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Abstract  
 
DNA replication timing and three-dimensional (3D) genome organisation occur 

across large domains associated with distinct epigenome patterns to functionally 

compartmentalise genome regulation. However, it is still unclear if alternations in the 

epigenome, in particular cancer-related DNA hypomethylation, can directly result in 

alterations to cancer higher order genome architecture. Here, we use Hi-C and single 

cell Repli-Seq, in the colorectal cancer DNMT1 and DNMT3B DNA 

methyltransferases double knockout model, to determine the impact of DNA 

hypomethylation on replication timing and 3D genome organisation. First, we find 

that the hypomethylated cells show a striking loss of replication timing precision with 

gain of cell-to-cell replication timing heterogeneity and loss of 3D genome 

compartmentalisation. Second, hypomethylated regions that undergo a large change in 

replication timing also show loss of allelic replication timing, including at cancer-

related genes. Finally, we observe the formation of broad ectopic H3K4me3-

H3K9me3 domains across hypomethylated regions where late replication is 

maintained, that potentially prevent aberrant transcription and loss of genome 

organisation after DNA demethylation. Together, our results highlight a previously 

underappreciated role for DNA methylation in maintenance of 3D genome 

architecture.  
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Introduction 

 

The genome is organised into many higher order architectural layers, including DNA 

replication timing and 3D chromatin conformation, that serve to functionally 

compartmentalise genomic regulation. DNA replication follows a highly organised 

‘replication timing’ program whereby genomic domains are replicated in a specific 

temporal order during S-phase, from early to late. The genome is also organised in 

nuclear space into 3D clusters formed by cis-chromatin interactions (Dixon et al., 

2012; Lieberman-Aiden et al., 2009; Nora et al., 2012; Sexton et al., 2012). These 

clusters partition the genome into two large-scale compartments: transcriptionally 

active, open A-compartments and silenced, mostly closed B-compartments that 

correspond to the globular architecture of chromatin organisation in interphase nuclei 

(Lieberman-Aiden et al., 2009). Integration of replication timing (Repli-Seq) and 3D 

chromatin conformation (Hi-C) sequencing data has revealed that early replication 

timing domains correspond to the active A-compartments and late replication timing 

to the repressive B-compartments (Dixon et al., 2012; Ryba et al., 2010). Both DNA 

replication timing and A/B-compartment structure have been shown to stratify many 

features of the genome and epigenome. Alterations in DNA replication timing and 3D 

chromatin organisation correspond to transcriptional and epigenomic changes during 

differentiation (Miura et al., 2019; Rivera-Mulia et al., 2015) and carcinogenesis 

(Achinger-Kawecka et al., 2020; Du et al., 2019; Taberlay et al., 2016). These results 

highlight that DNA replication timing and 3D genome organisation together play a 

coordinated role in the higher-order regulation of the genome. 

 

One of the major epigenomic hallmarks of cancer is genome-wide loss of DNA 
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methylation (Shen and Laird, 2013), however, it is unknown if hypomethylation 

directly leads to a deregulation of higher order genome architecture. The DNA 

methylation landscape of cancer cells has previously been shown to correlate with 

the large-scale nuclear architecture of the genome, including DNA replication 

timing landscape and A/B-compartment organisation (Berman et al., 2012; Du et al., 

2019; Nothjunge et al., 2017). In particular, long range domains of low DNA 

methylation called partially methylated domains (PMDs) are associated with late-

replicating domains (Berman et al., 2012; Du et al., 2019) and B-compartments 

(Nothjunge et al., 2017; Xie et al., 2017). These associations raise the question of 

whether global loss in DNA methylation can directly influence the DNA 

replication timing program and 3D genome organisation.  

 

Previous loci-specific studies reported that DNA methylation loss was related to 

changes in replication timing at candidate regions. For example, a shift in replication 

timing from late to early timing of the inactive chromosome X was associated with 

DNA demethylation in patients with immunodeficiency disease (ICF) (Hansen et al., 

2000) and DNMT1 knockout mouse embryonic stem cells displayed earlier 

replication timing of pericentromeric major satellite repeat elements (Jorgensen et al., 

2007). These studies suggest that DNA demethylation can promote alterations in 

DNA replication timing at a loci-specific level. However, little is also understood 

about the effect of DNA methylation loss on genome-wide higher order genome 

organisation.  

 

To investigate the effects of DNA methylation loss on DNA replication timing and 

3D genome structure, we used Repli-Seq, single cell Repli-Seq, and Hi-C in a 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.338855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.338855


	 5	

colorectal cancer cell line (HCT116) and its isogenic cell line with double knockout 

of the maintenance DNA methyltransferase DNMT1 and de novo DNA 

methyltransferase DNMT3B (DKO1) (Rhee et al., 2002). We show that 

hypomethylation, a common hallmark of cancer, results in loss of replication timing 

precision and concordant deregulation of 3D genome organisation. Our results 

highlight a previously underappreciated role for DNA methylation in the direct 

regulation of the 3D genome. 

 

Results 

Co-ordinate alterations to DNA replication timing and 3D genome organisation  

To directly determine the impact of DNA methylation levels on higher order genome 

architecture, we investigated changes in both DNA replication timing and 3D 

chromatin conformation after global DNA hypomethylation. We used a well-

described model of DNA methylation loss; HCT116, a colorectal cancer cell line and 

DKO1, the isogenic cell line with double knockout of the maintenance DNA 

methyltransferase DNMT1 and the de novo DNA methyltransferase DNMT3B (Rhee 

et al., 2002). We found that the DKO1 cells show genome-wide DNA 

hypomethylation (~56% methylation loss) compared to HCT116 cells (Fig. 1a). To 

determine if global DNA methylation loss results in changes in DNA replication 

timing and/or 3D genome structure, we performed Repli-Seq and in situ Hi-C in 

duplicate in HCT116 and DKO1 cells (See Methods, Supp Fig. 1, Supp Fig. 2a).  

 

We first examined genome-wide trends in DNA replication timing and Hi-C data 

between HCT116 and DKO1. We found that in contrast to global DNA 
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hypomethylation (Fig. 1a), replication timing weighted average (WA) values between 

HCT116 and DKO1 are highly correlated (Fig. 1b, Spearman’s = 0.9613). A 

representative example is shown in Fig. 1c. We next used a WA difference of 15 

(|ΔWA| >15), as a stringent approach to define regions with large replication timing 

alterations, and a WA difference of 5 (|ΔWA| < 5) to measure minimal changes in 

timing (See Methods, Supp Fig. 1e & f). We found that 66.8% of the genome shows 

close conservation of replication timing (|ΔWA| < 5) and 29.84% of the genome 

displays a moderate shift in replication timing (5 < |ΔWA| < 15). Notably, at the most 

stringent cut off (|ΔWA| >15), we found a distinct fraction of the genome displayed a 

large shift in replication timing, that is to either replicate earlier (1.89%) or replicate 

later (1.47%) in DKO1 compared to HCT116 (Fig. 1d).  

	

Next, to investigate if loss of DNA methylation results in alterations to large-scale 

genome compartmentalisation, we performed compartment analyses to define A/B 

compartment switching from HCT116 to DKO1. We defined A/B compartment status 

with the first principal component (PC1) values, which represent 

euchromatin/heterochromatin neighbourhoods, respectively. Similarly to replication 

timing, we observe that HCT116 and DKO1 Hi-C data show high correlation between 

PC1 values (Fig. 1c,e, Supp Fig. 2b) and comparable proportions of A and B 

compartments (Supp Fig. 2c). We found that 13.58% of the genome had switched 

A/B compartments comprising switching from A to B (9.10%) and switching B to A 

(4.48%) (Supp Fig. 2d). A large proportion of compartment switches were centred 

around PC1 values of <0.5 and > PC1 > -0.5 (Supp Fig. 2e), indicating that, while 

compartment switches do cross the midline that defines A vs. B compartments, a large 

proportion of these switches are at regions with low compartment values (Supp Fig. 
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2f). Therefore, to identify regions which show strong compartment shifts, regardless 

of whether they cross the midline, we defined switching regions by their ΔPC1 score, 

using a ΔPC1 cut-off of ≥ |1| (Fig. 1d, Supp Fig. 2g, See Methods). Using these 

criteria, we found 4.43% of the genome have increased PC1 values in DKO1 and 

therefore is more A-type than HCT116, and 3.47% of the genome have decreased 

PC1 values where DKO1 is more B-type than HCT116.  

 

Lastly, we examined whether there is concordance between regions that show a 

change in genome compartmentalisation and regions that show changes in DNA 

replication timing, following DNA hypomethylation. We found that domains that 

replicated earlier are enriched for B to A compartment switches and positive ΔPC1 

changes, and later replicating domains are enriched for A to B compartment switches 

and negative ΔPC1 changes (Fig. 1f,g). As expected, where DNA replication timing 

has become earlier in DKO1 compared to HCT116, the region moves more towards 

the ‘active’ A compartment (positive PC1 values) and vice versa (Fig. 1f,g). 

Exemplary regions are shown in Fig. 1d. In summary, we found that in response to 

global DNA hypomethylation, ~3-10% of the genome undergo large and co-ordinate 

changes in higher-order genome architecture. 

 

Changes in higher order genome architecture occur at partially methylated 

domain boundaries 

We next examined whether the ~3-10% of the genome that show large changes in 

replication timing and genome organisation are related to the degree of methylation 

loss. Surprisingly, we found that loci that replicated earlier in DKO1 are significantly 

associated with a gain in methylation (Fig. 2a). Similarly, we found that regions with 
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a large positive ΔPC1 difference from HCT116 to DKO1 are also enriched for regions 

that predominately show a gain in methylation (Fig. 2b). Whereas loci with DNA 

methylation loss are slightly associated with loci that replicated later or showed a 

large negative ΔPC1 difference from HCT116 to DKO1 (Fig. 2a,b). This suggests 

that the distinct higher order genome architectural changes may occur co-ordinately 

with the degree of DNA methylation change, however, appear to be more related to 

methylation gain rather than methylation loss. As the DNA methylation landscape in 

HCT116 cells is uneven across DNA replication timing (Fig. 1c), different replication 

times are subject to different amounts of methylation change. Early replicating loci 

are highly methylated and are thus able to lose methylation, whilst late replicating loci 

are lowly methylated and thus more amenable to methylation gain. Loci that show 

methylation gain are indeed lowly methylated in HCT116 and conversely loci that 

show methylation loss have high methylation in HCT116 (Supp Fig. 3a). In 

agreement, we found that earlier replicating and positive ΔPC1 loci that are 

associated with methylation gain are lowly methylated and later replicating and 

negative ΔPC1 loci that associate with methylation loss are highly methylated (Supp 

Fig. 3b). 

 

Visual inspection of DNA methylation, replication timing and compartment structure 

revealed that changes in replication timing and chromatin conformation frequently co-

occur at troughs in the DNA methylation profile, also known as partially methylated 

domains (PMDs) (Fig. 2c,d and Supp Fig. 3c). PMDs are a characteristic feature of 

the cancer DNA methylation landscape (Berman et al., 2012; Hon et al., 2012; 

Hovestadt et al., 2014) and correspond to late replication domains (Berman et al., 

2012) as well as B compartments (Nothjunge et al., 2017; Xie et al., 2017). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.338855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.338855


	 9	

Interestingly, we found that despite widespread hypomethylation in DKO1 cells, the 

majority of HCT116 PMD regions persist in DKO1 (Fig. 2e). Both HCT116 and 

DKO1 PMDs are late-replicating and form ‘troughs’ in the DNA methylation profile, 

replication timing profile and PC1 compartment values (Supp Fig. 3d). However, 

DKO1 PMDs have less well-defined DNA methylation boundaries due to the global 

hypomethylation (Supp Fig. 3d) and also show shallower ‘troughs’ in both the 

replication timing and Hi-C PC1 profiles.  

 

To explore the alterations in PMD structure, we divided PMDs into regions that are 

maintained, lost or gained from HCT116 to DKO1 (See Methods). Interestingly, 

regions that lose PMD definition associate with the same bins of methylation change 

as earlier replicating and positive ΔPC1 compartment regions (Supp Fig. 3e). 

Furthermore, lost PMD regions show a clear shift towards early replication timing and 

positive PC1 values in DKO1 compared to HCT116 (Fig. 2f), contributing to ~50% 

of all earlier loci and ~34% of all positive ΔPC1 regions (Supp Fig. 3f). We further 

observed that PMD loss appears to occur specifically at the boundaries of the 

HCT116 PMD and shifts inwards from HCT116 to DKO1 (Fig. 2d, Supp Fig. 3c). 

We found that larger shifts in PMD boundaries show larger changes towards earlier 

replication timing, larger increases in Hi-C PC1 values (i.e. B to A shift) and less 

methylation loss between HCT116 and DKO1 (Fig. 2g). Therefore, the shift in PMD 

boundaries, due to the loss of the stratification of the DNA methylation landscape, is 

associated with a corresponding shift in higher-order genome architecture at PMD 

boundaries.  

 

DNA hypomethylation reduces precision of DNA replication timing  
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Interestingly, even though replication timing values between HCT116 and DKO1 are 

highly correlated (Fig. 1b, Spearman’s = 0.9613), we observed that the range of pre-

normalised replication timing (WA) values in DKO1 cells is smaller compared to 

HCT116 (Supplementary Fig. 1d). In the Repli-Seq method, we calculate WA 

values from 6-fraction values across the S-phase called percentage-normalised density 

values (PNDVs) (See Methods). To investigate the difference in spread of WA values 

between HCT116 and DKO1, we first determined the variance of the 6-fraction 

signal. A higher score indicates that the majority of the signal is coming from a small 

number of fractions (precise timing), whereas a lower score indicates the signal is 

more evenly distributed between the 6-fractions (varied timing) (Supp Fig. 4a). We 

found that DKO1 showed lower variance than HCT116 (Fig. 3a), suggesting that 

replication in DKO1 is more spread over the 6-fractions and therefore less precise. 

Representative examples of regions with decreased precision in DKO1 compared to 

HCT116 are shown in Supplementary Fig. 4b. 

 

A standard variance calculation disregards the order of the 6 fractions, whereas the 

order of the replication timing fractions across S-phase is biologically important. 

Therefore, we re-examined the variation using a weighted variance calculation (See 

Methods). Here, a lower value indicates more precision in timing (Supp Fig. 4e). 

Using the weighted variance score, we again showed that the majority of loci show 

more variance and reduced precision of DNA replication timing in DKO1 compared 

to HCT116 (Fig. 3b). This data suggests that there is a potential decrease in the 

synchronisation of DNA replication timing, resulting in a decrease in replication 

timing precision that occurs as a result of DNA hypomethylation.		
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DNA hypomethylation increases cell-to-cell heterogeneity of DNA replication 

timing 

To determine if the reduction in the precision of population-level Repli-Seq data is 

due to an increase in cell-to-cell variability or heterogeneity within the cell 

population, we performed single cell replication timing sequencing (scRepli-Seq) 

(Takahashi et al., 2019). Single cell libraries were generated on the Single Cell CNV 

Solution platform from 10x Genomics (See Methods, Fig. 3c,d). Single G1 and S-

phase cells cluster within their respective cell cycle states between HCT116 and 

DKO1 (Fig. 3d, Supp. Fig 4f). Early S-phase cells are closer to the G1 population 

and late S-phase cells are further from the G1 population along dimension 1 (Fig. 3d). 

In line with lack of replication timing precision, DKO1 cells are more disparately 

distributed within the S-phase cell cluster relative to HCT116 cells. We next 

calculated cell-to-cell variability using mid-S-phase cells (40-70% replication) for 

80kb bins across the genome. Cell-to-cell variability scores are highest at mid-

replication timing (Supp Fig. 4g), similar to Takahashi et al. (2019). We found that 

average cell-to-cell variability scores of loci in one-percentile groups across 

replication timing were statistically higher in DKO1 compared to HCT116 (Fig. 3e), 

confirming increased cell-to-cell variability in the hypomethylated DKO1 cells.  

 

Next, to address if the degree of replication heterogeneity throughout S-phase is also 

higher in DKO1 cells compared to HCT116 cells, we performed sigmoidal curve 

modelling of the single cell data to obtain replication kinetics for 80kb bins across the 

genome (See Methods). An exemplary region from Fig. 3c with sigmoidal curve 

modelling is shown in Fig. 3f. The gain (or slope) of each sigmoid curve indicates 
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how heterogeneously a locus is replicated between cells. A steep curve (large gain 

value in HCT116, e.g. g=0.216) indicates synchronous replication of the loci amongst 

cells, and a flatter curve (small gain value in DKO, e.g. g=0.088) indicates 

heterogeneous replication of the loci amongst cells. Similar to Takahashi et al. (2019), 

gain value is highest towards the earliest and latest extremes of replication timing, 

indicating start and end of replication has the least cell-to-cell heterogeneity (Supp 

Fig. 4h). Again, DKO1 cells showed overall lower gain values genome-wide than 

HCT116 across replication timing, indicating more heterogeneous replication within 

the DKO1 cell population (Fig. 3g). Representative examples of the consistent lower 

gain values in DKO cells can be seen in Fig. 3h (lower panel DKO1-HCT116) and 

Fig. 3i. This trend in increased heterogeneity occurs genome-wide, including regions 

with (Fig. 3i loci 1,2) and without a change in replication timing (Fig. 3i loci 3,4, 

Supp. Fig. 4i), and particularly at very early and very late regions (Fig. 3j). Increase 

in heterogeneity at the beginning and end of S-phase agrees with the reduced range of 

population-level Repli-Seq WA values in DKO1 (Supp. Fig. 1d) and suggests DNA 

hypomethylation has caused an ‘erosion’ in the precise regulation of replication 

timing.  

 

DNA hypomethylation reduces integrity of 3D genome compartmentalisation 

We next examined the effects of reduced replication timing precision on 3D genome 

organisation. As Hi-C is a cell population-level assay, we hypothesise that similar to 

loss of the precision of replication timing, we may observe a loss of strength of 

organisation. In corroboration with replication timing cell-to-cell heterogeneity, we 

found that DKO1 cells have reduced compartmentalisation strength of both A and B 
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compartments, indicated by the reduction of intra-compartment contact frequencies 

(A-A, B-B) and an increase of inter-compartmental (A-B) contact frequency (Fig. 

4a,b). However, DKO1 have become less B-B interaction dominant overall (Fig. 4c), 

suggesting that B compartments are more affected by global DNA hypomethylation. 

We also observe loci that have maintained B-compartment status are enriched in 

earlier replicating regions (Fig. 1f), supporting that ‘inactive’ B compartments in 

DKO1 have become more active. We also observe that DKO1 have a smaller 

percentage of the genome organised into topologically-associated domains (TADs) 

(Fig. 4d). Reduced compartment strength and TAD structure suggests a decrease in 

the number of cells within the population sharing similar chromatin conformation and 

thus an increase in chromatin conformation heterogeneity. Fig. 4e shows 

representative examples of chromosomes showing reduced integrity of 

compartmentalisation. Overall, the increase in cell-to-cell heterogeneity of DNA 

replication is also reflected in increased blurring of 3D compartmentalisation. 

 

DNA hypomethylation causes loss of allelic replication 

In exploring the decrease in replication timing precision using the weighted average 

value, we identified a small group of loci that showed a gain of replication timing 

precision specifically associated with later replication timing (Supp Fig. 5a). This 

was contrary to the loss of precision in the rest of the genome. Visual inspection of 

these loci revealed that they appear to be asynchronously or biphasically replicating 

loci in HCT116. We therefore asked if DNA hypomethylation can also result in 

changes in biphasic replication. Biphasically replicating regions occur where the locus 

is replicated both in early and late timing within the same cell type (Hansen et al., 

2010). We called biphasic regions in our HCT116 and DKO1 Repli-Seq datasets 
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using both our weighted variance score and the scoring method from Hansen et al. 

(2010) (See Methods). Both methods identified more biphasic regions in HCT116 

than DKO1 (Fig. 5a and Supp Fig. 5b), with ~70-85% of the biphasic regions lost in 

DKO1 (Fig. 5b and Supp Fig. 5c). Representative examples of lost biphasic regions 

are shown in Fig. 5c and Supp Fig. 5d.  

 

Biphasic replicating regions in cell population level data may be either due to allelic 

replication or the presence of two sub-populations with differential replication at the 

same locus. To determine if biphasic regions show allele-specific replication, we used 

long-read Nanopore sequencing followed by variant calling and phasing to obtain 

phased haplotypes for both HCT116 and DKO1 (See Methods). Allelically separated 

replication timing WA scores show that biphasic regions are indeed comprised of one 

early replicating allele and one late replicating allele in HCT116, and the alleles 

become more synchronously replicated in DKO1 (Fig. 5d, Supp Fig. 5e,f). Using 

allelic replication timing WA scores alone, we confirmed that approximately 50% of 

allele-specific replicating regions are lost after DNA methylation reduction in DKO1 

cells (Fig. 5e). Further representative examples of loss of allele-specific replication 

are shown in Supp Fig. 6. The population-level biphasic data together with the 

Nanopore data show that the hypomethylation predominantly results in loss of 

asynchronous allele-specific replication. 

 

As imprinting loci are also known to show allelic replication (Kitsberg et al., 1993),  

we next asked if allele-specific replication in HCT116 occur at imprinted loci. We 

compared allelically replicated genes against a list of known or predicted imprinted 

genes (See Methods) (Luedi et al., 2007). Of a total of 115 genes located at allelically 
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replicating regions in either HCT116 or DKO1, only 36 were protein coding (Supp 

Table 1) and only two of these, PRIM2 and DGCR6, were found to be in the 

imprinted gene database. This suggests that the majority of allelic replicating loci in 

HCT116 are not at developmentally imprinted regions. Interestingly, we found that 16 

of the 36 allelically replicating protein-coding genes are also known or predicted to be 

mono-allelically expressed (Gimelbrant et al., 2007; Savova et al., 2016). 

Furthermore, many of the allele specific replication genes are reported to be cancer-

related (Supp Table 1). Notably, three genes that lose allelic replication in DKO1 

cells, are also reported to be associated with colon cancer; NRG1 (Luraghi et al., 

2017; Stahler et al., 2017), PCDH7 (Li et al., 2020; van Roy, 2014) and DLC1 

(Durkin et al., 2007; Peng et al., 2013) (Fig. 5c,d and Supp Fig. 5d,e). Furthermore, 

NRG1 and PCDH7 are mono-allelically expressed genes and DLC1 was recently 

reported to be partially mono-allelically expressed (Gupta et al., 2020). Interesting, 

we found that loss of allelic replication for these three genes specifically involved loss 

of the early replicating allele in DKO1. Concordantly, NRG1, PCDH7 and DLC1 are 

significantly downregulated in DKO1 compared to HCT116 due to the loss of the 

early allele (Supp Fig. 5g). This suggests that DNA hypomethylation promotes an 

alteration of allelic replication timing and reduced expression of some key cancer-

related genes. 

 

Chromatin modifications and gene expression changes following DNA 

hypomethylation are associated with altered 3D genome architecture  

Chromatin changes in repressive heterochromatin histone marks (i.e. H3K27me3, 

H3K9me3) have been shown to occur following loss of	DNMT	expression (Espada et 

al., 2004; Reddington et al., 2013; Saksouk et al., 2014). Furthermore, 
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heterochromatin has been shown to be important in establishing and maintaining 

global nuclear organisation and compartmentalisation (Belaghzal et al., 2019; Falk et 

al., 2019; MacPherson et al., 2018). Therefore, we asked where co-ordinated histone 

modification changes occur in the genome after DNA hypomethylation in DKO1 

cells, and if this relates to higher order genome architecture. To do this, we called 

chromHMM states for both HCT116 and DKO1 and found that the majority of state 

changes between HCT116 and DKO1 were the result of a gain of H3K4me3, 

H3K4me1 and H3K27me3, and a loss of H3K36me3 and H3K9me3 (Supp Fig. 7a,b, 

See Methods). These changes can also be observed in the histone marks themselves 

(Fig. 6a). We observed an overall increase in H3K27me3 and H3K4me3, and a loss 

of H3K9me3 mostly at late-replicating loci. Surprisingly, gain of H3K4me3 occurs at 

both early- and late-replicating loci. The gain of H3K27me3 and loss of H3K9me3 

reflects our previous observations at hypomethylated late-replicating regions in 

prostate and breast cancer cells (Du et al., 2019). Moreover, the loss of 

heterochromatin mark H3K9me3 in late replicating regions agrees with the loss of 

chromatin compartmentalisation integrity (Fig. 4).  

 

Next, to explore whether gene deregulation, between HCT116 and DKO1, is related 

to replication timing and chromatin conformation changes we examined differential 

gene expression. We found 2291 upregulated and 150 downregulated genes in DKO1 

compared to HCT116 (Supp Fig. 7c). Overall, genes that replicated earlier and 

located in B-A shifted compartments (positive ΔPC1) are associated with 

upregulation and genes that replicated later and located in A-B shifted compartments 

(negative ΔPC1) are associated with downregulation of expression (Supp Fig. 7d). 

Furthermore, we found that genes located within late replication timing and B-
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compartments (negative PC1 values) show the most expression upregulation in DKO1 

(Fig. 6b, Supp Fig. 7e). These results suggest that loss of DNA methylation is 

leading to aberrant gene activation in late-replicating B-compartments. 

 

Gain of broad H3K4me3 in H3K9me3 domains after hypomethylation may 

protect against genome reorganisation  

One of the most significant changes in chromHMM states between HCT116 and 

DKO1 is the change from H3K9me3 enrichment (heterochromatin, Het) to H3K4me3 

enrichment (active TSS, TssA) chromatin state. This was notable and appears to occur 

in large domains that coincide with late-replicating domains in both HCT116 and 

DKO1 (Fig. 7a, Supp Fig. 8a). These regions have maintained H3K9me3 between 

HCT116 and DKO1. However, DKO1 also displays a low but broad gain in 

H3K4me3 enrichment across the same region, thereby contributing to the change in 

chromHMM state from Heterochromatin to TssA (Fig. 7a, Supp Fig. 8a). The broad 

H3K4me3 domains do not resemble the typically observed punctate H3K4me3 peaks 

and interestingly, the broad enrichment is only observed when H3K9me3 is 

maintained from HCT116 to DKO1 (Fig. 7a, Supp Fig. 8a, beige shading), but not 

when H3K9me3 is lost in DKO1 (Fig. 7a, Supp Fig. 8a, blue shading). 

 

To examine the H3K9me3/H3K4me3 patterns genome-wide, we called broad 

domains of H3K9me3 using Enriched Domain Detector (EDD) (Lund et al., 2014). 

Comparing maintained, lost or gained H3K9me3 regions between HCT116 and 

DKO1, we found that maintained H3K9me3 regions showed the highest increase in 

H3K4me3 enrichment in DKO1 (Supp Fig. 8b). There is no obvious increase of 
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H3K4me1, H3K36me3 or H3K27me3 in the H3K9me3 maintained regions (Supp 

Fig. 8c) suggesting this enrichment is H3K4me3-specific.  

 

We next called broad domains of H3K4me3 and tabulated the co-occupancy of 

H3K9me3 and H3K4me3 between HCT116 and DKO1 (See Methods). These broad 

domains can be seen in Fig. 7a. Compared to HCT116, DKO1 has lost half of the 

broad H3K9me3 domains but has more than doubled the area of the genome called as 

a broad H3K4me3 domain (Fig. 7b). Approximately 66% of H3K9me3 domains in 

DKO1 (maintained or gained compared to HCT116) overlap with newly acquired 

H3K4me3 domains in DKO1 (Fig. 7c). In contrast, there were minimal novel 

H3K4me3 domains in regions that lacked H3K9me3 domains (Fig. 7c). Altogether, 

these results show that after DNA methylation loss, regions of the genome that 

maintain H3K9me3 become broadly marked by H3K4me3 to form non-canonical 

bivalent domains. 

 

To further characterise these bivalent domains (H3K9me3+H3K4me3), the H3K9me3 

maintained domains were further separated into those with or without H3K4me3 in 

DKO1 (‘K9me3+K4me3’ vs. ‘K9me3-K4me3’). H3K9me3 is highly abundant in late 

replication timing loci in cancer cells (Du et al., 2019), therefore regions with 

H3K9me3 are expected to have low DNA methylation and low Hi-C PC1 values. 

However, we observed that H3K9me3+H3K4me3 domains are consistently less 

methylated, display later timing and have lower Hi-C PC1 values than H3K9me3-

H3K4me3 domains (Fig. 7d-f). We also observed reduced methylation loss (Fig. 7g), 

which appears to be due to the non-canonical bivalent H3K9me3+H3K4me3 domains 

having very low initial methylation in HCT116 compared to H3K9me3-H3K4me3 
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domains (Fig. 7d), and essentially becoming completely unmethylated in DKO1. The 

gain of H3K4me3 may therefore be a response to a complete methylation loss at these 

specific regions in DKO1 cells.  

 

Non-canonical bivalent H3K9me3+H3K4me3 domains also show more association 

with conserved late replication between HCT116 and DKO1, compared to H3K9me3-

H3K4me3 (Fig. 7h). Agreeing with the overlap with conserved late regions, 

H3K9me3+H3K4me3 domains also overlap more with maintained PMDs compared 

to H3K9me3-H3K4me3 domains (Fig. 7i). This suggests that in response to global 

DNA methylation loss, late replication and genome organisation is maintained by the 

formation of these non-canonical broad bivalent H3K9me3+H3K4me3 domains.  

 

The increase in H3K4me3 may suggest a gain of transcriptional activity within 

H3K9me3 maintained regions. Therefore, we examined the transcriptional activity of 

genes within H3K9me3 domains with and without H3K4me3. Interestingly, bivalent 

H3K9me3+H3K4me3 domains showed lower expression upregulation compared to 

H3K9me3-H3K4me3 domains (Fig. 7j). Rather than the expected gain of 

transcriptional activity, these results suggest that the H3K9me3+H3K4me3 co-

occupancy protects these regions against an overall gene activation that occurs upon 

global hypomethylation in DKO1 cells (see Supp Fig. 7c). Altogether, these results 

suggest that after DNA methylation loss, gain of broad H3K4me3 occupancy in 

H3K9me3-maintened domains, may potentiate maintenance of late replication timing 

and PMD structure, and protect against aberrant gene activation.  
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Discussion 

DNA hypomethylation is a hallmark of cancer cells but its impact on 3D genome 

architecture is not well understood. Therefore, we were interested to determine the 

direct effect of DNA hypomethylation on the extent of DNA replication timing and 

3D genome organisational changes. Using a colorectal cancer cell line model of DNA 

hypomethylation, we show that loss of DNA methylation results in a genome-wide 

increase in replication timing heterogeneity and a corresponding loss of 3D genome 

compartmentalisation. The genome-wide loss of higher order chromatin stability was 

accompanied by earlier replication and a shift in nuclear organisation towards active 

A-compartments at the boundaries of partially methylated domains (PMDs). We 

further identified that DNA hypomethylation causes a notable loss of allelically 

replicating regions across the genome. Lastly, we found that DNA hypomethylation 

was associated with gain of non-canonical bivalent domains comprised of H3K4me3 

and H3K9me3, which we suggest may provide protection against loss of late 

replicating B-compartment PMDs and aberrant gene activation. Altogether, this study 

has revealed that the methylome is critical for the maintenance of higher order 

genome architecture.  

 

There have been limited studies to date on the consequences of disrupting the 

methylome on 3D genome organisation. Imaging studies have reported de-

condensation at chromocenters after Dnmt1 KO in mouse embryonic fibroblasts 

(Casas-Delucchi et al., 2012) and an increase in DNase-I sensitivity of the inactive X 

chromosome after 5-azacytidine treatment of gerbil lung fibroblasts (Jablonka et al., 

1985). More recently, loss of compartmentalisation was found in senescent fibroblasts 

with DNMT1 knockdown (Sati et al., 2020). In contrast, a prior study using the 
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HCT116 DKO1 hypomethylation cell model did not find an increase in genome-wide 

open chromatin, suggesting no chromosomal de-condensation (Pandiyan et al., 2013). 

However, our findings of global de-compartmentalisation after hypomethylation 

further support that DNA methylation is required to maintain the stability of 3D 

genome organisation.  

 

Importantly, no studies thus far have examined the global consequence of 

hypomethylation on DNA replication timing. Using single cell sequencing, we show 

that large scale cell-to-cell heterogeneity occurs in replication timing in the HCT116 

DKO1 cell model, suggesting that DNA hypomethylation has caused an ‘erosion’ of 

the precise regulation of replication timing. We speculate two related mechanisms 

that may drive the increased heterogeneity in replication timing. First, it is possible 

that a loss of DNA methylation affects the regulation of replication origins leading to 

loss of replication timing precision. Studies have previously reported mammalian 

replication origins to be located at or near CpG-islands (Cadoret et al., 2008; Cayrou 

et al., 2011; Sequeira-Mendes et al., 2009) and that DNA methylation can stabilise 

interactions between H3K9me3 and origin recognition complex (ORC) proteins 

(Bartke et al., 2010). In DNA methyltransferase KO studies in mouse and human 

cells, loss of DNA methylation results in loss of H3K9me3 (Espada et al., 2004; 

Saksouk et al., 2014). However, the targeted removal of H3K9me3 by its 

demethylase, Kdm4d, at replication origins is essential for origin initiation and 

elongation (Wu et al., 2017). Therefore, DNA methylation may play a role in 

stabilising origin location by preventing ectopic origin activation, and hence loss of 

methylation would lead to replication timing imprecision via disorganised origin 

activation. Further studies will be needed however to finely elucidate a role of DNA 
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methylation in the control of replication origins. Secondly, our findings that late-

replicating B-compartment regions show the most increase in expression, as well as 

loss of the heterochromatic mark H3K9me3, support that the late-replicating 

heterochromatic regions are compromised after DNA methylation loss. 

Heterochromatin, particularly H3K9me3 and its reader HP1, have been shown to be 

important in establishing and maintaining global chromatin conformation, phase 

separation and compartmentalisation (Falk et al., 2019; Larson et al., 2017; 

MacPherson et al., 2018). Indeed, loss of the H3K9me3 methyltransferases 

(Suv39h1,2) or HP1 also lead to earlier replication timing of chromocenters and 

centromeric repeats (Schwaiger et al., 2010; Wu et al., 2006), similar to loci-specific 

studies of DNA methylation loss. Therefore, loss of H3K9me3 in DKO1 may 

destabilise the organisation of the genome, hence, driving the global de-

compartmentalisation and decreased replication timing stability we observe.  

 

We further identified specific genomic loci, covering ~3-10% of the genome, that 

showed a complete switch in replication timing and chromatin conformation after 

DNA methylation loss. The majority of 3D genome architectural changes we 

identified involved switching to earlier DNA replication timing at the boundaries of 

partially methylated domains (PMDs), accompanied by a similar shift towards active 

A-compartment values in the Hi-C PC1 score (Fig. 2g). Loss of DNA methylation has 

been reported to result in earlier onset of DNA replication at a number of 

heterochromatic loci such as chromocenters (Casas-Delucchi et al., 2012), 

pericentromeric major satellite repeats (Jorgensen et al., 2007) and the inactive X 

chromosome (Hansen et al., 2000; Jablonka et al., 1985). PMDs are known to be 

marked by H3K9me3/H3K27me3 heterochromatin domains (Hon et al., 2012; Salhab 
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et al., 2018), thus agreeing with prior loci-specific studies. However, our results show 

that earlier replication resulting from loss of DNA methylation is more common than 

previously described and occurs throughout the genome. We further observed that 

loss of methylation at PMD boundaries results in a ‘blurring’ of the methylation 

boundaries and shrinking of the PMD. Further exploration of gene expression, histone 

modification, gene structure or transcription factor occupancy differences between 

maintained and changed PMD boundaries may reveal the exact mechanisms of why 

only some PMDs are affected.  

 

We next found that discrete loci showing allele-specific replication in HCT116 are 

lost after DNA hypomethylation in DKO1. Early studies reported that DNA 

methylation imprinted regions can show allelic-specific replication, for example at 

imprinting loci located on X chromosome (Takagi and Oshimura, 1973), IGF2, 

H19 and SNRPN (Kitsberg et al., 1993). DNA hypomethylation and associated loss 

of imprinting commonly occurs in cancer (Jelinic and Shaw, 2007; Robertson, 2005). 

Therefore, the observation of allele-specific replication in the colorectal cancer cells, 

HCT116, was unexpected. However, similar to other studies (Hansen et al., 2010; 

Rivera-Mulia et al., 2018), we found that few allelically replicating loci contain 

known or predicted imprinted genes, suggesting that allelic replication may be a 

separate regulatory mechanism to classic gene imprinting. Interestingly, a substantial 

proportion of the allelically replicating regions contain genes previously identified as 

showing monoallelic expression (Gimelbrant et al., 2007). Since the majority of 

allele-specific replicating loci in HCT116 lost their allelic replication after DNA 

hypomethylation, we suggest that DNA methylation also plays a role in the regulation 

allele-specific replicating loci that are not imprinted loci. In agreement, loss of allelic 
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replication at key cancer-related genes (TP53 and RB1) was found in cancer patient 

lymphocytes treated with the demethylation agent 5-azacytidine (Dotan et al., 2004, 

2008; Nagler et al., 2010). There is also evidence for DNA methylation involvement 

in non-imprinted monoallelic expression in both humans (da Rocha and Gendrel, 

2019; Schalkwyk et al., 2010) and mice (Gupta et al., 2020). We further identified 

that loss of allelic replication was associated with expression down-regulation at three 

colon cancer-related gene loci that are also monoallelically expressed. Monoallelic 

expression has also been reported to differ in frequency between grades of brain 

tumours (Walker et al., 2012) and occur at different genes in colorectal tumours 

compared to normal tissue (Liu et al., 2018), suggesting that cancer cells can acquire 

ectopic allele-specific expression during transformation. Together, our results suggest 

that altered allelic replication, induced by global changes in DNA methylation, may 

be a mechanism of gene deregulation within cancer cells.  

 

It is well established that bivalent H3K4me3-H3K27me3 states commonly occur in 

normal cells at silent CpG island promoters, and that in cancer, bivalency is lost when 

these promoters gain DNA methylation (Baylin and Jones, 2016). We were therefore 

intrigued to find that global loss of DNA methylation in DKO1 cells was associated 

with the formation of non-canonical bivalent domains of broad H3K4me3 enrichment 

in H3K9me3 domains genome-wide. Broad H3K4me3 ‘mesas’ have previously been 

described in senescent cells and form over LADs (Shah et al., 2013), and examples of 

broad H3K4me3/H3K9me3 loci have previously been noted in DKO1 cells (Lay et 

al., 2015). However, here we further demonstrated that these H3K9me3+H3K4me3 

domains specifically maintain late replication and PMD structure between HCT116 

and DKO1, and show the least aberrant gene activation, despite gain of the H3K4me3 
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active mark. More recently, broad H3K4me3 domains have also been identified in 

mouse oocytes (Dahl et al., 2016; Liu et al., 2016; Zhang et al., 2016). These non-

canonical H3K4me3 domains appear following the wave of DNA methylation erasure 

that occurs during reprogramming of primordial germ cells, and form during a period 

of genomic silencing in late stage (MII) mature oocytes (Dahl et al., 2016; Zhang et 

al., 2016). Similar to our findings, these non-canonical H3K4me3 domains also co-

occur with PMDs (Zhang et al., 2016) and are anti-correlated with DNA methylation 

(Dahl et al., 2016). Active de novo methylation by DNMT3A and -3B is required to 

protect regions against acquiring this form of H3K4me3 in oocytes (Hanna et al., 

2018). Therefore, it is possible that the knockout of de novo methyltransferase 

DNMT3B may be the main driver of H3K4me3 domain formation in DKO1 cells. The 

H3K4me3 domains further function in oocytes to maintain zygotic genome silencing 

(Zhang et al., 2016), suggesting that the ectopic H3K9me3+H3K4me3 bivalent 

domains we observe in DKO1 cells may also be protecting late-replicating H3K9me3-

marked domains from spurious activation in response to extreme DNA methylation 

loss. Altogether, this data suggests that KO of DNMT1 and DNMT3B in DKO1 cells 

may be creating a similar demethylation event that occurs in late stage (MII) oocytes, 

subsequently causing the acquisition of non-canonical H3K4me3 domains. 

 

In summary, our results demonstrate that DNA hypomethylation, a hallmark of cancer 

cells, leads to disruption of DNA replication timing precision, cell-to-cell 

heterogeneity and higher-order genome reorganisation. The resulting 3D genome 

heterogeneity may create further opportunities for clonal selection during 

tumourigenesis. It will be important in future studies to use more single cell 

epigenomic approaches to understand the temporal relationship between changes in 
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the epigenome and the 3D genome architecture during tumour progression.  
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Figure Legends 

	
Figure 1: Co-ordinate change in nuclear organisation and DNA replication 

timing following DNA methylation loss. 

A Heat scatterplot showing replicate averaged methylation levels of HCT116 against 

averaged methylation levels of DKO1. B Heat scatterplot showing replicate averaged 

replication timing values (WA) of HCT116 against averaged replication timing values 

of DKO1. C Representative examples of replication timing and Hi-C PC1 profiles in 

HCT116 (red) and DKO1 (blue). The grey bars indicate regions of the genome where 

there is no data, in this case the centromeric region. D Representative examples of 

regions showing concordant change in replication timing and Hi-C PC1. E Heat 

scatterplot showing replicate averaged Hi-C PC1 values of HCT116 against DKO1. F 

Fisher’s exact test for association between A-/B-compartment switches and 

earlier/later replicating loci. G Fisher’s exact test for association between intervals of 

ΔPC1 to earlier and later replicating loci. For F and G, asterisks indicate significant 

associations (FDR < 0.05) and dotted line indicates an odds ratio of 1.  

 

Figure 2: Changes in replication timing and nuclear organisation occur at 

partially methylated domain boundaries. 

A Fisher’s exact test for association between earlier and later loci across bins of 

methylation change. B Fisher’s exact test for association of domains of ΔPC1 across 

bins of methylation change. For A and B, asterisks indicate significant associations 

(FDR < 0.05) and dotted line indicates an odds ratio of 1. C,D Representative 

examples of regions containing lost PMDs. E Overlap of PMDs between HCT116 and 

DKO1. F The change in methylation, replication timing and Hi-C PC1 at maintained, 

lost or gained PMDs compared to genome-wide ‘genome’. Asterisks indicate 
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significance (p < 0.05) in one-tailed Mann-Whitney-Wilcoxon test against ‘genome’. 

For maintained and lost, alternative is ‘greater’. For gained, alternative is ‘less’. G 

HCT116 PMDs are grouped into 4 groups based on the distance of shift inwards of 

the DKO1 PMD boundary from the HCT116 PMD boundary at the 5’ and/or 3’ end. 

Profile plots of the average change in DNA methylation, change in replication timing 

and change in Hi-C PC1 of the four groups are shown. Plots show an average line 

with width of shading indicating confidence intervals.  

 

Figure 3: Loss of global methylation increases cell-to-cell heterogeneity of DNA 

replication timing  

A Heat scatterplot of average HCT116 variance scores against average DKO1 

variance scores. As indicated, the higher the variance value, the more precise the 

replication timing score. B Heat scatterplot of average HCT116 weighted variance 

scores against average DKO1 weighted variance scores. As indicated, the lower the 

weighted variance value, the more precise is the replication timing score. C 

Representative example of whole population Repli-Seq with single cell Repli-Seq 

(scRepli-Seq). Binarised scRepli-Seq data is ordered from earliest (lowest % 

replication score) to latest (highest % replication score) cells. Also shown are cell-to-

cell variability scores for each cell line and the difference. Red vertical line refers to 

the 80kb bin shown in F. The grey bars indicate regions of the genome where there is 

no data, in this case the centromeric region. D tSNE of G1 and S-phase cells from 

HCT116 and DKO1. Early to late gradient of S-phase cells is denoted by transition 

from dark to light shading. E Average cell-to-cell variability score per 1-percentile of 

bins across single cell RT values. Asterisk indicates significant difference (p < 0.05) 

between HCT116 and DKO1, calculated using a permutation test. F Sigmoid model 
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curves and gain values of example locus from C. Dots are real data points and lines 

are the fitted curves. G Average gain scores per 1-percentile of bins across single cell 

RT values. Asterisk indicates significant difference (p < 0.05) between HCT116 and 

DKO1, calculated using a permutation test. H Representative region with increased 

heterogeneity (loss of gain value) in DKO1 compared to HCT116. All 6 PNDV 

fractions for each whole population Repli-Seq dataset is shown in the order of G1, S1, 

S2, S3, S4 and G2 from top to bottom. PNDV value for each fraction is indicated by a 

heat colour scale. Binarised scRepli-seq data is ordered from earliest (lowest % 

replication score) to latest (highest % replication score) cells. Gain scores are shown 

for each cell line and the difference. Red vertical line refers to 80kb bins shown in I. I 

Sigmoid model curves and gain values of loci from H that showed increased 

heterogeneity in DKO1 compared to HCT116. Dots are real data points and lines are 

the fitted curves. J Heat scatterplot of gain differences (DKO1 – HCT116) across 

whole population replication timing values (WA) of HCT116.  

 

Figure 4: Loss of global methylation reduces integrity of 3D 

compartmentalisation	

A Heatmap/Saddle plot showing contact enrichments (log2(Obs/Exp)) between pairs 

of 100kb bins ordered in 50 PC1 quantile groups. B Mean contact enrichments within 

and between A- and B-compartments (top and bottom 20% of PC1 quantiles) are 

shown. C Compartment strength ratio of HCT116 compared to DKO1. Compartment 

strength ratio is calculated as the log2 of the ratio of A-A and B-B mean contact 

enrichments. D Percentage of the genome called as topologically associating domains 

(TADs). E Representative examples of loss of compartmentalisation in DKO1 

compared to HCT116. Pearson correlation matrix is shown (Juicebox).   
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Figure 5: Loss of DNA methylation causes loss of allelic DNA replication. 

A Area of the genome in kilobases (Kb) called as ‘biphasic’ using the weighted 

variance score. B Percentage of biphasic replication regions that are lost, maintained 

or gained from HCT116 to DKO1 as calculated using the weighted variance score. C 

Examples of regions that changed or maintained biphasic status between HCT116 and 

DKO1 as calculated using the weighted variance score. All 6 PNDV fractions of each 

Repli-Seq datasets are shown in the order of G1, S1, S2, S3, S4, and G2 from top to 

bottom. HCT116 datasets are shown in red and DKO1 datasets are shown in blue. The 

weighted average replication timing score is shown at the top of each example. 

Colours indicating bins of the weighted variance score is shown below each set of 6 

fractions. Green from the weighted variance score indicate biphasic regions. PNDV 

value for each fraction is indicated by a heat colour scale. D Allelically separated 

replication timing (WA) scores of the same regions in C. Haplotype blocks are shown 

at the top of each example. Grey shading indicates either no data or a break between 

haplotype blocks. E Percentage of allelically replicating regions that are lost, 

maintained or gained from HCT116 to DKO1 as calculated using allele-specific 

replication WA scores. 

 

Figure 6: DNA replication timing stratifies chromatin changes between HCT116 

and DKO1. 

A Percentage occupancy of histone marks for 1kb loci across replication timing bins 

in HCT116 and DKO1. HCT116 data is shown in red and DKO1 data is shown in 

blue. Replicated peaks were used where replicates were available (H3K4me3, 

H3K4me1, H3K27me3, H3K9me3). B Boxplots and density plots of differential 
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expression (logFC) of genes within each of 10-bins of replication timing (WA) or Hi-

C PC1 values of HCT116. Asterisks indicate significance in one-tailed Mann-

Whitney-Wilcoxon test of each bin against genome-wide differential expression, 

where the alternative ‘greater’. 

 

 

Figure 7: Non-canonical H3K9me3 and H3K4me3 bivalent domains occur at 

conserved late-replicating B-compartments and maintains expression silencing. 

A Representative example of broad H3K9me3 and H3K4me3 enrichment. All 

HCT116 datasets are shown in red and all DKO1 datasets are shown in blue. The 

‘H09_Het to D01_TssA’ track shows loci of the chromatin state transition (See Supp 

Fig. 7). Beige shading indicates H3K9me3 domains maintained from HCT116 to 

DKO1. Blue shading indicates H3K9me3 domains lost from HCT116 to DKO1. B 

Area of the genome in Megabases (Mb) covered by H3K9me3 and H3K4me3 board 

domains. C Percentage occupancy of H3K9me3 and H3K4me3 broad histone 

domains between HCT116 and DKO1. D,E,F Absolute DNA methylation levels, 

absolute replication timing levels and absolute Hi-C PC1 levels in 

H3K9me3/H3K4me3 region types. For D, E and F, asterisks indicate that the 

K9me3+K4me3 regions are less than the K9me3-K4me3 regions (p < 0.05, one-tailed 

Mann-Whitney-Wilcoxon tests). G DNA methylation change of H3K9me3/H3K4me3 

region types. Horizontal dotted lines indicates no change (ΔMeth = 0). Asterisks 

indicate that the K9me3+K4me3 region is greater than the other categories (p < 0.05, 

one-tailed Mann-Whitney-Wilcoxon tests). H Association between 

H3K9me3/H3K4me3 region types and either conserved late domains, HCT116-only 

late domains or DKO1-only late domains. Only significant associations are shown 
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(Fisher’s exact test, FDR < 0.05). I Overlap of H3K9me3/H3K4me3 region types 

with maintained, lost and gained PMDs between HCT116 and DKO1. J Differential 

expression (logFC, DKO1/HCT116) of transcripts within H3K9me3/H3K4me3 

region types based on promoter overlaps. Horizontal dotted line indicates no change 

(logFC = 0). Asterisks indicate that the K9me3+K4me3 is less than K9me3-K4me3 (p 

< 0.05, one-tailed Mann-Whitney-Wilcoxon tests). 
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Methods 
 
 
HCT116 and DKO1 cell model 

HCT116 and DKO1 cells were kindly provided by Prof. Stephen Baylin (The Johns 

Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center). 

HCT116 human colorectal cancer cells were cultured in McCoy’s 5A modified 

medium (Gibco, #16600-082) supplemented with heat inactivated foetal bovine serum 

(10%, Gibco, 16000-044) at 37oC and 5% CO2. Cells at 70-80% confluency were 

rinsed in PBS (1x Phosphate-buffered saline, Gibco, #14190-144) and trypsinised in 

Trypsin-EDTA (0.05%, Gibco, #15400054). Trypsin was inactivated using equal 

volume growth medium and cells were pelleted at 250xg for 5 min. Cells were 

resuspended in growth medium and typically split 1:8. HCT116 with double 

knockouts (KO) in DNMT1 and DNMT3B (DKO1) (Rhee et al., 2002) were selected 

in growth medium supplemented with hygromycin (0.05 mg/mL, Gibco, #10687-010) 

and geneticin (0.1 mg/mL, Gibco, #10131) for 1 week after thawing to ensure a pure 

KO population, then further cultured without selection. DKO1 cells were subcultured 

following the same protocol as for HCT116 above, but typically at a 1:4 split. 

HCT116 and DKO1 cells were validated for double knock out of DNMT1 and 

DNMT3B using western blot and expression qRT-PCR (Supp Fig. 9). 

 

Expression qRT-qPCR of DNMT genes 

RNA was extracted from cultured cells using TRIzol (Life Technologies, #15596018) 

and DNaseI treated (NEB, #M0303) as per manufacturer’s instructions. cDNA was 

generated from 500 ng of RNA using SuperScript III reverse transcriptase 

(Invitrogen, #18080-044) and random hexamers according to manufacturer’s 
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instructions. 1 µL of RNA sequins (Hardwick et al., 2016) (mix A, 1:100 dilution) 

was spiked in to RNA samples prior to making cDNA to be used as negative controls 

for qRT-PCR. Primers to DNMT1 were designed to exons present in both the full 

transcript and the hypomorphic product present in DKO1 cells (Supp Table 2). 

Primers to DNMT3A and -3B were designed to capture the majority of transcripts 

annotated by the GENCODE genes v19 track in UCSC Genome Browser (Kent et al., 

2002) (Supp Table 2). All primer pairs were designed over an intron to avoid 

genomic products.  

 

Western blotting for DNMT proteins 

Whole cell protein lysates were prepared by resuspending scaped cells in modified 

RIPA buffer (50 mM Tris-HCL pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM NaF, 1 

mM Na3VO4, 1% Igepal, 0.25% Sodium-deoxycholate) with protease inhibitors and 

incubated on ice for 30 min with vortexing every 5 min. Lysate was sonicated for 15s 

at 25% amplitude with a microtip using the QSonica (Q55) and stored at -80oC. 

Protein concentration was determined using a BCA assay (Pierce, #23225) according 

to manufacturer’s instructions. Protein lysate was prepared using NuPAGE® LDS 

sample buffer (Life Technologies, NP0007) and NuPAGE® sample reducing agent 

(Life Technologies, NP0004) followed by heating at 95oC for 10 min. Samples were 

resolved by gel electrophoresis using the NuPage Bis-Tris 4-12% precast gel system 

according to the manufacturer’s instructions (Life Technologies). Western blot 

transfer was carried out according to the manufacturer’s instructions with the 

SureLock X-cell system (ThermoFisher Scientific) using transfer buffer containing 

20% methanol content. Antibodies used are as follows: N-terminal DNMT1 – Sigma-

Aldrich #D4692; C-terminal DNMT1 – Abcam #ab92314; DNMT3A – Active Motif 
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##39206; DNMT3B – Active Motif #39207; GAPDH – Thermo Fisher #AM4300. 

Western blots (WBs) were then treated with Western Lightning Plus-ECL (Perkin 

Elmer, #NEL103E001) before developing on Super Rx Fuji Medical X-Ray Film 

(Fujifilm, #4741019236) using the Konica Tabletop X-Ray Film Processor 

(#SRX101A). Developed film was scanned using the Epson Perfection V800/850 

scanner. ImageJ was used to quantitate WB films following the Gel Analysis method 

outlined in their documentation. Band densities of the protein of interest were divided 

by the loading control and converted to a percentage of the highest ratio (most dense 

band compared to loading control). Average and standard error of the mean were 

calculated for replicates. 

 

Whole genome bisulphite sequencing and processing 

200 ng of DNA was bisulphite converted using the EZ DNA Methylation-Gold Kit 

(Zymo, #D5005) according to manufacturer’s instructions. Input DNA was spiked 

with unmethylated lambda DNA (0.5%) (Promega, #D1521). Replicate bisulphite 

libraries were generated with the CEGX TrueMethyl® Whole Genome Kit (CEGX, 

#CEGXTMWG, v3.1) according to manufacturer’s instructions. Libraries were 

sequenced on the Illumina X Ten. Sequencing reads from WGBS data were aligned to 

the human genome using v1.2 of an internally developed pipeline Meth10X (Nair et 

al., 2018). This is publicly available and can be downloaded 

from https://github.com/luuloi/Meth10X. The pipeline backbone is built based on 

workflow control Bpipe (v0.9.9.2) (Sadedin et al., 2012). Briefly, adaptor sequences 

were removed using in-house bash script in paired-end mode following library prep 

kit guide. Bwa-meth (v0.20) (Pedersen et al., 2014) was then used to align reads to 

hg19 using default parameters. The generated bam files were marked for duplicates 
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using Picard (v2.3.0) (http://broadinstitute.github.io/picard). Bam files were then 

quality checked using Qualimap (v2.2.1) (Okonechnikov et al., 2016). Count tables of 

the number of methylated and unmethylated bases sequenced at each CpG site in the 

genome were constructed using MethylDackel 

(https://github.com/dpryan79/MethylDackel) and Biscuit 

(https://github.com/zwdzwd/biscuit). Biscuit was used to call SNPs that were 

discounted from the final table. Sequencing metrics can be found in Supp Table 3. 

Partially methylated domains (PMDs) were called using MethPipe (v3.4.2) (Song et 

al., 2013).  

 

Repli-Seq data generation and processing 

Repli-Seq was performed in duplicate for each cell line as previously described with 

slight modifications (Du et al., 2019). Briefly, cells were labelled with BrdU (50 µM, 

Sigma, #B5002) for two hours. Labelled cells were sorted into 6 fractions across the 

cell cycle (G1b, S1, S2, S3, S4, G2M) as per protocol on the FACS Aria III. DNA 

extraction and BrdU-labelled DNA immunoprecipitation were performed with anti-

BrdU antibody (40 µL of 25 µg mL-1, BD Pharmingen, #555627). Validation of BrdU 

immunoprecipitation was carried out using qRT-PCR on known Early (BMP1) and 

Late (DPPA2) loci, and compared to a fractionation negative control (MITO) (Supp 

Fig. 1a,b). As the mitochondrial genome (MITO) replicates independently of the 

nuclear genome, it should not show differences between S-phase fractions. 10 ng of 

ssDNA was used as input for the Epicenter EpiGnome™ Methyl-Seq Kit (Illumina, 

EGMK81312, now called the TruSeq® DNA Methylation kit) and processed 

according to manufacturer’s instructions. The ssDNA was not bisulphite converted 
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prior to library preparation. Libraries were sequenced on the HiSeq 2500 as 50bp 

single-end reads. Full sequencing outputs can be found in Supp Table 4. 

 

Replication timing weighted average (WA) scores were calculated as previously 

described (Du et al., 2019). WA values for replicates of HCT116 and DKO1 were 

highly correlated (r2 values >0.99) (Supp Fig. 1c). The distributions of WA scores 

were comparable to the WA distributions in other normal and cancer cell Repli-Seq 

datasets (n=16) (Supp Fig. 1d). To get a single score per cell line, replicate HCT116 

and DKO1 weighted average (WA) replication timing scores were quantile 

normalised and the replicates averaged. Early- and late-replicating regions were 

defined as those regions in the top and bottom 10% of WA scores in both cell lines. 

This definition gives upper and lower limits of 77.76 and 16.07 respectively (i.e. early 

regions have WA > 77.76 and late regions WA < 16.07). The limits were rounded to 

78 and 16 for downstream analyses. WA thresholds for a change in timing were were 

calculated as previously described (Du et al., 2019). Differences in WA that are larger 

than +/- 15 ΔWA are therefore considered to show a robust change in replication 

timing (Supp Fig. 1e,f). To identify domains of loci with changed replication timing, 

we merged all loci within 50kb that had |ΔWA| > 15. This approach gave 176 earlier 

domains and 117 later domains called between HCT116 and DKO cells. 

 

Defining partially methylated domain boundary shifts 

Partially methylated domains (PMDs) were called from WGBS data using the 

package MethPipe (v3.4.2) (Song et al., 2013). To call PMD regions for HCT116 and 

DKO1, first, replicate PMD regions were merged and any regions smaller than 50kb 

were removed. Then regions were merged if they were within 50kb of each other. The 
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cut-off of 50kb was used because this is the resolution of the replication timing data. 

To define PMD boundary shifts, we first calculated which PMD regions overlap 

between HCT116 and DKO1, then calculated the distance between the 5’ start 

coordinate of the HCT116 PMD to the 5’ start coordinate of the DKO1 PMD. The 

same was repeated for the 3’ end coordinate. The 5’ and 3’ coordinates were then 

categorised by the degree of shift inwards from the HCT116 to DKO1 into 4 

categories, <50kb, 50-200kb, 200-500kb, >500kb. Due to the low numbers of regions 

within the larger shift categories, 5’ and 3’ regions were pooled prior to plotting the 

changes in replication timing and DNA methylation. 

 

Hi-C library preparation 

Hi-C data was generated using the Arima-HiC kit, according to the manufacturers 

protocols (Cat. #A510008). Briefly, cells were cross-linked with 2% formaldehyde to 

obtain 1-5 µg of DNA per Hi-C reaction. The Arima kit uses two restriction enzymes: 

^GATC (DpnII), G	^ANTC (N can be either of the 4 genomic bases) (HinfI), which 

after ligation of DNA ends generates 4 possible ligation junctions in the chimeric 

reads: GATC-GATC, GANT-GATC, GANT-ANTC, GATC-ANTC. Hi-C libraries 

were prepared using the KAPA Hyper Library Prep Kit with a modified protocol 

provided by Arima with 12 PCR cycles for library amplification as required. Hi-C 

libraries were sequenced on Illumina HiSeq X Ten in 150bp paired-end mode. 

 

Hi-C data processing 

HiC-Pro (Servant et al., 2015) (v2.11.4) was used to align and filter the Hi-C data, 

identify chromatin interactions, and generate Hi-C heatmaps. To generate filtered Hi-

C contact matrices, the Hi-C reads were aligned against the human reference genome 
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(hg19) and corrected using the ICE “correction” algorithm (Imakaev et al., 2012) built 

into HiC-Pro. Statistics on the number of read pairs, valid interactions and 

interactions in cis are presented in Supp. Table 5.  

 

Contact matrices used in down-stream analysis were Knight-Ruiz (KR)-normalized 

using JuiceBox tools (Durand et al., 2016a; Durand et al., 2016b) using Hi-C contact 

matrices in .hic format generated by hicpro2juciebox script in HiC-Pro as input. 

Obtained Hi-C matrices and Pearson correlation matrices were visualised in JuiceBox 

(Durand et al., 2016a). 

 

TADs 

KR-normalized contact matrices were retrieved from Juicer for all chromosomes at 

40Kb resolution and TADs were identified using TADtool with the insulation score 

algorithm (Kruse et al., 2016). We called TADs with a window size value of 103kb 

and a TAD cutoff of 30.  We found that these parameters show good agreement 

between identified TADs and visual inspection of Hi-C datasets in JuiceBox and 

TADtool. 

 

A/B Compartments 

Compartment analysis was performed using the Homer pipeline (Heinz et al., 2010) 

(Heinz et al., 2010) (v4.6) with Hi-C KR-normalised contact matrices as input. Homer 

performs a principal component analysis of the normalized interaction matrices and 

uses the PC1 values to predict regions of active (A-compartments) and inactive 

chromatin (B-compartments). Homer works under the assumption that gene-rich 

regions have similar PC1 values, while gene-poor regions show differing PC1 values 
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and assigns compartment status based on genome-wide gene density. To identify 

compartments that switched between HCT116 and DKO1, we getHiCcorrDiff.pl 

pipeline was used to correlate the interaction profile of each locus in the HCT116 to 

the interaction profile of that same locus in the DKO1. 

 

Defining domains of nuclear reorganisation 

We initially tried to define nuclear reorganisation through A/B compartment 

switching using compartments defined by HOMER. However, we observed that a 

large proportion of compartment switches were centred around PC1 values of zero, 

close to the A/B boundary; 47.90% of A to B switches occur where HCT116 PC1 < 

0.5 and DKO1 PC1 > -0.5, and 43.24% of B to A switches occur where HCT116 PC1 

> -0.5 and DKO1 PC1 < 0.5 (Supp Fig. 2e). This indicates that although 

compartment switches do cross the midline that defines A vs. B compartments, a large 

proportion of these switches show little difference in PC1 values between HCT116 

and DKO1 (Supp Fig. 2f). Therefore, we defined regions of nuclear organisation 

change by their ΔPC1 score, with a cut-off of ΔPC1 ≥ |1|. This cutoff was defined by 

first examining ΔPC1 values within replicates of HCT116 or DKO1 Hi-C datasets, 

then determining the ΔPC1 values where less than 5% (2.5% either tail) of the 

genome would be called ‘differential’ amongst the replicates (Supp Fig. 2g). Called 

domains were merged if within 50kb. 

 

Hi-C compartment strength calculation 

A/B compartment strengths were calculated as previously described (Stadhouders et 

al., 2018). Briefly, 100kb iterative corrected heat maps were generated by HiC-Pro 

using the hicpro2juicebox utility. 100kb bins were grouped into 50 percentile groups 
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based on their PC1 (1st eigenvector) value. Within pairwise combinations of the 50 

percentile groups, average contact enrichments (obs/exp) between bins were 

calculated using GENOVA (v1.0.0, https://github.com/robinweide/GENOVA). Log2 

contact enrichments were plotted as a heat saddle plot. Summarised A-A, B-B and A-

B compartment strengths were calculated as the mean log2 contact enrichment 

between the top (A) or bottom (B) 20% of PC1 percentiles. The compartment strength 

ratio was calculated as log2(A-A/B-B). 

 

Weighted variance calculation for Repli-Seq fractions 

The 6-fraction Percent-normalised Density Values (PNDVs) were used for this 

calculation. Briefly, PNDV values for one fraction represent the % of replication 

occurring within that timing fraction at any given 1kb locus. For example, the PNDV 

values for a locus are G1b=40, S1=38, S2=9, S3=3, S4=4, G2M=6. This means that 

40% of this locus is replicated in the G1 fraction, 38% of this locus is replicated in the 

S1 fraction etc. This locus is biased or ‘weighted’ towards early replication timing. 

The sum of all fractions for any locus adds up to 100%. We made the assumption that 

if replication occurs evenly throughout S-phase, then each fraction from G1b to G2M 

should increment by 16.67% (i.e. 100%/6 fractions) to give G1=16.67, S1=33.33, 

S2=50.00, S3=66.67, S4=83.33, G2=100. This represents a ‘neutral’ locus that is 

unbiased or unweighted towards either early or late replication timing. The 

incremental nature of the ‘neutral’ locus informs the order of the S-phase fractions. A 

real locus is biased or ‘weighted’ towards early or late replication. To perform the 

weighted variation calculation, the PNDV values for each loci is used as the ‘weights’ 

against the pseudo ‘neutral’ locus, giving a measure of how the locus deviates from 

the ‘neutral’ locus. Formulae can be found in Supp Fig. 4c,d and a table of 
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calibration tests can be found in Supp Table 6. The weighted variance score was 

discretised for visualisation purposes (Fig. 4) into 4 bins from 0 to 0.081 in 0.02 

intervals and called var1-4.  

 

Single cell replication timing 

Cell sorting and library generation using Chromium 10X Single Cell CNV Solution 

We stained HCT116 and DKO1 cells using a live cell double stranded DNA dye, 

Vybrant DyeCycle Violet Ready Flow (Invitrogen, #R37172), according to 

manufacturers’ instructions. Cells were sorted (FACS Aria III) into 4-fractions: G1, 

Early, Mid and Late (Supp. Fig. 10a). Equal numbers of Early, Mid and Late cells 

were pooled prior to use in the Single Cell CNV system to meet the minimum 

recommended cell recovery number (250 cells). We aimed for 500 recovered cells. As 

we did not need as many G1 cells or a specific number of G1 cells, G1 cells were 

loaded below minimum recommended cell stock concentration and we aimed for 50 

recovered cells. Single cell capture, library generation and sequencing were 

performed by the Garvan-Weizmann Centre for Cellular Genomics (GWCCG). 

Libraries were sequenced on an Illumina NovaSeq 6000 S4 flowcell (200 cycles). 

 

Read mapping and filtering 

Data was mapped and processed using the 10X Genomics Cell Ranger DNA (v1.1.0) 

software with default parameters, using the hg19/GRCh37 reference genome. Bam 

files generated by Cell Ranger DNA was split into individual cells/barcodes using 

SAMtools (Li et al., 2009) (v1.10) and filtered to remove duplicates and MAPQ < 10 

reads with SAMtools, and reads overlapping hg19 blacklist (DAC) regions with 
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BEDtools (Quinlan and Hall, 2010) (v2.26.0). Cells/barcodes with less than 1 M reads 

were discarded. A summary of sequencing metrics can be found in Supp Table 7. 

 

scRepli-Seq processing 

scRepli-Seq data was processed/generated based on Takahashi et al. (2019) with the 

following adjustments. Analysis was limited to autosomes.  

1) Cells were filtered using median-absolute-deviation (MAD) scores, where G1 cells 

< 0.3 and S-phase cells > 0.4 and < 0.8 were kept for further analysis. MAD scores 

were calculated in non-overlapping 200kb bins. Reads were counted using binReads 

command from scCNV R package AneuFinder (Bakker et al., 2016) (v1.14.0). 

‘mappable_regions.bed’ output from Cell Ranger DNA was used to generate a 

merged unmappable bed file of HCT116 and DKO1 for further read filtering within 

the binReads command. This applies to all further use of the binReads command.  

2) A control dataset representing baseline copy number variations (CNVs) and 

mappability for S-phase cell comparison was created by merging high-quality G1 

cells. CNVs in G1 cells were identified using AneuFinder findCNVs in 500kb bins as 

described by Takahashi et al. (2019). ‘spikiness’ and ‘bhattacharyya’ quality 

measures was obtained using the clusterByQuality command in AneuFinder. Cells 

were removed if spikiness >= 0.21 and bhattacharyya <= 1. Cells were also removed 

if deemed ‘noisy’ by Cell Ranger DNA. 48/67 HCT116 G1 and 55/84 DKO1 G1 cells 

passed QC and were merged for further use. To obtain a CNV baseline representative 

of all cells within the cell population, regions with CNV heterogeneity were removed 

from further analysis. Heterogeneous regions were defined as those with 

heterogeneity score > 0.2, calculated from the 500kb CNV data using the 

karyotypeMeasures command in AneuFinder. karyotypeMeasures was modified to 
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output heterogeneity score per bin. Heterogeneous regions from HCT116 and DKO1 

were merged and removed from all further analyses. 

3) Single cell data was normalised against the merged G1 control data. G1 and S-

phase cell reads were binned in non-overlapping 80kb bins and in 200kb bins at 40kb 

sliding intervals using AneuFinder binReads. Read counts were normalised using the 

correctMappability command from AneuFinder (copied from v1.5.0), using the 

merged G1 data as reference control.  

4) Single cell RT scores were generated from the mappability-corrected 200kb bin-

40kb sliding window data as described in Takahashi et al. (2019). Single cell 

replication timing profiles are similar to whole population Repli-Seq timing profile 

(Supp. Fig 10b). Single cell RT scores were used to generate Pearson’s correlation 

matrix, hierarchical clustering (ward.d2) and tSNE plot as described in Takahashi et 

al. (2019). At this point, any S-phase cells that cluster with G1 in the hierarchical 

clustering or in the tSNE plot were removed from further analysis. 322/646 HCT116 

S and 208/582 DKO1 S cells were used for further analysis. 

5) Mappability-corrected 80kb bin data was binarized using the findCNVs command 

in AneuFinder. We used the parameters specified in Takahashi et al. (2019): 

method="HMM", max.iter=3000, states=c("zero-inflation", "0-somy", "1-somy", "2-

somy"), eps=0.01, most.frequent.state=("1-somy" or "2-somy"). The findCNVs 

command outputs a 2-state HMM model were states ‘1’ and ‘2’ indicates un-

replicated and replicated, respectively. Within the findCNVs command, Takahashi et 

al. (2019) specifies whether the most common state is 1-somy (unreplicated) or 2-

somy (replicated) depending on FACS gating to reduce HMM calling ambiguity, i.e. a 

Early cell would have majority state ‘1’ and a Late cell would have majority state ‘2’. 

However, as Early, Mid and Late S-phase cells were pooled here, we could not 
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directly assign whether 1-somy or 2-somy was the most common state. Therefore, we 

generated two HMM models per cell, specifying either 1-somy or 2-somy as the most 

common state. For most cells, the two HMM models had little to no difference in 

binarisation. These tended to be Mid-S cells (Supp. Fig. 10c). We determined that a 

cell had ‘evenHMM’ if the absolute differences in bin numbers between 1-somy state 

‘1’ and 2-somy state ‘1’ is less than 1,500 bins, and the same for state ‘2’. A cell was 

‘unevenHMM’ if the absolute differences were greater than 1,500 bins for both states. 

The cutoff of 1,500 bins was conservatively chosen to separate the two groups based 

on the distribution of bin number differences between 1-somy and 2-somy calls of the 

same state. This distribution was bimodal, with one group centred around 0 

(‘evenHMM cells) and the other peak centred around 15,000-20,000 (‘unevenHMM’ 

cells) (Supp. Fig. 10d). ‘unevenHMM’ cells were then assigned as Early or Late 

through visual comparison of the HMM bed file against the earliest and latest 

‘evenHMM’ cells. For final HMM calls, we used the 2-somy calls for ‘evenHMM’ 

cells, the 1-somy calls for ‘unevenHMM’ cells that were assigned as Early and the 2-

somy calls for ‘unevenHMM’ cells that were assigned as Late. Binarized 80kb data 

was then used to generate the % replication score per cell, single cell RT value per 

bin, cell-to-cell variability scores and RT sigmoid modelling (gain and M values) as 

described by Takahashi et al. (2019). For calculation of the slope of the sigmoid 

model (gain) instead of using an estimated 10-h S-phase time window, we used the % 

replication score that the 10-h time window was based on in Takahashi et al. (2019). 

Thus our gain values are on a different scale to those in Takahashi et al. (2019). The 

M-value is the x-intercept at the sigmoid’s midpoint and represents when 50% of the 

cell population has replicated that locus.  
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Identifying biphasically replicating loci 

Loci were called as biphasic if their weighted variance score was ≥ 0.081. Calibration 

tests of the weighted variance score showed that a score of ~0.081 is achieved for a 

locus with even replication timing across all 6 fractions (Supp Table 6, ‘even’), and a 

score above ~0.081 represents loci where there were high PNDV values in non-

adjacent fractions separated by in-between fractions of low PNDV values (Supp 

Table 6). The cut-off of 0.081 does miss some biphasic regions with smaller 

separations between high PNDV fractions, hence, the use of the Hansen score 

described below. Biphasic loci were also identified according to Hansen et al. (2010). 

Briefly, the 6-fraction PNDV scores were reduced to 5 fractions by pairwise addition 

of adjacent fractions (G1b+S1, S1+S2, S2+S3, S3+S4, S4+G2M). A 1kb locus was 

deemed biphasic if more than 40% of the 5-fraction score was in non-adjacent 

fractions. For example, a locus is biphasic if ≥ 40% of the score is in G1+S1 and 

≥40% is in S2+S3, S3+S4 or S4+G2, with S1+S2 < 40%.  

 

Biphasic loci are defined as maintained where at least one HCT116 replicate and one 

DKO1 replicate are biphasic. Biphasic loci are defined as gained where no HCT116 

replicates are biphasic and at least one DKO1 replicate is biphasic. Biphasic loci are 

defined as lost where at least one HCT116 replicate is biphasic and no DKO1 

replicates are biphasic. 

 

Allelic replication timing 

Nanopore sequencing, base calling, alignment, variant calling and phasing 

HCT116 and DKO1 DNA (1 µg) was sheared using the Covaris g-TUBE spun at 

3400 x g in 2 x 60 sec spins. Sheared DNA was prepared for Nanopore sequencing 
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using the Ligation 1D kit (SQK-LSK109) according to manufacturer’s instructions. 

Each cell line was sequenced on one PromethION flow cell. Reads were base called 

with Guppy v3.3.0 on a GPU-enabled Sun Grid Engine high performance computing 

server (parameters “--chunks_per_runner 1500 --gpu_runners_per_device 1 --

cpu_threads_per_caller 4 -x "cuda:0 cuda:1 cuda:2 cuda:3" -r” and configuration 

“dna_r9.4.1_450bps_hac_prom.cfg”). Base called reads (fastq) were aligned to hg19 

using minimap2 (Li, 2018) (v.2.17-r943-dirty) with parameters “-ax map-ont”. 

Mapped reads were sorted and indexed with SAMtools (v1.9). Variants were called 

and phased with medaka_variant (v0.11.4, https://nanoporetech.github.io/medaka) 

with the options “-t 36 -s r941_prom_high_g330  -m r941_prom_high_g330 -p -b 

100”. 

 

Variant filtering, haplotype mapping and Repli-Seq processing 

Medaka variants were filtered as follows using bcftools (v1.9): i) occurs in both 

HCT116 and DKO1 datasets; ii) quality score above 20; iii) within each dataset, only 

phased heterozygote single nucleotide variants (SNVs) were used. hg19 reference 

genome fasta files were generated for each haplotype per cell line using bcftools 

consensus (parameters “-H 1pIu” and “-H 2pIu”). Repli-Seq fractions were mapped to 

each haplotype reference genome using bowtie (Langmead et al., 2009) (v1.1.0, 

parameters “-v 0 -m 1 --tryhard --best --strata --time --trim5 6”). Mapped bam files 

were filtered for reads that overlapped phased SNVs using SAMtools view (v1.9, 

option “-L”). Weighted average scores were calculated from filtered bam files as 

described above with the following modifications: i) Reads were counted in 50 kb 

sliding windows at 1 kb intervals. The 50 kb sliding windows were modified so that 

only reads within each haplotype block were counted for each block; ii) The low 
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coverage threshold for 50kb windows was set to at least 5 reads per fraction per 50kb 

loci. 

 

Calling allelic differentially timed regions 

Allelically replicating regions were called if there was a WA difference of less than 

10 between replicates and more than 30 between alleles. Due to the sparseness of 

allelically mapped regions, allelic regions were merged if within 1 Mb of each other. 

The 1 Mb merged region was used to identify overlapping genes.  

 

Imprinted gene and cancer-related gene annotation 

A list of human imprinted genes was obtained from www.geneimprint.com (Luedi et 

al., 2007). Genes located in allele-specific replication regions were also checked 

against the Candidate Cancer Gene Database (Supp Table 1) (http://ccgd-

starrlab.oit.umn.edu) (Abbott et al., 2015). 

 

Profile plots 

We used SeqPlots (Stempor and Ahringer, 2016) to calculate average scores over 

regions of interest, then used ggplots (Wickham, 2016) to plot the average scores 

across all regions for each bin with standard error and confidence intervals.  

 

ChIP-seq processing 

ChIP-seq datasets were processed as previously described (Bert et al., 2013; Taberlay 

et al., 2014). Briefly, ChIP-seq reads were aligned to hg19 using bowtie (Langmead et 

al., 2009) (v1.1.0) allowing up to 3 mismatches, discarding ambiguous and clonal 

reads. All histone ChIP-seq peaks were called using PeakRanger (Feng et al., 2011) 
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(v1.16). For the distribution of histone mark occupancy across replication timing, 

consensus peaks were used where replicates were available. Broad domains of histone 

mark enrichment, H3K4me3 and H3K9me3, were processed with Enriched Domain 

Detector (EDD) (Lund et al., 2014) (settings: required_fraction_of_informative_bins 

= 0.9, p_hat_CI_method = normal). Replicate-shared domain for H3K9me3 were 

called using the ‘intersect’ function (R, GenomicRanges (Lawrence et al., 2013)), 

before calling regions of maintenance (‘intersect’ between HCT116 and DKO1), gain 

and loss (‘setdiff’ between HCT116 and DKO1). H3K4me3 domains that exist only in 

DKO1 (replicate merged) were intersected with H3K9me3 domain regions and used 

for further analyses. 

 

ChromHMM analysis 

15-state ChromHMM tracks for HCT116 and DKO1 were called based on the 

Roadmap Epigenomics 15-state chromHMM model (Roadmap Epigenomics et al., 

2015) using the chromHMM program (v1.10) (Ernst and Kellis, 2012). ChIP-seq data 

was prepared for segmentation by first using ‘bamToBed’, followed by 

‘BinarizeBed’. Replicates were pooled at the bamToBed stage. The Roadmap 15-state 

model parameters were then applied to produce 15-state segmentations for HCT116 

and DKO1. Analysis of ChromHMM change-of-state is based on Fiziev et al. (2017) 

(Fiziev et al., 2017). To calculate ChromHMM state change enrichment scores, we 

divided the number of observed state changes by the number of expected changes as 

outputted by the chisq.test in R. Two-sided p-values were calculated from the 

chisq.test standard residuals (similar to the z-score) and FDR corrected. To control for 

reciprocal state changes (i.e. Het to TssA versus TssA to Het in the direction of 

HCT116 to DKO1), the enrichment scores of Het-TssA was divided by the 
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enrichment score of TssA-Het. A count of 1 was added to both observed and expected 

to avoid divisions by 0. Only transitions where both scores were significant are 

shown.  

 

RNA-seq data generation and processing 

Total RNA in triplicates (different passages) was extracted from cultured cells using 

TRIzol (Life Technologies, #15596018). Libraries were constructed with the Illumina 

TruSeq Stranded mRNA library preparation kit (Illumina, #RS-122-2102) and 

sequenced on the Illumina HiSeq X Ten. Paired-end reads were processed as 

previously described (Du et al., 2019) using Trim Galore (v0.4.0, parameter settings: -

-fastqc --paired --retain_unpaired --length 16) and STAR (Dobin et al., 2013) 

(v2.5.3a, parameter settings: --quantMode TranscriptomeSAM) for mapping reads to 

the hg19 human transcriptome build (GENCODE 19 (Harrow et al., 2012)). Mapped 

reads where counted into genes using rsem (v1.2.21) (Li and Dewey, 2011). TMM 

normalization was applied using edgeR (v3.12.1) (Robinson et al., 2010). Fold 

changes (FC) were computed as the log2 ratio of normalized reads per gene using 

edgeR. Genes with fold change ± 1.5 and FDR < 0.01 were considered as 

significantly altered. Promoters were defined as the region from -2000 bp to +100 bp 

around the transcriptional start site. 

 

Statistical tests 

For genomic interval overlaps and genomic rearrangement overlaps, a modified 

LOLA (Sheffield and Bock, 2016) package was used to perform a two-sided log-odds 

ratio test which reports significance using “BH” FDR values. The Mann-Whitney-

Wilcoxon test was used for 2-group non-parametric comparisons, and the one-tailed 
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test was used where a directional difference between the groups was of interest. 

Unless otherwise stated, statistical tests were two-sided.  

 

External data 

ChIP-seq datasets were downloaded from GSE58638, performed by Lay et al. (2015).  

 

Data availability 

Repli-Seq, Hi-C, WGBS, single cell Repli-Seq, Nanopore sequencing and RNA-seq 

are available from the NCBI Gene Expression Omnibus (GEO) under accession 

number GSE158011. 
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