1 

C11_1 31 5 4(1) 10 10 7.93 10180942 207180 2.0 

C11_2 32 5(3) 5(2) 11 5 4.92 6319718 54317 0.9 

UN-KC 26 5 6(2) 14 11 10.3 13193861 369684 2.8 

Table 3. CyTOF batches. All batches were collected on the Helios CyTOF machine in the flow 

cytometry core at the University of Bergen. 69 channels were collected for all batches including 
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the Helios Gaussian channels. Values in () indicate the tumors with more than 5000 immune 

cells that were used for downstream analysis when not all tumors could be analyzed. 

 

Common 

antibody 
targets 

between 

panels 

Mass 

tags for 
main 

project 

4T1 

mass 
tags for 

EV data 

only 

Mass 

tag 
details 

notes 

CD11b 148 154 sdc 
 

CD11c 162 142 sdc 
 

CD19 149 166 sdc 
 

CD206 169 169 same 
 

CD25 151 165 sdc 
 

CD274 PD-L1 153 153 same 
 

CD279 PD-1 159 148 sdc 
 

CD335 Nkp46 167 167 same 
 

CD3e 152 152 same 
 

CD4 145 145 same 
 

CD40 161 163 sdc 
 

CD45 89 147 sdc 
 

CD86 172 172 same 
 

CD8a 168 146 sdc 
 

F4/80 146 159 sdc 
 

LY6C 150 162 sdc 
 

LY6G 141 174 sdc different 

clone 

MHCII 209 209 same 
 

Table 4. Common channels used for batch correction testing with 9 batches 

sdc – shared antibody, different channel 
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Expanded View Figures and Legends  
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Figure EV1 - Batch correction testing with 9 testing batches using two different panels with 
18 common channels including shared different channels (sdc).  

The 9 batches contain a total of 54 files (no HFD files) of CD45+ live cells with 5420 cells per file.  

A Cydar intensity distribution plots showing the third sample from all 9 batches. Intensities were 

plotted after arcsinh transformation for uncorrected, warp, quantile, and range corrected files. 

Three representative phenotyping channels are shown. Black arrows indicate the quantile density 

distribution that does not match the original uncorrected data.  

B Representative viSNE marker heat plots from 1 sample (E0771_1-C1) from a viSNE run where 

the warp and range corrected files for all 9 batches were run together. Range and warp plots are 

shown on the same scale; intensity heat scales vary between markers.  

C Three separate viSNE runs using the same seed (1794942912) were performed for each: 

uncorrected, warp corrected, and range corrected datasets. Black and pink arrows indicate 

warping artifacts.  

D Linear regression with R squared values comparing warp and range tSNE coordinates from 

data in panel B.  
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Figure EV2 - Immune infiltrate metacluster abundance between breast and pancreatic 
cancer.  

A Heat map of arcsinh transformed batch corrected median marker intensity for the 37 clusters 

(left labels) and 28 markers (bottom labels). The 21 metaclusters are indicated by row spacing 

and numbers to the right. Row order is the same as in Figure 4A.  

B Min to max box and whiskers plots with all points showing, median is the vertical line, dot is the 

mean. The plots show metacluster abundance from the combined breast cancer and pancreatic 

cancer non-obese murine tumors. Significant p values are displayed on the plot.  

C Pie charts showing the relative mean abundance of the immune metaclusters between 

pancreatic and breast cancer tumor models (data from chow-fed non-obese murine tumors only).  
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Figure EV3 - T cell analysis and CITRUS significant cluster abundance.  

A Percent of CD4 T cells out of total T cells for all tumor models.  

B Percent of T cells out of total CD45+ immune infiltrating cells for all tumor models.  

C Abundance plots for significant CITRUS clusters from E0771 SAM CITRUS analysis. Color-

coding corresponds to Figure 6C, D. 
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