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Abstract

One of the most influential, and controversial, ideas in neuroscience has been to understand the
brain in terms of Bayesian computations. Unstated differences in how Bayesian ideas are operationalized
across different models make it difficult to ascertain both which empirical data support which models, and
how Bayesian computations might be implemented by neural circuits. In this paper, we make one such
difference explicit by identifying two distinct philosophies that underlie existing neural models of Bayesian
inference: one in which the brain recovers experimenter-defined structures in the world from sensory
neural activity (Decoding), and another in which the brain represents latent quantities in an internal
model that explains its inputs (Encoding). These philosophies require profoundly different assumptions
about the nature of inference in the brain, and lead to different interpretations of empirical data. Here, we
characterize and contrast both philosophies in terms of motivations, empirical support, and relationship
to neural data. We also show that this implicit difference in philosophy underlies some of the debate
on whether neural activity is better described as a sampling-based, or a parametric, distributional code.
Using a simple model of primary visual cortex as an example, we show mathematically that it is possible
that the very same neural activity can be described as probabilistic inference by neural sampling in the
Encoding framework while also forming a linear probabilistic population code (PPC) in the Decoding
framework. This demonstrates that certain families of Encoding and Decoding models are compatible
with each other rather than competing explanations of data. In sum, Bayesian Encoding and Bayesian
Decoding are distinct, non-exclusive philosophies, and appreciating their similarities and differences will
help organize future work and allow for stronger empirical tests about the nature of inference in the
brain.

1 Introduction1

According to the Bayesian Brain hypothesis, neural circuits carry out statistical computations by combining2

prior knowledge with new evidence, combining multiple sources of information according to their reliability,3

and taking actions that account for uncertainty. In the case of perception, prior knowledge is assumed either4

to come from experience with the world during development or to be encoded genetically, having been learned5

over the course of evolution. While any given sensory measurement may be noisy or ambiguous – providing6

a wide likelihood function in Bayesian terms – prior knowledge is deployed to resolve these ambiguities when7

possible (von Helmholtz, 1925). The Bayesian framework has been instrumental for our understanding of8

perception and perceptual decision-making (Knill and Richards, 1996; Kersten et al., 2004; Fiser et al., 2010;9

Pouget et al., 2013).10

At the core of the Bayesian Brain hypothesis is the idea that neural activity corresponds to probability11

distributions rather than point estimates – such schemes are known as “distributional codes” (Zemel et al.,12

1998). Previous surveys of distributional codes have emphasized a distinction between sampling-based and13

parametric codes (Fiser et al., 2010; Pouget et al., 2013; Sanborn, 2015; Gershman and Beck, 2016). From14

a computational standpoint, sampling and parametric codes each have advantages and disadvantages. In15

the context of neuroscience, sampling and parametric codes have also been compared with respect to the16

simplicity of implementing computations believed to be important for the brain, such as cue combination17

and marginalization (Fiser et al., 2010). Further, numerous studies have empirically tested for properties of18

sampling or parametric codes in neural responses. Sampling codes have been used to explain spontaneous19
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cortical activity (Berkes et al., 2011), neural variability (Hoyer and Hyvärinen, 2003; Orbán et al., 2016; Festa20

et al., 2021), structure in noise correlations (Haefner et al., 2016; Bányai et al., 2019), and onset transients21

and oscillations (Aitchison and Lengyel, 2016; Hennequin et al., 2018; Echeveste et al., 2020). Meanwhile,22

parametric codes have been cited in explanations of contrast-invariant tuning curves (Ma et al., 2006), near-23

linearity during cue-combination (Fetsch et al., 2011, 2013), evidence integration dynamics in parietal cortex24

(Beck et al., 2008; Hou et al., 2019), divisive normalization (Beck et al., 2011), and more (Pouget et al., 2013).25

Importantly, sampling and parametric codes have so far always been discussed and compared as competing26

and mutually exclusive mathematical models of the same neural circuits, with no decisive evidence presented27

favoring one over the other model. Notably, contrast-invariant tuning and divisive normalization have also28

been replicated by sampling models (Orbán et al., 2016; Echeveste et al., 2020).29

The primary goal of this paper is to characterize and contrast two distinct perspective on the Bayesian30

Brain hypothesis, which we call Bayesian Encoding and Bayesian Decoding. These are complementary31

perspectives that make different assumptions about the nature of the inference problems faced by the brain,32

and are supported or falsified by different kinds of empirical data. We argue that not making their differences33

explicit has led to confusion about how to interpret empirical data. In particular, we describe how the above34

debate on whether neural responses are better modeled as samples or parameters is complicated by the35

fact that sampling codes usually make assumptions consistent with Bayesian Encoding while parametric36

codes often make assumptions consistent with Bayesian Decoding. However, neither the connection between37

Bayesian Encoding and sampling, nor between Bayesian Decoding and parametric codes, is a necessary38

consequence of either theory. Indeed, there are Encoding models built on parametric codes, Decoding39

models based on sampling, and still other models that contain elements of both approaches (Section 2.4 and40

Table 1 below).41

Finally, we illustrate the complementary nature of these two philosophies using a simple model of primary42

visual cortex (Shivkumar et al., 2018). In this example, we construct a sampling-based Encoding model43

based on a linear Gaussian model of natural images (Olshausen and Field, 1996, 1997), and derive the44

implied Decoding model. We show that firing rates in this model form a canonical kind of parametric code:45

a Probabilistic Population Code (PPC). There is thus no inherent contradiction in saying that the brain is46

both sampling (in the “Bayesian Encoding” sense) and represents parameters (in the “Bayesian Decoding”47

sense), and depending on the encoding models’ generative model, and the considered task, this parametric48

code may even be a linear PPC. We conclude with a discussion of distributional neural codes in general.49

2 Bayesian Encoding vs Bayesian Decoding50

We follow the seminal work of Zemel et al. (1998) in assuming that patterns of neural activity represent entire51

probability distributions over a variable, not just a point estimate of it, i.e. that they form a distributional52

code. The nature of this “variable” and its relationship to neural response is key to the distinction between53

the Bayesian Encoding and the Bayesian Decoding frameworks.54

2.1 Bayesian Encoding55

We define Bayesian Encoding as the view that there exists a probability distribution over some quantity of56

potential interest to the brain, and that the primary function of sensory neurons is to compute and represent57

an approximation to this distribution. We use the term “encoding” because the probability distribution58

that neurons are hypothesized to represent conceptually precedes the actual neural responses. That is, in59

Bayesian encoding models, there exists a reference distribution that is defined independently of how neurons60

actually respond, and which is approximately encoded by neural responses.61

Bayesian Encoding requires a source for the reference distribution. In the context of the sensory system,62

this typically takes the form of an internal generative model of sensory inputs, and the distribution to be63

encoded is the posterior over latent variables in that model (Figure 1a-b). With this perspective, the goal64

of sensory areas of the brain is to learn a statistical model of its sensory inputs (Dayan et al., 1995; Dayan65

and Abbott, 2001; Fiser et al., 2010; Berkes et al., 2011) in which sensory observations, such as an image66

on the retina, are explained as the result of higher order causes. Whereas the information on the retina67

is highly mixed – objects, lights, textures, and optics interact in complex ways to create an image – the68

internal model aims to explain sensory data in terms of unobserved causes that are often assumed to be69
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Figure 1: Visualization of Bayesian Encoding. a) Diagram of information flow: the world provides sensory
inputs (I), which then give rise to inferences about latent variables (x). b) Bayesian Encoding typically
assumes that the brain has an internal model of its inputs, and that perceptual inferences are about variables
in this internal model, not necessarily corresponding to quantities in the external world per se. With Bayesian
Encoding, it is also typical to assume that the internal model is task-independent and that the brain always
computes a posterior over internal variables, pb(x|I), regardless of whether I is a highly controlled stimulus
in a task or encountered in the wild. c-f) The defining feature of Bayesian Encoding is the existence
of a reference distribution (c), typically the posterior over a set of latent variables, x, given a sensory
measurement, I. One then assumes an approximation scheme such as variational inference (c→d) or sampling
(c→e), and that this approximation is then realized in patterns of neural activity (f).
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sparse and independent (von Helmholtz, 1925; Olshausen and Field, 1996; Bell and Sejnowski, 1997). A70

generative model makes this process explicit by assigning prior probabilities to the (co)occurrence of causes71

(represented by latent variables) and by quantifying the likelihood of a particular configuration of the causes72

for generating a particular sensory observation. The encoded posterior distribution in this framework is73

defined over the latent variables in this statistical model.74

For latent variables x and sensory input I, optimal inference means computing the posterior distribution,75

76

pb(x|I) =
pb(I|x)pb(x)

pb(I)
. (1)

We use the subscript b in pb(·) to refer to quantities in the brain’s internal model, and to distinguish them77

from other types of probabilities such as a decoder’s uncertainty. A prototypical case of Bayesian Encoding78

poses the question of how neural circuits could compute and represent the posterior distribution pb(x|I)79

for any sensory I, given the internal model that the brain has learned (Figure 1c), and how it can learn80

this internal model in the first place. In general, exact inference is an intractable problem (Murphy, 2012;81

Wainwright and Jordan, 2008; Bishop, 2006), leading to the question of how the brain could compute and82

represent an approximation to the true posterior (Figure 1d-f), and what the nature of this approximation is.83

This line of reasoning motivates work on “neurally plausible approximate inference algorithms,” including84

approaches with connections to sampling-based inference (Figure 1e), as well as approaches inspired by85

variational inference techniques, related to parametric neural codes (Figure 1d) (reviewed in Fiser et al.86

(2010); Sanborn (2015); Gershman and Beck (2016)).87

2.2 Bayesian Decoding88

We define Bayesian Decoding as the perspective in which neural activity is treated as given, and emphasis89

is placed on the statistical uncertainty of a decoder observing those neural responses. Bayesian Decoding is90

closely related to ideal observer models in psychophysics, involving tasks that require the estimation of scalar91

aspects of a presented stimulus (e.g. its orientation or its contrast) or a decision whether the stimulus belongs92

to one of two or more discrete classes (e.g. “left” or “right”). Of course, any stimulus s that elicits neural93

responses r is optimally decoded by computing p(s|r) (Figure 2). The key question within the Bayesian94

Decoding framework is this: what conditions must the stimulus-driven neural activity (p(r|s)) fulfill such95

that the decoder (p(s|r)) is simple, e.g. linear and invariant to nuisance? For instance, imposing linearity96

and invariance constraints on the decoder implies constraints on tuning curves and the distribution of neural97

noise (Zemel et al., 1998; Ma et al., 2006).98

Bayesian Decoding is closely related to familiar notions of optimal neural decoding. Classically, decoding99

is either a tool for assessing information content in neural responses or a mechanistic model of how they100

impact behavior. In the Bayesian setting, the emphasis is on how neural activity is interpreted by the rest101

of the brain and influences behavior, and how this depends on the brain’s uncertainty about a behaviorally-102

relevant stimulus.103

Probabilistic Population Codes (PPCs), as introduced by Ma et al (2006), exemplify the Bayesian De-104

coding approach. PPCs construct a Bayesian decoder that is both simple and invariant to nuisance: if105

a population of neurons tuned to s has “Poisson-like” variability, then the optimal decoder is part of the106

exponential family with firing rates as natural parameters. This is a particularly convenient representation107

for taking products of two distributions as required by cue-integration (Ma et al., 2006) and evidence ac-108

cumulation Beck et al. (2008). Equally important is the notion of invariance afforded by a PPC: as long109

as nuisance variables such as image contrast or dot coherence only multiplicatively scale tuning curves, the110

decoder can ignore them.111

Importantly, under the assumption that the brain employs a computationally convenient neural code,112

linearity for cue combination and multiplicative gain by nuisance variables become predictions of PPCs.113

In classical decoding approaches, neural responses are simply “given,” not prescribed by a theory. In the114

Bayesian Decoding framework generally, and in the case of PPCs in particular, imposing constraints on the115

decoder constrains the possible set of evoked response distributions, p(r|s). These constraints have then116

been formulated as predictions and tested empirically (Fetsch et al., 2011, 2013; Pouget et al., 2013; Hou117

et al., 2019).118
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Figure 2: Visualization of Bayesian Decoding. a) Diagram of information flow: a quantity of interest (s)
in the world elicits neural responses (r), mediated by sensory inputs (I). The decoding question is how the
brain forms an internal estimate, ŝ, from r. b) The underlying probabilistic model assumes that s generates
r, so inference is the problem of recovering s from r. c) The decoding problem usually begins with a stimulus,
such as the orientation of a grating of a given spatial frequency, size, location, and contrast. d-f) Given a
population of neurons’ tuning curves to s (d) and an observation of spikes on a single trial (e), an optimal
decoder computes p(s|r) (f).

2.3 Contrasting Bayesian Encoding and Bayesian Decoding119

There are four key differences between the Bayesian Encoding and Bayesian Decoding perspectives, which we120

will discuss in each of the following sections: (1) what they assume the brain is inferring, (2) what the terms121

“likelihood” and “posterior” refer to, (3) the role of neural responses in the theory, and (4) the empirical122

data and other arguments used to motivate them. As our goal is to summarize and categorize a large and123

diverse sub-field, there will be exceptions to each rule, but we expect these distinctions to be useful for124

framing further discussions.125

2.3.1 Differences in what is assumed to be inferred126

An integral part of the Bayesian Encoding framework is the existence of an abstract internal model that127

could in principle be implemented in silico or in the brains of other individuals or other species. Deriving128

predictions for neural data requires an additional linking hypothesis on the nature of distributional codes,129

such as whether neurons sample or encode variational parameters, and how either samples or parameters130

correspond to observable biophysical quantities like membrane potentials and spike times or spike counts.131

Bayesian Encoding thus decomposes the question of what sensory neurons compute into two parts: first,132

what is the internal model which defines optimal inference (the reference distribution), and second, how do133

neural circuits carry out approximate inference in that model (e.g. sampling or parametric)?134

The brain’s internal model is typically assumed to have been calibrated through exposure to natural135

stimuli (Dayan et al., 1995; Dayan and Abbott, 2001; Berkes et al., 2011) and to only change slowly with136

exposure to new stimuli in adult brains. For this reason, the generative model in Bayesian Encoding models,137

especially in the case of early sensory areas, is often assumed to be independent of experimental context.138

For instance, if the brain’s internal model comprises patches of local image features, then it is assumed that139

the brain infers and encodes the same set of image features, whether viewing natural scenes or artificial140

stimuli in a task (Haefner et al., 2016; Orbán et al., 2016; Shivkumar et al., 2018; Bányai et al., 2019). The141

assumption of calibration in a Bayesian Encoding framework also makes predictions for how the internal142

model should change in response to the statistics of sensory inputs during development (Berkes et al., 2011),143

and to extensive exposure to stimuli in a particular task (Lange and Haefner, 2022).144
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Figure 3: Side-by-side comparison of Bayesian Encoding and Bayesian Decoding. In both frameworks, it
is understood that there exists a mechanistic, biophysical connection between stimuli (I), sensory neural
responses (r), and behavior. In the Bayesian Decoding framework, emphasis is placed on the uncertainty of
a decoder estimating a stimulus parameter s from r (green arrow). Bayesian Encoding posits the existence of
an internal model with latent variables x, and that neural responses, r, encode the computation of a posterior
distribution, pb(x|I). The blue arrow from pb(x|I) to r can be seen as an instance of downward causation
between levels of abstraction, where changes to the posterior (at the algorithmic level) imply changes to
neural responses (at the implementation level) (Campbell, 1974; Yablo, 1992; Lange and Haefner, 2022). In
Bayesian Decoding, the “likelihood” refers to p(r|s), and the inference problem is to recover s from r. In
Bayesian Encoding, the “likelihood” refers to the internal model’s pb(I|x), and the inference problem is to
recover x from I and to embed the posterior over x in r. In any psychophysical task, the link between s and
I depends on the experiment (gray bracket). Importantly, this means that the “likelihood” in a Bayesian
Decoding model depends on choices made by the experimenter (such as their choice of stimuli), but not in
a Bayesian Encoding model.
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In contrast, Bayesian Decoding models are typically applied in the context of estimating task-relevant145

variables. For instance, in a motion discrimination task, a Bayesian Decoding question would be how the146

brain represents uncertainty over directions of motion. Importantly, answering this question does not require147

a generative model of all possible naturally-occurring motion stimuli, nor does it require a true or correct148

reference distribution over stimuli; it requires only a statistical model of the relation between scalar motion149

direction in a particular task (and possibly nuisance variables like coherence) and neural responses, p(r|s),150

making it observable experimentally. The difference between (typical realizations of) the Bayesian Encoding151

and Decoding perspectives is illustrated in Figure 3.152

We emphasize that Bayesian Encoding typically but not necessarily involves a task-independent internal153

generative model, and Bayesian Decoding likewise is typically but not necessarily applied to task-specific154

variables. In fact, where the ideas of encoding and decoding distributions first appeared in Zemel et al (1998),155

the encoded distribution was over task quantities (such as x being motion or heading direction), without156

specifying an internal generative model, and the decoding problem was framed as the inverse to the encoding157

problem – that is, recovering the encoded p(x| . . .) from r. This again emphasizes the complementary158

nature of these philosophies: we are free to apply the Bayesian Decoding framework to variables in a task-159

independent internal model (given r, what do we know about x or pb(x|I)?), or to apply the logic of Bayesian160

Encoding to task-specific quantities (construct r to encode a desired p(s|I)), but such examples are rare. In161

the remainder of this paper, we will associate Bayesian Encoding with task-independent internal generative162

models and Bayesian Decoding with variables in a task, and in the Discussion we will return to the possibility163

that task variables are explicitly represented as part of the brain’s internal model.164

2.3.2 Differing notions of likelihood165

Another difference in philosophy is evidenced by divergent usage of the term “likelihood” (Figure 3). In the166

typical Bayesian Encoding setting, the term “likelihood” is reserved for the abstract relationship between167

internal model variables and sensory observations. For instance, one could speak of the “likelihood that168

this configuration of variables in the brain’s model generated the observed image,” or pb(I|x). This usage169

supports the idea that the quantity being computed is a posterior over variables in a generative model of170

sensory data. In the typical Bayesian Decoding setting, on the other hand, the “likelihood” refers to a171

relationship between stimuli and neural responses, p(r|s). This usage supports the idea that the quantity of172

interest is the posterior over external stimuli in a task.173

2.3.3 Differences in the relationship between distributions and neural activity174

Bayesian Encoding models require two distinct assumptions: first, what is the source of the reference dis-175

tribution to be encoded (e.g. what is the brain’s internal model pb(x, I)); and second, what is the linking176

hypothesis that maps probability distributions to neural activity (Figure 1)? This approach of starting with177

the encoded distribution abstracts away from the details of neural circuits that must actually implement178

inference. Take the model of Orbán et al. (2016) for example. In this work, the authors assume that neurons179

in primary visual cortex implement a sampling algorithm to encode the posterior distribution over latent180

variables in a Gaussian Scale Mixture model. This specifies the reference distribution. It is then assumed181

that, by some unspecified mechanism, the trajectory of a set of neurons’ membrane potentials over time182

traces out real-valued samples from the posterior, and that these membrane potentials elicit spikes through183

a nonlinear accumulation process. This specifies the linking hypothesis, or the map from the reference dis-184

tribution to neural data. This model successfully reproduced a diverse set of known properties about V1185

(Orbán et al., 2016), but it is not a mechanistic model. From a modeling standpoint, the way that an input186

image elicits neural activity is mediated by the reference posterior: an example of “downward causation”187

(Campbell, 1974; Yablo, 1992).188

While for Encoding models there is a clear separation of computational model and neural link, they still of189

course beg the question of how inference in the computational model is implemented in neural circuits. Prior190

work has investigated the question of how biologically-plausible recurrent circuits could implement sampling191

(Bill et al., 2015; Probst et al., 2015; Aitchison and Lengyel, 2016; Petrovici et al., 2016; Dold et al., 2019;192

Echeveste et al., 2020) or message-passing (George and Hawkins, 2009; Beck et al., 2012; Raju and Pitkow,193

2016; Grabska-Barwinska et al., 2013; Grabska-Barwińska et al., 2017; George et al., 2018) through their194
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dynamics. However, in these examples there is typically a cost to increased biological plausibility, either by195

degrading the quality of the encoded distribution, or by degrading the match to empirical neural data.196

Bayesian Decoding models, in contrast, do not distinguish between the uncertainty in an underlying197

probabilistic model and the uncertainty of a downstream brain area applying a Bayesian decoder to some198

neural activity. As a result, Decoding models replace the assumption about the link to neural activity with199

a constraint on the relationship between stimuli (s) and neural activity (r).200

To illustrate this point, let us revisit one of the motivating examples for distributional codes of Zemel201

et al. and contrast the Encoding and Decoding approaches. Consider a rat who is placed into a water maze202

and must navigate to a hidden platform (Morris, 1984). Initially, the rat may be uncertain about which203

direction it is facing, e.g. if opposite walls of the maze look the same its correct belief about direction will204

be bimodal. Similar to the orientation of a grating, head direction is a scalar variable in [0, 2π] that we will205

call s. In the Encoding approach, one might begin by asking what is pb(s|I) according to an internal model206

of the environment, where I stands for the sensory cues the rat uses to orient itself. The distribution pb(s|I)207

determines how uncertain the rat ought to be, according to the internal model. Continuing the Encoding208

approach, one would then adopt a linking hypothesis (sampling, parametric, etc.) whereby pb(s|I) is encoded209

in neural activity r. In an Encoding model, the encoding of a distribution may be imperfect and lossy, or it210

may contain more information about the distribution than is being used by downstream circuits. In either211

case, the way a downstream circuit uses the neural activity will generally differ from a Bayesian decoder.212

Applying the Bayesian Decoding framework to the same problem, we would say that the uncertainty213

in p(s|r) is the primary kind of uncertainty we should be concerned with, and that there is no distinction214

between this and the rat’s internal model. Crucially, this does not trivialize representations of uncertainty as215

“just” a matter of optimal decoding. In the Decoding approach, there may still be an ideal uncertainty that216

the rat ought to have when it is first placed into the maze; however the assumption is that this uncertainty217

is realized through the way r is tuned to its inputs I. That is, it is left to the brain (evolution, learning)218

to have carefully constructed tuning functions p(r|I), such that p(s|r) is equal to pb(s|I) (Ma et al., 2006).219

One way that the Encoding and Decoding perspectives can become identical, then, is when the decoded220

distribution p(s|r) equals the reference distribution pb(s|I). From the Encoding point of view, this requires221

that the encoding of pb(s|I) into r is lossless (or “efficient” in the terminology of Beck et al. (2012)). From222

the Decoding point of view, they are identical by assumption.223

Finally, the preceding discussion points to an important practical difference between Encoding and De-224

coding philosophies in terms of how neural responses are interpreted by downstream areas. In a Decoding225

model, a downstream area implicitly applies Bayes’ rule to the neural responses arriving from an upstream226

area to extract information about a stimulus. In an Encoding model, on the other hand, upstream neural227

activity represents samples or parameters that are then processed by the downstream area according to228

an underlying approximate inference algorithm, which generally will not apply Bayes’ rule to the incoming229

activity directly. To put it another way, if one assumes that upstream neural activity encodes samples or230

parameters in an approximate inference algorithm, then there is an important conceptual difference between231

a downstream area that interprets upstream activity as samples or as parameters (as in Encoding models),232

and a downstream area that decodes the activity it receives by applying Bayes’ rule to the neural activity.233

2.3.4 Differing Empirical and Theoretical Motivations234

Finally, distinguishing Bayesian Encoding and Bayesian Decoding allows one to be more precise on what235

data and what normative arguments motivate different theories. Bayesian Decoding can be motivated by236

the fact that humans and other species are empirically sensitive to uncertainty and prior experience, as237

in the classic psychophysics results on multi-modal cue combination (Ernst and Banks, 2002; Knill and238

Pouget, 2004; Alais and Burr, 2004; Körding, 2007; Angelaki et al., 2009; Pouget et al., 2013). The large239

literature on optimal or near-optimal Bayesian perception in controlled tasks motivates the question of how240

neural circuits facilitate Bayesian computations with respect to stimuli in a task, which are often scalar or241

low-dimensional. With the additional assumption that the neural representation of task-relevant aspects242

of stimuli is formatted to be easily decoded (e.g. linear and invariant to nuisance (Ma et al., 2006)), this243

line of reasoning has given rise to predictions for neural data. These predictions have since been largely244

confirmed for the representation of self-motion in dorsal medial superior temporal area (MSTd) (Fetsch245

et al., 2011, 2013; Hou et al., 2019). Bayesian Decoding is further motivated by experimental data showing246
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Bayesian Encoding Bayesian Decoding

Sampling-based
representation

Hoyer and Hyvärinen (2003)
Pecevski et al. (2011)
Berkes et al. (2011)
Buesing et al. (2011)

Gershman et al. (2012)
Savin and Denève (2014)

Probst et al. (2015)
Orbán et al. (2016)

Haefner et al. (2016)
Aitchison and Lengyel (2016)

Festa et al. (2021)

Moreno-Bote et al. (2011)†

Parametric
representation

Zemel et al. (1998)
Sahani and Dayan (2003)

Friston (2005)
George and Hawkins (2009)

Beck et al. (2012)
Raju and Pitkow (2016)
Vertes and Sahani (2018)

Tajima et al. (2016)*

Ma et al. (2006)
Beck et al. (2008)
Beck et al. (2011)
Hou et al. (2019)

Tajima et al. (2016)*
Moreno-Bote et al. (2011)†

Table 1: Classifying previous work on Bayesian neural models according to whether they construct Bayesian
Encoding or Decoding models, and whether they use a sampling-based or a parametric neural representation.
Tajima et al., marked with “*” contains elements of both encoding and decoding. Moreno-Bote et al., marked
with “†”, contains elements of both sampling-based and parametric decoding.

a correspondence between non-parametric likelihood functions, neural noise, and behavioral indications of247

uncertainty (Walker et al., 2019).248

Importantly, none of these results constitute direct evidence for inference with respect to an (usually249

high-dimensional) internal model of natural stimuli, as hypothesized in typical Bayesian Encoding theories250

(Rahnev, 2019; Koblinger et al., 2021). The three lines of support for Bayesian Encoding models are largely251

independent of the above motivations for Bayesian Decoding. First, Bayesian Encoding can be motivated by252

the purely normative argument that any rational agent that faces uncertainty ought to compute probability253

distributions over unobserved variables, as long as those variables directly enter into calculations of expected254

utility (Jaynes, 2003). Second, there is some empirical evidence for a key prediction of Bayesian encoding255

models: a general constraint on all well-calibrated statistical models is that the prior must equal the av-256

erage posterior (Dayan and Abbott, 2001). Existing observations suggest that this constraint is satisfied257

in early visual cortex, as evidenced by changes in neural responses in primary visual cortex over develop-258

ment (Berkes et al., 2011) and task-learning (Haefner et al., 2016; Lange and Haefner, 2022). Third, there259

is empirical evidence for signatures of particular inference algorithms and particular internal models fit to260

natural stimuli. This approach has been employed by a series of sampling-based inference models and has261

successfully reproduced a wide range of neural response properties in early visual cortex (Orbán et al., 2016;262

Aitchison and Lengyel, 2016; Echeveste et al., 2020). A similar approach has also been taken by parametric263

models, where neural circuits have been hypothesized to implement the dynamics of a variational inference264

algorithm (Friston, 2005; George and Hawkins, 2009; Beck et al., 2012; Grabska-Barwinska et al., 2013; Raju265

and Pitkow, 2016; George et al., 2018; Lavin et al., 2018). We emphasize again that existing evidence for266

Bayesian-like behavior in psychophysical tasks only constitutes weak evidence in support of the idea that267

the brain computes distributions over variables in a task-independent internal model, as usually studied in268

the Bayesian Encoding literature (Rahnev, 2019; Koblinger et al., 2021).269

2.4 Classification of existing models270

Historically, sampling-based neural models have taken the Bayesian Encoding approach, asking how neurons271

could sample from the posterior distribution over variables in an internal model, while PPCs have primarily272
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been studied in the context of inference of low-dimensional task-relevant quantities. However, this does not273

reflect a fundamental distinction between the two types of distributional codes. Parametric codes can and274

have been used in Bayesian Encoding models to approximate the posterior over variables in a generative275

model, including Probabilistic Population Codes (PPCs) (Beck et al., 2012; Grabska-Barwinska et al., 2013;276

Raju and Pitkow, 2016), Distributed Distributional Codes (DDCs) (Vertes and Sahani, 2018), and others277

(Friston, 2005; George and Hawkins, 2009; Lavin et al., 2018; George et al., 2018). Markov Chain Monte278

Carlo (MCMC) sampling has been used to explain perceptual bistability (Moreno-Bote et al., 2011; Gershman279

et al., 2012), which could be seen as a form of sampling-based Bayesian Decoding (cf. Hohwy et al. (2008)).280

To summarize, Table 1 provides a list of examples in each of the four categories defined by the sampling281

versus parametric and the encoding versus decoding axes. The fact that there is previous work in all four282

quadrants emphasizes that these are complementary distinctions.283

2.5 Case Study: primary visual cortex (V1)284

We now focus on primary visual cortex (V1) to provide a concrete example illustrating and further elaborating285

on our general points above. Focusing on area V1 has the advantage that much neurophysiological data exists,286

and both encoding and decoding approaches have enjoyed some success. We will first briefly describe existing287

work from both perspectives, and then use a simple example to show how they can lead to very different288

conclusions about the neural code. To that end, we will assume a Bayesian Encoding model that encodes the289

posterior over internal variables by sampling and show analytically how to derive the corresponding Bayesian290

Decoding model, obtaining a parametric representation (PPC) (Shivkumar et al., 2018).291

2.5.1 Bayesian Encoding models for V1292

The starting point for the Bayesian Encoding approach, applied to V1, is an assumption about the brain’s293

generative model pb(x, I). That is, we must specify what is x, the variable assumed to be inferred and294

represented by V1 neurons, and how x is related to the sensory observations, I. For simple cells in area V1,295

Olshausen and Field proposed a linear Gaussian likelihood I ∼ N (Ax,ΣI) with a sparse independent prior296

pb(x) as the brain’s internal model Olshausen and Field (1996, 1997). (We use the notation I ∼ N (µ,Σ)297

to indicate a random variable drawn from a multivariate normal distribution, and N (I;µ,Σ) to denote its298

density function). In this model, the observed retinal image, I, is assumed to be a linear combination of299

“projective fields” (PFi) plus unexplained pixel noise ΣI; the matrix A is a feature dictionary with projective300

fields as its columns: A = (PF1, . . . ,PFn). Each of the n projective fields is weighted by a single latent301

variable, x = (x1, . . . , xn)>. Intuitively, in this model, V1 activity is assumed to somehow represent beliefs302

about what values for x best explain a given retinal image, I.303

The next assumption in the Encoding framework is about the neural code, or how the posterior distribu-304

tion, pb(x|I), is represented by neural responses, r. Continuing the previous example, Olshausen and Field305

assumed that each xi was represented by a single neuron whose firing rate was proportional to the most306

probable value for xi given an image (maximum a posteriori, MAP): ri ∝ argmaxxi
pb(x|I). In this model, a307

single neuron represents the most likely intensity with which a visual feature is present in the image. This is308

not a fully Bayesian Encoding model in the sense that only the MAP, but not the full posterior distribution309

pb(x|I) is encoded in neural responses. Empirical support for this model is based on the observation that310

learning (fitting) this model on natural images yields visual features (PFi) that are localized, oriented, and311

band-pass filtered, implying neural responses and receptive fields with similar properties – just as observed312

empirically (Olshausen and Field, 1996).313

Subsequent work has both modified and extended this generative model, and combined it with different314

neural codes. Hoyer and Hyvärinen proposed that neural responses can be understood as samples from the315

posterior in the same generative model to qualitatively explain the variability and mean-variance relationship316

of neural responses. Schwartz and Simoncelli extended the generative model to a Gaussian scale mixture317

model to explain the empirically observed contrast normalization of V1 responses, and Orbán et al. (2016)318

found agreement between the predictions of a Gaussian scale mixture model combined with neural sampling319

and a wide range of observations related to the stimulus-dependence of neural variability. Bornschein et al.320

(2013) proposed a variation of the generative model of Olshausen and Field using a nonlinear Gaussian321

likelihood and/or binary as opposed to continuous latents x, and Coen-Cagli et al. (2015) found that a322
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further extension to the generative model in the form of a Mixture of Gaussian Scale Mixture model could323

explain center-surround interactions in V1. Finally, Haefner et al. (2016) combined the generative model of324

Olshausen and Field with the ideal observer model of a discrimination task to explain choice probabilities325

and task-dependent noise correlations of V1 neurons.326

The key shared element of all these models is an explicit assumption about the computational variable327

x that is being represented, and how this variable is related to the sensory observations I. This model being328

adapted to natural inputs is an important constraint, and the model parameters are usually obtained by329

fitting the model to sets of natural images. These models are then general purpose and can be queried330

using natural inputs or images presented in a task. The fundamental framing is how V1 neurons encode the331

posterior over x given an arbitrary input, I.332

2.5.2 Bayesian Decoding models for V1333

The starting point for the Bayesian Decoding approach, applied to V1, is a measurement of the conditional334

probability (or likelihood of s), p(r|s), for some stimulus s to which V1 neurons are tuned, and that is335

hypothesized to be represented, such as orientation. Importantly, this means that the measured likelihood336

is to some extent under experimental control, since the experimenter chooses what images correspond to337

each value of s (e.g. the size, contrast, or spatial frequency of a grating). In general, for an arbitrary338

s, this likelihood will be very complicated reflecting the fact that s cannot easily be decoded from r (e.g.339

object identity from V1). However, for V1 responses it has empirically been found that the optimal Bayesian340

decoder for orientation is approximately linear in spike counts and invariant to contrast, a classic nuisance341

variable (Graf et al., 2011). This finding has been interpreted as meaning that V1 activity “represents”342

orientation. In conjunction with the Poisson-like neural response variability in V1, this implies that the343

beliefs of a Bayesian decoder of orientation applied to the neural responses are part of the exponential344

family. Furthermore, the sufficient statistics are linear in the neural responses. Such a neural representation345

of a belief has been called a Probabilistic Population Code (PPCs) as introduced by Ma et al..346

The same logic applies to other candidates for s that modulate the responses of V1 neurons in a straight-347

forward manner, such as spatial frequency or location. The key element of the Bayesian Decoding approach348

is taking the perspective of downstream circuits trying to extract information about s from V1 activity: how349

is the information about s formatted in V1 activity, and is p(s|r) “simple”? In contrast to the Bayesian350

Encoding perspective which justifies its choice of x by its fit to natural images and its ability to predict351

neural responses, the Bayesian Decoding perspective justifies its choice of s by desirable properties of an352

efficient decoder, e.g. linearity and invariance to nuisance variables.353

2.5.3 Example model where decoding a stimulus s from encoded samples results in a PPC354

Since our main points are conceptual in nature, we will develop the link between the Encoding and the355

Decoding approach for the simple case of a linear Gaussian model with a Gaussian prior, under the assump-356

tion of a sampling-based neural code. These simplifying assumptions make the difference between Encoding357

and Decoding clear and analytically tractable, but are not meant to maximize biological plausibility. For358

instance, the posterior variance in this model is independent of I, whereas it is well-known that neural359

response variance is stimulus-dependent, and this effect is captured by neural sampling models with less360

trivial generative models (Orbán et al., 2016; Bányai et al., 2019; Festa et al., 2019). Beginning with a more361

complicated Encoding model would lead to a more complicated relationship to Decoding models (e.g. where362

the Decoder is more complex, e.g. a nonlinear PPC, or not even in the exponential family). Importantly,363

the core of our argument remains: that an Encoding model based on one type of neural code (e.g. sampling)364

and a Decoding model based on another type (e.g. parametric) need not be in contradiction with each other,365

and offer complementary perspectives on the same system.366

Given an image, I, we assume that V1 neurons encode the posterior pb(x|I) by sampling t values from367

from the posterior distribution, x(t) ∼ pb(x|I) ∝ pb(I|x)pb(x) where pb(x) is the brain’s prior over x (Hoyer368

and Hyvärinen, 2003). We assume that responses from a population of n neurons correspond to samples369

from the posterior over x, so that at each instant, the population response, r(t), equals the sample x(t). Each370

sample of xi (or ri) represents the brain’s instantaneous belief about the intensity of the feature PFi in the371

image.372
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Figure 4: Encoding by sampling followed by decoding of orientation from the samples in a simplified model.
As in Figure 3, Encoding elements are on the left, and Decoding elements are on the right. In our example
model, the brain performs sampling-based inference over x in a probabilistic model of images, here a Linear
Gaussian model. In a given experiment, the image is generated according to an experimenter-defined process
that turns a scalar stimulus s, e.g. orientation, into an image observed by the brain. To simplify, neural
responses r are assumed to reflect instantaneous real-valued samples of x drawn from the posterior pb(x|I).
In our simulation we drew 10 samples and assumed 20ms per sample. The samples drawn from the model
are then probabilistically “decoded” to a probability distribution over s. This distribution sharpens as more
samples are observed. The optimal decoder for any t is a linear PPC.

We will now apply the Bayesian Decoding approach to the sequence of samples produced by the sampling-
based Encoding model described above. An ideal observer applies Bayes’ rule to infer p(s|r(1), . . . , r(t)) using
knowledge of the probabilistic relationship between samples (x or r) and s:

p(s|r(1), . . . , r(t)) ∝ p(s) pb(r(1), . . . , r(t)|s) (2)

∝ p(s)

∫
p(I|s) pb(r(1), . . . , r(t)|I) dI .

That is, the optimal decoder combines knowledge of (i) how likely an image I is to generate a set of samples373

of x (or r), and (ii) how likely a stimulus value s is to generate an image I. In general, this decoded374

distribution over s may be arbitrarily complex and intractable. One factor that is under experimental375

control is the“template” function T(s) which renders an image, such as a grating with orientation s. This376

provides the link between s and I in equation (2). In our model, we assume that the input the brain receives377

is a noisy version of that template (Figure 4).378

The first simplification to the general form of the optimal decoder in (2) we can derive, under the
assumption of a Gaussian likelihood, is to show that the posterior over s depends only on the mean rate of
r (i.e. a rate code rather than temporal code):

p(s|r(1), . . . , r(t)) = p(s|r̄) (3)

where r̄ = 1
t

∑t
i=1 r(t) is the mean response after t samples (Supplemental Text). Any decoder that obeys (3)

can be seen as a kind of parametric code over s, where the rates r̄ are the parameters. A second convenient
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property for a decoder to have is if the optimal decoder is in an exponential family, or

p(s|r̄) ∝ g(s) exp
(
h(s)>f(r̄)

)
. (4)

Whenever (4) is true, then we would say that the neural activity forms a particular kind of parametric code
called a Nonlinear PPC over s. A final convenient property for a decoder to have is if f(r̄) is linear:

p(s|r̄) ∝ g(s) exp
(
h(s)>r̄

)
. (5)

This is the definition of a Linear PPC over s (Ma et al., 2006)1.379

In our simplified Encoding model, we can analytically derive the optimal decoder of the experimenter-380

defined s conditioned on neural responses, where those neural responses are generated by sampling from the381

Linear Gaussian internal model described above (derivation in the Supplemental Text). We find that the382

optimal decoder is, in fact, a Linear PPC over s as defined in (5)!2 This sequence of steps from equation383

(2) through (5) suggests a general way to derive the Bayesian Decoding model implied by a given Bayesian384

Encoding model.385

As we discussed earlier, Encoding models typically (but not necessarily) consider inference in a task-386

independent internal model, while Decoding models typically (but not necessarily) consider inference of387

low-dimensional task-specific quantities. The model we described in this section is “typical” in this sense:388

inference of x is constructed to be task-independent, while the decoder of s given r depends inextricably389

on the “template function” T(s), which is under the control of the experimenter. The kernels h(s) will be390

different for gratings of different size and spatial frequency, for plaids, or for different objects. This example391

shows how a Bayesian Decoding model for s, implied by a task-independent Bayesian Encoding model,392

can nonetheless be experiment-dependent. This points to a potentially empirically decidable question: do393

downstream areas such as V2 interpret V1 activity like a Bayesian Decoder, or do they interpret V1 activity394

as representing a posterior over a set of latents, x?395

3 Discussion396

We have identified and characterized a previously unstated difference between approaches to constructing397

Bayesian neural models: Bayesian Encoding and Bayesian Decoding. This distinction is orthogonal to398

existing and much-debated distinctions like whether neural responses reflect parameters or samples of the399

inferred distribution. Making the distinction between Bayesian Encoding and Bayesian Decoding explicit400

provides new insights into the long-standing debate about the nature of the neural code. Importantly, we401

have demonstrated that these two approaches can give rise to different but compatible models of the same402

neural circuit, underlining the point that Bayesian Encoding and Decoding models are complementary, and403

not mutually exclusive. The complementary nature of these approaches has direct implications for both404

theoretical debates and the correct interpretation of empirical data.405

Our example model sheds light on the much-debated question of whether neural responses are more closely406

related to parameters of the encoded probability distribution, as in probabilistic population codes (PPC; Ma407

et al. (2006)) and in distributed distributional codes (DDC; Vertes and Sahani (2018)), or to samples from408

the distribution as in neural sampling (reviewed in Fiser et al. (2010); Pouget et al. (2013); Sanborn (2015);409

Gershman and Beck (2016)). In our example, the Bayesian Decoding model implies a (parametric) PPC410

while, by construction, neural responses in the Bayesian Encoding model represent samples, demonstrating411

that it is possible that the very same neural responses are compatible with both depending on perspective.412

Our model is a constructive proof that Encoding and Decoding models can be compatible on the same413

data, but this is will not be true in general. For instance, non-Gaussian Encoding models will not generally414

form a linear PPC from the decoding perspective, or only for specific sets of stimuli, or they may be decodable415

only as a nonlinear PPC. Generalizing from our specific example, the key question is, which families of416

Encoding models, consisting of both pb(I,x) and an assumption about the link to neural responses, are417

compatible with which families of Decoding models, consisting of p(s|r) and p(I|s)? These will come in418

1PPCs also place restrictions on nuisance variables which we have omitted here.
2Further discussion of the nature of this PPC and its relation to the parameters of the internal model can be found in

Shivkumar et al. (2018).
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pairs – each family of Encoding models defines a family of compatible Decoding models, and vice versa.419

Identifying these pairs of compatible model families is a theoretical question with important implications for420

the interpretation of empirical data: while Encoding and Decoding models traditionally have been supported421

(and falsified) by different kinds of empirical data (see section 2.3.4), understanding their link will allow us to422

bridge that divide. For instance, if an Encoding model implies a particular family of Decoding models, then423

data that falsifies that Decoding family will also falsify the Encoding family. Similarly, if a Decoding model424

is only compatible with a family of Encoding models that is too constrained to effectively model natural425

inputs, then that would pose a challenge for the Decoding model. As an example of this kind of argument,426

Orbán et al. note in supplemental analyses that their sampling model appears to be empirically consistent427

with a contrast-invariant linear PPC over orientation, but that “linear decoding of population responses will428

significantly fall short of being optimal” once more complex tasks are considered (Orbán et al., 2016).429

More generally, our arguments also raise questions about what makes a neural code “distributional”, i.e.430

representing a whole distribution rather than just a point estimate, and what would constitute empirical431

evidence for it. While the Bayesian Encoding model in our example assumed a sampling-based represen-432

tation of the posterior over x, consider a reduced, non-distributional version in which neural responses are433

proportional to a point estimate of x such as its mean or mode (Olshausen and Field, 1996). This would434

be a poor Bayesian Encoding model in the sense that the full pb(x|I) distribution is not recoverable from435

r. Yet, even this reduced model gives rise to a probabilistic code (PPC) over s. Such a point estimate code436

over variables in the brain’s internal model would still enable many of the apparently Bayesian behaviors437

observed in low-dimensional psychophysics tasks and used to motivate Bayesian Decoding theories, as dis-438

cussed in section 2.3.4 above. Another example of non-Bayesian encoding but Bayesian decoding is given439

by Orhan and Ma. It would therefore be a mistake to treat empirical evidence for near-optimal or near-440

Bayesian behavior in a particular task alone as evidence that the brain represents probability distributions441

over variables in an internal model of sensory inputs (Rahnev, 2019; Koblinger et al., 2021). The distinction442

between Bayesian Encoding and Bayesian Decoding might thus productively add to the open philosophical443

question: “if perception is probabilistic, why does it not seem probabilistic?” (Block, 2018; Rahnev et al.,444

2020).445

The seminal paper by Zemel et al. (1998) introduced the concept of encoding (and decoding) general446

probability distributions in (and from) neural activity. Most work over the following 20+ years typically447

focused on either Encoding or Decoding, as shown by Table 1, despite Zemel et al. considering both448

perspectives as tightly linked. This divergence was likely strengthened by the fact that Encoding studies449

almost exclusively considered internal latent variables (x), while work taking the Decoding perspective450

considered distributions over task-defined variables (s). From today’s perspective, the encoding formalism451

of Zemel et al. and its application in Sahani and Dayan (2003) maps naturally onto our Bayesian Encoding452

category. Furthermore, it is philosophically closely aligned with the other studies in this category, and shares453

with them the idea that implied decoders that are non-Bayesian (but note that “decoding is only an implicit454

operation that the system need never actually perform” Zemel et al. (1998)). Interestingly, while Zemel455

et al. (1998) discounted the possibility of optimally decoding the encoded distribution using Bayes’ rule as456

too inflexible, almost all later studies that took the decoding approach were based on Bayes’ rule, and now457

form our Bayesian Decoding category.458

The key step in our example system above which allowed us to interpret samples of x as a PPC was459

to construct the PPC over a different variable: s. This raises the question: what if s is part of of the460

brain’s internal model? One possibility is that “orientation” (or any other s in a task) is a useful abstraction461

of natural stimuli, in which case it may have been learned (or evolved) and may permanently be a part462

of the brain’s internal model. Another possibility is that orientation (or any other s) is part of the brain’s463

internal model because the brain changes its internal model as the result of learning the present task (Haefner464

et al., 2016; Lange and Haefner, 2022). Echoing section 2.3.3 above, even if s is part of the brain’s internal465

model, Bayesian Encoding and Decoding models would nonetheless differ in their approach to the question466

of how neural responses, r, relate to the distribution on s. Bayesian Encoding models would begin with a467

generative model of sensory input I from s (and possible other internal variables x) and ask how the true468

posterior pb(s,x|I) is represented by neural responses r. Bayesian Decoding models, on the other hand,469

would investigate the relationship between s in the world and evoked neural responses, p(r|s), and study a470

different kind of posterior, p(s|r), which takes the perspective of the experimenter, or possibly the rest of the471

brain trying to read out s from r. If the decoded distribution, p(s|r), matches the ideal encoded distribution,472
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pb(s|I), then the code for s is said to be efficient (Beck et al., 2012).473

The choice of variable which is assumed to be inferred, also impacts the interpretation of neural variability.474

In our example above, neural variability is directly related to the uncertainty in the posterior over x. In475

contrast, the uncertainty over s encoded by the Bayesian decoding model is unrelated to the neural variability,476

depending on the samples only through their mean, rather than their variance. Given sufficiently many477

samples, the uncertainty over s is only determined by the noise in the channel between experimenter and478

brain (Σe−b). This is an important point for experiments that seek to test the neural sampling hypothesis479

by relating neural variability and “uncertainty”: in our example model, only uncertainty over x but not over480

s manifests as neural variability, while s is the variable most commonly and naturally manipulated in an481

experiment.482

The issues raised in this paper for models of visual perception also have implications for Bayesian models483

of cognition, where ideas related to sampling (Vul and Rich, 2010; Sanborn et al., 2010; Lieder et al., 2014;484

Vul et al., 2014; Sanborn and Chater, 2016; Lieder et al., 2017; Zhu et al., 2020), variational inference (Hohwy485

et al., 2008; Daw et al., 2008; Sanborn and Silva, 2013), or both (Lange et al., 2021) have been invoked to486

explain a wide variety of heuristics and biases (reviewed in Sanborn (2015); Griffiths et al. (2012b)). Here,487

too, it is important to distinguish between probabilistic models of the world that are posited to exist in a488

subject’s mind (as is typical in Bayesian Encoding) from experimenter-defined models of a particular task (as489

is typical in Bayesian Decoding). Closely related is the distinction drawn by Knill and Richards between the490

“inference problem” (what the brain infers in the internal model it assumes) and the “information problem”491

(what information is available in the world) (Knill and Richards, 1996, Chapter 1). For example, Vul et al.492

argue that certain deviations from Bayes-optimal behavior can be explained as the result of basing decisions493

on a single Monte-Carlo sample. However, it is conceivable that what appears to be a single point-estimate494

sample over a quantity relevant to a task may, in fact, be a local, perhaps unimodal distribution over a495

detailed internal model, as in variational approximations. It is further conceivable that multiple “samples”496

correspond to a mixture of variational approximations over an internal model (Jaakkola and Jordan, 1998;497

Lange et al., 2022). Conversely, a single high dimensional point estimate of an internal model may be498

sufficient to facilitate apparently Bayesian behavior with respect to a low-dimensional task. Changing our499

reference frame from internal models to experimenter-defined tasks may make samples appear as variational500

parameters, or vice versa.501

Koblinger et al. (2021) recently posed the question whether uncertainty in the brain is represented “con-502

stitutively”, i.e. about many variables regardless of their relevance for a specific task, or “opportunistically,”503

only about task-relevant variables. While this distinction appears related to the difference between Bayesian504

Encoding and Decoding with respect to their task-independence, there are important differences. While505

Encoding and Decoding models have so far mostly been applied in task-independent and task-dependent506

contexts, respectively, to what degree representations of uncertainty are task-specific is an empirical question507

that can be productively asked within both the Encoding and Decoding approaches. For instance, Bayesian508

Encoding models of object recognition may differ in whether they propose that the brain represents pos-509

teriors only over task-relevant object identities, or all possible objects. One can similarly imagine both510

“constitutive” and “opportunistic” Decoding models. For instance, the toy example model we presented511

above is an opportunistic Decoding model, where s is determined by the experimenter, and r is only said to512

represent a distribution over s in that task context. In a constitutive Decoding model, the representation513

of a distribution about one quantity, like p(orientation|r), would potentially interact with representations of514

other quantities, like p(location|r), regardless of the immediate task-relevance of each.515

Walker et al. (2022) pointed out a distinction between “descriptive” versus “process” approaches to the516

study of neural representations of uncertainty. In their classification, the “descriptive” approach derives517

estimates about the observer’s subjective uncertainty from either presented stimuli or recorded behavioral518

reports. The “process” approach, on the other hand, derives an estimate of uncertainty from neural responses.519

To what degree this classification is related to the Bayesian Encoding and Decoding approaches, respectively,520

is unclear, and likely depends on additional assumptions, e.g. about the relationship between behavioral521

reports and reference posterior in the Encoding approach, pb(x|I), and about the nature of the model used522

to infer uncertainty from neural responses.523

To conclude, the Bayesian Brain Hypothesis is not a single idea, but a collection of computational524

models, philosophical ideas, and explanations for a variety of empirical data. It is a framework rather than525

a theory (Griffiths et al., 2012a). Bayesian Encoding and Bayesian Decoding are complementary approaches526
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to constructing concrete models within the Bayesian Brain framework. These two approaches have been a527

major source of variation among models, and their complementary nature has previously gone unnoticed.528

We hope that these insights will lead to clearer and more productive discussions on the nature of inference529

in the brain, both in terms of neural representations of probability and in terms of behavior.530

Code availability531

Two panels in Figure 4 were generated by simulation. The code is available at https://github.com/haefnerlab/bayesian-532

encoding-decoding.533
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S Supplemental Text725

S.1 Derivation of decoded posterior for Gaussian prior over x726

In this section we provide a brief derivation of the optimal posterior over an experimenter-defined s con-727

ditioned on samples of internal-model variables x, where the brain’s internal model pb(x, I) is assumed to728

be a linear Gaussian model with a Gaussian prior over x. The use of a Gaussian prior over x is a further729

simplification of the derivation in Shivkumar et al. (2018). Formally, the setup is as follows:730

1. Assume that the scalar s (such as orientation) gives rise to observed images I as731

I = T(s) + η ,

where T(s) is a “template” function (such as a grating image), and η is zero-mean Gaussian-distributed732

pixel noise with covariance Σe−b.733

2. Assume that the brain’s internal model, pb(x, I), factorizes as pb(x)pb(I|x), where the prior is Gaussian,734

pb(x) = N (x;µp,Σp) ,

and images are assumed to be generated as a linear combination of basis vectors,735

pb(I|x) = N (I; Ax,ΣI) .

3. Bayesian Encoding Model: Assume that, conditioned on I, the brain samples {x(i)} ∼ pb(x|I),736

and that each value of x corresponds to a neuron, so that r(i) = x(i). (We will use “r(i)” to denote the737

vector of neural activity at time i, and r = {r(1), . . . , r(t)} to denote all neural activity in the relevant738

population up to time t.)739

4. Bayesian Decoding Model: We will derive the Bayesian decoder of s given {r(1), . . . , r(t)}.740

We are interested in the optimal decoder of s after t time has elapsed, or p(s|r). By Bayes’ rule, this741

is proportional to p(r|s)p(s) = p(x(1), . . . ,x(t)|s)p(s). That is, the quantity we must compute in order to742

optimally decode p(s|r) is the probability of seeing a given set of samples, x(1), . . . ,x(t), provided a value of743

s.744

Since s affects r through I, this likelihood function can be evaluated by marginalizing across all possible745

images746

p(x(1), . . . ,x(t)|s) =

∫
p(x(1), . . . ,x(t)|I)p(I|s)dI (S1)

We know from our definition that747

p(I|s) = N (I; T(s),Σe−b) ,

and the posterior probability of all t independent samples for a given I is748

p(x(1), . . . ,x(t)|I) =
t∏

i=1

p(x(i)|I) .

Under the simplifying assumption that both pb(x) and pb(I|x) are Gaussian, the brain’s internal model749

posterior, pb(x|I) is also Gaussian,750

p(x(i)|I) = N (x(i);µ′,Σ′) , (S2)

where

µ′ = Σ′(Σ−1
p µp + A>Σ−1

x I) and

Σ′ = (Σ−1
p + A>Σ−1

x A)−1 .

Note that the only dependence on I (and therefore on s) is through µ′.751
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Equation (S2) gives the probability of seeing a single sample x(i) given I. The probability of all t samples
is

p(x(1), . . . ,x(t)|I) =
t∏

i=1

N (x(i);µ′,Σ′)

= N (x̄;µ′, t−1Σ′)c(x,Σ′)

where x̄ = t−1
∑t

i=1 x(i) is the average of samples up to time t, and c(x,Σ′) is a term that depends on752

x(1), . . . ,x(t) and on Σ′ but not on µ′ (and therefore not on I, so it can be dropped later).753

We can now evaluate the integral in (S1) to get the probability of t samples for a given s:754

p(x(1), . . . ,x(t)|s) =

∫
p(x(1), . . . ,x(t)|I)p(I|s)dI

=

∫
N (x̄;µ′, t−1Σ′)c(x,Σ′)N (I; T(s),Σe−b)dI

= c(x,Σ′)

∫
N (x̄; Σ′(Σ−1

p µp + A>Σ−1
x I)︸ ︷︷ ︸

definition of µ′

, t−1Σ′)N (I; T(s),Σe−b)dI

= c(x,Σ′)

∫
N (x̄−Σ′Σ−1

p µp; Σ′A>Σ−1
x I︸ ︷︷ ︸

Let x′ ≡ Σ′A>Σ−1
x I

, t−1Σ′)N (I; T(s),Σe−b)dI

(∗) ∝
∫
N (x̄−Σ′Σ−1

p µp; x′, t−1Σ′)N (x′; Σ′A>Σ−1
x T(s),Σ′A>Σ−1

x Σe−bΣ−1
x AΣ′)dx′

= N (x̄−Σ′Σ−1
p µp; Σ′A>Σ−1

x T(s), t−1Σ′ + Σ′A>Σ−1
x Σe−bΣ−1

x AΣ′)

= N (x̄;µ′′,Σ′′)

where

µ′′ = Σ′
(
Σ−1

p µp + A>Σ−1
x T(s)

)
Σ′′ = t−1Σ′ + Σ′A>Σ−1

x Σe−bΣ−1
x AΣ′

In the line marked (∗), we changed variables to switch from an integral over I to an integral over x′. This755

line is a proportionality because we also dropped terms that do not depend on s, including the Jacobian756

term from the change of variables, since later we will use this expression as a likelihood function of s.757

Expanding the definition of N (. . .), we can now write the posterior over s given x(1), . . . ,x(t) as

p(s|x(1), . . . ,x(t)) = p(s|x̄)

∝ p(s) exp

(
−1

2
(x̄− µ′′)>Σ′′−1(x̄− µ′′)

)
∝ p(s) exp

(
x̄>Σ′′−1µ′′ − 1

2
µ′′>Σ′′−1µ′′

)
.

Substituting r̄ for x̄ and rewriting in terms of a Linear PPC, this is

p(s|r) ∝ g(s) exp(h(s)>r̄) ((5) restated)

where

g(s) = p(s) exp

(
−1

2
µ′′(s)>Σ′′−1µ′′(s)

)
h(s) = Σ′′−1Σ′A>Σ−1

x T(s) .
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