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Abstract Automated visual tracking of animals is rapidly becoming an indispensable tool for11

the study of behavior. It offers a quantitative methodology by which organisms’ sensing and12

decision-making can be studied in a wide range of ecological contexts. Despite this, existing13

solutions tend to be challenging to deploy in practice, especially when considering long and/or14

high-resolution video streams. Here, we present TRex, a fast and easy-to-use solution for tracking15

a large number of individuals simultaneously with real-time (60Hz) tracking performance for up16

to approximately 256 individuals and estimates 2D body postures and visual fields, both in open-17

and closed-loop contexts. Additionally, TRex offers highly-accurate, deep-learning-based visual18

identification of up to approximately 100 unmarked individuals, where it is between 2.5-46.719

times faster, and requires 2-10 times less memory, than comparable software (with relative20

performance increasing for more organisms and longer videos) and provides interactive21

visualization and data-exploration within an intuitive, platform-independent graphical user22

interface.23

24

Introduction25

Tracking multiple moving animals (and multiple objects, generally) is important in various fields of26

research such as behavioral studies, ecophysiology, biomechanics, and neuroscience (Dell et al.27

(2014)). Many tracking algorithms have been proposed in recent years (Ohayon et al. (2013), Fuku-28

naga et al. (2015), Burgos-Artizzu et al. (2012), Rasch et al. (2016)), often limited to/only tested with29

a particular organism (Hewitt et al. (2018), Branson et al. (2009)) or type of organism (e.g. pro-30

tists, Pennekamp et al. (2015); fly larvae and worms, Risse et al. (2017)). Relatively few have been31

tested with a range of organisms and scenarios (Pérez-Escudero et al. (2014), Sridhar et al. (2019),32

Rodriguez et al. (2018)). Furthermore, many existing tools only have a specialized set of features,33

strugglewith very long or high-resolution (≥ 4K) videos, or simply take too long to yield results. Exist-34

ing fast algorithms are often severely limited with respect to the number of individuals that can be35

tracked simultaneously; for example xyTracker (Rasch et al. (2016)) allows for real-time tracking at36

40Hz while accurately maintaining identities, and thus is suitable for closed-loop experimentation37
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(experiments where stimulus presentation can depend on the real-time behaviors of the individ-38

uals, e.g. Bath et al. (2014), Brembs and Heisenberg (2000), Bianco and Engert (2015)), but has a39

limit of being able to track only 5 individuals simultaneously. ToxTrac (Rodriguez et al. (2018)), a40

software comparable to xyTracker in it’s set of features, is limited to 20 individuals and relatively41

low frame-rates (≤25fps). Others, while implementing a wide range of features and offering high-42

performance tracking, are costly and thus limited in access (Noldus et al. (2001)). Perhaps with43

the exception of proprietary software, one major problem at present is the severe fragmentation44

of features across the various software solutions. For example, experimentalists must typically45

construct work-flows from many individual tools: One tool might be responsible for estimating46

the animal’s positions, another for estimating their posture, another one for reconstructing visual47

fields (which in turn probably also estimates animal posture, but does not export it in any way)48

and one for keeping identities – correcting results of other tools post-hoc. It can take a very long49

time to make them all work effectively together, adding what is often considerable overhead to50

behavioral studies.51

TRex, the software released with this publication (available at trex.run under an Open-Source52

license), has been designed to address these problems, and thus to provide a powerful, fast and53

easy to use tool that will be of use in a wide range of behavioral studies. It allows users to track54

moving objects/animals, as long as there is a way to separate them from the background (e.g.55

static backgrounds, custommasks, as discussed below). In addition to the positions of individuals,56

our software provides other per-individual metrics such as body shape and, if applicable, head-57

/tail-position. This is achieved using a basic posture analysis, which works out of the box for most58

organisms, and, if required, can be easily adapted for others. Posture information, which includes59

the body center-line, can be useful for detecting e.g. courtship displays and other behaviors that60

might not otherwise be obvious from mere positional data. Additionally, with the visual sense61

often being one of the most important modalities to consider in behavioral research, we include62

the capability for users to obtain a computational reconstruction of the visual fields of all individuals63

(Strandburg-Peshkin et al. 2013, Rosenthal et al. 2015). This not only reveals which individuals are64

visible from an individual’s point-of-view, as well as the distance to them, but also which parts of65

others’ bodies are visible.66

Included in the software package is a task-specific tool, TGrabs, that is employed to pre-process67

existing videofiles andwhich allowsusers to recorddirectly fromcameras capable of live-streaming68

to a computer (with extensible support from generic webcams to high-end machine vision cam-69

eras). It supports most of the above-mentioned tracking features (positions, posture, visual field)70

and provides access to results immediately while continuing to record/process. This not only saves71

time, since tracking results are available immediately after the trial, butmakes closed-loop support72

possible for large groups of individuals (≤ 128 individuals). TRex and TGrabs are written in C++ but,73

as part of our closed-loop support, we are providing a Python-based general scripting interface74

which can be fully customized by the user without the need to recompile or relaunch. This inter-75

face allows for compatibility with external programs (e.g. for closed-loop stimulus-presentation)76

and other custom extensions.77

The fast tracking described above employs information about the kinematics of each organ-78

ism in order to try to maintain their identities. This is very fast and useful in many scenarios, e.g.79

where general assessments about group properties (group centroid, alignment of individuals, den-80

sity, etc.) are to be made. However, when making conclusions about individuals instead, main-81

taining identities perfectly throughout the video is a critical requirement. Every tracking method82

inevitably makes mistakes, which, for small groups of two or three individuals or short videos, can83

be corrected manually – at the expense of spending much more time on analysis, which rapidly84

becomes prohibitive as the number of individuals to be tracked increases. Tomakematters worse,85

when multiple individuals stay out of view of the camera for too long (such as if individuals move86

out of frame, under a shelter, or occlude one another) there is no way to know who is whom87

once they re-emerge. With no baseline truth available (e.g. using physical tags as in Alarcón-Nieto88
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et al. (2018), Nagy et al. (2013); or marker-less methods as in Pérez-Escudero et al. (2014), Romero-89

Ferrero et al. (2019), Rasch et al. (2016)), thesemistakes can not be corrected and accumulate over90

time, until eventually all identities are fully shuffled. To solve this problem (and without the need91

to mark, or add physical tags to individuals), TRex can, at the cost of spending more time on analy-92

sis (and thus not during live-tracking), automatically learn the identity of up to approximately 10093

unmarked individuals based on their visual appearance. This machine-learning based approach,94

herein termed visual identification, provides an independent source of information on the identity95

of individuals, which is used to detect and correct potential tracking mistakes without the need for96

human supervision.97

In this paper, we will describe the most important functions of the software in a typical order98

of execution. This is followed by an evaluation of these functions in terms of speed and reliability99

using a wide range of experimental systems, including termites, fruit flies, locusts and multiple100

species of schooling fish (although we stress that our software is not limited to such species).101

Specifically regarding the visual identification of unmarked individuals in groups, idtracker.ai102

is currently state-of-the-art, yielding high-accuracy (>99% in most cases) in maintaining consistent103

identity assignments across entire videos (Romero-Ferrero et al. (2019)). Similarly to TRex, this is104

achieved by training an artificial neural network to visually differentiate between individuals, and105

using identity predictions from this network to avoid/correct tracking mistakes. Both approaches106

work without human supervision, and are limited to approximately 100 individuals. Given that107

idtracker.ai is the only currently available tool with visual identification for such large groups of108

individuals, and also because of the quality of results, we will use it as a benchmark for our visual109

identification system. Results will be compared in terms of both accuracy and computation speed,110

showing TRex’ ability to achieve the same high level of accuracy but typically at far higher speeds,111

and with a much reduced memory requirement.112

TRex is platform-independent and runs on allmajor operating systems (Linux,Windows,macOS)113

and offers complete batch processing support, allowing users to efficiently process entire sets114

of videos without requiring human intervention. All parameters can be accessed either through115

settings files, from within the graphical user interface (or GUI), or using the command-line. The116

user interface supports off-site access using a built-in web-server (although it is recommended to117

only use this from within a secure VPN environment). Available parameters are explained in the118

documentation directly as part of the GUI and on an external website (see below). Results can be119

exported to independent data-containers (NPZ or CSV) for further analyses in software of the user’s120

choosing. We will not go into detail regarding the many GUI functions since albeit being of great121

utility to the researcher, they are only the means to easily apply the features presented herein.122

Some examples will be given in the main text and appendix, but a comprehensive collection of all123

of them, as well as detailed documentation, is available in the up-to-date online-documentation124

which can be found at trex.run/docs.125

Methods126

In the following sections we will explore some of the methods implemented in TRex and TGrabs,127

as well as their most important features in a typical order of operations (see Figure 2 for a flow128

diagram), starting outwith a raw video. Wewill thendescribe how trajectories are obtained andend129

with themost technically involved features. The workflow for using our software is straightforward130

and can be summarized in four stages:131

1. Segmentation in TGrabs. When recording a videoor converting a previously recordedfile (e.g.132

MP4, .AVI, etc.), it is segmented into background and foreground-objects (blobs). Results are133

saved to a custom, non-proprietary video format (PV) (Figure 1a).134

2. Tracking the video, either directly in TGrabs, or after preprocessing in TRex with access to135

customizable visualizations and the ability to change tracking parameters on-the-fly. Here, we136

will describe two types of data available within TRex, 2D posture- and visual-field estimation,137
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as well as real-time applications of such data (Figure 1b).138

3. We then go into detail on how to train a neural network to perform visual identification of indi-139

viduals, used in the process of automatic identity correction (Figure 1c). This step may not140

be necessary in many cases, but it is the only way to guarantee consistent identities through-141

out the video. It is also the most time-consuming step, as well as the only one involving ma-142

chine learning. All previously collected posture- and other tracking-related data are utilized143

in this step, placing it late in a typical workflow.144

4. Data visualization is a critical component of any research project, especially for unfamiliar145

datasets, but manually crafting one for every new experiment can be very time-consuming.146

Thus, TRex offers a universal, highly customizable, way to make all collected data available147

for interactive exploration (Figure 1d) – allowing users to change many display options and148

recording video clips for external playback. Tracking parameters can be adjusted on the fly149

(many with visual feedback) – important e.g. when preparing a closed-loop feedback with a150

new species or setup.151

TGrabs TGrabs + TRex

TGrabs

(a) (b)

TRex

(c) (d)Segmentation (real-time)
- lighting correction
- undistortion
- cropping
- background subtraction
- custom segmentation masks

Tracking (real-time)
- position-related data
- posture-related data
- visual fields

- live tracking & customizable 
  closed-loop feedback

Automatic identity
correction (optional)
- up to 100 individuals
- supports area-of-interest
- hours of video in ~1-2x real-time
- largely idependent of organism

Exploration
interactively explore ...
- all tracking-data
- visual field networks
- individualized live-heatmaps

export ...
- showcase videos with - showcase videos with 
  in-video camera movement
- normalized, cropped images 
  of individuals

and much more ...

Figure 1. Videos are typically processed in four main stages, illustrated here each with a list of prominent features. Some of them are accessiblefrom both TRex and TGrabs, while others are software specific (as shown at the very top). (a) The video is either recorded directly with oursoftware (TGrabs), or converted from a pre-recorded video file. Live-tracking enables users to perform closed-loop experiments, for which avirtual testing environment is provided. (b) Videos can be tracked and parameters adjusted with visual feedback. Various exploration and datapresentation features are provided and customized data streams can be exported for use in external software. (c) After successful tracking,automatic visual identification can, optionally, be used to refine results. An artificial neural network is trained to recognize individuals, helping toautomatically correct potential tracking mistakes. In the last stage, many graphical tools are available to users of TRex, a selection of which islisted in (d).

Segmentation152

When an image is first received from a camera (or a video file), the objects of interest potentially153

present in the framemust be detected and cropped out. Several technologies are available to sep-154

arate the foreground from the background. Various machine learning algorithms are frequently155

used to great effect, even for the most complex environments (Hughey et al. 2018, Robie et al.156

2017, Francisco et al. 2019). These more advanced approaches are typically beneficial for the anal-157

ysis of field-data or organisms that are very hard to see in video (e.g. very transparent or low158

contrast objects/animals in the scene). However, for most laboratory experiments, simpler (and159
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also much faster), classical image-processing methods yield satisfactory results. More advanced160

techniques like luminance equalization, which e.g. is useful when lighting varies between images,161

image undistortion, and brightness/contrast adjustments are available in TGrabs – but are costlier162

in terms of processing time. Thus, while it is certainly possible to segment objects from the back-163

ground using external, e.g. deep-learning based, tools, we provide as a generically-useful capability164

background-subtraction. This can be used immediately in experiments where there are relatively165

static backgrounds. These are generated automatically by uniformly sampling images from the166

source video(s) – different modes are available (min/max, mode and mean) for the user to choose167

from. Importantly, since many behavioral studies rely on ≥ 4K resolution videos, we heavily utilize168

the GPU (if available) to speed up most of the image-processing, allowing TRex to scale well with169

increasing image resolution.170

TRex allows users to track anything as long as either (i) the background is relatively static while171

the objects move at least occasionally, (ii) the objects/animals of interest have enough contrast172

to the background or (iii) the user provides an additional binary mask per frame which is used to173

separate the objects to be tracked from the background, the typical means of doing this being by174

deep-learning based segmentation (e.g. Caelles et al. 2017). These masks are expected to be in a175

video-format themselves and correspond 1:1 in length and dimensions to the video that is to be176

analyzed. They are expected to be binary, marking individuals in white and background in black.177

Of course, these binary videos could be tracked on their own, but would not retain grey-scale178

information. There are a lot of possible applications where this could be useful; but generally,179

whenever individuals are really hard to detect visually and need to be recognized by a different180

software (e.g. a machine-learning-based detection likeManinis et al. 2018). Individual frames can181

then be connected using our software as a second step.182

The detected objects are saved to a custom non-proprietary compressed file format (Prepro-183

cessed Video or PV, see appendix The PV file format), that stores only themost essential information184

from the original video stream: the objects and their pixel positions and values. This format is opti-185

mized for quick random index access by the tracking software and stores other meta-information186

(like frame timings) utilized during playback or analysis. When recording videos directly from a187

camera, they can also be streamed to an additional and independent MP4 container format (plus188

information establishing the mapping between PV and MP4 video frames).189

Tracking190

Once animals (or, more generally, termed "objects" henceforth) have been successfully segmented191

from the background, we can either use the live-tracking feature in TGrabs or open a preprocessed192

file in TRex, to generate the trajectories of these objects. This process uses information regarding193

an object’s movement (i.e. its kinematics) to follow it across frames, estimating future positions194

based on previous velocity and angular speed. It will be referred to as "tracking" in the following195

text, and is a required step in all workflows.196

Note that this approach alone is very fast, but, as will be shown, is subject to error with respect197

to maintaining individual identities. If that is required, there is a further step, outlined in Auto-198

matic Visual Identification Based on Machine Learning below, which can be applied at the cost of199

processing speed. First, however, we will discuss the general basis of tracking, which is common200

to approaches that do, and do not, require identities to be maintained with high-fidelity. Tracking201

can occur for two distinct categories, which are handled slightly differently by our software:202

1. there is a known number of objects203

2. there is an unknown number of objects204

The first case assumes that the number of tracked objects in a frame cannot exceed a certain205

expected number of objects (detected automatically or set by the user). This allows the algorithm206

to make stronger assumptions, for example regarding noise, where otherwise "valid" objects (con-207

forming to size expectations) are ignored due to their positioning in the scene (e.g. too far away208
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Segmentation /
Closed-loop

Tracking /
Visual Identification /

Exploration

Exports

File Camera

TGrabs

tracking data
(.npz / .csv)

raw video
(.mp4)

TRex

preproc. 
video (.pv)

quick load
(.results)

live-tracking and
closed-loop

Figure 2. An overview of the interconnection between TRex, TGrabs and their data in- and output formats,with titles on the left corresponding to the stages in Figure 1. Starting at the top of the figure, video is eitherstreamed to TGrabs from a file or directly from a compatible camera. At this stage, preprocessed data aresaved to a .pv file which can be read by TRex later on. Thanks to its integration with parts of the TRex code,
TGrabs can also perform online tracking for limited numbers of individuals, and save results to a .results file(that can be opened by TRex) along with individual tracking data saved to numpy data-containers (.npz), whichcan be used for analysis in third-party applications. If required, videos recorded directly using TGrabs can alsobe streamed to a .mp4 video file which can be viewed in commonly available video players like VLC.

from previously lost individuals). In the second case, new objects may be generated until all viable209

objects in a frame are assigned. While being more susceptible to noise, this is useful for tracking210

a large number of objects, where counting objects may not be possible, or where there is a highly211

variable number of objects to be tracked.212

For a given video, our algorithm processes every frame sequentially, extending existing trajec-213

tories (if possible) for each of the objects found in the current frame. Every object can only be214

assigned to one trajectory, but some objects may not be assigned to any trajectory (e.g. in case the215

number of objects exceeds the allowed number of individuals) and some trajectories might not216

be assigned to any object (e.g. while objects are out of view). To estimate object identities across217

frames we use an approach akin to the popular Kalman filter (Kalman, 1960) which makes pre-218

dictions based on multiple noisy data streams (here, positional history and posture information).219

In the initial frame, objects are simply assigned from top-left to bottom-right. In all other frames,220

assignments are made based on probabilities (see appendix Matching an object to an object in the221

next frame) calculated for every combination of object and trajectory. These probabilities repre-222

sent the degree towhich the programbelieves that "itmakes sense" to extend an existing trajectory223

with an object in the current frame, given its position and speed. Our tracking algorithm only con-224

siders assignments with probabilities larger than a certain threshold, generally constrained to a225

certain proximity around an object assigned in the previous frame.226

Matching a set of objects in one frame with a set of objects in the next frame is representative227

of a typical assignment problem, which can be solved in polynomial time (e.g. using the Hungar-228

ian method Kuhn 1955). However, we found that, in practice, the computational complexity of229

the Hungarian method can constrain analysis speed to such a degree that we decided to imple-230

ment a custom algorithm, which we term tree-based matching, which has a better average-case231

performance (see evaluation), even while having a comparatively bad worst-case complexity. Our232

algorithm constructs a tree of all possible object/trajectory combinations in the frame and tries to233
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find a compatible (such that no objects/trajectories are assigned twice) set of choices, maximizing234

the sum of probabilities amongst these choices (described in detail in the appendix Matching an235

object to an object in the next frame). Problematic are situations where a large number of objects236

are in close proximity of one another, since then the number of possible sets of choices grows ex-237

ponentially. These situations are avoided by using a mixed approach: tree-basedmatching is used238

most of the time, but as soon as the combinatorical complexity of a certain situation becomes too239

great, our software falls back on using the Hungarian method. If videos are known to be prob-240

lematic throughout (e.g. with >100 individuals consistently very close to each other), the user may241

choose to use an approximate method instead (described in the appendix section 4), which simply242

iterates through all objects and assigns each to the trajectory for which it has the highest proba-243

bility and subsequently does not consider whether another object has an even higher probability244

for that trajectory. While the approximate method scales better with an increasing number of in-245

dividuals, it is "wrong" (seeing as it does not consider all possible combinations) – which is why it is246

not recommended unless strictly necessary. However, since it does not consider all combinations,247

making it more sensitive to parameter choice, it scales better for very large numbers of objects248

and produces results good enough for it to be useful in very large groups (see appendix Table A2).249

Situations where objects/individuals are touching, partly overlapping, or even completely over-250

lapping, is an issue that all tracking solutions have to deal with in someway. The first problem is the251

detection of such an overlap/crossing, the second is its resolution. idtracker.ai, for example, deals252

only with the first problem: It trains a neural network to detect crossings and essentially ignores253

the involved individuals until the problem is resolved by movement of the individuals themselves.254

However, using such an image-based approach can never be fully independent of the species or255

even video (it has to be retrained for each specific experiment) while also being time-costly to use.256

In some cases the size of objects might indicate that they contain multiple overlapping objects,257

while other cases might not allow for such an easy distinction – e.g. when sexually dimorphic ani-258

mals (ormultiple species) are present at the same time. Wepropose amethod, similar to xyTracker259

in that it uses the object’s movement history to detect overlaps. If there are fewer objects in a re-260

gion than would be expected by looking at previous frames, an attempt is made to split the biggest261

ones in that area. The size of that area is estimated using themaximal speed objects are allowed to262

travel per frame (parameter, see documentation track_max_speed). This, of course, requires rela-263

tively good predictions or, alternatively, high frame-rates relative to the object’s movement speeds264

(which are likely necessary anyway to observe behavior at the appropriate time-scales).265

By default, objects suspected to contain overlapping individuals are split by thresholding their266

background-difference image (see appendix section 11), continuously increasing the threshold un-267

til the expected number (or more) similarly sized objects are found. Greyscale values and, more268

generally, the shading of three-dimensional objects and animals often produces a natural gradi-269

ent (see for example Figure 4) making this process surprisingly effective for many of the species270

we tested with. Even when there is almost no visible gradient and thresholding produces holes in-271

side objects, objects are still successfully separated with this approach. Missing pixels from inside272

the objects can even be regenerated afterwards. The algorithm fails, however, if the remaining273

objects are too small or are too different in size, in which case the overlapping objects will not be274

assigned to any trajectory until all involved objects are found again separately in a later frame.275

After an object is assigned to a specific trajectory, two kinds of data (posture and visual-fields)276

are calculated and made available to the user, which will each be described in one of the follow-277

ing subsections. In the last subsection, we outline how these can be utilized in real-time tracking278

situations.279

Posture Analysis280

Groups of animals are oftenmodeled as systems of simple particles (Inada and Kawachi 2002, Cav-281

agna et al. 2010, Pérez-Escudero and de Polavieja 2011), a reasonable simplification which helps282

to formalize/predict behavior. However, intricate behaviors, like courtship displays, can only be283
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fully observed once the body shape and orientation are considered (e.g. using tools such as Deep-284

PoseKit, Graving et al. 2019, and DeepLabCut, Mathis et al. 2018). TRex does not track individual285

body parts apart from the head and tail (where applicable), but even the included simple and fast286

2D posture estimator already allows for deductions to bemade about how an animal is positioned287

in space, bent and oriented – crucial e.g. when trying to estimate the position of eyes/antennae288

as part of an analysis, where this is required (e.g. Strandburg-Peshkin et al. 2013, Rosenthal et al.289

2015).290

In TRex, the 2D posture of an animal consists of (i) an outline around the outer edge of a blob,291

(ii) a center-line (ormidline for short) that curves with the body and (iii) positions on the outline that292

represent the front and rear of the animal (typically head and tail). Our only assumptions here are293

that the animal is bilateral with a mirror-axis through its center and that it has a beginning and an294

end, and that the camera-view is roughly perpendicular to this axis. This is true for most animals,295

but may not hold e.g. for jellyfish (with radial symmetry) or animals with different symmetries (e.g.296

radiolaria (protozoa) with spherical symmetry). Still, as long as the animal is not exactly circular297

from the perspective of the camera, the midline will follow its longest axis and a posture can be298

estimated successfully. The algorithm implemented in our software is run for every (cropped out)299

image of an individual and processes it as follows:300

i. A tree-based approach follows edge pixels around an object in a clock-wise manner. Drawing301

the line around pixels, as implemented here, instead of through their centers, as done in compa-302

rable approaches, helps with very small objects (e.g. one single pixel would still be represented as303

a valid outline, instead of a single point).304

ii. The pointiest end of the outline is assumed, by default, to be either the tail or the head305

(based on curvature and area between the outline points in question). Assignment of head vs. tail306

can be set by the user, seeing as some animals might have "pointier" heads than tails (e.g. termite307

workers, one of the examples we employ). Posture data coming directly from an image can be very308

noisy, which is why the program offers options to simplify outline shapes using an Elliptical Fourier309

Transform (EFT, see Iwata et al. 2015, Kuhl and Giardina 1982) or smoothing via a simple weighted310

average across points of the curve (inspired by common subdivision techniques, see Warren and311

Weimer 2001). The EFT allows for the user to set the desired level of approximation detail (via the312

number of elliptic fourier descriptors, EFDs) and thus make it "rounder" and less jittery. Using an313

EFTwith just two descriptors is equivalent to fitting an ellipse to the animal’s shape (as, for example,314

xyTracker does), which is the simplest supported representation of an animal’s body.315

iii. The reference-point chosen in (ii) marks the start for themidline-algorithm. It walks both left316

and right from this point, always trying to move approximately the same distance on the outline317

(with limited wiggle-room), while at the same timeminimizing the distance from the left to the right318

point. This works well for most shapes and also automatically yields distances between a midline319

point and its corresponding two points on the outline, estimating thickness of this object’s body at320

this point.321

Compared to the tracking itself, posture estimation is a time-consuming process and can be322

disabled. It is, however, required to estimate – and subsequently normalize – an animal’s orienta-323

tion in space (e.g. required later in Automatic Visual Identification Based on Machine Learning), or324

to reconstruct their visual field as described in the following sub-section.325

Reconstructing 2D Visual Fields326

Visual input is an important modality for many species (e.g. fish Strandburg-Peshkin et al. 2013,327

Bilotta and Saszik 2001 and humans Colavita 1974). Due to its importance in widely usedmodel or-328

ganisms like zebrafish (Danio rerio), we decided to include the capability to conduct a 2-dimensional329

reconstruction of each individual’s visual field as part of the software. The requirements for this330

are successful posture estimation and that individuals are viewed from above, as is usually the331

case in laboratory studies.332

The algorithm makes use of the fact that outlines have already been calculated during posture333
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Figure 3. Visual field estimate of the individual in the center (zoomed in, the individuals in this image areapproximately 2-3cm long). Right (blue) and left (orange) fields of view intersect in the binocular region in thebottom-center. Most individuals can be seen directly by the focal individual, which has a wide field of view of
260◦ per eye. The yellow individual on the bottom-right is not detected by the focal individual directly(visualized by grey lines here). However, these second-order intersections are saved and accessible through aseparate layer in the exported data.

estimation. Eye positions are estimated to be evenly distanced from the "snout" and will be spaced334

apart depending on the thickness of the body at that point (the distance is based on a ratio, relative335

to body-size, which can be adjusted by the user). Eye orientation is also adjustable, which influ-336

ences the size of the stereoscopic part of the visual field. We then use ray-casting to intersect rays337

from each of the eyes with all other individuals as well as the focal individual itself (self-occlusion).338

Individuals not detected in the current frame are approximated using the last available posture.339

Data are organized as a multi-layered 1D-image of fixed size for each frame, with each image prep-340

resenting angles from −180◦ to 180◦ for the given frame. Simulating a limited field-of-view would341

thus be as simple as cropping parts of these images off the left and right sides. The different layers342

per pixel encode:343

1. identity of the occluder344

2. distance to the occluder345

3. body-part that was hit (distance from the head on the outline in percent)346

While the individuals viewed from above on a computer screen look 2-dimensional, one major347

disadvantage of any 2D approach is, of course, that it is merely a projection of the 3D scene. Any348

visual field estimator has to assume that, from an individual’s perspective, other individuals act349

as an occluder in all instances (see Figure 3). This may only be partly true in the real world, de-350

pending on the experimental design, as other individuals may be able to move slightly below, or351

above, the focal individuals line-of-sight, revealing otherwise occluded conspecifics behind them.352

We therefore support multiple occlusion-layers, allowing second-order and Nth-order occlusions353

to be calculated for each individual.354

Realtime Tracking Option for Closed-Loop Experiments355

Live tracking is supported, as an option to the user, during the recording, or conversion, of a video356

in TGrabs. When closed-loop feedback is enabled, TGrabs focusses onmaintaining stable recording357

frame-rates and may not track recorded frames if tracking takes too long. This is done to ensure358
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that the recorded file can later be tracked again in full/with higher accuracy (thus no information is359

lost) if required, and to help the closed-loop feedback to stay synchronized with real-world events.360

During development we worked with a mid-range gaming computer and Basler cameras at 90fps361

and 20482px resolution, where drawbacks did not occur. Running the program on computers with362

outdated or very low-end hardware may, however, affect frame-rates.363

TRex loads a prepared Python script, handing down an array of data per individual in every364

frame. Which data fields are being generated and sent to the script is selected by the script. Avail-365

able fields are:366

• Position367

• Midline information368

• Visual field369

If the script (or the tracking itself) takes too long to execute each frame, more frames are370

dropped until a stable frame rate can be achieved. This scales well for all computer-systems, but371

may, with significantly decreasing frame-rates (such as if run on very outdated hardware), result in372

very fragmented data and worse identity assignment. When the program terminates, the tracked373

individual’s data are exported - along with a results file that can be loaded by the tracker at a374

later time.375

In order tomake this interface easy to use for prototyping and to debug experiments, the script376

may be changed during its run-time and will be reloaded if necessary. Errors in the Python code377

lead to a temporary pause of the closed-loop part of the program (not the recording) until all errors378

have been fixed.379

Additionally, thanks to Python being a fully-featured scripting language, it is also possible to380

call and send information to other programs during real-time tracking. Communication with other381

external programs may be necessary whenever easy-to-use Python interfaces are not available for382

e.g. hardware being used by the experimenter.383

Automatic Visual Identification Based on Machine Learning384

Tracking, when it is only based on individual’s positional history, can be very accurate under good385

circumstances and is currently the fastest way to analyse video recordings or to perform closed-386

loop experiments. However, such tracking methods simply do not have access to enough informa-387

tion to allow them to ensure identities are maintained for the duration of most entire trials – small388

mistakes can and will happen. There are cases, e.g. when studying polarity (only based on short389

trajectory segments), or other general group-level assessments, where this is acceptable and iden-390

tities do not have to be maintained perfectly. However, consistent identities are required in many391

individual-level assessments, and with no baseline truth available to correct mistakes, errors start392

accumulating until eventually all identities are fully shuffled. Even a hypothetical, perfect tracking393

algorithm will not be able to yield correct results in all situations as multiple individuals might go394

out of view at the same time (e.g. hiding under cover or just occluded by other animals). There is395

no way to tell who is whom, once they re-emerge.396

The only way to solve this problem is by providing an independent source of information from397

which to infer identity of individuals, which is of course a principle we make use of all the time398

in our everyday lives: Facial identification of con-specifics is something that comes easily to most399

of us, to an extent where we sometimes recognize face-like features where there aren’t any. Our400

natural tendency to find patterns enables us to train experts on recognizing differences between401

animals, even when they belong to a completely different taxonomic order. Tracking individuals is402

a demanding task, especially with large numbers of moving animals (Liu et al. 2009 shows humans403

to be effective for up to 4 objects). Human observers are able to solve simple memory recall tasks404

for 39 objects at only 92% correct (see Humphrey and Khan 1992), where the presented objects405

do not even have to be identified individually (just classified as old/new) and contain more inher-406

ent variation than most con-specific animals would. Even with this being true, human observers407
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are still the most efficient solution in some cases (e.g. for long-lived animals in complex habitats).408

Enhancing visual inter-individual differences by attaching physical tags is an effective way to make409

the task easier and more straight-forward to automate. RFID tags are great at maintaining iden-410

tities and useful in many situations, but are also limited since individuals have to be in very close411

proximity to a sensor in order to be detected (Bonter and Bridge, 2011). Attaching QR codes to412

animals allows for a very large number of individuals to be uniquely identified at the same time413

(Mersch et al. 2013, Crall et al. 2015 theoretically up to 7000) – and over greater distance than RFID414

tags. Generating codes can also be automated, generating tags with optimal visual inter-marker415

distances (Garrido-Jurado et al., 2016), making it feasible to identify a large number of individuals416

with minimal tracking mistakes.417

While physical tagging is often an effective method by which to identify individuals, it requires418

animals to be caught andmanipulated, which can be difficult (Mersch et al., 2013) and is subject to419

the physical limitations of the respective system. Tags have to be large enough so a program can420

recognize it in a video stream. Even worse, especially with increased relative tag-size, the animal’s421

behavior may be affected by the presence of the tag, and theremight be no way for experimenters422

to necessarily know that it did. In addition, for some animals, like fish and termites, attachment of423

tags that are effective for discriminating among a large number of individuals can be problematic424

or impossible.425

Recognizing such issues, (Pérez-Escudero et al., 2014) first proposed an algorithm termed idtracker,426

generalizing the process of pattern recognition for a range of different species. Training an expert427

program to tell individuals apart, by detecting slight differences in patterning on their bodies, al-428

lows the correction of identities without any human involvement. Evenwhile being limited to about429

15 individuals per group, this was a very promising approach. It becamemuch improved upon only430

a few years later by the same group in their software idtracker.ai (Romero-Ferrero et al., 2019),431

implementing a paradigm shift from explicit, hard-coded, color-difference detection to using more432

general machine learning methods instead – increasing the supported group size by an order of433

magnitude.434

Weemploy amethod for visual identification in TRex that is similar to the oneused in idtracker.ai,435

where a neural network is trained to visually recognize individuals and is used to correct tracking436

mistakes automatically, without human intervention – the network layout (see Figure 1c) is almost437

the same as well (differing only by the addition of a pre-processing layer and using 2D- instead438

of 1D-dropout layers). However, in TRex, processing speed and chances of success are improved439

(the former being greatly improved) by (i) minimizing the variance landscape of the problem and440

(ii) exploring the landscape to our best ability, optimally covering all poses and lighting-conditions441

an individual can be in, as well as (iii) shortening the training duration by significantly altering the442

training process – e.g. choosing new samplesmore adaptively and using different stopping-criteria443

(accuracy, as well as speed, are part of the later evaluation).444

While Tracking already tries to (within each trajectory) consistently follow the same individual,445

there is no way to ensure/check the validity of this process without providing independent identity446

information. Generating this source of information, based on the visual appearance of individu-447

als, is what the algorithm for visual identification, described in the following subsections, aims to448

achieve. Re-stated simply, the goal of using automatic visual identification is to obtain reliable pre-449

dictions of the identities of all (or most) objects in each frame. Assuming these predictions are of450

sufficient quality, they can be used to detect and correct potential mistakes made during Tracking451

by looking for identity switches within trajectories. Ensuring that predicted identities within trajec-452

tories are consistent, by proxy, also ensures that each trajectory is consistently associated with a453

single, real individual. In the following, before describing the four stages of that algorithm, we will454

point out key aspects of how tracking/image data are processed and how we addressed the points455

(i)-(iii) above and especially highlight the features that ultimately improved performance compared456

to other solutions.457
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Preparing Tracking-Data458

Visual identification starts out only with the trajectories that the Tracking provides. Tracking, on its459

own, is already an improvement over other solutions, especially since (unlike e.g. idtracker.ai)460

TRex makes an effort to separate overlapping objects (see the Algorithm for splitting touching indi-461

viduals) and thus is able to keep track of individuals for longer (see appendix Figure A2). Here, we462

– quite conservatively – assume that, after every problematic situation (defined in the list below),463

the assignments made by our tracking algorithm are wrong. Whenever a problematic situation is464

encountered as part of a trajectory, we split the trajectory at that point. This way, all trajectories465

of all individuals in a video become an assortment of trajectory snippets (termed "segments" from466

here on), which are clear of problematic situations, and for each of which the goal is to find the467

correct identity ("correct" meaning that identities are consistently assigned to the same real indi-468

vidual throughout the video). Situations are considered "problematic", and cause the trajectory to469

be split, when:470

• The individual has been lost for at least one frame. For example when individuals are471

moving unexpectedly fast, are occluded by other individuals/the environment, or simply not472

present anymore (e.g. eaten).473

• Uncertainty of assignment was too high (> 50%) e.g. due to very high movement speeds474

or extreme variation in size between frames. With simpler tracking tasks in mind, these seg-475

ments are kept as connected tracks, but regarded as separate ones here.476

• Timestamps suggest skipped frames. Missing frames in the video may cause wrong as-477

signments and are thus treated as if the individuals have been lost. This distinction can only478

be made if accurate frame timings are available (when recording using TGrabs or provided479

alongside the video files in separate npz files).480

Unless one of the above conditions becomes true, a segment is assumed to be consecutive481

and connected; that is, throughout the whole segment, no mistakes have been made that lead to482

identities being switched. Frames where all individuals are currently within one such segment at483

the same time will henceforth be termed global segments.484

Sincewe know that there are no problematic situations inside each per-individual segment, and485

thus also not across individuals within the range of a global segment, we can choose any global486

segment as a basis for an initial, arbitrary assignment of identities to trajectories. One of the most487

important steps of the identification algorithm then becomes deciding which global segment is488

the best starting point for the training. If a mistake is made here, consecutive predictions for other489

segments will fail and/or produce unreliable results in general.490

Only a limited set of global segments is kept – striking a balance between respecting user-given491

constraints and capturing as much of the variance as possible. In many of the videos used for492

evaluation, we found that only few segments had to be considered – however, computation time493

is ultimately bounded by reducing the number of qualifying segments. While this is true, it is also494

beneficial to avoid auto-correlation by incorporating samples from all sections of the video instead495

of only sourcing them from a small portion – to help achieve a balance, global segments are binned496

by their middle frame into four bins (each quarter of the video being a bin) and then reducing the497

number of segments inside each bin. With that goal in mind, we sort the segments within bins by498

their "quality" – a combination of two factors:499

1. To capture asmuch as possible the variation due to an individual’s ownmovement, as well as500

within the background that it moves across, a "good" segment should be a segment where501

all individuals move as much as possible and also travel as large a distance as possible. Thus,502

we derive a per-individual spatial coverage descriptor for the given segment by dissecting the503

arena (virtually) into a grid of equally sized, rectangular "cells" (depending on the aspect ratio504

of the video). Each time an individual’s center-pointmoves fromone cell to the next, a counter505

is incremented for that individual. To avoid situations where, for example, all individuals but506
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(a) No normalization. (b) Using the main body-axis (moments). (c) Using posture information.
Figure 4. Comparison of different normalization methods. Images all stem from the same video and belongto the same identity. The video has previously been automatically corrected using the visual identification.Each object visible here consists of N imagesMi, i ∈ [0, N] that have been accumulated into a single imageusing mini∈[0,N]Mi, with min being the element-wise minimum across images. The columns represent samesamples from the same frames, but normalized in three different ways: In (a), images have not beennormalized at all. Images in (b) have been normalized by aligning the objects along their main axis (calculatedusing image-moments), which only gives the axis within 0 to 180 degrees. In (c), all images have been alignedusing posture information generated during the tracking process. As the images become more and morerecognizable to us from left to right, the same applies to a network trying to tell identities apart: Reducingnoise in the data speeds up the learning process.

one are moving, we only use the lowest per-individual spatial coverage value to represent a507

given segment.508

2. It is beneficial to havemore examples for the network to learn from. Thus, as a second sorting509

criterion, we use the average number of samples per individual.510

After being sorted according to these two metrics, the list of segments per bin is reduced, ac-511

cording to a user-defined variable (4 by default), leaving only the most viable options per quarter512

of video.513

The number of visited cells may, at first, appear to be essentially equivalent to a spatially nor-514

malized distance travelled (as used in idtracker.ai). In edge cases, where individuals never stop515

or always stop, both metrics can be very similar. However, one can imagine an individual continu-516

ously moving around in the same corner of the arena, which would be counted as an equally good517

segment for that individual as if it had traversed thewhole arena (and thus capturing all variable en-518

vironmental factors). In most cases, using highly restricted movement for training is problematic,519

and worse than using a shorter segment of the individual moving diagonally through the entire520

space, since the latter captures more of the variation within background, lighting conditions and521

the animals movement in the process.522

Minimizing the Variance Landscape by Normalizing Samples523

A big strength of machine learning approaches is their resistance to noise in the data. Generally,524

any machine learning method will likely still converge - even with noisy data. Eliminating unnec-525

essary noise and degrees of freedom in the dataset, however, will typically help the network to526

converge much more quickly: Tasks that are easier to solve will of course also be solved more ac-527

curately within similar or smaller timescales. This is due to the optimizer not having to consider528

various parts of the possible parameter-space during training, or, put differently, shrinking the529

overall parameter-space to the smallest possible size without losing important information. The530

simplest such optimization included in most tracking and visual identification approaches is to seg-531

ment out the objects and centering the individuals in the cropped out images. This means that (i)532

the network does not have to consider the whole image, (ii) needs only to consider one individual533

at a time and (iii) the corners of the image can most likely be neglected.534

Further improving on this, approaches like idtracker.ai align all objects along their most-535

elongated axis, essentially removing global orientation as a degree of freedom. The orientation of536

an arbitrary object can be calculated e.g. using an approach often referred to as image-moments537
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(Hu, 1962), yielding an angle within [0 − 180]◦. Of course, this means that538

1. circular objects have a random (noisy) orientation539

2. elongated objects (e.g. fish) can be either head-first or flipped by 180◦ and there is no way to540

discriminate between those two cases (see second row, Figure 4)541

3. a C-shaped body deformation, for example, results in a slightly bent axis, meaning that the542

head will not be in exactly the same position as with a straight posture of the animal.543

Each of these issues adds to the things the network has to learn to account for, widening the544

parameter-space to be searched and increasing computation time. However, barring the first point,545

each problem can be tackled using the already available posture information. Knowing head and546

tail positions and points along the individual’s center-line, the individual’s heads can be locked547

roughly into a single position. This leaves room only for their rear end to move, reducing variation548

in the data to aminimum (see Figure 4). In addition to faster convergence, this also results in better549

generalization right from the start and even with a smaller number of samples per individual (see550

Figure 7).551

Guiding the Training Process552

Per batch, the stochastic gradient descent is directedby the local accuracy (a fraction of correct/total553

predictions), which is a simple and commonly used metric that has no prior knowledge of where554

the samples within a batch come from. This has the desirable consequence that no knowledge555

about the temporal arrangement of images is necessary in order to train and, more importantly,556

to apply the network later on.557

In order to achieve accurate results quickly across batches, while at the same timemaking it pos-558

sible to indicate to the user potentially problematic sequenceswithin the video, we devised ametric559

that can be used to estimate local as well as global training quality: We term this uniqueness and560

it combines information about objects within a frame, following the principle of non-duplication;561

images of individuals within the same frame are required to be assigned different identities by the562

networks predictions.563

The program generates image data for evenly spaced frames across the entire video. All images582

of tracked individuals within the selected frames are, after every epoch of the training, passed on583

to the network. It returns a vector of probabilities pij for each image i to be identity j ∈ [0, N], with584

N being the number of individuals. Based on these probabilities, uniqueness can be calculated as585

in Box 1, evenly covering the entire video. The magnitude of this probability vector per image is586

taken into account, rewarding strong predictions of maxj {pij} = 1 and punishing weak predictions587

of maxj {pij} < 1.588

Uniqueness is not integrated as part of the loss function, but it is used as a global gradient589

before and after each training unit in order to detect global improvements. Based on the average590

uniqueness calculated before and after a training unit, we can determine whether to stop the train-591

ing, or whether training on the current segmentmade our results worse (faulty data). If uniqueness592

is consistently high throughout the video, then training has been successful and wemay terminate593

early. Otherwise, valleys in the uniqueness curve indicate bad generalization and thus currently594

missing information regarding some of the individuals. In order to detect problematic sections of595

the video we search for values below 1 − 0.5
N
, meaning that the section potentially contains new596

information we should be adding to our training data. Using accuracy per-batch and then using597

uniqueness to determine global progress, we get the best of both worlds: A context-free prediction598

method that is trained on global segments that are strategically selected by utilizing local context599

information.600

The closest example of such a procedure in idtracker.ai is the termination criterion after601

protocol 1, which states that individual segments have to be consistent and certain enough in all602

global segments in order to stop iterating. While this seems to be similar at first, the way accu-603

racy is calculated and the terminology here are quite different: (i) Every metric in idtracker.ai’s604
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Box 1. Calculating uniqueness for a frame564565

Data: frame x566

Result: Uniqueness score for frame x567

uids = map{}568

p̂(i | b) is the probability of blob b to be identity i569

f (x) returns a list of the tracked objects in frame x570

E(v) = (1 + exp(−�)) ∕ (1 + exp(−�v)) is a shift of roughly +0.5 and non-linear scaling of
values 0 ≤ v ≤ 1

571

572

573

foreach object b ∈ f (x) do574

maxid = arg max
i

p̂(i | b) with i ∈ identities575

if maxid ∈ uids then576

uids[maxid] = max(uids[maxid], p̂(maxid, b))
else577

uids[maxid] = p̂(maxid, b)
end578

end579

return |uids|−1|f (x)| ∗ E
(

|uids|−1
(
∑

i∈uids uids[i]
))

580

Algorithm 1: The algorithm used to calculate the uniqueness score for an individual frame.
Probabilities p̂(i | b) are predictions by the pre-trained network. During the accumulation
these predictions will gradually improve proportional to the global training quality. Mul-
tiplying the unique percentage |uids|−1|f (x)| by the (scaled) mean probability deals with
cases of low accuracy, where individuals switch every frame (but uniquely).

581

final assessment after protocol 1 is calculated at segment-level, not utilizing per-frame information.605

Uniquenessworks per-frame, not per segment, and considers individual frames to be entirely inde-606

pendent from each other. It can be considered a much stronger constraint set upon the network’s607

predictive ability, seeing as it basically counts the number of times mistakes are estimated to have608

happened within single frames. Averaging only happens afterwards. (ii) The terminology of iden-609

tities being unique is only used in idtracker.ai once after procotol 1 and essentially as a binary610

value, not recognizing its potential as a descendable gradient. Images are simply added until a611

certain percentage of images has been reached, at which point accumulation is terminated. (iii)612

Testing uniqueness is much faster than testing network accuracy across segments, seeing as the613

same images are tested over and over again (meaning they can be cached) and the testing dataset614

can be much smaller due to its locality. Uniqueness thus provides a stronger gradient estimation,615

while at the same time being more local (meaning it can be used independently of whether images616

are part of global segments), as well as more manageable in terms of speed and memory size.617

In the next four sections, we describe the training phases of our algorithm (1-3), and how the618

successfully trained network can be used to automatically correct trajectories based on its predic-619

tions (4).620

1. The Initial Training Unit621

All global segments are considered and sorted by the criteria listed below in 2. Accumulation of622

Additional Segments and Stopping-Criteria. The best suitable segment from the beginning of that623

set of segments is used as the initial dataset for the network. Images are split into a training and624

a validation set (4:1 ratio). Efforts are made to equalize the sample sizes per class/identity before-625

hand, but there has to always be a trade-off between similar sample sizes (encouraging unbiased626

priors) and having asmany samples as possible available for the network to learn from. Thus, in or-627
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der to alleviate some of the severity of dealing with imbalanced datasets, the performance during628

training iterations is evaluated using a categorical focal loss function (Lin et al., 2017). Focal loss629

down-weighs classes that are already reliably predicted by the network and in turn emphasizes ne-630

glected classes. An Adam optimizer (Kingma and Ba, 2014) is used to traverse the loss landscape631

towards the global (or to at least a local) minimum.632

The network layout used for the classification in TRex (see Figure 1c) is a typical Convolutional633

Neural Network (CNN). The concepts of "convolutional" and "downsampling" layers, as well as the634

back-propagation used during training, are not new. They were introduced in Fukushima (1988),635

inspired originally by the work of Hubel andWiesel on cats and rhesus monkeys (Hubel andWiesel636

1959, Hubel and Wiesel 1963, Wiesel and Hubel 1966), describing receptive fields and their hierar-637

chical structure in the visual cortex. Soon afterward, in LeCun et al. (1989), CNNs, in combination638

with back-propagation, were already successfully used to recognize handwritten ZIP codes – for639

the first time, the learning process was fully automated. A critical step towards making their appli-640

cation practical, and the reason they are popular today.641

The network architecture used in our software is similar to the identification module of the net-642

work in Romero-Ferrero et al. (2019), and is, as in most typical CNNs, (reverse-)pyramid-like. How-643

ever, key differences between TRex’ and idtracker.ai’s procedure lie with the way that training644

data is prepared (see previous sections) and how further segments are accumulated/evaluated645

(see next section). Furthermore, contrary to idtracker.ai’s approach, images in TRex are aug-646

mented (during training) before being passed on to the network. While this augmentation is rela-647

tively simple (random shift of the image in x-direction), it can help to account for positional noise648

introduced by e.g. the posture estimation or the video itself when the network is used for pre-649

dictions later on (Perez and Wang, 2017). We do not flip the image in this step, or rotate it, since650

this would defeat the purpose of using orientation normalization in the first place (as in Minimiz-651

ing the Variance Landscape by Normalizing Samples, see Figure 4). Here, in fact, normalization of652

object orientation (during training and predictions) could be seen as a superior alternative to data653

augmentation.654

The input data for TRex’ network is a single, cropped grayscale image of an individual (see Fig-655

ure 1c). This image is first passed through a "lambda" layer (blue) that normalizes the pixel values,656

dividing them by half the value limit of 255∕2 = 127.5 and subtracting 1 – this moves them into the657

range of [−1, 1]. From then on, sections are a combination of convolutional layers (kernel sizes of658

16, 64 and 100 pixels), each followed by a 2D (2x2) max-pooling and a 2D spatial dropout layer659

(with a rate of 0.25). Within each of these blocks the input data is reduced further, focussing it660

down to information that is deemed important. Towards the end, the data are flattened and flow661

into a densely connected layer (100 units) with exactly as many outputs as the number of classes.662

The output is a vector with values between 0 and 1 for all elements of the vector, which, due to663

softmax-activation, sum to 1.664

Training commences by performing a stochastic gradient descent (using the Adam optimizer,665

see Kingma and Ba 2014), which iteratively minimizes the error between network predictions and666

previously known associations of images with identities – the original assignments within the initial667

frame segment. The optimizer’s behavior in the last five epochs is continuously observed and668

training is terminated immediately if one of the following criteria is met:669

• the maximum number of iterations is reached (150 by default, but can be set by the user)670

• a plateau is achieved at a high per-class accuracy671

• overfitting/overly optimizing for the training data at the loss of generality672

• no further improvements can be made (due to the accuracy within the current training data673

already being 1)674

The initial training unit is also by far themost important as it determines the predicted identities675

within further segments that are to be added. It is thus less risky to overfit than it is important676

to get high-quality training results, and the algorithm has to be relatively conservative regarding677
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termination criteria. Later iterations, however, are onlymeant to extend an already existing dataset678

and thus (with computation speed in mind) allow for additional termination criteria to be added:679

• plateauing at/circling around a certain val_loss level680

• plateauing around a certain uniqueness level681

2. Accumulation of Additional Segments and Stopping-Criteria682

If necessary, initial training results can be improved by adding more samples to the active dataset.683

This could be done manually by the user, always trying to select the most promising segment next,684

but requiring suchmanual work is not acceptable for high-throughput processing. Instead, in order685

to translate this idea into features that can be calculated automatically, the following set of metrics686

is re-generated per (yet inactive) segment after each successful step:687

1. Average uniqueness index (rounded to an integer percentage in 5% steps)688

2. Minimal distance to regions that have previously been trained on (rounded to the next power689

of two), larger is better as it potentially includes samples more different from the already690

known ones691

3. Minimum cells visited per individual (larger is better for the same reason as 2)692

4. Minimum average samples per individual (larger is better)693

5. Whether its image data has already been generated before (mostly for saving memory)694

6. The uniqueness value is smaller than U 2
prev after 5 steps, with Uprev being the best uniqueness695

value previous to the current accumulation step696

With the help of these values, the segment list is sorted and the best segment selected to be697

considered next. Adding a segment to a set of already active samples requires us to correct the698

identities inside it, potentially switching temporary identities to represent the same real identities699

as in our previous data. This is done by predicting identities for the new samples using the network700

that has been trained on the old samples. Makingmistakes here can lead to significant subsequent701

problems, so merely plausible segments will be added - meaning only those samples are accepted702

for which the predicted IDs are unique within each unobstructed sequence of frames for every703

temporary identity. If multiple temporary individuals are predicted to be the same real identity,704

the segment is saved for later and the search continues.705

If multiple additional segments are found, the program tries to actively improve local unique-706

ness valleys by adding samples first from regions with comparatively low accuracy predictions. See-707

ing as low accuracy regions will also most likely fail to predict unique identities, it is important to708

emphasize here that this is generally not a problem for the algorithm: Failed segments are sim-709

ply ignored and can be inserted back into the queue later. Smoothing the curve also makes sure710

to prefer regions close to valleys, making the algorithm follow the valley walls upwards in both711

directions.712

Finishing a training unit does not necessarily mean that it was successful. Only the network713

states improving upon results from previous units are considered and saved. Any training result -714

except the initial one -may be rejected after training in case the uniqueness score has not improved715

globally, or at least remained within 99% of the previous best value. This ensures stability of the716

process, even with tracking errors present (which can be corrected for later on, see next section).717

If a segment is rejected, the network is restored to the best recorded state.718

Each new segment is always combined with regularly sampled data from previous steps, en-719

suring that identities don’t switch back and forth between steps due to uncertain predictions. If720

switching did occur, then the uniqueness and accuracy values can never reach high value regimes721

– leading to the training unit being discarded as a result. The contribution of each previously added722

segmentR is limited to ⌈|RS |∕(samples_max ∗ |R|∕N)⌉ samples, withN as the total number of frames723

in global segments for this individual and samples_max a constant that is calculated using image size724

and memory constraints (or 1GB by default). RS is the actual usable number of images in segment725
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R. This limitation is an attempt to not bias the priors of the network by sub-sampling segments726

according to their contribution to the total number of frames in global segments.727

Training is considered to be successful globally, as soon as either (i) accumulative individual728

gaps between sampled regions is less than 25% of the video length for all individuals, or (ii) unique-729

ness has reached a value higher than730

1 − 0.5
Nid

, (1)
so that almost all detected identities are present exactly once per frame. Otherwise, training will731

be continued as described above with additional segments – each time extending the percentage732

of images seen by the network further.733

Training accuracy/consistency could potentially be further improved by letting the program add734

an arbitrary amount of segments, however we found this not to be necessary in any of our test-735

cases. Users are allowed to set a custom limit if required in their specific cases.736

3. The Final Training Unit737

After the accumulation phase, one last training step is performed. In previous steps, validation data738

has been kept strictly separate from the training set to get a better gauge on how generalizable the739

results are to unseen parts of the video. Now this is no longer an objective – so why not use all of740

the data available? The entire dataset is simply merged and sub-sampled again, according to the741

memory strategy used. Network training is started, with a maximum of max{3;max_epochs ∗ 0.25}742

iterations (max_epochs is 150 by default). During this training, the same stopping-criteria apply as743

during the initial step.744

Of course, typically, the answer to the above question of why not to do this would be "over-745

fitting". However, there is still a way to detect overfitting if it occurs: Only improvements upon746

previous steps – in terms of uniqueness – are saved, making this operation relatively safe. In fact,747

for some videos this is the step where most progress is made (e.g. Video 9 ). The reason being that748

this is the first time when all of the training data from all segments is considered at once (instead of749

mostly the current segment plus fewer samples from previously accepted segments), and samples750

from all parts of the video has an equal likelihood of being used in training after possible reduction751

due to memory-constraints.752

4. Assigning Identities Based on Network Predictions753

After the network has been successfully trained, all parts of the video which were not part of the754

training are packaged together and the network calculates predictive probabilities for each image755

of each individual to be any of the available identities. The vectors returned by the network are756

then averaged per consecutive segment per individual. The average probability vectors for all over-757

lapping segments are weighed against each other – usually forcing assignment to the most likely758

identity (ID) for each segment, given that no other segments have similar probabilities. When re-759

ferring to segments here, meant is simply a number of consecutive frames of one individual that760

the tracker is fairly sure does not contain any mix-ups. We implemented a way to detect tracking761

mistakes, which is mentioned later.762

If an assignment is ambiguous, meaning that multiple segments Sj…M overlapping in time have763

the same maximum probability index arg max
i∈[0,N]

{

P (i | Sj)
} (for the segment to belong to a certain764

identity i), a decision has to be made. Assignments are deferred if the ratio765

Rmax = max
{P (i | Sj)
P (i | Sk)

,∀Sj≠k ∈ overlapping segments
}

between any twomaximal probabilities is larger than 0.6 for said i (Rmax is inverted if it is greater766

than 1). In such a case, we rely on the general purpose tracking algorithm to pick a sensible op-767

tion – other identities might even be successfully assigned (using network predictions) in following768

frames, which is a complexity we do not have to deal with here. In case all ratios are below 0.6,769
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when the best choices per identity are not too ambiguous, the following steps are performed to770

resolve remaining conflicts:771

1. count the number of samplesNme in the current segment, and the number of samplesNℎe in772

the other segment that this segment is compared to773

2. calculate average probability vectors Pme and Pℎe774

3. ifS(Pme, Nme) ≥ S(Pℎe, Nℎe), then assign the current segmentwith the ID in question. Otherwise775

assign the ID to the other segment. Where:776

norm(x) = x
Nme +Nℎe

, sig(x) =
(

1 + e2�(0.5−x)
)−1

S(p, x) = sig(p) + sig(norm(x)).
(2)

This procedure prefers segments with larger numbers of samples over segments with fewer777

samples, ensuring that identities are not switched around randomly whenever a short segment778

(e.g. of noisy data) is predicted to be the given identity for a few frames – at least as long as a779

better alternative is available. The non-linearity in S(p, x) exaggerates differences between lower780

values and dampens differences between higher values: For example, the quality of a segment781

with 4000 samples is barely different from a segment with 5000 samples; however, there is likely to782

be a significant quality difference between segments with 10 and 100 samples.783

In case something goes wrong during the tracking, e.g. an individual is switched with another784

individual without the program knowing that it might have happened, the training might still be785

successful (for example if that particular segment has not been used for training). In such cases,786

the program tries to correct for identity switches mid-segment by calculating a running-window787

median identity throughout the whole segment. If the identity switches for a significant length of788

time, before identities are assigned to segments, the segment is split up at the point of the first789

change within the window and the two parts are handled as separate segments from then on.790

Results791

Below we assess TRex’ performance regarding three properties that are most important when us-792

ing it (or in fact any tracking software) in practice: (i) The time it takes to perform tracking (ii) the793

time it takes to perform automatic identity correction and (iii) the peakmemory consumptionwhen794

correcting identities (since this is where memory consumption is maximal), as well as (iv) the accu-795

racy of the produced trajectories after visual identification. While accuracy is an important metric796

and specific to identification tasks, time and memory are typically of considerable practical im-797

portance for all tasks. For example, tracking-speed may be the difference between only being798

able to run a few trials or producing more reliable results with a much larger number of trials.799

In addition, tracking speed can make a major difference as the number of individuals increases.800

Furthermore, memory constraints can be extremely prohibitive making tracking over long video801

sequences and/or for a large number of individuals extremely time-consuming, or impossible, for802

the user.803

In all of our tests we used a relatively modest computer system, which could be described as a804

mid-range consumer or gaming PC:805

• Intel Core i9-7900X CPU806

• NVIDIA Geforce 1080 Ti807

• 64GB RAM808

• NVMe PCIe x4 hard-drive809

• Debian bullseye (debian.org)810

As can be seen in the following sections (memory consumption, processing speeds, etc.) using811

a high-end system is not necessary to run TRex and, anecdotally, we did not observe noticeable812

improvements when using a solid state drive versus a normal hard drive. A video card (presently813
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Table 1. A list of the videos used in this paper as part of the evaluation of TRex, along with the species ofanimals in the videos and their common names, as well as other video-specific properties. Videos are givenan incremental ID, to make references more efficient in the following text, which are sorted by the number ofindividuals in the video. Individual quantities are given accurately, except for the videos with more than 100where the exact number may be slightly more or less. These videos have been analysed using TRex’ dynamicanalysis mode that supports unknown quantities of animals.
ID species common # ind. fps (Hz) duration size (px2)
0 Leucaspius delineatus sunbleak 1024 40 8min20s 3866 × 4048
1 Leucaspius delineatus sunbleak 512 50 6min40s 3866 × 4140
2 Leucaspius delineatus sunbleak 512 60 5min59s 3866 × 4048
3 Leucaspius delineatus sunbleak 256 50 6min40s 3866 × 4140
4 Leucaspius delineatus sunbleak 256 60 5min59s 3866 × 4048
5 Leucaspius delineatus sunbleak 128 60 6min 3866 × 4048
6 Leucaspius delineatus sunbleak 128 60 5min59s 3866 × 4048
7 Danio rerio zebrafish 100 32 1min 3584 × 3500
8 Drosophila melanogaster fruit-fly 59 51 10min 2306 × 2306
9 Schistocerca gregaria locust 15 25 1h0min 1880 × 1881
10 Constrictotermes cyphergaster termite 10 100 10min5s 1920 × 1080
11 Danio rerio zebrafish 10 32 10min10s 3712 × 3712
12 Danio rerio zebrafish 10 32 10min3s 3712 × 3712
13 Danio rerio zebrafish 10 32 10min3s 3712 × 3712
14 Poecilia reticulata guppy 8 30 3h15min22s 3008 × 3008
15 Poecilia reticulata guppy 8 25 1h12min 3008 × 3008
16 Poecilia reticulata guppy 8 35 3h18min13s 3008 × 3008
17 Poecilia reticulata guppy 1 140 1h9min32s 1312 × 1312

Table 1–source data 1. Videos 7 and 8 , as well as 13 - 11 , are available as part of the original idtracker

paper (Pérez-Escudero et al. (2014)). Many of the videos are part of yet unpublished data: Guppy videos have
been recorded by A. Albi, videos with sunbleak (Leucaspius delineatus) have been recorded by D. Bath. The
termite video has been kindly provided by H. Hugo and the locust video by F. Oberhauser. Due to the size of
some of these videos (>200GB per video), they have to be made available upon specific request. Example clips
from some of the videos are available at trex.run/docs.

an NVIDIA card due to the requirements of TensorFlow) is recommended for tasks involving visual814

identification as such computations will take much longer without it – however, it is not required.815

We decided to employ this system due to having a relatively cheap, compatible graphics card, as816

well as to ensure that we have an easy way to produce direct comparisons with idtracker.ai817

– which according to their website requires large amounts of RAM (32-128GB, idtrackerai online818

documentation, accessed 05/21/2020) and a fast solid-state drive.819

Table 1 shows the entire set of videos used in this paper, which have been obtained from mul-820

tiple sources (credited under the table) and span a wide range of different organisms, demonstrat-821

ing TRex’ ability to track anything as long as it moves occasionally. Videos involving a large number822

(>100) of individuals are all the same species of fish since these were the only organisms we had823

available in such quantities. However, this is not to say that only fish could be tracked efficiently824

in these quantities. We used the full dataset with up to 1024 individuals in one video (Video 0 ) to825

evaluate raw tracking speedwithout visual identification and identity corrections (next sub-section).826

However, since such numbers of individuals exceed the capacity of the neural network used for827

automatic identity corrections (compare also Romero-Ferrero et al. (2019) who used a similar net-828

work), we only used a subset of these videos (videos 7 through 16 ) to look specifically into the829

quality of our visual identification in terms of keeping identities and its memory consumption.830
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Tracking: Speed and Accuracy831

In evaluating the Tracking portion of TRex, the main focus lies with processing speed, while accu-832

racy in terms of keeping identities is of secondary importance. Tracking is required in all other833

parts of the software, making it an attractive target for extensive optimization. Especially with re-834

gards to closed-loop, and live-tracking situations, there may be no room even to lose a millisecond835

between frames and thus risk dropping frames. We therefore designed TRex to support the simul-836

taneous tracking of many (≥256) individuals quickly and achieve reasonable accuracy for up to 100837

individuals – which are the two suppositions we will investigate in the following.838

Trials were run without posture/visual-field estimation enabled, where tracking generally, and839

consistently, reaches speeds faster than real-time (processing times of 1.5-40% of the video dura-840

tion, 25-100Hz) even for a relatively large number of individuals (77-94.77% for up to 256 individ-841

uals, see Table A1). Videos with more individuals (>500) were still tracked within reasonable time842

of 235% to 358% of the video duration. As would be expected from these results, we found that843

combining tracking and recording in a single step generally leads to higher processing speeds. The844

only situation where this was not the case was a video with 1024 individuals, which suggests that845

live-tracking (in TGrabs) handles cases with many individuals slightly worse than offline tracking (in846

TRex). Otherwise, 5% to 35% shorter total processing times were measured (14.55% on average,847

see Table A4), compared to running TGrabs separately and then tracking in TRex. These percent-848

age differences, in most cases, reflect the ratio between the video duration and the time it takes to849

track it, suggesting that most time is spent – by far – on the conversion of videos. This additional850

cost can be avoided in practice when using TGrabs to record videos, by directly writing to a custom851

format recognized by TRex, and/or using its live-tracking ability to export tracking data immediately852

after the recording is stopped.853

We also investigated trials that were run with posture estimation enabled and we found that854

real-time speed could be achieved for videos with ≤ 128 individuals (see column "tracking" in Ta-855

ble A4). Tracking speed, when posture estimation is enabled, depends more strongly on the size856

of individuals in the image.857

Generally, tracking software becomes slower as the number of individuals to be tracked in-858

creases, as a result of an exponentially growing number of combinations to consider duringmatch-859

ing. Comparing our mixed approach (see Tracking) to purely using the Hungarian method (also860

known as the Kuhn–Munkres algorithm) shows that, while both perform similarly for few individu-861

als, the Hungarianmethod is easily outperformed by our algorithm for larger groups of individuals862

(as can be seen in Figure A3). This might be due to custom optimizations regarding local cliques of863

individuals, whereby we ignore objects that are too far away, and also as a result of our optimized864

pre-sorting. The Hungarianmethod has the advantage of not leading to combinatorical explosions865

in some situations – and thus has a lowermaximum complexity while proving to be less optimal in866

the average case. For further details, see the appendix: Matching an object to an object in the next867

frame.868

In addition to speed, we also tested the accuracy of our tracking method, with regards to869

the consistency of identity assignments, comparing its results to the manually reviewed data (the870

methodology of which is described in the next section). In order to avoid counting follow-up errors871

as "new" errors, we divided each trajectory in the uncorrected data into "uninterrupted" segments872

of frames, instead of simply comparing whole trajectories. A segment is interrupted when an in-873

dividual is lost (for any of the reasons given in Preparing Tracking-Data) and starts again when it874

is reassigned to another object later on. We term these (re-)assignments decisions here. Each seg-875

ment of every individual can be uniquely assigned to a similar/identical segment in the baseline876

data and its identity. Following one trajectory in the uncorrected data, we can detect these wrong877

decisions by checking whether the baseline identity associated with one segment of that trajectory878

changes in the next. We found that roughly 80% of such decisions made by the tree-based match-879

ing were correct, even with relatively high numbers of individuals (100). For trajectories where880
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no manually reviewed data were available, we used automatically corrected trajectories as a base881

for our comparison – we evaluate the accuracy of these automatically corrected trajectories in the882

following section. Even though we did not investigate accuracy in situations with more than 100883

individuals, we suspect similar results since the property with the strongest influence on tracking884

accuracy – individual density – is limited physically and most of the investigated species school885

tightly in either case.886

Visual Identification: Accuracy887

Since the goal of using visual identification is to generate consistent identity assignments, we eval-888

uated the accuracy of our method in this regard. As a benchmark, we compare it to manually889

reviewed datasets as well as results from idtracker.ai for the same set of videos (where possi-890

ble). In order to validate trajectories exported by either software, we manually reviewed multiple891

videos with the help from a tool within TRex that allows to view each crossing and correct possi-892

ble mistakes in-place. Assignments were deemed incorrect, and subsequently corrected by the893

reviewer, if the centroid of a given individual was not contained within the object it was assigned894

to (e.g. the individual was not part of the correct object). Double assignments per object are im-895

possible due to the nature of the tracking method. Individuals were also forcibly assigned to the896

correct objects in case they were visible but not detected by the tracking algorithm. After manual897

corrections had been applied, "clean" trajectories were exported – providing a per-frame baseline898

truth for the respective videos. A complete table of reviewed videos, and the percentage of re-899

viewed frames per video, can be found in Table 3. For longer videos (>1h) we relied entirely on900

a comparison between results from idtracker.ai and TRex. Their paper (Romero-Ferrero et al.901

(2019)) suggests a very high accuracy of over 99.9% correctly identified individual images for most902

videos, which should suffice for most relevant applications and provide a good baseline truth. As903

long as both tools produce sufficiently similar trajectories, we therefore know they have found the904

correct solution.905

Table 2. Evaluating comparability of the automatic visual identification between idtracker.ai and TRex.Columns show various video properties, as well as the associated uniqueness score (see Box 1) and asimilarity metric. Similarity (% similar individuals) is calculated based on comparing the positions for eachidentity exported by both tools, choosing the closest matches overall and counting the ones that aredifferently assigned per frame. An individual is classified as "wrong" in that frame, if the euclidean distancebetween the matched solutions from idtracker.ai and TRex exceeds 1% of the video width. The column "%similar individuals" shows percentage values, where a value of 99% would indicate that, on average, 1% of theindividuals are assigned differently. To demonstrate how uniqueness corresponds to the quality of results,the last column shows the average uniqueness achieved across trials.
video # ind. N TRex % similar individuals ⌀ final uniqueness
7 100 5 99.9522 ± 0.2536 0.9758 ± 0.0018
8 59 5 99.7249 ± 0.5586 0.9356 ± 0.0358
13 10 5 99.9907 ± 0.3668 0.9812 ± 0.0013
12 10 5 99.9565 ± 0.8381 0.9698 ± 0.0024
11 10 5 99.9218 ± 1.116 0.9461 ± 0.0039
14 8 5 98.8185 ± 5.8095 0.9192 ± 0.0077
15 8 5 99.241 ± 4.2876 0.9576 ± 0.0023
16 8 5 99.8063 ± 1.9556 0.9481 ± 0.0025

A direct comparison between TRex and idtracker.ai was not possible for videos 9 and 10906

, where idtracker.ai frequently exceeded hardware memory-limits and caused the application907

to be terminated, or did not produce usable results within multiple days of run-time. However,908

we were able to successfully analyse these videos with TRex and evaluate its performance by com-909

paring to manually reviewed trajectories (see below in Visual Identification: Accuracy). Due to the910
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Table 3. Results of the human validation for a subset of videos. Validation was performed by going throughall problematic situations (e.g. individuals lost) and correcting mistakes manually, creating a fully correcteddataset for the given videos. This dataset may still have missing frames for some individuals, if they could notbe detected in certain frames (as indicated by "of that interpolated"). This was usually a very low percentageof all frames, except for Video 9 , where individuals tended to rest on top of each other – and were thus nottracked – for extended periods of time. This baseline dataset was compared to all other results obtained usingthe automatic visual identification by TRex (N = 5) and idtracker.ai (N = 3) to estimate correctness. Wewere not able to track videos 9 and 10 with idtracker.ai, which is why correctness values are not available.
video metrics review stats % correct
video # ind. reviewed (%) of that interpolated (%) TRex idtracker.ai

7 100 100.0 0.23 99.97 ± 0.013 98.95 ± 0.146
8 59 100.0 0.15 99.68 ± 0.533 99.94 ± 0.0
9 15 22.2 8.44 95.12 ± 6.077 N/A
10 10 100.0 1.21 99.7 ± 0.088 N/A
13 10 100.0 0.27 99.98 ± 0.0 99.96 ± 0.0
12 10 100.0 0.59 99.94 ± 0.006 99.63 ± 0.0
11 10 100.0 0.5 99.89 ± 0.009 99.34 ± 0.002

stochastic nature of machine learning, and thus the inherent possibility of obtaining different re-911

sults in each run, as well as other potential factors influencing processing time and memory con-912

sumption, both TRex and idtracker.ai have been executed repeatedly (5x TRex, 3x idtracker.ai).913

The trajectories exported by both idtracker.ai and TRex were very similar throughout (see914

Table 2). While occasional disagreements happened, similarity scores were higher than 99% in915

all cases (i.e. less than 1% of individuals have been differently assigned in each frame on average).916

Most difficulties that did occur were, after manual review, attributable to situations wheremultiple917

individuals cross over excessively within a short time-span. In each case that has been manually918

reviewed, identities switched back to the correct individuals – even after temporary disagreement.919

We found that both solutions occasionally experienced these same problems, which often occur920

when individuals repeatedly come in and out of view in quick succession (e.g. overlapping with921

other individuals). Disagreements were expected for videos with many such situations due to the922

way both algorithms deal differently with them: idtracker.ai assigns identities only based on the923

network output. In many cases, individuals continue to partly overlap even while already being924

tracked, which results in visual artifacts and can lead to unstable predictions by the network and925

causing idtracker.ai’s approach to fail. Comparing results from both idtracker.ai and TRex to926

manually reviewed data (see Table 3) shows that both solutions consistently provide high accuracy927

results of above 99.5% for most videos, but that TRex is slightly improved in all cases while also928

having a better overall frame coverage per individual (99.65% versus idtracker.ai’s 97.93%, where929

100%wouldmean that all individuals are tracked in every frame; not shown). This suggests that the930

splitting algorithm (see appendix, Algorithm for splitting touching individuals) is working to TRex’931

advantage here.932

Additionally, while TRex could successfully track individuals in all videos without tags, we were933

interested to see the effect of tags (in this case QR tags attached to locusts, see Figure 5a) on934

network training. In Figure 5 we visualise differences in network activation, depending on the935

visual features available for the network to learn from, which are different between species (or936

due to physically added tags, as mentioned above). The "hot" regions indicate larger between-937

class differences for that specific pixel (values are the result of activation in the last convolutional938

layer of the trained network, see figure legend). Differences are computed separately within each939

group and are not directly comparable between trials/species in value. However, the distribution940

of values – reflecting the network’s reactivity to specific parts of the image – is. Results show that941

themost apparent differences are found for the stationary parts of the body (not in absolute terms,942
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Figure 5. Activation differences for images of randomly selected individuals from four videos, next to amedian image of the respective individual – which hides thin extremities, such as legs in (a) and (c). Thecaptions in (a-d) detail the species per group and number of samples per individual. Colors represent therelative activation differences, with hotter colors suggesting bigger magnitudes, which are computed byperforming a forward-pass through the network up to the last convolutional layer (using keract). The outputsfor each identity are averaged and stretched back to the original image size by cropping and scaling accordingto the network architecture. Differences shown here are calculated per cluster of pixels corresponding toeach filter, comparing average activations for images from the individual’s class to activations for images fromother classes.

(a) Locusts from Video 9 with 15 tagged individuals (N: 5101, 7942, 9974) – the only video with physical tags. The
network activates more strongly in regions close to the tag, as well as the bottom right corner.

(b) Guppies from Video 15 (N: 46378, 34733, 34745). Activations are less focussed and less consistent across
individuals.

(c) Flies from Video 8 (N: 993, 1986, 993). Activations are not similar between individuals and show various
"hotspots" across the entire body.

(d) Termites from Video 10 (N: 27097, 31135, 22746). Here, the connections between body-segments show
strong activations – in contrast to very weak ones in other parts of the body.

but following normalization, as shown in Figure 4c), which makes sense seeing as this part (i) is the943

easiest to learn due to it being in exactly the same position every time, (ii) larger individuals stretch944

further into the corners of a cropped image, making the bottom right of each image a source of945

valuable information (especially in Figure 5a/Figure 5b) and (iii) details that often occur in the head-946

region (like distance between the eyes) which can also play a role here. "Hot" regions in the bottom947

right corner of the activation images (e.g. in Figure 5d) suggest that also pixels are reacted to which948

are explicitly not part of the individual itself but of other individuals – likely this corresponds to the949

network making use of size/shape differences between them.950

As would be expected, distinct patterns can be recognized in the resulting activations after951

training as soon as physical tags are attached to individuals (as in Figure 5a). While other parts952

of the image are still heavily activated (probably to benefit from size/shape differences between953

individuals), tags are always at least a large part of where activations concentrate. The network954

seemingly makes use of the additional information provided by the experimenter, where that has955

occurred. This suggests that, while definitely not being necessary, adding tags probably does not956
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Table 4. Both TRex and idtracker.ai analysed the same set of videos, while continuously logging theirmemory consumption using an external tool. Rows have been sorted by video_length ∗ #individuals, whichseems to be a good predictor for the memory consumption of both solutions. idtracker.ai has mixed meanvalues, which, at low individual densities are similar to TRex’ results. Mean values can be misleading here,since more time spent in low-memory states skews results. The maximum, however, is more reliable since itmarks the memory that is necessary to run the system. Here, idtracker.ai clocks in at significantly highervalues (almost always more than double) than TRex.
video #ind. length max.consec. TRex memory (GB) idtracker.ai memory (GB)
12 10 10min 26.03s ⌀ 4.88 ± 0.23,max 6.31 ⌀ 8.23 ± 0.99,max 28.85
13 10 10min 36.94s ⌀ 4.27 ± 0.12,max 4.79 ⌀ 7.83 ± 1.05,max 29.43
11 10 10min 28.75s ⌀ 4.37 ± 0.32,max 5.49 ⌀ 6.53 ± 4.29,max 29.32
7 100 1min 5.97s ⌀ 9.4 ± 0.47,max 13.45 ⌀ 15.27 ± 1.05,max 24.39
15 8 72min 79.4s ⌀ 5.6 ± 0.22,max 8.41 ⌀ 35.2 ± 4.51,max 91.26
10 10 10min 1.91s ⌀ 6.94 ± 0.27,max 10.71 N/A
9 15 60min 7.64s ⌀ 13.81 ± 0.53,max 16.99 N/A
8 59 10min 102.35s ⌀ 12.4 ± 0.56,max 17.41 ⌀ 35.3 ± 0.92,max 50.26
14 8 195min 145.77s ⌀ 12.44 ± 0.8,max 21.99 ⌀ 35.08 ± 4.08,max 98.04
16 8 198min 322.57s ⌀ 16.15 ± 1.6,max 28.62 ⌀ 49.24 ± 8.21,max 115.37

worsen, and likely may even improve, training accuracy, for difficult cases allowing networks to957

exploit any source of inter-individual variation.958

Visual Identification: Memory Consumption959

In order to generate comparable results between both tested software solutions, the same exter-960

nal script has been used to measure shared, private and swap memory of idtracker.ai and TRex,961

respectively. There are a number of ways with which to determine the memory usage of a process.962

For automation purposes we decided to use a tool called syrupy, which can start and save informa-963

tion about a specified command automatically. We modified it slightly, so we could obtain more964

accurate measurements for Swap, Shared and Private separately , using ps_mem.965

As expected, differences inmemory consumption are especially prominent for long videos (4-7x966

lower maximum memory), and for videos with many individuals (2-3x lower). Since we already ex-967

perienced significant problems tracking a long video (>3h) of only 8 individuals with idtracker.ai,968

we did not attempt to further study its behavior in long videos with many individuals. However, we969

would expect idtracker.ai’smemory usage to increase evenmore rapidly than is visible in Figure 6970

since it retains a lot of image data (segmentation/pixels) in memory and we already had to "allow"971

it to relay to hard-disk in our efforts to make it work for Videos 8 , 14 and 16 (which slows down972

analysis). The maximum memory consumption across all trials was on average 5.01±2.54 times973

higher in idtracker.ai, ranging from 1.81 to 10.85 times the maximum memory consumption of974

TRex for the same video.975

Overall memory consumption for TRex also contains posture data, which contributes a lot to976

RAM usage. Especially with longer videos, disabling posture can lower the hardware needs for run-977

ning our software. If posture is to be retained, the user can still (more slightly) reduce memory978

requirements by changing the outline re-sampling scale (1 by default), which adjusts the outline979

resolution between sub- and super-pixel accuracy. While analysis will be faster – and memory con-980

sumption lower – when posture is disabled (only limited by the matching algorithm, see Figure A3),981

users of the visual identification might experience a decrease in training accuracy or speed (see982

Figure 7).983
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Figure 6. The maximum memory by TRex and idtracker.ai when tracking videos from a subset of all videos(the same videos as in Table 2). Results are plotted as a function of video length (min) multiplied by thenumber of individuals. We have to emphasize here that, for the videos in the upper length regions of multiplehours ( 16 , 14 ), we had to set idtracker.ai to store segmentation information on disk – as opposed to inRAM. This uses less memory, but is also slower. For the video with flies we tried out both and also settled foron-disk, since otherwise the system ran out of memory. Even then, the curve still accelerates much faster for
idtracker.ai, ultimately leading to problems with most computer systems. To minimize the impact thathardware compatibility has on research, we implemented switches limiting memory usage while alwaystrying to maximize performance given the available data. TRex can be used on modern laptops and normalconsumer hardware at slightly lower speeds, but without any fatal issues.

Visual Identification: Processing Time984

Automatically correcting the trajectories (to produce consistent identity assignments) means that985

additional time is spent on the training and application of a network, specifically for the video986

in question. Visual identification builds on some of the other methods described in this paper987

(tracking and posture estimation), naturallymaking it by far themost complex and time-consuming988

process in TRex – we thus evaluated howmuch time is spent on the entire sequence of all required989

processes. For each run of TRex and idtracker.ai, we saved precise timing information from start990

to finish. Since idtracker.ai reads videos directly and preprocesses them again each run, we used991

the same starting conditions with our software for a direct comparison:992

A trial starts by converting/preprocessing a video in TGrabs and then immediately opening it in993

TRex, where automatic identity corrections were applied. TRex terminated automatically after sat-994

isfying a correctness criterion (high uniqueness value) according to equation (1). It then exported995

trajectories, as well as validation data (similar to idtracker.ai), concluding the trial. The sum of996

time spent within TGrabs and TRex gives the total amount of time for that trial. For the purpose of997

this test it would not have been fair to compare only TRex processing times to idtracker.ai, but998

it is important to emphasize that conversion could be skipped entirely by using TGrabs to record999

videos directly from a camera instead of opening an existing video file.1000

In Table 5 we can see that video length and processing times did not correlate directly. In-1001

deed, conversion times eventually overtook processing times with increasing video-length if the1002

number of individuals remained the same. Furthermore, the time it took to track and correct a1003

video was shorter when the initial segment (column "sample" in the table) was longer (and as such1004

likely of higher quality/capturing more visual intra-individual variation). Conversion times corre-1005

lated strongly with the total video-length (in frames) and not the number of individuals, suggesting1006

conversion was only constrained by video-decoding/reading speeds and not by (pre-)processing.1007
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Figure 7. Convergence behavior of the network training for three different normalization methods. Thisshows the maximum achievable validation accuracy after 100 epochs for 100 individuals (Video 7 ), whensub-sampling the number of examples per individual. Tests were performed using a manually correctedtraining dataset to generate the images in three different ways, using the same, independent script (seeFigure 4): Using no normalization (blue), using normalization based on image moments (green, similar to
idtracker.ai), and using posture information (red, as in TRex). Higher numbers of samples per individualresult in higher maximum accuracy overall, but – unlike the other methods – posture-normalized runs alreadyreach an accuracy above the 90% mark for ≥75 samples. This property can help significantly in situations withmore crossings, when longer global segments are harder to find.

Compared to idtracker.ai, TRex (conversion + visual identification) shows both considerably1008

lower computation times (2.57× to 46.74× faster for the same video), as well as lower variance in1009

the timings (79% lower for the same video on average).1010

Conclusions1011

TRex provides a comprehensive, powerful and easy to use software solution for tracking animals.1012

Its tracking accuracy is at the state-of-the-art while typically being 2.57× to 46.74× faster than com-1013

parable software and having lower hardware requirements – specifically RAM. In addition to visual1014

identification and tracking, it provides a rich assortment of additional data, including body pos-1015

ture, visual fields, and other kinematic as well as group-related information (such as derivatives of1016

position, border and mean neighbor distance, group compactness, etc.); even in live-tracking and1017

closed-loop situations.1018

Raw tracking speeds (without visual identification) still achieved roughly 80% accuracy per deci-1019

sion (as compared to >99% with visual identification). We have found that real-time performance1020

can be achieved, even on relatively modest hardware, for all numbers of individuals ≤256 with-1021

out posture estimation (≤ 128 with posture estimation). More than 256 individuals can be tracked1022

as well, remarkably still delivering frame-rates at about 10-25 frames per second using the same1023

settings.1024

TRex is a versatile and fast program, which we have designed to enable researches to study an-1025

imals (and other mobile objects) in a wide range of situations. It maintains identities of up to 1001026

un-tagged individuals and produces corrected tracks, along with posture estimation and other fea-1027

tures. Even videos that can not be tracked by other solutions, such as videos with over 500 animals,1028

can now be tracked within the same day of recording. Not only does the increased processing-1029

speeds benefit researchers, but the contributions we provide to data exploration should not be1030
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Table 5. Evaluating time-cost for automatic identity correction – comparing to results from idtracker.ai.Timings consist of preprocessing time in TGrabs plus network training in TRex, which are shown separately aswell as combined (ours (min), N = 5). The time it takes to analyse videos strongly depends on the number ofindividuals and how many usable samples per individual the initial segment provides. The length of the videofactors in as well, as does the stochasticity of the gradient descent (training). idtracker.ai timings (N = 3)contain the whole tracking and training process from start to finish, using its terminal_mode (v3). Parametershave been manually adjusted per video and setting, to the best of our abilities, spending at most one hourper configuration. For videos 16 and 14 we had to set idtracker.ai to storing segmentation informationon disk (as compared to in RAM) to prevent the program from being terminated for running out of memory.
video # ind. length sample TGrabs (min) TRex (min) ours (min) idtracker.ai (min)
7 100 1min 1.61s 2.03 ± 0.02 74.62 ± 6.75 76.65 392.22 ± 119.43
8 59 10min 19.46s 9.28 ± 0.08 96.7 ± 4.45 105.98 4953.82 ± 115.92
9 15 60min 33.81s 13.17 ± 0.12 101.5 ± 1.85 114.67 N/A
11 10 10min 12.31s 8.8 ± 0.12 21.42 ± 2.45 30.22 127.43 ± 57.02
12 10 10min 10.0s 8.65 ± 0.07 23.37 ± 3.83 32.02 82.28 ± 3.83
13 10 10min 36.91s 8.65 ± 0.07 12.47 ± 1.27 21.12 79.42 ± 4.52
10 10 10min 16.22s 4.43 ± 0.05 35.05 ± 1.45 39.48 N/A
14 8 195min 67.97s 109.97 ± 2.05 70.48 ± 3.67 180.45 707.0 ± 27.55
15 8 72min 79.36s 32.1 ± 0.42 30.77 ± 6.28 62.87 291.42 ± 16.83
16 8 198min 134.07s 133.1 ± 2.28 68.85 ± 13.12 201.95 1493.83 ± 27.75

underestimated as well – merely making data more easily accessible right out-of-the-box, such as1031

visual fields and live-heatmaps, has the potential to reveal features of group- and individual be-1032

haviour which have not been visible before. TRex makes information on multiple timescales of1033

events available simultaneously, and sometimes this is the only way to detect interesting proper-1034

ties (e.g. trail formation in termites).1035

Future extensions1036

Since the software is already actively used within the Max Planck Institute of Animal Behavior, re-1037

ported issues have been taken into consideration during development. However, certain theoreti-1038

cal, as well as practically observed, limitations remain:1039

• Posture: While almost all shapes can be detected correctly (by adjusting parameters), some1040

shapes – especially round shapes – are hard to interpret in terms of "tail" or "head". This1041

means that only the other image alignment method (moments) can be used. However, it1042

does introduce some limitations e.g. calculating visual fields is impossible.1043

• Tracking: Predictions, if the wrong direction is assumed, might go really far away from where1044

the object is. Objects are then "lost" for a fixed amount of time (parameter). This can be1045

"fixed" by shortening this time-period, though this leads to different problems when the soft-1046

ware does not wait long enough for individuals to reappear.1047

• General: Barely visible individuals have to be tracked with the help of deep learning (e.g.1048

using Caelles et al. (2017)) and a custom-mademask per video frame, prepared in an external1049

program of the users choosing1050

• Visual identification: All individuals have to be visible and separate at the same time, at least1051

once, for identification to work at all. Visual identification, e.g. with very high densities of1052

individuals, can thus be very difficult. This is a hard restriction to any software since find-1053

ing consecutive global segments is the underlying principle for the successful recognition of1054

individuals.1055

We will continue updating the software, increasingly addressing the above issues (and likely1056

others), as well as potentially adding new features. During development we noticed a couple of1057

28 of 69

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.14.338996doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338996
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

areas where improvements could be made, both theoretical and practical in nature. Specifically,1058

incremental improvements in analysis speed could be made regarding visual identification by us-1059

ing the trained network more sporadically – e.g. it is not necessary to predict every image of very1060

long consecutive segments, since, evenwith fewer samples, prediction values are likely to converge1061

to a certain value early on. A likely more potent change would be an improved "uniqueness" algo-1062

rithm, which, during the accumulation phase, is better at predicting which consecutive segment1063

will improve training results the most. This could be done, for example, by taking into account the1064

variation between images of the same individual. Other planned extensions include:1065

• (Feature): We want to have a more general interface available to users, so they can create1066

their own plugins. Working with the data in live-mode, while applying their own filters. As1067

well as specifically being able to write a plugin that can detect different species/annotate1068

them in the video.1069

• (Crossing solver): Additional method optimized for splitting overlapping, solid-color objects.1070

The current method, simply using a threshold, is effective for many species but often pro-1071

duces large holes when splitting objects consisting of largely the same color.1072

To obtain the most up-to-date version of TRex, please download it at trex.run or update your1073

existing installation according to our instructions listed on trex.run/docs/install.html.1074

Software and Licenses1075

TRex is published under the GNU GPLv3 license (see here for permissions granted by GPLv3). All of1076

the code has beenwritten by the first author of this paper (a few individual lines of code from other1077

sources have beenmarked inside the code). While none of these libraries are distributed alongside1078

TRex (they have to be provided separately), the following libraries are used: OpenCV (opencv.org)1079

is a core library, used for all kinds of imagemanipulation. GLFW (glfw.org) helps with opening appli-1080

cation windows and maintaining graphics contexts, while DearImGui (github.com/ocornut/imgui)1081

helps with some more abstractions regarding graphics. pybind11 (Jakob et al. (2017)) for Python1082

integration within a C++ environment. miniLZO (oberhumer.com/opensource/lzo) is used for com-1083

pression of PV frames. Optional bindings are available to FFMPEG (ffmpeg.org) and libpng libraries,1084

if available. (optional) GNU Libmicrohttpd (gnu.org/software/libmicrohttpd), if available, can be1085

used for an HTTP interface of the software, but is non-essential.1086
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Appendix 11268

Interface and installation requirements1269

While all options are available from the command-line and a screen is not required, TRex
offers a rich, yet straight-foward to use, interface to local as well as remote users. Accom-
panied by the integrated documentation for all parameters, each stating purpose, type and
value ranges, as well as a comprehensive online documentation, the learning curve for new
users is usually quite steep. Especially to the benefit of new users, we evaluated the pa-
rameter space on a wide dataset (fish, termites, locusts) and determined which parameters
work best in most use-cases to set their default values (evaluation not part of this paper).

1270

1271

1272

1273

1274

1275

1276

Compiled, read-to-use binaries are available for all major operating systems (Windows,
Linux, MacOS). However, it should be possible to compile the software yourself for any Unix-
or Windows-based system (≥ 8), possibly with minor adjustments. Tested setups include:

1277

1278

1279

• Windows, Linux, MacOS1280

• A computer with ≥ 16GB RAM is recommended1281

• OpenCVa libraries ≥ v3.31282

• Python libraries ≥ v3.6, as well as additional packages such as:1283

• Keras ≈ v2.2 with one of the following backends installed1284

– Tensorflow < v2b (either CPU-based, or GPU-based)1285

– Theano c1286

• GPU-based recognition requires an NVIDIA graphics-card and drivers (see Tensorflow
documentation)

1287

1288

For detailed download/installation instructions and up-to-date requirements, please re-
fer to the documentation at trex.run/install.

1289

1290

The interface is structured into groups (see Figure A1), categorized by the typical use-
case:

1291

1292

1. The main menu, containing options for loading/saving, options for the timeline and
reanalysis of parts of the video

1293

1294

2. Timeline and current video playback information1295

3. Information about the selected individual1296

4. Display options and an interactive "omni-box" for viewing and changing parameters1297

5. General status information about TRex and the Python integration1298

Workflow1299

TRex can be opened in one of two ways: (i) Simply starting the application (e.g. using the
operating systems’ file-browser), (ii) using the command-line. If the user simply opens the
application, a file opening dialog displays a list of compatible files as well as information on
a selected files content. Certain startup parameters can be adjusted from within the graph-
ical user-interface, before confirming and loading up the file (see Figure A3). Users with
more command-line experience, or the intent of running TRex in batch-mode, can append
necessary parameter values without adding them to a settings file.

1300

1301

1302

1303

1304

1305

1306

To acquire video-files that can be opened using TRex, one needs to first run TGrabs in
one way or another. It is possible to use a webcam (generic USB camera) for recording, but
TGrabs can also be compiled with Basler Pylon5 supportd. TGrabs can also convert existing
videos and write to a more suitable format for TRex to interact with (a static background
with moving objects clearly separated in front of it). It can be started just like TRex, although
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most options are either set via the command-line, or a web-interface. TGrabs can perform
basic tracking tasks on the fly, offering closed-loop support as well.

1307

1308

1309

1310

1311

1312

1313

For automatic visual recognition, one might need to adjust some parameters. Mostly,
these adjustments consist of changing the following parameters:

1314

1315

• blob_size_ranges: Setting one (or multiple) size thresholds for individuals, by giving
lower and upper limit value pairs.

1316

1317

• track_max_individuals: Sets the number of individuals expected in a trial. This num-
ber needs to be known for recognition tasks (and will be guessed if not provided), but
can be set to 0 for unknown numbers of individuals.

1318

1319

1320

• track_max_speed: Sets the maximum speed (cm/s) that individuals are expected to
travel at. This is influenced by meta information provided to TGrabs by the user (e.g.
the width of the tank), as well as frame timings.

1321

1322

1323

• track_threshold: Even TRex can threshold images of individuals, so it is beneficial to
not threshold away too many pixels during conversion/recording and do finer-grade
adjustments in the tracker itself.

1324

1325

1326

• outline_resample: A factor that is > 0, by which the number of points in the outline is
essentially "divided". Smaller resample rates lead to more points on the outline (good
for very small shapes).

1327

1328

1329

Training can be started once the user is satisfied with the basic tracking results. Consec-
utive segments are highlighted in the time-line and suggest better or worse tracking, based
on their quantity and length. Problematic segments of the video are highlighted using yel-
low bars in that same time-line, giving another hint to the user as to the tracking quality. To
start the training, the user just clicks on "train network" in the main menu – triggering the
accumulation process immediately. After training, the user can click on "auto correct" in the
menu and let TRex correct the tracks automatically (this will re-track the video). The entire
process can be automated by adding the "auto_train" parameter to the command-line, or
selecting it in the interface.

1330

1331

1332

1333

1334

1335

1336

1337

1338

Output1339

Once finished, the user may export the data in the desired format. Which parts of the data
are exported is up to the user as well. By default, almost all the data is exported and saved
in NPZ files in the output folder.

1340

1341

1342

Output folders are structured in this way:1343

• output folder:1344

– Settings files1345

– Training weights1346

– Saved program states1347

– data folder:1348

* Statistics1349

* All exported NPZ files (named [video_name]_fish[number].npz – the prefix
"fish" can be changed).

1350

1351

* . . .1352

– frames folder (contains video clips recorded in the GUI, e.g. for presentations):1353

* [video name] folder1354

· clip[index].avi1355

· . . .1356

* . . .1357
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At any point in time (except during training), the user can save the current program state
and return to it at a later time (e.g. after a computer restart).

1358

1359

Export options1360

After individuals have been assigned by the matching algorithm, various metrics are calcu-
lated (depending on settings):

1361

1362

• Angle: The angle of an individual can be calculated without any context using image
moments (Hu (1962)). However, this angle is only reliable within 0 to 180 degrees – not
the full 360. Within these 180 degrees it is probably more accurate than is movement
direction.

1363

1364

1365

1366

• Position: Centroid information on the current, as well as the previous position of the
individual aremaintained. Based onprevious positions, velocity aswell as acceleration
are calculated. This process is basedon information sourced from the respective video
file or camera on the time passed between frames. The centroid of an individual is
calculated based on the mass center of the pixels that the object comprises. Angles
calculated in the previous steps are corrected (flipped by 180 degrees) if the angle
difference between movement direction and angle + 180 degrees is smaller than with
the raw angle.

1367

1368

1369

1370

1371

1372

1373

1374

• Posture: A large part of the computational complexity comes from calculating the
posture of individuals. While this process is relatively fast in TRex, it is still the main
factor (except with many individuals, where the matching process takes longest). We
dedicated a subsection to it below.

1375

1376

1377

1378

• Visual Field: Based on posture, rays can be cast to detect which animal is visible from
the position of another individual. We also dedicated a subsection to visual field fur-
ther down.

1379

1380

1381

• Other features can be computed, such as inter-individual distances or distance to
the tank border. These are optional and will only be computed if necessary when
exporting the data. A (non-comprehensive) list ofmetrics that can be exported follows:

1382

1383

1384

– Time: The time of the current frame (relative to the start of the video) in seconds.1385

– Frame: Index of the frame in the PV video file.1386

– Individual components of position its derivatives (as well as their magnitudes, e.g.
speed)

1387

1388

– Midline offset: The center-line, e.g. of a beating fish-tail, is normalized to be
roughly parallel to the x-axis (from its head to a user-defined percentage of a
body). The y-offset of its last point is exported as a "midline offset". This is useful,
e.g. to detect burst-and-glide events.

1389

1390

1391

1392

– Midline variance: Variance in midline offset, e.g. for detection of irregular pos-
tures or increased activity.

1393

1394

– Border distance1395

– Average neighbour distance: Could be used to detect individuals who prefer to
be located far away from the others or are avoided by them.

1396

1397

Additionally, tracks of individuals can be exported as a series of cropped-out images – a
very useful tool if they are to be used with an external posture estimator or tag-recognition.
This series of images can be either every single image, or the median of multiple images
(the time-series is down-sampled).

1398

1399

1400

1401

aopencv.org
btensorflow.org
cdeeplearning.net
dThe baslerweb.com Pylon SDK is required to be installed to support Basler USB cameras.
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Appendix 1 Figure A1. An overview of TRex’ the main interface, which is part of the documentation at trex.run/docs. Interface elements aresorted into categories in the four corners of the screen (labelled here in black). The omni-box on the bottom left corner allows users to changeparameters on-the-fly, helped by a live auto-completion and documentation for all settings. Only some of the many available features aredisplayed here. Generally, interface elements can be toggled on or off using the bottom-left display options or moved out of the way with thecursor. Users can customize the tinting of objects (e.g. sourcing it from their speed) to generate interesting effect and can be recorded for use inpresentations. Additionally, all exportable metrics (such as border-distance, size, x/y, etc.) can also be shown as an animated graph for anumber of selected objects. Keyboard shortcuts are available for select features such as loading, saving, and terminating the program. Remoteaccess is supported and offers the same graphical user interface, e.g. in case the software is executed without an application window (for batchprocessing purposes).
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Appendix 1 Figure A2. Using the interactive heatmap generator within TRex, the foraging trail formation of Constrictotermes cyphergaster(termites) can be visualized during analysis, as well as other potentially interesting metrics (based on posture- as well basic positional data). Thisis generalizable to all output data fields available in TRex, e.g. also making it possible to visualize "time" as a heatmap and showing whereindividuals were more likely to be located during the beginning or towards end of the video. Video: H. Hugo
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Appendix 1 Figure A3. The file opening dialog. On the left is a list of compatible files in the current folder.The center column shows meta-information provided by the video file, including its frame-rate and resolution– or some of the settings used during conversion and the timestamp of conversion. The column on the rightprovides an easy interface for adjusting the most important parameters before starting up the software.Most parameters can be changed later on from within TRex as well.
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Appendix 21402

From video frame to blobs1403

Video frames can originate either from a camera, or from a pre-recorded video file saved
on disk. TGrabs treats both sources equally, the only exception being some minor details
and that pre-recorded videos have a well-defined end (which only has an impact on MP4
encoding). Multiple formats are supported, but the full list of supported codecs depends
on the specific system and OpenCV version installed. TGrabs saves images in RAW quality,
but does not store complete images. Merely the objects of interest, defined by common
tracking parameters such as size, will actually be written to a file. Since TGrabs is mostly
meant for use with stable backgrounds (except when contrast is good or a video-mask is
provided), the rest of the area can be approximated by a static background image generated
in the beginning of the process (or previously).

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

Generally, every image goes through a number of steps before it can be tracked in TRex:1414

1. Images are decoded by either (i) a camera driver, or (ii) OpenCV. They consist of an
array of values between 0 and 255 (grayscale). Color images will be converted to
grayscale images (color channel or "hue" can be chosen).

1415

1416

1417

2. Timing information is saved and images are appended to a queue of images to be
processed

1418

1419

3. All operations from now on are performed on the GPU if available. Once images are
in the queue, they are picked one-by-one by the processing thread, which performs
operations on them based on user-defined parameters:

1420

1421

1422

• Cropping1423

• Inverting1424

• Contrast/brightness and lighting corrections1425

• Undistortion (see OpenCV Tutorial)1426

4. (optional) Background subtraction (d(x) = b(x)−f (x), with f being the image and b the
background image), leaving a difference image containing only the objects. This can
be an absolute difference |b(x) − f (x)| or a signed one, which has different effects on
the following step. Otherwise d(x) = f (x)

1427

1428

1429

1430

5. Thresholding to obtain a binary image, with all pixels either being 1 or 0:

t(x) =

⎧

⎪

⎨

⎪

⎩

0 d(x) < T

1 d(x) ≥ T

where 0 ≤ T ≤ 255 is the threshold constant.

1431

1432

1433

1434

1435

6. Options are available for further adjustment of the binary image: Dilation, Erosion and
Closing are used to close gaps in the shapes, which are filled up by successive dilation
and erosion operations (see Figure A1). If there is an imbalance of dilation and erosion
commands, noise can be removed or shapes made more inclusive.

1436

1437

1438

1439

7. Theoriginal image ismultiplied by the thresholded image, obtaining amasked grayscale
image: t(x) ⋅ f (x), where ⋅ is the element-wise multiplication operator.

1440

1441

At this point, the masked image is returned to the CPU, where connected components
(objects) are detected. A connected component is a number of adjacent pixels with color
values greater than zero. Algorithms for connected-component labeling either use a 4-
neighborhood or an 8-neighborhood, which considers diagonal neighbors to be adjacent
as well. Many such algorithms are available (AbuBaker et al. (2007), Chang and Chen (2003),
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(a) The structure element. (b) The original image. (c) Image modified by the structure element.
Appendix 2 Figure A1. Example of morphological operations on images: "Erosion". Blue pixels denoteon-pixels with color values greater than zero, white pixels are "off-pixels" with a value equal to zero. A mask ismoved across the original image, with its center (dot) being the focal pixel. A focal pixel is retained if all of theon-pixels within the structure element/mask are on top of on-pixels in the original image. Otherwise the focalpixel is set to 0. The type of operation performed is entirely determined by the structure element.

and many others), even capable of real-time speeds (Suzuki et al. (2003), He et al. (2009)).
However, since we want to use a compressed representation throughout our solution, as
well as transfer over valuable information to integrate it with posture analysis, we needed
to implement our own (see Connected components algorithm).

1442

1443

1444

1445

1446

1447

1448

1449

1450

MP4 encoding has some special properties, since its speed is mainly determined by the
external encoding software. Encoding at high-speed frame-rates can be challenging, since
we are also encoding to a PV-file simultaneously. Videos are encoded in a separate thread,
without muxing, and will be remuxed after the recording is stopped. For very high frame-
rates or resolutions, itmay benecessary to limit the duration of videos since all of the images
have to be kept in RAM until they have been encoded. RAW images in RAM can take up a lot
of space (1024 ∗ 1024 ∗ 1000 = 1, 048, 576, 000 bytes for 1000 images quite low in resolution).
If there a recording length is defined prior to starting the program, or a video is converted to
PV and streamed to MP4 at the same time (though it is unclear why that would be necessary),
TGrabs is able to automatically determine which frame-rate can be maintained reliably and
without filling the memory.

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461
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Appendix 31462

Connected components algorithm1463

Pixels are not represented individually in TRex. Instead, they are saved as connected hori-
zontal line segments. For each of these lines, only y- as well as start- and end-position are
saved (y, x0 and x1). This representation is especially suited for objects stretching out alongthe x-axis, but of course its worst-case is a straight, vertical line – in which case space re-
quirements are O(2 ∗ N) for N pixels. Especially for big objects, however, only a fraction
of coordinates has to be kept in memory (with a space requirement of O(2 ∗ H) instead of
O(W ∗ H), withW ,H being width and height of the object).

1464

1465

1466

1467

1468

1469

1470

Extracting these connected horizontal line segments from an image can be parallelized
easily by cutting the image into full-width pieces and running the following algorithm re-
peatedly for each row:

1471

1472

1473

1. From 0 to W , iterate all pixels. Always maintain the previous value (binary), as well
as the current value. We start out with our previous value of p = 0 (the border is
considered not to be an object).

1474

1475

1476

2. Now repeat for every pixel pi in the current row:1477

(a) If p is 1 and pi is 0, set p ∶= 0 and save the position as the end of a line segment
x1 = i − 1.

1478

1479

(b) If p is 0 and pi is 1, we did not have a previous line segment and a new one starts.
We save it as our current line segment with x0 and y equal to the current row. Set
p ∶= 1.

1480

1481

1482

3. After each row, if we have a valid current line, we save it in our array of lines. If p = 1
was set, and the line segment ended at the borderW of the image, we first set its end
position to x1 ∶= W − 1.

1483

1484

1485

We keep the array of extracted lines sorted by their y-coordinate, as well as their x-
coordinates in the order we encountered them. To extract connected components, we now
just need to walk through all extracted rows and detect changes in the y-coordinate. The
only information needed are the current row and the previous row, as well as a list of active
preliminary "blobs" (or connected components). A blob is simply a collection of ordered
horizontal line segments belonging to a single connected component. These blobs are pre-
liminary until thewhole image has been processed, since theymight bemerged into a single
blob further down despite currently being separate (see Figure A1).

1486

1487

1488

1489

1490

1491

1492

1493

"Rows" are an array of horizontal lines with the same y-coordinate, ordered by their x-
coordinates (increasing). The following algorithm only considers pairs of previous row Ri−1and current row Ri. We start by inserting all separate horizontal line segments of the very
first row into the pool of active blobs, each assigned their own blob. Lines within row Riare Li,j . Coordinates of Li,j will be denoted as x0(i, j), x1(i, j) and y(i, j). Our current indexin row Ri−1 is j and our index in row Ri is k. We initialize j ∶= 0, k ∶= 1. Now for each pair
of rows, three different actions may be required depending on the case at hand. All three
actions are hierarchically ordered and mutually exclusive (like a typical if/else structure
would be), meaning that case 0-2 can be true at the same time while no other combination
can be simultaneously true:

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1. Case 0,1 and 2: We have to create a new blob. This is the case if (0) the line in Riends before the line in Ri−1 starts (x1(i, k) + 1 < x0(i, j)), or (1) y-coordinates of Ri and
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Ri−1 are farther apart than 1 (y(i − 1, j) > y(i, k) + 1), or (2) there are no lines left in Ri−1to match the current line in Ri to (j ≥ |Ri−1|). Li,k is assigned with a new blob.

1504

1505

1506

1507

2. Case 3: Segment in the previous row ends before the segment in the current row
starts. If x0(i, k) > x1(i − 1, j) + 1, then we just have to j ∶= j + 1.

1508

1509

3. Case 4: Segment in the previous row and segment in the current row intersect in
x-coordinates. If Li,k is no yet assigned with a blob, assign it with the one from Li−1,j .Otherwise, both blobs have to be merged. This is done in a sub-routine, which guar-
antees that lines within blobs stay properly sorted during merging. This means that (i)
y-coordinates increase or stay the same and (ii) x-coordinates increase monotonically.
Afterwards, we increase either k or j based on which one associated line ends earlier:
If x1(i, k) ≤ x1(i − 1, j), then we increase k ∶= k + 1; otherwise j ∶= j + 1.

1510

1511

1512

1513

1514

1515

1516

After the previous algorithm has been executed on a pair ofRi−1 andRi, we increase i byone i ∶= i+1. This process is continued until i = H , at which point all connected components
are contained within the active blob array.

1517

1518

1519

Retaining information about pixel values adds slightly more complexity to the algorithm,
but is straight-forward to implement. In TRex, horizontal line segments comprise y, x0 and
x1 values plus an additional pointer. It points to the start of a line within array of all pixels
(or an image matrix), adding only little computational complexity overall.

1520

1521

1522

1523

Based on the horizontal line segments and their order, posture analysis can be sped up
when properly integrated. Another advantage is that detection of connected components
within arrays of horizontal line segments is supported due to the way the algorithm func-
tions – we can just get rid of the extraction phase.

1524

1525

1526

1527

Appendix 3 Figure A1. An example array of pixels, or image, to be processed by the connected componentsalgorithm. This figure should be read from top to bottom, just as the connected components algorithm woulddo. When this image is analysed, the red and blue objects will temporarily stay separate within different"blobs". When the green pixels are reached, both objects are combined into one identity.
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Appendix 41528

Matching an object to an object in the next frame1529

Terminology1530

A graph is a mathematical structure commonly used in many fields of research, such as
computer science, biology and linguistics. Graphs are made up of vertices, which in turn
are connected by edges. Below we define relevant terms that we are going to use in the
following section:

1531

1532

1533

1534

• Directed graph: Edges have a direction assigned to them1535

• Weighted edges: Edges have a weight (or cost) assigned to them1536

• Adjacent nodes: Nodes which are connected immediately by an edge1537

• Path: A path is a sequence of edges, where each edges starting vertex is the end vertex
of the previous edge

1538

1539

• Acyclic graph: The graph contains no path in which the same vertex appears more
than once

1540

1541

• Connected graph: There are no vertices without edges, there is a path from any vertex
to any other vertex in the graph

1542

1543

• Bipartite graph: Vertices can be sorted into two distinct groups, without an edge from
any vertex to elements of its own group – only to the other group

1544

1545

• Tree: A tree is a connected, undirected, acyclic graph, in which any two vertices are
only connected by exactly one path

1546

1547

• Rooted, directed out-tree: A tree where one vertex has been defined to be the root
and directed edges, with all edges flowing away from the root

1548

1549

• Visited vertex: A vertex that is already part of the current path1550

• Leaf: A vertex which has only one edge arriving, but none going out (in a tree this are
the bottom-most vertices)

1551

1552

• Depth-first/breadth-first and best-first search: Different strategies to pick the next ver-
tex to explore for a set of paths with traversable edges. Depth-first prefers to first go
deeper inside a graph/tree, before going on to explore other edges of the same ver-
tex. Breadth-first is the opposite of depth-search. Best-first search uses strategies to
explore the most promising path first.

1553

1554

1555

1556

1557

Background1558

The transportation problem is one of the fundamental problems in computer science. It
solves the problem of transporting a finite number of goods to a finite number of factories,
where each possible transport route is associated with a cost (or weight). Every factory has
a demand for goods and every good has a limited supply. The sum of this cost has to be
minimized (or benefits maximized), while remaining within the constraints given by supply
and demand. In the special case where demand by each factory and supply for each good
are exactly equal to 1, this problem reduces to the assignment problem.

1559

1560

1561

1562

1563

1564

1565

The assignment problem can be further separated into two distinct cases: the balanced
and the unbalanced assignment problem. In the balanced case, net-supply and demand are
the same – meaning that the number of factories matches exactly the number of suppliers.
While the balanced case can be solved slightly more efficiently, most practical problems are
usually unbalanced (Ramshaw and Tarjan (2012a)). Thankfully, unbalanced assignments
can be reduced to balanced assignments, for example using graph-duplication methods or
by adding nodes (Ramshaw and Tarjan (2012a), Ramshaw and Tarjan (2012b)). This makes
the widely used Hungarian method (Kuhn (1955);Munkres (1957)) a viable solution to both,
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with a computational complexity of O(n3). It can be further improved using Fibonacci heaps
(not implemented in TRex), resulting inO(ms+s2 log n) time-complexity (Fredman and Tarjan
(1987)), with m being the number of possible connections/edges, s ≤ n the number of facto-
ries to be supplied and n the number of factories. Re-balancing, by adding nodes or other
structures, also adds computational cost – especially when s ≪ n (Ramshaw and Tarjan
(2012b)).

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

Adaptation for our matching problem1580

Assigning individuals to objects in the frame is, in the worst case, exactly that: an unbal-
anced assignment problem – potentially with r ≠ s. During development, we found that we
can achieve better average-complexity by combining an approach commonly used to solve
NP-hard problems. This is a class problems for which it is (probably) not possible to find a
polynomial-time solution. In order to motivate our usage of a less stable algorithm than e.g.
the Hungarian method, let us first introduce amore general algorithm, following along with
remarks for adapting it to our special case. The next subsection concludes with considera-
tions regarding its complexity in comparison to the more stable Hungarian method.

1581

1582

1583

1584

1585

1586

1587

1588

Branch & Bound (or BnB, Land and Doig (1960), formalized in Little et al. (1963)) is a very
general approach to traversing the large search spaces of NP-hard problems, traditionally
represented by a tree. Branching and bounding gives optimal solutions by traversing the
entire search space if necessary, but stopping along the way to evaluate its options, always
trying to choose better branches of the tree to explore next or skip unnecessary ones. BnB
always consists of three main ingredients:

1589

1590

1591

1592

1593

1594

1. Branching: The division of our problem into smaller, partial problems1595

2. Bounding: Estimate the upper/lower limits of the probability/cost gain to be expected
by traversing a given edge

1596

1597

3. Selection: Determining the next node to be processed1598

Finding good strategies is essential and can have a big impact on overall computation
time. Strategies can only be worked out with insight into the specific problem, but bound-
ing is generally the dominating factor here – in that choosing good selection and branching
techniques cannot make up for a bad bounding function (Clausen (1999)). A bounding func-
tion estimates an upper (or lower) limit for the quality of results that can be achieved within
a given sub-problem (current branch of the tree).

1599

1600

1601

1602

1603

1604

The "problem" is the entire assignment problem located at the root node of the tree.
The further down we go in the tree, the smaller the partial problems become until we reach
a leaf. Any graph can be represented as a tree by duplicating nodes when necessary (Zhang
(1996), "Graph vs. tree"). So even if the bipartite assignment graph (an example sketched in
Figure A1) is a more "traditional" representation of the assignment problem, we can trans-
late it into a rooted, directed out-tree T = (U, V , E, F ) with weighted edges. Here, U are
individuals and V are objects in the current frame that are potentially assigned to identities
in U . E are edges mapping from U → V , while F ∶ V → U . It is quite visible from Fig-
ure A1, that the representation as a tree (b) is much more verbose than a bipartite graph
(a). However, its structure is very simple:

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

Looking at the tree in Figure A1 (b), individuals (blue) are found along the y-axis/deeper
into the tree while objects in the frame (orange) are listed along on the x-axis. This includes
a "null" case per individual, representing the possibility that it is not assigned to any object
– ensuring that every individual has at least one edge.

1615

1616

1617

1618

Tree is never generated in its entirety (except in extreme cases), but it represents all pos-
sible combinations of individuals and objects. Overall, the setQ of every complete and valid
path from top to bottom would be exactly the same as the set of every valid permutation
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of pairings between objects (plus null) and individuals. Edge weights in E are equal to the
probability Pi(t, �i | Bj) (see equation 7), abbreviated to Pi(Bj) here since we are only everlooking at one time-step. Bj is an object and i is an individual, so we can rewrite it in the
current context as Pu(v), with u ∈ U ; v ∈ V .

1619

1620

1621

1622

1623

1624

1625

We are maximizing the objective function1626

o(�) =
∑

uv∈�
Pu(v),

1627

1628

1629

1630

where � ∈ Q is an element of all valid paths within T .1631

The simplest approach would be to traverse every edge in the graph and accumulate a
sum of probabilities along each path, guaranteeing to find the optimal solution eventually.
Since the number of possible combinations |U ||E| grows rapidly with the number of edges,
this is not realistic – even with few individuals. Thus, at least the typical number of visited
edges has to beminimized. While we do not know the exact solution to our problem before
traversing the graph, we canmake very good guesses. For example, we may order nodes in
such a way that branching (visiting a node leads to > 1 new edges to be visited) is reduced in
most cases. To do that, we first need to calculate the degree of each individual. The degree
Cu of individual u, which is exactly equivalent to the maximum number of edges going out
from that individual, we define as

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

Cu ∈ ℕ ∶=
∑

u∈U

⎧

⎪

⎨

⎪

⎩

1 ifPu(v) > Pmin
0 otherwise

.

1642

1643

1644

1645

The maximally probable edge per individual also has to be computed beforehand, de-
fined as

1646

1647

Pu = maxv∈V
{Pu(v)}.

1648

1649

1650

1651

Nodes are sorted first by their degree (ascending) and secondly by Pu (descending). We
call this ordered set S. Sorting by degree ensures that the nodes with the fewest outgoing
edges are visited first, causing severe branching to only happen in the lower regions of the
tree. This is preferable, because a new branch in the bottom layer merely results in a few
more options. If this happens at the top, the tree is essentially duplicated Cu times – in one
step drastically increasing the overall number of items to be kept in memory. This process
is, fittingly, called node sorting (Zhang (1996)). Sorting by Pu is only applied whenever nodesof the same degree have to be considered.

1652

1653

1654

1655

1656

1657

1658

1659

We always follow the most promising paths first (the one with the highest accumulated
probability), which is called "best-first search" (BFS) – our selection strategy for (1.) in 4. BFS
is implemented using a queue maintaining the list of all currently expanded nodes.

1660

1661

1662

Regarding (2.) in 4, we utilize Pu as an approximation for the upper bound to the achiev-
able probability in each vertex. For each layer with vertices of U , we calculate an accumula-
tive sum upper_limit(i) = ∑

j>i∈U Pj , with j, i being indices into our ordered set S of individuals
and i being the current depth in the graph (only counting vertices of U ). This hierarchical
upper limit for the expected value does not consider whether the respective edges are still
viable, so they could have been eliminated already by assigning the object of V to another
vertex of U above the current one. Any edge with Pcurrent + upper_limit(i) < Pbest is skippedsince it can not improve upon our previous best value Pbest . If we do find an edge with a
better value, we replace Pbest with the new value and continue.

1663

1664

1665

1666

1667

1668

1669

1670

1671

As an example, let us traverse the tree in Figure A1b:1672
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• We first calculate Pu for every u ∈ U (P0 = 0.85;P2 = 0.9;P1 = 0.75), as well as the
hierarchical probability table upper_limit(i) for each index 0 ≤ i < N (0.9 + 0.75; 0.75; 0).
Pbest ∶= 0.

1673

1674

1675

• Individual 0 (the root) is expanded, which has one edgewith probability 0.85+upper_limit(0) ≥
Pbest to object 3 (plus the null case) and is the only node with a degree of 1. We know
that our now expanded node is the best, since it has the largest probability due to
sorting, plus also is the deepest. In fact, this is true for all expanded nodes exactly in
the order they are expanded (depth-first search == best-first search for our case). We
set Pbest ∶= 0.85. The edge to NIL is added to our queue.

1676

1677

1678

1679

1680

1681

• Objects in V are only virtual and always have zero-probability connections to the next
individual in an ordered set (f ∈ F ), so they do not add to the overall probability sum.
We skip to the next node.

1682

1683

1684

• Individual 2 branches off into one or two different edges, depending on which edges
have been chosen previously.

1685

1686

• We first explore the edge towards object 4 with a probability of 0.9 + upper_limit(1) =
1.65 ≥ Pbest and add it to Pbest .

1687

1688

• Only one possibility is left and we arrive at a leaf with an accumulated probability of
0.85 + 0.9 + 0 = 1.75.

1689

1690

• We nowperformbacktracking, meaningwe look at every expanded node in our queue,
each time observing Pu + upper_limit(i).

1691

1692

– NIL (from node 2) would be added to the front of our queue, however its proba-
bility 0.85 + 0 + upper_limit(1) = 1.6 < 1.75 = Pbest , so it is discarded.

1693

1694

– NIL (from node 0) would be added now, but its probability of 0 + upper_limit(0) =
1.65 < Pbest , so it is also discarded.

1695

1696

We can see that with increased depth, we have to keep track of more and more pos-
sibilities. Since our nodes and edges are pre-sorted, our path through the tree is optimal
after exactly N = |U | node expansions (not counting v ∈ V expansions since they are only
"virtual").

1697

1698

1699

1700

Complexity1701

Utilizing these techniques, we can achieve very good average-case complexity. Of course
having a good worst-case complexity is important (such as the Hungarian method), but the
impact of a good average-case complexity can be significant as well. This is illustrated nicely
by the timingsmeasured in Table A3, where ourmethod consistently surpasses the Hungar-
ian method in terms of performance – especially for very large groups of animals – despite
having worse worst-case complexity. Usually, even in situations with over 1000 individuals
present, the average number of leaves visited was approximately 1.112 (see Table A5) and
each visit was a global improvement (not shown). The number of nodes visited per frame
were around 2844 to 19, 804, 880 in the same video, which, given themaximal number of pos-
sible combinations NM forM edges and N individuals (Thomas (2015)), is quite moderate.
Especially considering the number of calculations that the Hungarian method has to per-
form in every step, which, according to its complexity, will be in the range of N3 ≈ 1e9 for
N = 1024 individuals.

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

The average complexity of a solution using best-first-search BnB is given by Zhang (1996).
It depends on the probability of encountering a "zero-cost edge" p0, as well as the mean
branching factor b of the tree:

1715

1716

1717

1. Θ(�N ) when bp0 < 1, with � ≤ b and N is the depth of the tree1718

2. Θ(N2) when bp0 = 11719
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Appendix 4 Figure A1. A bipartite graph (a) and its equivalent tree-representation (b). It is bipartite sincenodes can be sorted into two disjoint and independent sets ({0, 1, 2} and {3, 4}), where no nodes have edgesto other nodes within the same set. (a) is a straight-forward way of depicting an assignment problem, with theidentities on the left side and objects being assigned to the identities on the right side. Edge weights are, in
TRex and this example, probabilities for a given identity to be the object in question. This graph is also anexample for an unbalanced assignment problem, since there are fewer objects (orange) available thanindividuals (blue). The optimal solution in this case, using weight-maximization, is to assign 0→ 3; 2→ 4 andleave 1 unassigned. Invalid edges have been pruned from the tree in (b), enforcing the rule that objects canonly appear once in each path. The optimal assignments have been highlighted in red.

3. Θ(N) when bp0 > 1 ⇔ b > 1∕p01720

as N →∞.1721

In our case the depth of the tree is exactly the number of individuals N , which we have
already substituted here. This is the number of nodes that have to be visited in the best
case. A "zero-cost edge" is an edge that does not add any cost to the current path. We
are maximizing (not minimizing) so in our case this would be "an edge with a probability
of 1". While reaching exactly 1 is improbable, it is (in our case) equivalent to "having only
one viable edge arriving at an object". p0 depends very much on the settings, specifically
the maximum movement speed allowed, and behavior of individuals, which is why in sce-
narios with > 100 individuals the maximum speed should always be adjusted first. To put it
another way: If there are only few branching options available for the algorithm to explore
per individual, which seems to be the case even in large groups, we can assume our graph
to have a probability p0 within 0≪ p0 ≤ 1. The mean branching factor b is given by the mean
number of edges arriving at an object (not an individual). Averaging at around b ≈ k+1, with
k ≥ 1 being the average number of assignable blobs per individual (roughly 1.005 in Video 0
) and 1 the null-case, we can assume bp0 to be > 1 on average. An average complexity of
O(N2), as long as b > 1∕p0, is even better than the complexity of the Hungarian method
(which is also O(N3) in the average-case, Bertsekas (1981)), giving a possible explanation for
the good results achieved using tree-based matching in TRex on average (Table A3).

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

Further optimizations could be implemented, e.g. using impact-based heuristics (as an
example of dynamic variable ordering) instead of the static and coarse maximum probabil-
ity estimate used here. Such heuristics first choose the vertex "triggering the largest search
space reduction" (Pesant et al. (2012)). In our case, assigning an individual first if, for exam-
ple, it has edges to many objects that each only one other individual is connected to.

1739

1740

1741

1742

1743
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Appendix 4 Table A1. Showing quantiles for frame timings for videos of the speed dataset (without postureenabled). Videos 15 , 16 and 14 each contain a short sequence of taking out the fish, causing a lot of bigobjects and noise in the frame. This leads to relatively high spikes in these segments of the video, resulting inhigh peak processing timings here. Generally, processing time is influenced by a lot of factors involving notonly TRex, but also the operating system as well as other programs. While we did try to control for these,there is no way to make sure. However, having sporadic spikes in the timings per frame does not significantlyinfluence overall processing time, since it can be compensated for by later frames. We can see that videos ofall quantities ≤ 256 individuals can be processed faster than they could be recorded. Videos that can not beprocessed faster than real-time are underlaid in gray.
video characteristics ms / frame (processing) processing time

video # ind. ms / frame 5% mean 95% max > real-time % video length
0 1024 25.0 46.93 62.96 119.54 849.16 100.0% 358.12
1 512 20.0 19.09 29.26 88.57 913.52 92.11% 259.92
2 512 16.67 17.51 26.53 36.72 442.12 97.26% 235.39
3 256 20.0 8.35 11.28 13.25 402.54 1.03% 77.18
4 256 16.67 8.04 11.62 13.48 394.75 1.13% 94.77
5 128 16.67 3.54 5.14 5.97 367.92 0.41% 40.1
6 128 16.67 3.91 5.64 6.89 381.51 0.51% 44.38
7 100 31.25 2.5 3.57 5.19 316.75 0.1% 28.35
8 59 19.61 1.43 2.29 3.93 2108.77 0.19% 16.33
9 15 40.0 0.4 0.52 1.67 4688.5 0.01% 2.96
10 10 10.0 0.28 0.33 0.57 283.7 0.07% 8.08
11 10 31.25 0.21 0.25 0.65 233.7 0.01% 3.48
12 10 31.25 0.23 0.27 0.75 225.63 0.02% 2.82
13 10 31.25 0.22 0.25 0.54 237.32 0.02% 2.64
14 8 33.33 0.24 0.29 0.66 172.8 0.02% 1.8
15 8 40.0 0.22 0.26 0.88 244.88 0.01% 1.5
16 8 28.57 0.18 0.21 0.51 1667.14 0.02% 1.38
17 1 7.14 0.03 0.04 0.06 220.81 0.01% 1.56
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Appendix 4 Figure A2. The same set of videos as in Table 5 pooled together, we evaluate the efficiency of ourcrossings solver. Consecutive frame segments are sequences of frames without gaps, for example due tocrossings or visibility issues. We find these consecutive frame segments in data exported by TRex, and comparethe distribution of segment-lengths to idtracker.ai’s results (as a reference for an algorithm without a wayto resolve crossings). In idtracker.ai’s case, we segmented the non-interpolated tracks by missing frames,assuming tracks to be correct in between. The Y-axis shows the percentage of
∑

k∈[1,V ] video_lengthk ∗ #individualsk in V videos that one column makes up for – the overall coverage for TRexwas 98%, while idtracker.ai was slightly worse with 95.17%. Overall, the data distribution suggests that,probably due to it attempting to resolve crossings, TRex seems to produce longer consecutive segments.

Appendix 4 Table A2. A quality assessment of assignment decisions made by the general purpose trackingsystem without the aid of visual recognition – comparing results of two accurate tracking algorithms with theassignments made by an approximate method. Here, decisions are reassignments of an individual after it hasbeen lost, or the tracker was too "unsure" about an assignment. Decisions can be either correct or wrong,which is determined by comparing to reference data generated using automatic visual recognition: Everysegment of frames between decisions is associated with a corresponding "baseline-truth" identity from thereference data. If this association changes after a decision, then that decision is counted as wrong. Analysinga decision may fail if no good match can be found in the reference data (which is not interpolated). Faileddecisions are ignored. Comparative values for the Hungarian algorithm (Kuhn (1955)) are always exactly thesame as for our tree-based algorithm, and are therefore not listed separately. Left-aligned total, excluded and
wrong counts in each column are results achieved by an accurate algorithm, numbers to their right are thecorresponding results using an approximate method.
video # ind. length total excluded wrong
7 100 1min 717 755 22 22 45 (6.47%) 65 (8.87%)
8 59 10min 279 312 146 100 55 (41.35%) 32 (15.09%)
9 15 1h0min 838 972 70 111 100 (13.02%) 240 (27.87%)
13 10 10min3s 331 337 22 22 36 (11.65%) 54 (17.14%)
12 10 10min3s 382 404 42 43 83 (24.41%) 130 (36.01%)
11 10 10min10s 1067 1085 50 52 73 (7.18%) 92 (8.91%)
14 8 3h15min22s 7424 7644 1428 1481 1174 (19.58%) 1481 (24.03%)
15 8 1h12min 3538 3714 427 517 651 (20.93%) 962 (30.09%)
16 8 3h18min13s 2376 3305 136 206 594 (26.52%) 1318 (42.53%)

sum 16952 16754 −2343 −2554 2811 (19.24%) 4374 (27.38%)
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Appendix 4 Figure A3. Mean values of processing-times and 5%/95% percentiles for video frames of allvideos in the speed dataset (Table 1), comparing two different matching algorithms. Parameters were keptidentical, except for the matching mode, and posture was turned off to eliminate its effects on performance.Our tree-based algorithm is shown in green and the Hungarian method in red. Grey numbers above thegraphs show the number of samples within each bin, per method. Differences between the algorithmsincrease very quickly, proportional to the number of individuals. Especially the Hungarian method quicklybecomes very computationally intensive, while our tree-based algorithm shows a much shallower curve.Some frames could not be solved in reasonable time by the tree-based algorithm alone, at which point it fallsback to the Hungarian algorithm. Data-points belonging to these frames (N = 79) have been excluded fromthe results for both algorithms. One main advantage of the Hungarian method is that, with its boundedworst-case complexity (see Matching an object to an object in the next frame), no such combinatoricalexplosions can happen. However, even given this advantage the Hungarian method still leads to significantlylower processing speed overall (see also appendix Table A3).
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Appendix 4 Table A3. Comparing computation speeds of the tree-based tracking algorithm with the widelyestablished Hungarian algorithm Kuhn (1955), as well as an approximate version optimized for largequantities of individuals. Posture estimation has been disabled, focusing purely on the assignment problemin our timing measurements. The tree-based algorithm is programmed to fall back on the Hungarian methodwhenever the current problem "explodes" computationally – these frames were excluded. Listed are relevantvideo metrics on the left and mean computation speeds on the right side for three different algorithms: (1)The tree-based and (2) the approximate algorithm presented in this paper, and (3) the Hungarian algorithm.Speeds listed here are percentages of real-time (the videos’ fps), demonstrating usability in closed-loopapplications and overall performance. Results show that increasing the number of individuals both increasesthe time-cost, as well as producing much larger relative standard deviation values. (1) is almost always fastthan (3), while becoming slower than (2) with increasing individual numbers. In our implementation, allalgorithms produce faster than real-time speeds with 256 or fewer individuals (see also appendix Table A1),with (1) and (2) even getting close for 512 individuals.
video metrics % real-time

video # ind. fps (Hz) size (px2) tree approximate hungarian
0 1024 40 3866 × 4048 35.49 ± 65.94 38.69 ± 65.39 12.05 ± 18.72
1 512 50 3866 × 4140 51.18 ± 180.08 75.02 ± 193.0 28.92 ± 29.12
2 512 60 3866 × 4048 59.66 ± 121.4 65.58 ± 175.51 23.18 ± 26.83
3 256 50 3866 × 4140 174.02 ± 793.12 190.62 ± 743.54 127.86 ± 9841.21
4 256 60 3866 × 4048 140.73 ± 988.15 155.9 ± 760.05 108.48 ± 2501.06
5 128 60 3866 × 4048 318.6 ± 347.8 353.58 ± 291.63 312.05 ± 337.71
6 128 60 3866 × 4048 286.13 ± 330.08 314.91 ± 303.53 232.33 ± 395.21
7 100 32 3584 × 3500 572.46 ± 98.21 611.5 ± 96.46 637.87 ± 97.03
8 59 51 2306 × 2306 744.98 ± 264.43 839.45 ± 257.56 864.01 ± 223.47
9 15 25 1880 × 1881 4626.84 ± 424.8 4585.08 ± 378.64 4508.08 ± 404.56
10 10 100 1920 × 1080 2370.35 ± 303.94 2408.27 ± 297.83 2362.42 ± 296.99
11 10 32 3712 × 3712 6489.12 ± 322.59 6571.28 ± 306.34 6472.0 ± 322.03
12 10 32 3712 × 3712 6011.59 ± 318.12 6106.12 ± 305.96 5549.25 ± 318.21
13 10 32 3712 × 3712 6717.12 ± 325.37 6980.12 ± 316.59 6726.46 ± 316.87
14 8 30 3008 × 3008 8752.2 ± 2141.03 8814.63 ± 2101.4 8630.73 ± 2177.16
15 8 25 3008 × 3008 9786.68 ± 1438.08 10118.04 ± 1380.2 9593.44 ± 1439.28
16 8 35 3008 × 3008 9861.42 ± 1424.91 10268.82 ± 1339.8 9680.68 ± 1387.14
17 1 140 1312 × 1312 15323.05 ± 637.17 15250.39 ± 639.2 15680.93 ± 640.99
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Appendix 4 Table A4. Comparing the time-cost for tracking and converting videos in two steps with doingboth of those tasks at the same time. The columns prepare and tracking show timings for the tasks whenexecuted separately, while live shows the time when both of them are performed at the same time using thelive-tracking feature of TGrabs. The column win shows the time "won" by combining tracking andpreprocessing as the percentage (prepare + tracking − live)∕(prepare + tracking). The process is more complicatedthan simply adding up timings of the tasks. Memory and the interplay of work-loads have a huge effect here.Posture is enabled in all variants.
video metrics minutes

video # ind. length fps (Hz) prepare tracking live win (%)
0 1024 8.33min 40 10.96 ± 0.3 41.11 ± 0.34 65.72 ± 1.35 −26.23
1 512 6.67min 50 11.09 ± 0.24 24.43 ± 0.2 33.67 ± 0.58 5.24
2 512 5.98min 60 11.72 ± 0.2 20.86 ± 0.47 31.1 ± 0.62 4.55
3 256 6.67min 50 11.09 ± 0.21 7.99 ± 0.17 12.35 ± 0.17 35.26
4 256 5.98min 60 11.76 ± 0.26 9.04 ± 0.26 15.08 ± 0.13 27.46
6 128 5.98min 60 11.77 ± 0.29 4.74 ± 0.13 12.13 ± 0.32 26.49
5 128 6.0min 60 11.74 ± 0.26 4.54 ± 0.1 12.08 ± 0.25 25.79
7 100 1.0min 32 1.92 ± 0.02 0.47 ± 0.01 2.03 ± 0.02 14.88
8 59 10.0min 51 6.11 ± 0.07 7.68 ± 0.12 9.28 ± 0.08 32.7
9 15 60.0min 25 12.59 ± 0.18 5.32 ± 0.07 13.17 ± 0.12 26.47
11 10 10.17min 32 8.58 ± 0.04 0.74 ± 0.01 8.8 ± 0.12 5.66
12 10 10.05min 32 8.68 ± 0.04 0.75 ± 0.01 8.65 ± 0.07 8.3
13 10 10.05min 32 8.67 ± 0.03 0.71 ± 0.01 8.65 ± 0.07 7.76
10 10 10.08min 100 4.17 ± 0.06 2.02 ± 0.02 4.43 ± 0.05 28.3
14 8 195.37min 30 110.51 ± 2.32 8.99 ± 0.22 109.97 ± 2.05 7.98
15 8 72.0min 25 31.84 ± 0.53 3.26 ± 0.07 32.1 ± 0.42 8.55
16 8 198.22min 35 133.45 ± 2.22 11.38 ± 0.28 133.1 ± 2.28 8.1

mean 14.55 %
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Appendix 4 Table A5. Statistics for running the tree-based matching algorithm with the videos of the speeddataset. We achieve really low leaf and node visits across the board – this is especially interesting in thehigh-density cases. High values for # nodes visited can be disregarded in practice, as long as they do notmake up a large part of the cases. If such high numbers are reached, TRex automatically switches to a morebounded algorithm like the Hungarian method.
video characteristics matching stats
video # ind. # nodes visited (5,50,95,100%) # leaves # imp. obj.edges ind.edges
0 1024 [1536; 2844; 77364; 19804880] 1.112 ± 0.36 1.112 1.001 1.005
1 512 [1063; 7390; 793195; 19889494] 1.243 ± 0.62 1.243 1.005 1.037
2 512 [990; 2214; 54969; 7382470] 1.159 ± 0.47 1.159 1.002 1.01
3 256 [452; 479; 962; 272765] 1.064 ± 0.29 1.064 1.004 1.015
4 256 [475; 496; 584; 610468] 1.029 ± 0.18 1.029 1.0 1.006
6 128 [237; 259; 506; 881084] 1.046 ± 0.25 1.046 1.002 1.01
5 128 [233; 245; 258; 5258] 1.012 ± 0.12 1.012 1.001 1.006
7 100 [195; 199; 199; 13585] 1.014 ± 0.14 1.014 1.051 1.326
8 59 [117; 117; 117; 16430] 1.014 ± 0.2 1.014 1.129 1.463
9 15 [24; 29; 29; 635] 1.027 ± 0.22 1.027 1.169 1.789
10 10 [17; 19; 19; 56] 1.001 ± 0.02 1.001 1.001 1.003
11 10 [19; 19; 19; 129] 1.006 ± 0.1 1.006 1.085 1.446
12 10 [19; 19; 19; 1060] 1.023 ± 0.23 1.023 1.264 2.433
13 10 [19; 19; 19; 106] 1.001 ± 0.04 1.001 1.07 1.344
15 8 [13; 15; 15; 598] 1.024 ± 0.23 1.024 1.131 1.674
16 8 [15; 15; 15; 2151] 1.009 ± 0.17 1.009 1.144 1.756
14 8 [11; 15; 15; 904] 1.003 ± 0.08 1.003 1.022 1.138
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Appendix 51744

Posture1745

Estimating an animals orientation and body pose in space is a diverse topic, where angle
and pose can mean many different things. We are not estimating the individual positions
of many legs and antennae in TRex, we simply want to know where the front- and the back-
end of the animal are. Ultimately, the goal here is to be able to align animals using an
arbitrary axis with their head extending in one direction and their tail roughly in the opposite
direction. In order to achieve this, we are required to follow a series of steps to acquire all
the necessary information:

1746

1747

1748

1749

1750

1751

1752

1. Locate objects in the image1753

2. Detect the edge of objects1754

3. Find an ordered set of points (the outline), which in sequence approximate the outer
edge of an object in the scene. This is done for each object (as well as for holes).

1755

1756

4. Calculate a center-line based on local curvature of the outline.1757

5. Calculate head and tail positions.1758

The first point is a given at this point (see Connected components algorithm). We can
utilize the format in which connected components are computed in TRex (an ordered array
of horizontal line segments), which reduces redundancy by avoiding to look at every individ-
ual pixel. These line segments also contain information about edges since every start and
end has to be an edge-pixel, too.

1759

1760

1761

1762

1763

Even though we already have a list of edge-pixels, retrieving an ordered set of points is
crucial and requires much more effort. Without information about a pixels connectivity, we
can not differentiate between inner and outer shapes (holes vs. outlines) and we can not
calculate local curvature.

1764

1765

1766

1767

Connecting pixels to form an outline1768

We implemented an algorithm based on horizontal line segments, which only ever retains
three consecutive rows of pixels (p previous, c current and n next). These horizontal line
segments always stem from a "blob" (or connected component). Rows contain (i) their y-
value in pixels, (ii) x0, x1 values describing the first and last "on"-pixel that has been found
in it, (iii) a set of detected border pixels (identified by their x-coordinate). A row is valid,
whenever the y coordinate is not −1 – all three rows are initialized to an invalid y = −1. l′ is
the previous row. Using p, corn as a function c(x) returns 1 for on-pixels at that x-coordinate,
and 0 for off-pixels.

1769

1770

1771

1772

1773

1774

1775

1776

For each line l in the sorted list of horizontal line segments, we detect border pixels:1777

1. subtract the blobs position (minimum of all lx0 and ly separately) from l1778

2. if ny ≠ ly, a row has ended and a new one starts: call finalize
else if lx0 − l′x1 ≥ 1 ∧ lx0 ≥ cx0, we either skipped a few pixels in n or l starts before
c even had valid pixels. This means that all pixels x between max{l′x1 + 1; cx0} ≤ x <
min{lx0; cx1 + 1} are border pixels in c.

1779

1780

1781

1782

3. if lx1 < cx0, or c is invalid, then line l ends before the previous row (c) even has any
"on"-pixels. All pixels x between lx0 ≤ x ≤ lx1 are border pixels in n.
else

1783

1784

1785

(a) s ∶= lx01786

(b) if s < cx0, then lines are overlapping in c and n (line l). We can fill n up with border
while x < cx0 and x ≤ lx1. Set s ∶= min{cx0 − 1; lx1}.
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else if s = 0 or s > 0 ∧ n(s − 1) = 0, then l starts at the image border (which is an
automatic border pixel) or there is a gap before l. Set s ∶= s + 1.

1787

1788

1789

1790

(c) All pixels at x-coordinates s ≤ x ≤ lx1 are border in n, if they are either (i) beyond
c’s bounds (x ≥ cx1), or (ii) c(x) = 0.

1791

1792

4. Set nx1 ∶= lx1.1793

After iterating through all lines, we need two additional calls to finalize to populate the
lines currently in c and n through.

1794

1795

A graph is updated each time a row is finalized. This graph stores all border "nodes", as
well as all a maximum of two edges per node (since this is the maximum number of neigh-
bors for a line vertex). More on that below. The following procedure (finalize) prepares a
row (c) to be integrated into the graph, using two parameters: A triplet of rows (p, c, n) and
the first line l, which started the new row to be added.

1796

1797

1798

1799

1800

1. if n is invalid, continue to the next operation.
else if ly > ny + 1, then we skipped at least one row between n and the new row –
making all on-pixels in n border pixels.
else we have consecutive rows where ly = ny +1. All on-pixels x in n between nx0 ≤ x ≤
lx0 − 1 are border pixels.

1801

1802

1803

1804

1805

2. Now the current row (c) is certainly finished, as it will in the following become the
previous row (p), which is read-only at that point. We can add every border-pixel of c
to our graph (see below).

1806

1807

1808

3. It then discards p and moves c → p and n → c, as well as reading a new row to assign
to n, setting nx0 = lx0, nx1 = lx1, ny = ly.

1809

1810

The graph consists of nodes (border pixels), indexed by their x and y coordinates (in-
tegers) and containing a list of all on-pixels around them (8-neighbourhood with top-left,
top, left, bottom-left, etc.). This information is available when finalize is called, since the
middle row (c) is fully defined at that point (its entire neighbourhood has been cached).

1811

1812

1813

1814

After all rows have been processed, an additional step is needed to connect all nodes
and produce a connected, clockwise ordered outline. We alreadymarked all pixels that have
at least one border. We can also already mark TOP, RIGHT, BOTTOM and LEFT borders per
node if no neighbouring pixel is present in that direction, since these major directions will
definitely get a "line" in the end. So all we have left to do now, is check the diagonals. The
points that will be returned, are located half-way along the outer edges of pixels. In the end,
each pixel can potentially have four border lines (if it is a singular pixel without connections
to other pixels, see yellow "hole" in Figure A1b). The half-edge-points for each node are
generated as follows:

1815

1816

1817

1818

1819

1820

1821

1822

1823

1. A nodes list of border pixels is a sparse, ordered list of directions (top, top-right, . . . ,
top-left). Each major direction of these (TOP, RIGHT, BOTTOM, LEFT), if present, check
the face of their square to the left of them (own direction - 1, or -45°). For example,
TOP would check top-left.

1824

1825

1826

1827

2. if the checked neighbour is on, we add an edge between our face (e.g. TOP) and its
90° rotated face (e.g. own direction + 2 = RIGHT).
else check the face an additional 45° to the left (e.g. LEFT).

1828

1829

1830

(a) if it there is an on-pixel attached to this face, add an edge between the two faces
(of the focal and its left pixel) in the same direction (e.g. TOP→TOP).

1831

1832

(b) else we do not seem to have a neighbour to either side, so this must be a corner
pixel. Add an edge from the focal face (e.g. TOP) to the side 90° to the left of itself
(e.g. LEFT).

1833

1834

1835
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Each timean edge is added,more andmoreof the half-edges are becoming fully-connected
(meaning they have two of the allowed two edges). To generate the final result, all we have
to do is to start somewhere in the graph and walk strictly in clockwise direction. "Walking"
is done using a queue and edges are followed using depth-first search (see Matching an ob-
ject to an object in the next frame): Each time a node is visited, all its yet unexplored edges
are added to the front of the queue (in clockwise order). Already visited edges are marked
(or pruned) and will not be traversed again – their floating-point positions (somewhere on
an edge of its parent pixel) are added to an array.

1836

1837

1838

1839

1840

1841

1842

1843

After a path ended, meaning that nomore edges can be reached from our current node,
the collected floating-point positions are pushed to another array and a different, yet unvis-
ited, starting node is sought. This way, we can accumulate all available outlines in a given
image one-by-one – including holes.

1844

1845

1846

1847

These outlines will usually be further processed using an Elliptical Fourier Transform
(or EFT, Kuhl and Giardina (1982)), as mentioned in the main-text. Outlines can also be
smoothed using a weighted average of theN points around a given point, or resampled to
either reduce or (virtually) increase resolution.

1848

1849

1850

1851

Finding the tail1852

Given an ordered outline, curvature can be calculated locally (per index i):1853

C(i) = 4 ∗ triangle_area (pi−r, pi, pi+r) ∕ (‖‖pi − pi−r‖‖ ∗ ‖‖pi − pi+r‖‖ ∗ ‖‖pi−r − pi+r‖‖)
1854

1855

1856

1857

where 1 ≤ r ∈ ℕ is a parameter, which effectively leads to more smoothing when in-
creased. Triangle area can be calculated as follows:

1858

1859

triangle_area (a,b, c) = (bx − ax)(cy − ay) − (by − ay)(cx − ax).

1860

1861

1862

1863

To find the "tail", or the pointy end of the shape, we employ a method closely related to
scipys find_peaks function: We find local maxima using discrete curve differentiation and
then generate a hierarchy of these extrema. The only major difference to normal differen-
tiation is that we assume periodicity to achieve our results – values wrap around in both
directions, since we are dealing with an outline here. We then find the peak with the largest
integral, meaning we detect both very wide and very high peaks (just not very slim ones).
The center of this peak is the "tail".

1864

1865

1866

1867

1868

1869

1870

To find the head as well, we now have to search for the peak that has the largest (index-
) distance to the tail-peak. This is a periodic distance, too, meaning that N is one of the
closest neighbours of 0.

1871

1872

1873

The entire outline array is then rotated, so that the head is always the first point in it.
Both indexes are saved.

1874

1875

Calculating the center-line1876

A center-line, for a given outline, can be calculated by starting out at the head and walking
in both directions from there – always trying to find a pair of points with minimal distance
to each other on both sides. Two indices are used: l, r for left and right. We also allow
some "wiggle-room" for the algorithm to find the best-matching points on each side. This
is limited by a maximum offset of ! points which is set to 0.025 ∗ N by default, where N is
the number of points in the outline. f (i) gives the point on in outline at position i.

1877

1878

1879

1880

1881

1882

Starting from l ∶= −1, r ∶= 1 we continue while r < l +N :1883

1. Findm ∶= argmini {‖f (r + i) − f (l)‖ ; ∀i ≤ ! ∧ r + i < N}. If no validm can be found, abort.
Otherwise set r ∶= m.

1884

1885
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Appendix 5 Figure A1. The original image is displayed on the left. Each square represents one pixel. Theprocessed image on the right is overlaid with lines of different colors, each representing one connectedcomponent detected by our outline estimation algorithm. Dots in the centers of pixels are per-pixel-identitiesreturned by OpenCVs findContours function (for reference) coded in the same colors as ours. Contourscalculated by OpenCVs algorithm can not be used to estimate the one-pixel-wide "tail" of the 9-like shapeseen here, since it becomes a 1D line without sub-pixel accuracy. Our algorithm also detects diagonal lines ofpixels, which would otherwise be an aliased line when scaled up.

2. Find k ∶= argmini {‖f (l − i +N) − f (r)‖ ; ∀i ≤ ! ∧ l − i ≤ −N}. If no valid k can be found,
abort. Otherwise set l ∶= k.

1886

1887

3. Our segment now consists of points f (m) and f (k), with a center vector of (f (k)− f (m)) ∗
0.5 + f (m). Push it to the center-line array. We can also calculate the width of the body
at that point using ‖f (k) − f (m)‖.

1888

1889

1890

4. Set l ∶= l − 1.1891

5. Set r ∶= r + 1.1892

Head and tail positions can be switched now, e.g. for animals where the wider part is the
head. We may also want to start at the slimmest peak first, which ever that is, since there
we have not as much space for floating-point errors regarding where exactly the peak was.
These options depend on the specific settings used in each video.

1893

1894

1895

1896

The angle of the center-line is calculated using atan2 for a vector between the first point
and one point at an offset from it. The specific offset is determined by a midline stiffness
parameter, which offers some additional stability – despite e.g. potentially noisy peak de-
tection.

1897

1898

1899

1900
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Appendix 61901

Visual field estimation1902

Visual fields are calculated by casting rays and intersecting them with other individuals and
the focal individual (for self-occlusion). An example of this can be seen in Figure 3. The
following procedure requires posture for all individuals in a frame. In case an individual
does not have a valid posture in the given frame, its most recent posture and position are
used as an approximation. The field is internally represented as a discretized vector of
multi-dimensional pixel values. Depending on the resolution parameter (Fres), which sets thenumber of pixels, each index in the array represents step-sizes of (Fmax − Fmin)∕Fres radians.The F values are constants setting the minimum and maximum field of view (−130◦ to 130◦
by default, which gives a range of 260◦). Each pixel consists of multiple data-streams: The
distance to the other individual, the identity of the other individual and the body-part that
the ray intersected with.

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

Eyes are simulated to be located on the outline of the focal individual, near the head.
The distance to the head can be set by the user as a percentage of midline-length. To find
the exact eye position, the program calculates intersections between vectors going left/right
from that midline point, perpendicular to the midline, and the individual’s outline. In order
to be able to simulate different types of binocular andmonocular sight, a parameter for eye
separation Esep (radians) controls the offset from the head angle H� per eye. Left and righteye are looking in directionsH� − Esep andH� + Esep, respectively.

1914

1915

1916

1917

1918

1919

1920

We iterate through all available postures in a given frame and use a procedure which is
very similar to depth-maps (Williams (1978)) in e.g. OpenGL. In the case of 2D visual fields,
this depth-map is 1D. Each pixel holds a floating-point value (initialized to ∞) which is con-
tinuously compared to new samples for the same position – if the new sample is closer to
the "camera" than the reference value, the reference value is replaced. This way, after all
samples have been evaluated, we generate a map of the objects closest to the "camera" (in
this case the eye of the focal individual). For that to work we also have to keep the identity
in each of these discrete slots maintained. So each time a depth value is replaced, the same
goes for all the other data-streams (such as identity and head-position). When an existing
value is replaced, values in deeper layers of occlusion are pushed downwards alongside the
old value for the first layer.

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

Position of the intersecting object’s top-left corner is located at P̂ . Let Ee be the positionof each eye, relative to P̂ . For each point Pj (coordinates relative to P̂ ) of the outline, checkthe distance between Ee and the outline segments (Pj − Pj−1). For each eye Ee:
1932

1933

1934

1. Project angles ranging from [

atan2(Pj−1 + Ee), atan2(Pj + Ee)
], where �e is the eye orien-tation, using:

Γe(�) = angle_normalize (� − �e − Fmin) ∕(Fmax − Fmin) ∗ Fres
angle_normalize(�) normalizes beta to be between [−�, �].

1935

1936

1937

1938

1939

1940

2. if either max(R) or min(R) is inside the visual field (0 ≤ Γe(�) ≤ 1):1941

(a) We call the first angle satisfying the condition �.1942

(b) Then the search range becomes R ∶= [

⌊max{� − 0.5; 0}⌉, ⌊� + 0.5⌉
], where the ele-

ments in R are integers.
1943

1944

(c) Let �j,e = ‖

‖

‖

Pj−1 − Ee
‖

‖

‖

, the distance between outline point at j − 1 and the eye
(interpolation could be done here).

1945

1946

(d) Let index k ∈ ℕ, k ∈ R be our index into the first layer of the depth-map depth0:1947
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(e) if depth0(k) > �j,e: Calculate all propertiesD0(k) ∶= {head_distance,⋯ ∈ data_streams}T ,
and push values at k in layer 0 to layer 1.

1948

1949

(f) otherwise, if depth1(k) > �j,e, calculate properties for layer 1 instead and move
data from layer 1 further down, etc.

1950

1951

The data-streams are calculated individually with the following equations:1952

• Distance: Given already in depthi(k). In practice, values are cut off at the maximum
distance (size of the video squared) and normalized to [0, 255].

1953

1954

• Identity: Is assigned alongside depthi(k) for each element that successfully replacing
another in the map.

1955

1956

• Body-part: Let Ti = tail index, Ll∕r = number of points in left/right side of the outline
(given by tail- and head-indexes):

1957

1958

1. if i > Ti: head_distance = 1 − |i − Ti|∕Ll1959

2. else: head_distance = 1 − |i − Ti|∕Lr1960
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Appendix 71961

The PV file format1962

Since we are using a custom file format to save videos recorded using TGrabs (MP4 video can
be saved alongside PV for a limited time or frame-rate), the following is a short overview
of PV6 contents and structure. This description is purely technical and concise. It is mainly
intended for users who wish to implement a loader for the file format (e.g. in Python) or are
curious.

1963

1964

1965

1966

1967

Structure1968

Generally, the file is built as a header (containing meta information on the video) followed
by a long data section and an index table plus a settings string at the end. The header at
the start of the file can be read as follows:

1969

1970

1971

1. version (string): "PV6"1972

2. channels (uint8): Hard-coded to 11973

3. width & height (uint16): Video size1974

4. crop offsets (4x uint16): Offsets from original image1975

5. size of HorizontalLine struct (uchar)1976

6. # frames (uint32)1977

7. index offset (uint64): Byte offset pointing to the index table for1978

8. timestamp (uint64): time since 1970 in microseconds of recording (or conversion time
if unavailable)

1979

1980

9. empty string1981

10. background image (byte*): An array of uint8 values of size width * height * channels.1982

11. mask image size (uint64): 0 if no mask image was used, otherwise size in bytes fol-
lowed by a byte* array of that size

1983

1984

Followed by the data section, where information is saved per frame. This information
can either be in a zip-compressed format, or raw (determined by size), see below:

1985

1986

1. compression flag (uint8): 1 if compression was used, 0 otherwise1987

2. if compressed:1988

(a) original size (uint32)1989

(b) compressed size (uint32)1990

(c) lzo1x compressed data (byte*) in the format of the uncompressed variant (below)1991

3. if uncompressed:1992

(a) timestamp since start time in header (uint32)1993

(b) number of images in frame (uint16)1994

(c) for each image in frame:1995

i. number of HorizontalLines (uint16)1996

ii. data of HorizontalLine (byte*)1997

iii. pixel data for each pixel in the previous array (byte*)1998

Files are concluded by the index table, which gives a byte offset for each video frame
in the file, and a settings string. This index is used for quick frame skipping in TRex as well
as random access. It consists of exactly one uint64 index per video frame (as determined
by the number of video frames read earlier). After that map ends, a string follows, which
contains a JSON style string of all metadata associated by the user (or program) with the
video (such as species or size of the tank).

1999

2000

2001

2002

2003

2004
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Appendix 82005

Automatic visual recognition2006

Network layout and training procedure2007

Network layout is sketched in Figure 1c. Using version 2.2.4 of Kerasa, weights of densely con-
nected layers as well as convolutional layers are initialized using Xavier-initialization (Glorot
and Bengio (2010)). Biases are used and initialized to 0. The default image size in TRex is
80×80, but can be changed to any size in order to retainmore detail or improve computation
speed.

2008

2009

2010

2011

2012

During training, we use the Adam optimizer (Kingma and Ba (2014)) to traverse the loss
landscape, which is generated by categorical focal loss. Categorical focal loss is an adapta-
tion of the original binary focal loss (Lin et al. (2017)) for multiple classes:

2013

2014

2015

cFL(j) =
N
∑

c=1
−�

(

1 − Pjc
)
 Vjc log

(

Pjc
)

,

2016

2017

2018

2019

where Pjc is the prediction vector component returned by the network for class c in
image j. V is a set of validation images, which remains the same throughout the training
process. It comprises 25%of the images available per individual. Images aremarked globally
when becoming part of the validation dataset and are not used for training in the current
or any of the following steps.

2020

2021

2022

2023

2024

After each epoch, predictions are generated by performing a forward-pass through the
network layers. Returned are the softmax-activations Pjc of the last layer for each image j
in the validation dataset. Simply calculating the mean of

2025

2026

2027

A = 1
M

∑

j∈[0,M]

⎧

⎪

⎨

⎪

⎩

1 if Pj = Vj

0 otherwise
,

2028

2029

2030

2031

gives the mean accuracy of the network. M is the number of images in the validation
dataset, where Vj are the expected probability vectors per image j. However, much more
informative is the per-class (per-identity) accuracy of the network among the set of images
i belonging to class c, which is

2032

2033

2034

2035

Ic =
{

j; where Vjc = 1, j ∈ [0,M]
}

,

2036

2037

2038

2039

given that all vectors in V are one-hot vectors – meaning the vector has length N with
Vj� = 0 ∀� ≠ c and Vjc = 1.

2040

2041

Ac =
1
|Ic|

∑

j∈Ic

⎧

⎪

⎨

⎪

⎩

1 if Pj = Vj

0 otherwise

2042

2043

2044

2045

Another constant, across training units – not just across epochs, is the set of images used
to calculate mean uniqueness Ū (see Box 1, as well as Guiding the Training Process). Values
generated in each epoch t of every training unit are kept in memory and used to calculate
their derivative Ū ′(t).

2046

2047

2048

2049

Stopping-criteria2050

A training unit can be interrupted if one of the following conditions becomes true:2051

62 of 69

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.14.338996doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338996
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

1. Training commenced for at least t = 5 epochs, but uniqueness value Ū was never
above

2052

2053

Ū 2
best > Ū (t) ∀t

2054

2055

2056

2057

where Ūbest is the best mean uniqueness currently achieved by any training unit (ini-
tialized with zero). This prevents to train on faulty segments after a first successful
epoch.

2058

2059

2060

2. The worst accuracy value per class has been "good enough" in the last three epochs:
min
c∈[0,N]

{

Ac
}

≥ 0.97

2061

2062

2063

2064

3. The global uniqueness value has been plateauing for more than 10 epochs.
∑

k∈[t−10,t]
Ū ′(k) ≤ 0.01

2065

2066

2067

2068

4. Overfitting: Change in loss is very low on average after more than 5 epochs. Mean
loss is calculated as follows:

2069

2070

cFL�(t) =
1
5

∑

k∈[t−6,t−1]
cFL(k)

2071

2072

2073

2074

Now if the difference between the current loss and the previous loss is below a thresh-
old:

2075

2076

�(t) =
⌊

ln
(

cFL(t)
)⌉

− 1

1
5

∑

k∈[t−5,t]
max

{

�; ||
|

cFL(k) − cFL�(k)
|

|

|

}

< 0.05 ∗ 10�(t)

2077

2078

2079

2080

2081

2082

2083

5. Maximum number of epochs has been reached. User-defined option limiting the
amount of time that training can take per unit. By default this limit is set to 150 epochs.

2084

2085

6. Loss is zero. No further improvements are possible within the current training unit,
so we terminate and continue with the next.

2086

2087

A high per-class accuracy over multiple consecutive epochs is usually an indication that
everything that can be learned from the given data has already been learned. No further
improvements should be expected from this point, unless the training data is extended
by adding samples from a different part of the video. The same applies to scenarios with
consistently zero or very low change in loss. Even if improvements are still possible, they are
more likely to happen during the final (overfitting) step where all of the data is combined.

2088

2089

2090

2091

2092

2093

aSee keras.io documentation for default arguments
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Appendix 92094

Data used in this paper and reproducibility2095

All of the data, as well as the figures and tables showing the data, have been generated
automatically. We provide the scripts that have been used, as well as the videos if requested.
"Data" refers to converted video-files, as well as log- and NPZ-files. Analysis has been done
in Python notebooks, using mostly matplotlib and pandas, as well as numpy to load the data.
Since TRex and TGrabs, as well as idtracker.ai have been run on a Linux system, we were
able to run everything from two separate bash files:

2096

2097

2098

2099

2100

2101

1. run.bash2102

2. run_idtracker.bash2103

Where (1) encompasses all trials run using TRex and TGrabs, both for the speed- and
recognition-datasets. (2) runs idtracker.ai in its own dedicated Python environment, using
only the recognition-dataset. The parameters we picked for idtracker.ai vary between
videos and are hand-crafted, saved in individual .json files (see Table A1 for a list of settings
used). We ran multiple trials for each combination of tools and data with N = 5 where
necessary:

2104

2105

2106

2107

2108

2109

• 3x TGrabs [speed-dataset]2110

• 5x TRex + recognition [recognition-dataset]2111

• 3x idtracker.ai [recognition-dataset]2112

• TRex without recognition enabled [speed-dataset]:2113

– 3x for testing the tree-based, approximate and Hungarian methods (Tracking),
without posture enabled – testing raw speeds (see Table A3)

2114

2115

– 3x testing accuracy of basic tracking (see Table A2), with posture enabled2116

A Python script used for Figure 7, which is run only once. It generates a series of results
for the same video (Video 7 with 100 individuals) with different sample-sizes. It uses a single
set of training samples and then – after equalizing the numbers of images per individual –
generates multiple virtual subsets with fewer images. They span 15 different sample-sizes
per individual, saving a history of accuracies for each run. We repeated the same procedure
with for the different normalization methods (no normalization, moments and posture),
each repeated five times.

2117

2118

2119

2120

2121

2122

2123

As described in the main text, we recorded memory usage with an external tool (syrupy)
and used it tomeasure both software solutions. This tool saves a log-file for each run, which
is appropriately renamed and stored alongside the other files of that trial.

2124

2125

2126

All runs of TRex are preceded by running a series of TGrabs commands first, in order
to convert the videos in the datasets. We chose to keep these trials separately and load
whenever possible, to avoid data-duplication. Since subsequent results of TGrabs are always
identical (with the exception of timings), we only keep one version of the PV files (The PV
file format) as well as only one version of the results files generated using live-tracking.
However, multiple runs of TGrabs were recorded in the form of log-files to get a measure of
variance between runs in terms of speed and memory.

2127

2128

2129

2130

2131

2132

2133

Human validation2134

To ensure that results from the automatic evaluation (in Visual Identification: Accuracy)
are plausible, we manually reviewed part of the data. Specifically, the table in 3 shows
an overview of the individual events reviewed and percentages of wrongly assigned frames.
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Appendix 9 Table A1. Settings used for idtracker.ai trials, as saved inside the .json files used for tracking.The minimum intensity was always set to 0 and background subtraction was always enabled. An ROI is anarea of interest in the form of an array of 2D vectors, typically a convex polygon containing the area of thetank (e.g. for fish or locusts). Since this format is quite lengthy, we only indicate here whether we limited thearea of interest or not.
video length (# frames) nblobs area max. intensity roi
7 1921 100 [165, 1500] 170 Yes
8 30626 59 [100, 2500] 160 Yes
11 19539 10 [200, 1500] 10 Yes
13 19317 10 [200, 1500] 10 Yes
12 19309 10 [200, 1500] 10 Yes
9 90001 8 [190, 4000] 147 Yes
16 416259 8 [200, 2500] 50 No
14 351677 8 [200, 2500] 50 No
15 108000 8 [250, 2500] 10 No

Due to the length of videos and the numbers of individuals inside the videos we did not re-
view all videos in their entirety, as shown in the table. Using the reviewing tools integrated
in TRex, we focused on crossings that were automatically detected. These tools allow the
user to jumpdirectly to points in the video that it deems problematic. Detecting problematic
situations is equivalent to detecting the end of individual segments (see Automatic Visual
Identification Based on Machine Learning). While iterating through these situations, we
corrected individuals that have been assigned to the wrong object, generating a clean and
corrected baseline dataset. We assumed that an assignment is correct, as long as the indi-
vidual is at least part of the object that the identity has been assigned to. Misassignments
were typically fixed after a few frames. Identities always returned to the correct individuals
afterward (thus not causing a chain of follow-up errors).

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

Comparison between trajectories from different softwares, or multiple runs
of the same software

2149

2150

In our tests, the same individuals may have been given different IDs (or "names") by each
software (and in each run of each software for the same video), so, as a first step in every
test where this was relevant, we had to determine the optimal pairing between identities of
two datasets we wished to compare. This was done using a square distance matrix contain-
ing overall euclidean distances between identities is calculated by summing their per-frame
distances. Optimally this number would be zero for one and greater than zero for every
other pairing, but temporary tracking mistakes and differences in the calculation of cen-
troids may introduce noise. Thus, we solved the matching problem (see Matching an object
to an object in the next frame) for identities between each two datasets and paired individ-
uals with the smallest accumulative distance between them. This was done for all results
presented, where a direct comparison between two datasets was required.

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161
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Appendix 102162

Matching probabilities2163

One of the most important steps, when matching objects in one frame with objects in the
next frame, is to calculate a numerical landscape that can then be traversed by a maximiza-
tion algorithm to find the optimal combination. This landscape, which can be expressed
as an m × n matrix P(t), contains the probability values between [0, 1] for each assignment
between individuals i and objects Bj .

2164

2165

2166

2167

2168

Below are definitions used in the following text:2169

• TΔ is the typical time between frames (s), which depends on the video2170

• �i < t is most recent frame assigned to individual i previous to the current frame t2171

• Pmin is theminimally allowed probability for thematching algorithm, underneathwhich
the probabilities are assumed to be zero (and respective combination of object and
individual is ignored). This value is set to 0.1 by default.

2172

2173

2174

• F (t ∈ ℝ)→ ℕ is the frame number associated with the time t (s)2175

•  (f ∈ ℕ) → ℝ is the time in seconds of frame f , with F ( (f )) = f2176

• x indicates that x is a vector2177

• U(x) = x∕ ‖x‖2178

Some values necessary for the following calculations are independent of the objects in
the current frame and merely depend on data from previous frames. They can be re-used
per frame and individual in the spirit of dynamic programming, reducing computational
complexity in later steps:

2179

2180

2181

2182

vi(t) = p′i(t) =
�
�t
pi(t)

v̂i(t) = vi(t) ∗
⎧

⎪

⎨

⎪

⎩

1 if ‖
‖

vi(t)‖‖ ≤ Dmax

Dmax∕ ‖‖vi(t)‖‖ otherwise

ai(t) =
�
�t
v̂i(t)

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

Velocity vi(t) and acceleration ai(t) are simply the first and second derivatives of the indi-
viduals position at time t. v̂i(t) is almost the same as the raw velocity, but its length is limited
to the maximally allowed travel distance per second (Dmax, parameter track_max_speed).

2193

2194

2195

These are then further processed, combining and smoothing across values of multiple
previous frames (the last 5 valid ones). Here, f̄ (x) indicates that the resulting value uses
data from multiple frames.

2196

2197

2198

s̄i(t) = median
k∈[F (�)−5,F (t)]

‖

‖

v̂i( (k))‖‖

2199

2200

2201

2202

is the speed at which the individual has travelled at recently. The mean direction of
movement is expressed as

2203

2204

d̄i(t) =
1

F (t) − F (�) + 5
∑

k∈[F (�)−5,F (t)]
v̂i( (k))

2205

2206

2207

2208

with the corresponding direction of acceleration2209

āi(t) = U
(

1
F (t) − F (�) + 5

∑

k∈[F (�)−5,F (t)]
ai( (k))

)

.

2210

2211

2212

2213
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The predicted position for individual i at time t is calculated as follows:2214

ṗi(t) = si(t)
∑

k∈[F (�i),F (t)−1]
w(k)

(

d̄i(t) +  ′(k) ∗ āi(t)
)

,

2215

2216

2217

2218

with weights for each considered time-step of2219

w(f ) = 1 + �4

1 + �4max
{

1, f − F (�i) + 1
} ,

2220

2221

2222

2223

where � ∈ [0, 1] is a decay rate (parameter track_speed_decay) at which the impact of
previous positions on the predicted position decreases with distance in time. With its value
approaching 1, the resulting curve becomes steeper - giving less weight previous positions
the farther away they are from the focal frame.

2224

2225

2226

2227

In order to locate an individual i in the current frame F (t), a probability is calculated for
each object Bj found in the current frame resulting in the matrix:

2228

2229

P(t) =
⎡

⎢

⎢

⎢

⎣

P0
(

t | B0
)

… Pn
(

t | B0
)

⋮ ⋱ ⋮

P0
(

t | Bm
)

… Pn
(

t | Bm
)

⎤

⎥

⎥

⎥

⎦

. (3)

2230

2231

2232

2233

Probabilities Pi(t | Bj) for all potential connections between blobs Bj and identities i
at time t are calculated by first predicting the expected position ṗi(t) for each individual in
the current frame F (t). This allows the program to focus on a small region of where the
individual is expected to be located, instead of having to search the whole arena each time.

2234

2235

2236

2237

Based on the individual’s recent speed s̄i(t), direction d̄i(t), acceleration āi(t) and angularmomentum �̄′i (t), the individual’s projected position ṗi(t) is usually not far away from its last
seen location for small time-steps. Only when Δt increases, if the individual has been lost
for more than one frame or frame-rates are low, does it really play a role.

2238

2239

2240

2241

The actual probability values inP(t) are then calculated by combining threemetrics - each
describing different aspects of potential concatenation of object b at time t to the already
existing track for individual i:

2242

2243

2244

The time metric Ti(t), which does not depend on the blob the individual is trying to be
matched to. It merely reflects the recency of the individuals last occurence in a way that
recently seen individual will always be preferred over individuals that have been lost for
longer.

Fmin = min
{

1
TΔ
, 5
}

Ri(t) =
‖

‖

‖

‖

{

 (k) | F (t) − T −1Δ ≤ k ≤ t ∧  (k) −  (k − 1) ≤ Tmax
}

‖

‖

‖

‖

Ti(t) =

(

1 − min

{

1,
max

{

0, �i − t − TΔ
}

Tmax

})

∗

⎧

⎪

⎨

⎪

⎩

min
{

1, Ri(�i)−1
Fmin

+ Pmin
}

F (�i) ≥ F (t0) + Fmin

1 otherwise

(4)

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

Si(t | Bj) is the speed that it would take to travel from the individuals position to the blobs
position in the given time (which might be longer than one frame), inverted and normalized
to a value between 0 and 1.

Si(t | Bj) =

⎛

⎜

⎜

⎜

⎝

1 +

‖

‖

‖

‖

(

pBj (t) − ṗi(t)
)

∕(�i − t)
‖

‖

‖

‖

Dmax

⎞

⎟

⎟

⎟

⎠

−2

(5)

2259

2260

2261

2262

2263

2264

67 of 69

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.14.338996doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.338996
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

And the angular differencemetricAi(t, �i | Bj), describing how close in angle the resulting
vector of connecting blob and individual to a track would be to the previous direction vector:

a = ṗi(t) − pi(�i)

b = pBj (t) − pi(�i)

2265

2266

2267

2268

2269

2270

2271

2272

Ai(t, �i | Bj) =

⎧

⎪

⎨

⎪

⎩

1 − 1
�
|atan2 {‖a × b‖ , a ⋅ b}| if ‖a‖ > 1 ∧ ‖b‖ > 1

1 otherwise
(6)

2273

2274

2275

2276

The conditional ensures that the individual travelled a long enough distance, as the atan2
function used to determine angular difference here lacks numerical precision for very small
magnitudes. This is, however, an unproblematic case in this situation as the positions are in
pixel-coordinates and anything below a movement of one pixel is likely to be due to noise
anyway.

2277

2278

2279

2280

2281

Combining (4), (5) and (6) into a weighted probability product yields:
Pi
(

t, �i | Bj
)

= Si
(

t | Bj
)

∗
(

1 − !1
(

1 + Ai
(

t, �i | Bj
)))

∗
(

1 − !2
(

1 + Ti(t, �i)
)) (7)

2282

2283

2284

2285

Results from equation (7) can now easily be used in a matching algorithm, in order to
determine the best combination of objects and individuals as in Matching an object to an
object in the next frame. !1 is usually set to 0.1, !2 is set to 0.25 by default.

2286

2287

2288
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Appendix 112289

Algorithm for splitting touching individuals2290

Data: image of a blob, Ne number of expected blobs2291

Result: N ≥ Ne smaller image-segments, or error2292

threshold = Tc ;2293

while threshold < 255 do2294

blobs = apply_threshold(image, threshold);2295

if ‖blobs‖ = 0 then2296

break;2297

end2298

if ‖blobs‖ ≥ Ne then2299

sort blobs by size in decreasing fashion;2300

loop through all blobs i up to i ≤ Ne and detect whether the size-ratiobetween them is roughly even. until then, we keep iterating.;
2301

2302

if min{ratioi ∀i ∈ [0, Ne]} < 0.3 then2303

threshold = threshold + 1;2304

continue;2305

else2306

return blobs;2307

end2308

else2309

threshold = threshold + 1;2310

end2311

end2312

return fail;2313

Algorithm 2: The algorithm used whenever two individuals touch, which is detected by
a history-based method. This history-based method also provides Ne, the number of
expected objects within the current (big) object. Te is the starting threshold constant
parameter, as set by the user.

2314
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