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Leveraging Sequential and Spatial Neighbors
Information by Using CNNs Linked With GCNs

for Paratope Prediction
Shuai Lu, Yuguang Li, Fei Wang, Xiaofei Nan, and Shoutao Zhang

Abstract—Antibodies consisting of variable and constant regions, are a special type of proteins playing a vital role in immune system
of the vertebrate. They have the remarkable ability to bind a large range of diverse antigens with extraordinary affinity and specificity.
This malleability of binding makes antibodies an important class of biological drugs and biomarkers. In this article, we propose a
method to identify which amino acid residues of an antibody directly interact with its associated antigen based on the features from
sequence and structure. Our algorithm uses convolution neural networks (CNNs) linked with graph convolution networks (GCNs) to
make use of information from both sequential and spatial neighbors to understand more about the local environment of the target
amino acid residue. Furthermore, we process the antigen partner of an antibody by employing an attention layer. Our method improves
on the state-of-the-art methodology.

Index Terms—CNNs, GCNs, attention, paratope prediction
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1 INTRODUCTION

ANTIBODY, also known as immunoglobulin, is a Y-
shaped protein consisting of two light chains and two

heavy chains[1] , and can bind to a specific surface of the
antigen, named epitope. Amino acid residues of an antibody
directly involved in binding epitope is called paratope[2].
The accurate recognition of paratope on a given antibody
would greatly improve antibody affinity maturation[3]–[5]
and de novo design[6]–[8].

We can get high resolution structure of antibody-
antigen complex by experimental methods, such as X-
ray[9], NRM[10] and Cryo-EM[11]. However, it remains
time consuming and empirical[12]. As more and more pro-
tein structures including antibody-antigen complexes were
analyzed, the machine learning-based methods can be used
for predicting paratope by learning the paratope-epitope
interaction patterns from known antibody-antigen complex
structures. According to the type of selecting neighbors of
target residue for representing and predicting, the machine
learning-based methods can be divided into two categories,
leveraging sequential neighbors or spatial neighbors. As
for methods leveraging sequential neighbors, a part of the
antibody sequence was used consisting of the target residue
and additional forward and backward sequential neighbors.
Sequential neighbors were selected from the whole sequence
of antibody like the methods in [13]–[15] , and others only
took advantage of the sequence of CDR region[16], [17].
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Although the sequence was always available at the stages
of an antibody discovery campaign earlier than the struc-
ture, machine learning methods using spatial neighbors can
provide more precise definition of the paratope. In [18],
the antibody surface patch which was a set of amino acid
residues adjacent to each other on the antibody surface,
were represented by 3D Zernike Descriptors. And the state-
of-art method[19] represented an antibody as a graph where
each amino acid residue was a node and K nearest spatial
neighbors were used in the convolution operator.

In this work, we utilize the sequential and spatial neigh-
bors of the target antibody residue by using Convolutional
Neural Networks (CNNs) linked with Graph Neural Net-
works (GCNs) for paratope prediction. First, we construct
an antibody residues feature matrix form sequence-based
and structure-based information. Next, we employ CNNs
which take the residues feature matrix as input with a fixed
window size for considering the influence of sequential
neighbors. Then, the output of CNNs are directly fed to
GCNs for learning the local environment of spatial neigh-
bors. At last, our program predicts the binding probability
of each antibody residue. We also compare results with
those from other paratope predictors, and our framework
achieves the best performances. Moreover, we add an atten-
tion layer to our model performs best attempting gain more
information from antigen partner.

2 MATERIALS AND METHODS

2.1 Datasets
We use the dataset the same as [19]. All the complexes in
training set are collected by [18] from the training set used to
train Paratome[13], Antibody i-Patch[15] and Parapred[16]
predictors. The complexes in test set are fetched from AbDb
database[20]. The antibody-antigen complexes present in
AbDb are split into two categories depending on whether
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their antigen is a protein or not. In both training and test
sets, the complexes whose resolution better than 3 Å or the
antibody sequence which has more than 95% sequence iden-
tity are removed. The training set is further split into two
disjoint sets: a reduced training set and a validation set,and
the validation set is used to tune the hyper parameters in
the predictive model.

Structures with nonprotein-binding antibodies are re-
moved in the state-of-art method[19] resulting in 205 com-
plexes for training, 103 for validation and 152 for testing.
Specifically, the complexes with PDB ID 2AP2 and 2KVE,
only has one chain in antibody which are still retained.

2.2 Residue Representation

To construct the input matrix, we encode the 1D antibody
sequence as a 2D numerical matrix with the dimension of
(L,N), where L is the length of the antibody sequence and
N is the residue features vector dimension (128 here).

As shown in Fig.1, the feature representation for amino
acid residue a is donated by xa. Different components of
the feature representation are denoted by the superscripts
. Each box indicates the program used to extract a given
set of features. All those features can be classified into
two classes according to the source: sequence-based and
structure-based.

2.2.1 Sequence-based Features
One-hot encoding: The type of amnio acid residue (only 20
possible natural types are considered) is encoded to a 20

dimensional vector, where where each element is either 1
or 0 and 1 indicates the existence of a corresponding amino
acid residue.

Seven physicochemical parameters: Those parameters
are about physicochemical properties of residues summa-
rized by [21]. Profile features: We run PSI-BLAST[22] against
the nonredundant (nr)[23] database for every antibody se-
quence. Then we get the PSSM and PSFM matrix, both
with dimension (L, 20), as well as a 1D vector related with
column entropy with dimension L, where L is the length of
the antibody sequence.

2.2.2 Structure-based Features
Relative accessible surface area, Secondary structure, Phi
and Psi torsion angles for each residue: Those features are
computed using DSSP[24]. The secondary structure totally
has eight classes and is represented by one-hot encoding.

Half sphere amino acid composition: HSAAC captures
the amino acid residue composition in the direction of the
side chain of a residue, defined as the number of times a
particular amino acid occurs in that direction within a min-
imum atomic distance threshold of 8.0Å from the residue of
interest.

Residue depth: We calculate the average distance of the
atoms of a residue from the solvent accessible surface by
MSMS[25].

Protrusion Index: The protrusion index of a non-
hydrogen atom is calculated using PSAIA[26] which is
defined as the proportion of the volume of a sphere with
a radius of 10.0Å centered at that atom that is not filled with

Fig. 1. Residue-level feature extraction in this study.
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atoms[27]. Each element of this vector is normalized to have
the range from 0 to 1 as in [28].

B-factor: The B-factor (or temperature factor) is an indi-
cator of thermal motion about an atom. We use the maxi-
mum B-factor of any atom for each residue.

2.3 Antibody Representation and Paratope Definition

We represent an antibody as a graph[19], where each residue
is a node whose features represent the properties of the
residue. We define the spatial neighbors of a residue as a
set of K (20, in our work) closest residues determined by the
mean distance between their heavy atoms [24]. Fig.2 shows
sequential and spital neighbors of a target residue.

From the analyzed 3D structure of an antibody-antigen
complex, a residue on antibody is judged to belong to the
paratope if at least one of its atoms is located within 4.5Å
from any antigen atoms like previous methods[11], [12].

Fig. 2. Sequential and spatial neighbors of a target residue(PDB ID:
1A2Y)

2.4 Convolutional Neural Networks (CNNs) for Pro-
cessing Sequential Neighbors

The sequence of the input antibody with length L is con-
sidered as a set of sequential nodes S and each node is
represented as a 1D vector si : S = {si}Li=1 . All the nodes
of the antibody sequence compose a 2D features matrix as
said in Sectioon 2.2.

Our CNNs uses one filter function, where the input is
si−w:i+w = {si}Li=1 = s(0) and the output is a hidden vector
s(1)i shown as

s
(1)
i = f(Wc)s

(0) + bc (1)

Where f is a non-linear activation function (e.g. ReLU), Wc

is the wight matrix, and the bc is the bias vector. Here we
use residual connections which act as a shortcut connection

between inputs and outputs of some part of a network by
adding inputs to outputs shown as

s
(1)
i = f(Wc)s

(0) + bc + s(0) (2)

As a result, we apply the function to obtain s set of
hidden vector of every position of the residue sequence:
S = {s(t)i

∣∣s(t)1 , s
(t)
2 , s

(t)
3 , ..., s

(t)
l }

2.5 Graph Convolutional Networks (GCNs) for Process-
ing Spatial Neighborhoods

We use the graph convolution[29] which enables order-
independent aggregation of properties over spatial neigh-
bors of target residue and together contributes to the forma-
tion of a binding interface.

For a node si, the receptive field consisting of K spatial
neighbors Gi = {gi}Kj=1 from the input graph. After pro-
cessing by CNNs, result of a node is s

(t)
1 and its spatial

neighbors are G
(t)
i = {g(t)i }Kj=1. The parameters of this

operation include the aggregation weight matrix Wt for
the target node, the aggregation weight matrix Wg for the
neighboring nodes, and the bias vector bg . Thus, multiple
layers can be stacked to produce high-level representations
for each node s

(t)
i resulting in a vector z(t)i shown as

z
(t)
i = f(Wts

(t)
i +

1

|Gi|

K∑
j=1

Wjg
(t)
i + bg) (3)

2.6 Classifier

Finally, two fully connected layers perform classification for
each antibody residue z

(t)
i after processing by CNNs and

GCNs. An inverse logit function transforms each residue’s
output yi to indicate the probability of belonging paratope
shown as

yi = W2(W1(z
(t)
i ) + b1) + b2 (4)

2.7 Training Details

We implement our model using PyTorch[30] v1.4. Validation
sets are used to find the optimal set of network training
parameters for final evaluation. The training details of these
neural networks are as follows: optimization: Momentum
optimizer with Nesterov accelerated gradients; learning
rate: 0.001; batch size: 32; dropout: 0.5; sequential neighbors
size: 11 (fixed); spatial neighbors in the graph: 20 (fixed);
number of layers in GNNs: 1, 2 or 3; number of layers in
CNNs: 1, 2 or 3. Training times of each epoch vary from
roughly 1-10 minutes depending on network depth, using a
single NVIDIA RTX2080 GPU.

For each combination, networks are trained until the
performance on the validation set stops improving or for a
maximum of 250 epochs. GCNs have the following number
of filters for 1, 2 and 3 layers, respectively: (256), (256, 512),
(256, 256, 512). All weight matrices are initialized as in
[29] and biases are set to zero. Training is carried out by
minimizing the weighted cross-entropy loss function[29].
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TABLE 1
AUC ROC of various layers combination of our networks

Methods
GCN layers

0 1 2 3

CNN layers

0 0.935±0.001 0.969±0.001 0.973±0.000 0.973±0.000
1 0.947±0.002 0.972±0.001 0.975±0.001 0.975±0.001
2 0.951±0.001 0.971±0.000 0.973±0.001 0.973±0.001
3 0.958±0.001 0.974±0.001 0.975±0.001 0.971±0.000

TABLE 2
AUC ROC of various layers combination of our networks

Methods
GCN layers

0 1 2 3

CNN layers

0 0.593±0.006 0.687±0.011 0.688±0.005 0.666±0.002
1 0.649±0.010 0.703±0.008 0.696±0.007 0.676±0.005
2 0.662±0.004 0.700±0.003 0.702±0.008 0.657±0.008
3 0.682±0.003 0.705±0.009 0.706±0.005 0.657±0.005

3 RESULTS AND DISCUSSION

3.1 Performances Comparison Between Different
Depth Combination of CNNs and GCNs

In this secction, we compute precision and recall by pre-
dicting residues as paratope with probability above 0.5[19].
As the area under the receiver operating characteristics
curve (AUC ROC) is threshold-independent and increases
in direct proportion to the overall prediction performance,
we take it to assess the overall predictive abilities. Beside,
we consider the area under the precision recall curve. To
provide robust evaluation of performance, we have trained
and tested all networks five times, and computed the mean
and standard error.

Results comparing the AUC ROC and AUC PR of var-
ious layers combination of CNNs and GCNs are shown
in TABLE 1 and TABLE 2. Our first observation is that
the all the CNNs linked with GCNs methods, with AUC
ROC around 0.97 and AUC-PR around 0.70, outperform the
individual CNNs or GCNs methods which have distinct
lower AUC PRs, showing that the incorporation of com-
bined information from a residue’s sequential and spatial
neighbors improves the accuracy of interface prediction.
This matches the biological intuition that the region around
a residue should impact its binding affinity[31].

We also observe that the effect of the combination num-
ber of CNNs and GCNs layers is not linear, i.e. more layers
will not achieve better performance. Indeed, in protein in-
terface prediction, networks with more than four layers per-
formed worse in [29]. In addition, one layer GCN achieves
better performance than two layer GCNs about paratope
prediction in task-specific learning in [19]. We agree with
these findings and draw the same conclusions.

3.2 Comparison Between Different Residue Features
Combination

As said in Secttion2.2, residue features are classified into
two classes: sequence-based and structure-based according
to the source. Furthermore, sequence-based features can

be divided into three parts: residue type one-hot encod-
ing(a), profile features(b) and the seven physicochemical
parameters(c) as their different properties. All the structure-
based feature are considered as a individual part(d). Because
the residue type is the most basic features, all 7 kinds of
combination must include it’s one-hot encoding, e.g. a+b,
a+c, a+d, a+b+c, a+b+d, a+c+d, a+b+c+d.

We obtain the best performance form the model with
3 layers CNNs linked with 2 layers GCNs as shown in
TABLE 1 and TABLE 2. Hence, we train this model again
using the other 6 kinds of residue features combination.
Each combination was evaluated by averaging all the AUC
ROC and AUC PR of all the antibodies in testing set. Both
mean value and standard deviation are reported in Fig.3
and Fig.4.

Fig. 3. AUC ROC between different residue features combination.

Fig. 4. AUC PR between different residue features combination.

From Fig. 3, we can see that three residue features
combinations(a+b: 0.968±0.025, a+b+c: 0.953±0.031, a+b+d:
0.969±0.022) almost achieve the optimal performance. All
of them contain the profile features(b). As for the AUC PR
in Fig.4, we can see that performance vary from all kinds
combination. The model using all the features still works
best.
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3.3 Comparison With Existing Predictors of Paratope
Prediction

As shown in Fig. 5. and Fig. 6. , we compare our method
to other existing methods specifically for paratope predic-
tion, i.e. Antibody i-path which pays attention to energetic
importance(AUC ROC:0.840, AUC PR: 0.376)[15], Parapred
which consists of CNN and RNN-based networks(AUC
ROC:0.933, AUC PR: 0.622)[16], models using 3D Zernike
descriptors(AUC ROC:0.950, AUC PR: 0.658)[18] and graph
convolution and attention mechanism(AUC ROC:0.958,
AUC PR: 0.703)[19].

Note that these methods only considering sequential or
spatial neighbors of target antibody residue. Our model
achieves competitive or greater performance compared to
these methods on both AUC ROC(0.975±0.001) and AUC
PR(0.706±0.005).

Fig. 5. AUC ROC between existing predictors of paratope prediction.

Fig. 6. AUC PR between existing predictors of paratope prediction.

3.4 Adding Attention Layer for Processing Antigen
Partner

An attention layer was used to explore the specific interac-
tion between antibody and antigen pairs on paratope and
epitope prediction[19]. The contributions of attention layer
only were accessed about epitope predictor. In this study, we
add an attnetion layer to our best model resulting in lower
performance(AUC ROC: 0.974±0.001, AUC PR:0.698±0.007)
for paratope prediction.

Fig.7 shows the heatmap of attention score between
every pairs of residues from the complex on which our
model performed best(PDB ID 5K59). But we can not see
outstanding performance as in epitope predictor, which
could be caused by the different environment components
of epitope and paratope[15], [34].

Fig. 7. Attention visualization

4 CONCLUSION

In this study, we design and implement a new structure-
based paratope predictor leveraging sequential and spatial
neighbors of target antibody residue. Our model is trained
on the antibody-antigen complex structures collected from
datasets of some paratope predictors which includes the
most structures. Moreover, we utilize more residue features
consisting of sequence-based and structure-based. Experi-
mental results with a training dataset and an independent
validation dataset demonstrate the efficiency of our method.

The superior performances of our method are due to
several reasons, including a rich dataset, more sufficient
features selection, and careful construction of the prediction
model considering sequential and spatial neighbors at same
time.

We note that our program has two potential disadvan-
tages. First, the predictor needs antibody structure as it
takes structure-based residue features as input. Second, at
the stage of extracting residue features, it consumes long
computer time as PSI-BLAST[22] needs to be performed. In
our future work, we will take adjacent information from
antibody sequence so that the predictor can make use of
GCNs without structure. We will attempt to accelerate the
computation speed by using several servers to concurrently
perform PSI-BLAST[22].
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Biomolecule binding motifs mining is a long-term chal-
lenge for understanding their function. The forming incor-
rect interaction between some critical molecules has been re-
vealed as one of the import causes for diseases like COVID-
19[32]. The method proposed in this study is specifically
for identifying the antibody-antigen binding residues. In the
future work, we will future investigate the applicability of
our model to other types of molecules binding residues pre-
diction problem, e.g., drug-target interaction prediction[33].
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