Abstract
Here we argue that quasi-static analyses are insufficient to predict the speed of an organism from its skeletal mechanics alone (i.e. lever arm mechanics). Using a musculoskeletal numerical model we specifically demonstrate that 1) a single lever morphology can produce a range of output velocities, and 2) a single output velocity can be produced by a drastically different set of lever morphologies. These two sets of simulations quantitatively demonstrate that it is incorrect to assume a one-to-one relationship between lever arm morphology and organism maximum velocity. We then use a statistical analysis to quantify what parameters are determining output velocity, and find that muscle physiology, geometry, and limb mass are all extremely important. Lastly we argue that the functional output of a simple lever is dependent on the dynamic interaction of two opposing factors: those decreasing velocity at low mechanical advantage (low torque and muscle work) and those decreasing velocity at high mechanical advantage (muscle force-velocity effects). These dynamic effects are not accounted for in static analyses and are inconsistent with a force-velocity tradeoff in lever systems. Therefore, we advocate for a dynamic, integrative approach that takes these factors into account when analyzing changes in skeletal levers.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This version of the manuscript has been revised to reinterpret the data as a commentary advocating for a shift from thinking of levers from a static framework that predicts a force-velocity trade-off to one based in dynamic analyses that acknowledge the integrated nature of theses systems