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Abstract 
Accurate detection of somatic structural variation (SV) in cancer genomes remains a            

challenging problem. This is in part due to the lack of high-quality gold standard datasets that                

enable the benchmarking of experimental approaches and bioinformatic analysis pipelines for           

comprehensive somatic SV detection. Here, we approached this challenge by genome-wide           

somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines             

using four different technologies: Illumina HiSeq, Oxford Nanopore, Pacific Biosciences and 10x            

Genomics. Based on the evidence from multiple technologies combined with extensive           

experimental validation, including Bionano optical mapping data and targeted detection of           

candidate breakpoint junctions, we compiled a comprehensive set of true somatic SVs,            

comprising all SV types. We demonstrate the utility of this resource by determining the SV               

detection performance of each technology as a function of tumor purity and sequence depth,              

highlighting the importance of assessing these parameters in cancer genomics projects and            

data analysis tool evaluation. The reference truth somatic SV dataset as well as the underlying               

raw multi-platform sequencing data are freely available and are an important resource for             

community somatic benchmarking efforts. 
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Introduction 
Structural genomic variations (SVs) form a major class of somatic genetic variation in cancer              

genomes (Li et al., 2020; Yang et al., 2014), involving dozens to thousands of somatic SVs with                 

varying size distribution and patterns (Li et al., 2020). While some SVs represent simple              

deletions, others tend to be complex, involving multiple breakpoints across a relatively short             

genomic interval. For example, chromothripsis is a form of complex SVs frequently observed in              

cancer genomes (Cortés-Ciriano et al., 2020; Kloosterman et al., 2014), resulting from aberrant             

chromosome segregation or telomere dysfunction (Maciejowski et al., 2015; Zhang et al., 2015).             

Other types of complex SVs involve oncogene amplifications arising from          

breakage-fusion-bridge cycles (Bignell et al., 2007; Li et al., 2020; Nattestad et al., 2018). SVs               

in cancer genomes may promote cancer development through a variety of mechanisms, such             

as oncogene activation through gene-fusions, disruption of tumor suppressor genes or by            

affecting gene regulation (Mitelman et al., 2007; Spielmann et al., 2018). Oncogenic fusion             

genes resulting from somatic SVs form important targets for cancer drugs, and somatic SVs              

may form neo-antigenic targets for immunotherapies (Mansfield et al., 2019), demonstrating the            

relevance of accurate somatic SV detection for personalized cancer treatment (Mertens et al.,             

2015; Mitelman et al., 2007). 

 

While classical karyotyping and FISH analyses have been instrumental in systematic copy            

number analyses in tumor samples (Mertens et al., 2015; Mitelman et al., 2007), these              

technologies provide limited resolution or do not allow for comprehensive genome-wide analysis            

and are thus unable to resolve the complete spectrum of SV events. Most of our knowledge on                 

genome-wide high-resolution SVs in cancer genomes stems from the analysis of short-read            

whole genome sequencing, which is currently the only scalable and cost-efficient technology for             

high-resolution genome-wide cancer genome analysis (Li et al., 2020; Macintyre et al., 2016).             

Although short reads are effective for detection of simple SV breakpoints in non-repetitive             

regions of the genome, the interrogation of complexly rearranged regions or the detection of SV               

breakpoints in low complexity genomic regions may require other sequencing techniques or            

targeted approaches (de Vree et al., 2014). For example, long-insert mate-pair sequencing has             

proven a valuable strategy for genome-wide mapping of somatic SVs (Hillmer et al., 2011;              

Kloosterman et al., 2011) and single-cell template strand sequencing enables the detection of             

copy number variants and copy neutral structural variants (Sanders et al., 2020). Furthermore,             

long-read sequencing methods, such as Pacific Biosciences and Oxford Nanopore and           
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synthetic long-read approaches, such as linked-read technology by 10x genomics, provide a            

promising alternative for the detection of SVs. Initial studies have shown that long-read             

single-molecule sequencing can greatly improve detection of germline SVs (Chaisson et al.,            

2014, 2019; Cretu Stancu et al., 2017; Huddleston et al., 2017). Similarly, recent work has               

demonstrated the advantage of long-range sequence information for identification of SVs in            

cancer genomes, such as cancer gene amplifications and gene fusion events (Greer et al.,              

2017; Gupta et al., 2015; Nattestad et al., 2018; Zheng et al., 2016).  

 

A major limitation of studies on cancer SVs is the lack of a comprehensive ground truth                

genome-wide somatic SV datasets including all types and sizes of somatic structural            

aberrations. Such truth sets can form a resource for benchmarking sequencing and analysis             

approaches as well as for evaluating detection problems related to intratumor heterogeneity and             

tumor purity. Gold reference truth sets have been established for germline SVs (Chaisson et al.,               

2019; Zook et al., 2020) or somatic single nucleotide variants (SNVs) (Arora et al., 2019).               

However, attempts at benchmarking somatic SVs have only been performed by using in silico              

simulated data (Gong et al., 2020; Lee et al., 2018), or mouse data (Sarwal et al., 2020).  

 

We addressed this caveat by generating a multiplatform short-read, long-read and linked-read            

sequencing and optical mapping dataset for the COLO829 melanoma cell line and the paired              

COLO829BL lymphoblastoid reference cell line. These cell lines have been used before to             

establish somatic SNV and copy number alteration (CNA) reference sets (Arora et al., 2019;              

Craig et al., 2016; Pleasance et al., 2010). By cross-platform comparison and extensive             

validation we define a gold reference set of 68 somatic SVs in COLO829. We evaluated the                

completeness of this validated truth set and demonstrated its use to study the effect of tumor                

purity and sequencing coverage variation on the accuracy of somatic SV calling. We believe this               

somatic SV truth set to be of broad value for benchmarking and quality control of large-scale                

cancer genome sequencing studies, which are currently undertaken in research and the clinic. 
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Results 
 
Multi-platform genome-wide  analysis of the COLO829 tumor-normal melanoma cell line 
pair 
In this study, we aimed at obtaining a comprehensive view on the genome structure of the                

COLO829 cancer cell line and identify a high-quality set of somatic structural variations, for use               

as a reference dataset. We cultured COLO829 and the corresponding lymphoblastoid cell line             

(COLO829BL) according to standard conditions (Materials and Methods). A large batch of            

cells expanded from one original vial directly obtained from the ATCC cell line repository was               

used for DNA isolation and subsequent genomic analysis using five different technology            

platforms: Illumina HiSeq Xten (ILL), Oxford Nanopore Technologies (ONT), Pacific Biosciences           

(PB), 10x genomics (sequenced on Illumina NovaSeq; 10X), and Bionano Genomics Saphyr            

optical mapping (BNG) (Materials and Methods). 
The sequencing and optical mapping data were analyzed with respect to the reference human              

genome (GRCh37) using alignment methods specific for each technology (Materials and           
Methods). From the combined short and long read sequencing data of the COLO829 sample              

we obtained a total average base coverage of 235X, while the BNG data generated an               

additional physical coverage of 218X. For the COLO829BL control cell line a combined average              

base coverage of 155X and a BNG physical coverage of 220X was reached (Figure 1A,               

Supplementary Table 1). Average physical molecule lengths were 534 bp for ILL paired-end             

inserts, 11 kb for ONT, 19 kb for PB and 98 kbp for BNG optical maps (Figure 1B,                  
Supplementary Table 1). 
To assess the consistency of each of the technologies with respect to representation of the               

sequence content of the COLO829 cancer cell line, we determined the presence of copy              

number alterations. This revealed a highly similar copy number profile for each of the              

technologies (Figure 1C), with a correlation of copy number calls in the different datasets of               

0.87-0.96 (Supplementary Figure 1A). Furthermore, we compared our copy number calls with            

those generated in previous bulk (Arora et al., 2019) and single cell (Velazquez-Villarreal et al.,               

2020) sequencing of COLO829. The overall CNA landscape of the bulk sequencing and the              

dominant cluster from single cell sequencing is very similar to the one we obtained              

(Supplementary Figure 1B), with a correlation of 0.99 (bulk) and 0.97 (single cell group A)               

(Supplementary Figure 1C). However, the previously described subclonal single cell clusters           

(B-D) possess some distinct copy number aberrations that are not observed in our bulk              
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sequencing datasets (i.e. extra copy of chromosome 8 in group D or lack of gain in short arm of                   

chromosome 1), in line with the proposed continuous genomic evolution of cell lines and              

subculture-specific nature of these events. Finally, classical FISH analysis for six genomic            

locations of the culture used in our study confirmed the sequencing derived chromosomal copy              

number states (Supplementary Figure 3D). 

 
Figure 1 - Overview of the COLO829 multi-technology genomic dataset. Sequencing depth (A) and              

log-scaled molecular analysis length (B) distributions per technology dataset for COLO829 (blue) and             
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COLO829BL (red). Means are indicated by horizontal black lines. (C) Copy number profile of COLO829               

calculated independently for each of the datasets. 

 

Generation of a somatic structural variation consensus truth set  
To build an accurate and comprehensive somatic SV truth set, we used a combinatorial analysis               

approach involving the four sequencing platforms (ILL, ONT, PB and 10X). Somatic SVs were              

obtained using state-of-the art SV calling approaches defined for each of the sequencing             

datasets (Materials and Methods, Figure 2A). SV calling parameters were not necessarily            

optimized for highest precision, but to high sensitivity to not miss out on any real event. As a                  

result, individual candidate call sets for each technology resulted in highly variable lists of              

predicted somatic SVs, ranging from 92 breakpoint calls in ILL up to 6,412 for ONT, adding up                 

to a total of 8,831 merged candidate somatic SV calls (Figure 2A). Only 18 of those somatic SV                  

calls were found by all four sequencing approaches and 125 SV calls were supported by at least                 

two call sets (Supplementary Figure 2A). 
To make an initial assessment of accuracy, we selected 88 high-confidence SV candidates for              

PCR validation based on visual inspection of the mapped reads using IGV. In addition, we               

randomly selected 296 additional SV candidates for PCR validation. Based on short and long              

read sequencing of the PCR products, 63 of these breakpoints were labelled as PCR validated               
(Supplementary Figure 2B). Moreover, we decided to perform a separate validation of all             

8,831 somatic SV calls from the union of the four SV callsets, using a capture-based enrichment                

method using multiple probes flanking and overlapping each candidate break-junction          

(Materials and Methods). Based on the short read sequencing of the enriched products, 114              

breakpoints were labelled as capture validated (Supplementary Figure 2B). Lastly, we used            

the 52 BNG somatic SV calls as an additional layer of validation. In total, 137 SV calls were                  

validated by at least one of the methods aforementioned. Additionally, 78 SV calls were not               

validated but still supported by more than one technology. (Figure 2A, Supplementary Figure             
2C).  
Next, we manually curated these 215 SV calls that were either validated or supported by               

multiple technologies. Based on visual inspection of the genomic alignment data from each of              

the sequencing sets and the validation experiment results, we assessed each SV call             

individually. We found that 14 calls were actually duplicate calls of the same event (but               

annotated slightly different by different data analysis pipelines), 48 were real events but also              

had evidence in the germline control, and another 98 were considered false positive as the               
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supporting or reference data was very noisy at the given genomic location (also in the               

independent validation data) and may thus reflect the impact of low confidence regions in the               

reference genome for which unambiguous mapping of sequencing reads is complicated due to             

simple sequence or repeat content. Taken together, we conclude that 68 of the SV candidates               

are real somatic events and thus considered our truth set (Figure 2A, Supplementary Figure              
2C, Supplementary Table 2 with all validations and raw calls). To verify the efficacy of our                

manual curation approach, we randomly selected 179 SV calls that were supported by a single               

technology and not validated, and therefore left out from the candidate SV curation pipeline, and               

also evaluated them manually. All these SV calls were either germline events (63, 35%) or false                

positive due to noisy mapping data (116, 65%) (Supplementary Figure 2D).  
Of the compiled set of 68 validated somatic SVs in COLO829, 55 (81%) were present in more                 

than two original call sets, including the 18 SVs detected by all technologies (Figure 2B).               

Moreover, most of the SVs were validated at least by capture-based enrichment and by PCR               

(50, 74%). Additionally, 8 somatic SVs were validated by capture-based enrichment but not by              

PCR and vice versa, 7 somatic SVs were validated by PCR but not by capture-based               

enrichment. Of the remaining 3 SVs, one was validated by BNG and 2 were not validated by                 

any targeted assay but are supported by multiple technologies and manually verified by             

inspection of raw sequencing data from both tumor and normal samples (Figure 2C). The              

resulting somatic SV truth set is presented in Supplementary Table 3 and freely available as               

VCF. 
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Figure 2 - Generation of a validated somatic SV truth set. (A) State-of-the-art somatic SV calling                

pipelines were used independently for each technology dataset. The number of somatic SV candidates              

identified are indicated in boxes. Overlapping variant calls obtained by the different platforms were              

merged and independently validated using a combination of targeted enrichment with hybrid capture             

probes followed by next-gen sequencing, PCR and Bionano genomics. Validated somatic SV candidates             

and calls supported by more than one dataset were manually curated, leaving a total of 68 somatic SVs in                   

the truth set. Intersections between the 68 somatic SVs in the truth set and the original SV call sets (B)                    

and the validation results (C) are shown. ILL = Illumina HiseqX, ONT = Oxford Nanopore, PB = PacBio,                  

10x = 10x Genomics, BN = Bionano, MULT = support by multiple sequencing platforms. 

 
Characterization of the COLO829 somatic SV truth set  
The somatic SV truth set consists of 38 deletions, 3 insertions, 7 duplications, 7 inversions and                

13 translocations (Figure 3A). Most of the deletions (24, 61%) are larger than 10kbp, and 7 are                 

smaller than 100bp. There are also three duplications and three inversions larger than 10kbp.              

Two tumor driver genes are affected by somatic SVs in COLO829 (Supplementary Table 3).              

First, there are two large heterozygous deletions (72 kb and 141 kb) in FHIT, located in the                 

fragile site FRA3B on chromosome 3, which is commonly affected by somatic SVs (Li et al.,                

2020). Second, there is a homozygous 12 kbp deletion affecting PTEN on chromosome 10.  
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Frequently, SVs do not occur as simple isolated events but are part of a complex landscape                

induced in a single event like for example chromothripsis or due to a cascade of events over                 

time like breakage-fusion-bridge cycles. There are also 2 clusters of complex chained somatic             

SVs that affect 3 or more chromosomes and involve more than 5 breakpoint junctions. Both of                

them resemble breakage-fusion-bridge events, since they are flanked by foldback inversions           

and show oscillating copy number profiles (Li et al., 2020). One of them occurred in               

chromosome 3 and involves four foldback inversions, two of which have templated insertions             

from chromosomes 10 and 12 and chromosome 6, respectively (Figure 3C). The breakpoint             

and copy number profile of chromosome 3 can be fully explained by 4 cycles of               

breakage-fusion-bridge followed by chromatid duplication through a whole genome doubling          

event. Initiated by replication of unrepaired double-stranded break, the unstable chromosome 3            

(due to the presence of two centromeres in a single chromatid) underwent a further 3 more                

rounds of BFB with a fragment of chromosome 6 inserted prior to the third doubling cycle,                

fragments of chromosomes 10 and 12 inserted immediately after the fourth doubling cycle, and              

a stable state achieved after the final breakage through repair to one of the centromeres               

(Supplementary Movie). The other breakage-fusion-bridge event occurred on chromosome 15          

and includes templated insertions from chromosomes 6 and 20 (Figure 3D). The donor             

locations of these templated insertions are not affected by SV events.  

 

To evaluate the completeness of the somatic SV truth set, we compared it with the somatic CNA                 

calls, since each CNA should have SV breakpoints or telomeres at either end. We found 43 total                 

CNA breakpoints that are not telomeric ends of chromosomes. Of these, 26 (60%) are              

concurrent with an SV breakpoint. We evaluated the rest of the CNAs in the raw genomic data                 

(Supplementary table 4). Six more copy number breakpoints (14%) are present in the             

germline, flanking heterozygous germline CNA events that are homozygous in the tumor            

through a somatic loss of the other allele. The SV break-junctions of these CNAs are germline                

and therefore not part of the truth set. Finally, there are 11 somatic CNA breakpoints (26%) not                 

concurrent with an SV breakpoint. Five of these missing CNA breakpoints are located in a               

centromeric region (chromosomes 1, 4, 6, 14 and 16) and are likely due to a missing somatic                 

SV involving the centromere, which are typically hard to fully resolve due to their repetitive               

nature. For another 2 missing CNA breakpoints (chromosome 3 and chromosome 9) breakends             

can be found in the raw ILL dataset, meaning an SV breakpoint was found but the SV junction                  

partner could not be unequivocally determined. GRIDSS2 annotation did reveal that the            
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chromosome 3 single break does map to one of the centromeres. Four more missing CNA               

breakpoints flank two supposed deletions in chromosome 1, but no SV call in these locations               

can be found for either COLO829 or COLO829BL in any of the datasets. Manual inspection of                

the raw data for these CNAs (Supplementary Figure 3A, 3B) indicates that these CNAs may               

actually reflect heterozygous germline events followed by LOH as witnessed by the lower read              

coverage in the COLO829BL as compared to the flanking segments. Furthermore, one CNA             

involves a LINE-rich region while the other overlaps with a segmental duplication.  

 

Next, we compared our somatic SV truth set to the somatic SV calls presented by Arora et al.                  

They provide two different somatic SV callsets, one generated by the HiSeq platform with 77               

somatic SV calls and the other by the NovaSeq platform with 75 somatic SV calls. Since these                 

were provided based on GRCh38 genomic coordinates, we lifted our somatic SV coordinates             

over to GRCh38. We found that 58 (75.34%) and 59 (78.6%) of the somatic SV calls for the                  

HiSeq and the NextSeq callsets, respectively, overlapped with our somatic SV truth set on both               

sides of the SV (Supplementary Figure 3). We manually inspected the 20 non-overlapping             

somatic SV calls from the Arora et al dataset in our raw ILL, ONT and PB data (Supplementary                  
Table 5). In the long-read raw data (ONT and PB) only 3 out of the 20 have some support                   

(maximum 3 reads). In the ILL raw data, 9 out of the 20 have limited evidence, with only one or                    

a few supporting reads. Only 4 of these 9 SV calls passed bioinformatic calling criteria in our                 

original ILL somatic SV calls, but none of these were called by any other technology or                

independently validated by more sensitive PCR or targeted capture and deep-sequencing.           

Therefore we consider these candidates as technology-specific noise and were discarded from            

our truth set, although we can formally not exclude that these are real variants that are present                 

at very low frequency (<1% in the sample). Finally, 13 SVs are present in our truth set and not in                    

the Arora et al. data set. All were detected by at least two different sequencing techniques and                 

independently validated. 
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Figure 3 - Characterization of the somatic SV truth set: (A) Distribution of different types of SVs in the                   

COLO829 truth set, divided in size bins. Translocations (BND) are assigned a size of 0 bp. (B) Correlation                  

between CNAs and somatic SVs in the COLO829 truth set. The circos plot shows copy number gains                 

(green) and losses (red) and somatic SVs. Each copy number change is expected to be flanked by an SV                   

event. Two complex breakage-fusion-bridge events are present in COLO829. The first one (C) occurs in               

chromosome 3 (blue), with templated insertions from chromosomes 6 (pink), 10 (green) and 12 (red) (see                

also Supplementary Movie for an animation of the proposed mechanism shaping this event). The second               

one (D) occurs in chromosome 15, with templated insertions from chromosomes 6 (pink) and 20 (orange).                

Breakpoints are indicated by vertical lines with arrowheads showing breakpoint orientations. Dashed lines             

indicate junctions between two breakpoints. Break-junctions are labelled with truth set SV ID number              

(Supplementary Table 3). 

 
Effect of tumor purity and sequencing depth on somatic SV calling 
To demonstrate the utility of the COLO829 somatic SV truth set, we evaluated the effect of                

tumor purity, which is highly variable amongst clinical samples, on SV calling. We used the               

available raw datasets and simulated tumor purities of 75% (TP75), 50% (TP50), 25% (TP25),              

20% (TP20), and 10% (TP10) by random in silico mixing of the genomic data from COLO829                

and COLO829BL for ILL, ONT and PB, respectively. We performed SV calling independently on              

each of these mixed sets and on the original tumor file (100% purity, TP100) and the normal file                  
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(0% purity, TP0). We then calculated the recall (percentage of truth set found) and precision               

(percentage of calls that belong to truth set). With the standard settings used, somatic SV recall                

and precision were found to be highly dependent on tumor purity for all three technologies. At                

TP75 and TP100, recall is the highest, with >94% for ILL, >67% for ONT and >65% for PB. With                   

TP50, the recall slightly decreases to 90%, 52% and 61% for ILL, ONT and PB, respectively.                

For purities lower than TP50, the recall decreases further to <76%, <22% and <48% for ILL,                

ONT and PB, respectively. Precision follows a similar trend in the case of ILL, with precisions                

>78% for purities larger than TP50, and a drop to 63% in TP25. In the case of ONT and PB, the                     

higher number of false positives impact severly on the precision rates, potentially reflecting             

maturity level of platform-specific tools for somatic SV detection in tumor-normal paired            

samples, but also presenting opportunities for further analysis parameter and tool optimisation.  

 

Sequencing depth is another essential parameter to consider in tumor sequencing projects as it              

represents a trade-off decision between variant detection sensitivity and costs. To investigate            

the effect of sequencing depth in combination with tumor purity in somatic SV detection, we took                

one of the triplicates from each of the simulated ILL tumor purities (98x coverage) and               

subsampled them to 50x, 30x, 10x, 5x and 1x depths. We again performed somatic SV calling                

using the same standard pipeline on each of these simulated sets and calculated recall and               

precision. We observed that for depths of 50x and 98x and tumor purities over 50% recall was                 

over 82%. In the case of 98x, even at TP20 a recall of 71% could be obtained, whereas for 50x                    

at TP25 the recall decreased to 42%. For 30x sequencing depth, at TP100 recall was 84%, but                 

at TP50 there was a decrease to 54% and at TP25 further to 10%. For lower coverages, recall                  

was low. Surprisingly, depths of 30x and 50x had a higher precision at all tumor purities than                 

98x, with precision around 95% over TP50, compared to approximately 70% for 98x. While this               

could in theory be explained by the presence of subclonal SVs that are not included in the                 

reference truth set but become detectable at higher sequencing depth, this might also be              

caused by stochastic effects due to increased measurement noise at higher sequencing depth             

which increases the number of false positive and therefore reduces precision (although recall is              

not affected). Further optimization of analysis tools and settings and deeper sequencing may             

resolve these issues.  
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Figure 4 - Recall and precision of somatic SV calling as function of tumour purity and sequencing                 

depth effect. Different tumor purities (0, 10, 20, 25, 50, 75 and 100 %) were simulated by mixing data                   

from COLO829 and COLO829BL for the ILL, ONT, and PB datasets. (A) Somatic SV calling was                

performed independently for each purity subset and recall (left) and precision (right) were calculated              

against the COLO829 somatic SV truth set. Lines represent the median of independent triplicate              

measurements. (B) For each tumor purity subset in the ILL dataset, different sequencing depths (1, 5, 10,                 

30, 50 and 98x) were sampled. Somatic SV calling was performed independently for each sequencing               

depth and tumor purity subset and recall (left) and precision (right) were calculated against the COLO829                

somatic SV truth set. 

 
 
Discussion 
 

We produced a validated somatic SV truth set by building upon the strengths of different               

sequencing technologies. Bioinformatic integration of results and large-scale independent         

validation strategies turned out to be a powerful approach for reducing the large number of               

candidate events obtained. Manual curation and inspection of raw sequencing data was            

however essential to exclude sequencing, mapping artefacts and remaining germline events.           

These somatic false positives are thus germline false negatives and were likely included in the               

initial somatic SV calls due to the lower sequencing analysis depths for the control sample as                

compared to the tumor (typically 3-fold lower) in combination with specific local genomic             
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characteristics (e.g. lower average coverage due to for example local GC content or involving              

low complexity sequences) (Alioto et al., 2015).  

While reconstruction of the derived chromosomal tumor genome topology based on the 68 truth              

set somatic SVs results in an overall stable genomic configuration for most derived chromatids              

harboring a single centromere and two telomeres, some breakpoint junctions are still clearly             

missing. This is corroborated by the fact that not for all copy number alterations breakpoint               

junctions were identified at either end. Our results indicate that these missing events typically              

involve centromeric regions that are not directly accessible by any current sequencing            

technology. Annotation data provided by the GRIDSS2 SV caller (Cameron et al., 2020).             

suggests a junction between a single break-end in chromosome 3 and the centromere in              

chromosome 1, which shows a copy number change. This can probably not be resolved directly               

due to the repeated nature of the centromeric region. When excluding the missing events that               

likely involve centromeres, there are 2 copy number aberrations that remain unexplained by the              

truth set, providing room for further improvement based on the existing or to be generated data.  

 

Although this study was not designed to compare performance of sequencing platforms or data              

analysis pipelines, some interesting observations can be made. First, there is clear            

complementarity between the various platforms for the comprehensive identification of all real            

events. However, bioinformatic pipelines for somatic SV detection are still clearly in different             

stages for the different platforms with the most commonly used Illumina-based approaches            

yielding lowest numbers of false positives. We believe future tool optimisation for somatic SV              

calling, assisted by gold reference truth sets as well as the development of platform-specific              

germline and artefact filtering data sets (‘pools of normals’) based on large numbers of samples,               

will effectively address this challenge. Second, data analysis pipelines yield different           

annotations for the same event. This calls for further standardisation of variant annotation and              

nomenclature, although some observed differences are intrinsic to the use of short and             

long-read technologies. For example, a long templated insertion may be called as two             

independent translocations by short-read SV callers, while long read-based technology would           

detect this readily as an insertion. Third, despite previous studies showing the added value of               

long reads for SV detection for germline events, our somatic SV truth set is resolved almost in                 

its entirety with the ILL short read dataset. While this may in part be due to the more advanced                   

somatic SV calling pipelines developed for short-read data, this observation may also be             

explained by fundamental differences between germline and somatic SVs, where the latter are             
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much more randomly distributed throughout the genome than inherited germline events.           

Germline variants more often involve complex or repetitive regions of the genome which might              

reflect mechanistic differences like for example the more frequent involvement of non-allelic            

homologous recombination, or be due to differences in selective pressure. As a consequence,             

somatic events may thus on average be more effectively detected.  

 

The COLO829 cell line has the advantage that it is, in contrast to real tumor samples, a                 

renewable source that can be used for assessing the impact of future platform developments or               

the performance of completely new technologies for somatic mutation detection. Although the            

COLO829 cell line is representative for structural variation as observed in cancer, including             

small and large copy number alterations (including aneuploidies) and both simple and complex             

SV events, it is not necessarily representative in all aspects for real tumor samples. First, tumor                

samples do typically not consist of tumor cells only but are a mix of tumor and normal cells (e.g.                   

stromal cells and infiltrating immune cells). We show that the raw data obtained in this study can                 

be used effectively to mimic variable tumor purity and that the truth set is instrumental for                

assessing the performance of the bioinformatic data analysis tools at variable tumor purity. As              

expected, our results show that both recall and precision heavily depend on tumor purity for all                

platforms. Secondly, tumors evolve continuously and are typically genetically heterogeneous,          

especially primary tumors, involving potentially subclonal SV events. While the COLO829 cell            

line has been shown to be genetically heterogeneous and evolving over time and thus could in                

principle capture this tumor feature properly, this variation is dynamic and might be variable              

between cell line isolates as already demonstrated by the various studies on this cell line (Craig                

et al., 2016; Velazquez-Villarreal et al., 2020) and thus limit the utility of a single defined truth                 

set obtained as presented here. Finally, tumors are in general very heterogeneous both within              

the context of a specific tumor type, but especially between tumor types. For example,              

microsatellite instable (MSI) tumors show a high number of small indels (Fujimoto et al., 2020),               

homologous recombination deficient (HRD) tumors present many deletions with microhomology          

and large duplications (Nguyen et al., 2020) and paediatric haematological cancers cancers            

usually show very low mutational load but enhanced levels of somatic SVs, although often              

involving specific but complex genomic loci (e.g. the IgH locus) (Andersson et al., 2015; Ma et                

al., 2018). The specificity for capturing such heterogeneity effectively or the impact of specific              

genomic events that may co-occur in a given tumor sample, like for example whole genome               

duplication or chromothripsis, on overall performance of a specific sequencing technique or data             
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analysis tool is of course not captured in a single cell line and requires the development of                 

complementary datasets. Analysing additional cancer cell lines with matching normal cell lines            

provide an attractive route towards this goal as these represent in principle an endless source of                

genomic material for benchmarking of future DNA analysis technologies, but also for quality             

monitoring in routine production labs under accreditation. However, availability of suited cell            

lines that represent the full genetic diversity of cancer is a clear limitation. Ideally, one would                

thus resort to thoroughly analysed real tumor samples, even though in practice availability of              

sufficient material for multi-lab and multi-technology analyses can be problematic and sharing            

and reusing of patient material and data may require complex consenting and legal procedures.  

 

Taken together, we believe the SV truth set described here as well as the underlying raw data,                 

are a valuable resource for benchmarking and fine-tuning analysis settings of somatic SV calling              

tools, but the data may also be used for the development of novel analysis tools, for example                 

phasing of structural variants. All analysis results and raw data are publicly available to enable               

such applications without access restrictions (ENA accession number: PRJEB27698 and an           

overview of the available data and specific access link can be found at Supplementary Table               
6). We demonstrate this utility by analysing the impact of tumor purity and sequencing depth on                

SV recall and precision for different technologies, thereby providing valuable insights in the             

potential impact of technology platform choice and experimental design in relation to diagnostic             

accuracy and overall costs. Furthermore, these results highlight the need of benchmarking            

somatic SV detection methods at different tumor purities and sequencing depths rather than             

under a single fixed condition, since these parameters are highly variable within and between              

cohorts and can result in strong performance variation.  

 

 

 
Materials and Methods 
 
Sample source 

COLO829 (ATCC® CRL-1974™) and COLO829BL (ATCC® CRL-1980™) cell lines were          

obtained from ATCC in September 2017. A single batch of cells was thawed and cells were                

expanded and grown according to standard procedures as recommended by ATCC. Cell pellets             

were split for technology-specific DNA isolation at 33 days (COLO829 & COLO829BL for the ILL               
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and ONT datasets), 35 days (COLO829 for the PB, 10X and BNG datasets) and 23 days                

(COLO829BL for the PB, 10X and BNG datasets).  

 

Genomic analyses per technology 

Illumina 

COLO829 and COLO829BL libraries were prepped with Truseq Nano reagent kit and            

sequenced on the HiSeq X Ten platform using standard settings and reagent kits (chemistry              

version V2.5). Reads were mapped to GRCh37 with BWA mem (version 0.7.5, (Li, 2013)),              

followed by indel realignment with GATK (v3.4-46, (DePristo et al., 2011) ). SVs were called               

jointly for COLO829 and COLO829BL with GRIDSS (v2.0.1,(Cameron et al., 2020)). Somatics            

SVs were filtered with the GRIDSS somatic SV filtering script  

(https://github.com/PapenfussLab/gridss/blob/master/scripts/gridss_somatic_filter.R). 

Nanopore 

COLO829 and COLO829BL libraries were sequenced on the MinION and GridION platforms            

using R9.4 flow cells. Reads were mapped to GRCh37 with NGMLR (v0.2.6, default             

parameters, (Sedlazeck et al., 2018)) with default parameters. SV calling was performed with             

both NanoSV (v. 1.2.2, default parameters, (Cretu Stancu et al., 2017)) and Sniffles (v1.0.9,              

parameters “--report_BND --genotype”, (Sedlazeck et al., 2018)) for COLO829 and COLO829BL           

separately. All SV calls for both NanoSV and Sniffles were merged with SURVIVOR             

(v1.0.6,(Jeffares et al., 2017)) with a distance of 200 bp and calls with evidence in COLO829BL                

for NanoSV or Sniffles were discarded. 

PacBio 

COLO829 and COLO829BL libraries were sequenced on the Sequel System with the 5.0             

chemistry (binding kit 101-365-900; sequencing kit 101-309-500). Reads were mapped to           

GRCh37 with minimap2 (v2.11-r797, (Li, 2018)). SVs were called jointly for COLO829 and             

COLO829BL with pbsv (v2.0.1, https://github.com/pacificbiosciences/pbsv/) using default       

parameters. Somatic SV calls were filtered by removing any call with a supporting read in               

COLO829BL.  

10X 

COLO829 and COLO829BL 10x genomics libraries were prepared on the Chromium platform            

and sequenced on the NovaSeq platform (chemistry version V1). Reads were analyzed with the              

LongRanger WGS pipeline (v2.2.2) separately for COLO829 (somatic mode) and COLO829BL           

(default parameters). SV calls for COLO829 and COLO829BL were merged with SURVIVOR (v.             
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1.0.6,(Jeffares et al., 2017)) with an overlap distance of 200 bp and SV calls with evidence in                 

COLO829BL were discarded.  

Bionano 

DNA for COLO829 and COLO829BL was labelled using the Bionano Direct Label and Stain              

(DLS) kit. The labelled DNA was linearized in a Saphyr chip and imaging was performed on the                 

Saphyr instrument. SV calling was performed on the Bionano Access platform. For each             

sample, 1.5 million cultured cells were used to purify ultra-high molecular weight DNA using the               

SP Blood & Cell Culture DNA Isolation Kit following manufacturer instructions (Bionano            

genomics, San Diego USA). Briefly, after counting, white blood cells were pelleted (2200g for              

2mn) and treated with LBB lysis buffer and proteinase K to release genomic DNA (gDNA). After                

inactivation of proteinase K by PMSF treatment, genomic DNA was bound to a paramagnetic              

disk, washed and eluted in an appropriate buffer. Ultra-High molecular weight DNA was left to               

homogenize at room temperature overnight. The next day, DNA molecules were labeled using             

the DLS (Direct Label and Stain) DNA Labeling Kit (Bionano genomics, San Diego USA). Seven               

hundred and fifty nanograms of gDNA were labelled in presence of Direct Label Enzyme              

(DLE-1) and DL-green fluorophores. After clean-up of the excess of DL-Green fluorophores and             

rapid digestion of the remaining DLE-1 enzyme by proteinase K, DNA backbone was             

counterstained overnight before quantitation and visualization on a Saphyr instrument. A volume            

of 8.5 microliter of labelled gDNA solution of concentration between 4 and 12ng/ul was loaded               

on the Saphyr chip and scanned on the Saphyr instrument (Bionano genomics, San Diego              

USA). A total of 1.6 Tb and 1.5 Tb of data was collected for the cancer and blood sample,                   

respectively. 

De novo assembly Pipeline and Copy number variants calling were performed and against the              

Genome Reference Consortium Human Build 37 (GRCh37) HG19 human genome assembly           

(RefAligner version 7520). Events detected by the de novo assembly pipeline were            

subsequently compared against the matched blood control, and those that are absent in the              

assembly or the molecules of the control were considered as somatic variants            

(https://bionanogenomics.com/wp-content/uploads/2018/04/30190-Bionano-Solve-Theory-of-Op

eration-Variant-Annotation-Pipeline.pdf). 

 

Consolidation of SV calls  

Somatic SV calls for each dataset (ILL, ONT, PB and 10X) were merged using SURVIVOR (v.                

1.0.6 (Jeffares et al., 2017) with an overlap distance of 200bp. 
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Depth and molecular length calculations 

Average base depth and depth distribution for ILL, ONT, PB and 10X was calculated based on                

1,000,000 random positions on the genome with Sambamba (v0.6.5, (Tarasov et al., 2015)).             

Average base depth for BNG was calculated based on the same 1,000,000 random positions              

using Bedtools (v2.25.0, (Quinlan and Hall, 2010)).  

Average molecular length and length distribution was calculated based on insert size for ILL,              

read length for ONT and PB, on synthetic molecular length based on the MI tag for 10X, on                  

optical map length for BNG. For ILL, average insert size was calculated using Picard (v1.141,               

http://broadinstitute.github.io/picard ).  

 

Copy number analysis 

CNA calling was performed on the ILL dataset with BIC-SEQ2 (v0.7.2, (Xi et al., 2016)). For the                 

remaining datasets, BAM and optical map (xmap) files were converted to BED format using              

Bedtools (v2.25.0, (Quinlan and Hall, 2010)) and CNA calling was performed with Ginkgo             

(Garvin et al., 2015). CNA calls from the different datasets were merged using 1MB bins to                

calculate Pearson’s correlation between datasets and for plotting. 

 

Validations 

Capture: For each break-junction of the merged somatic SV calls 2 capture probes of 100 bp in                 

length were designed, one at either side of the breakpoint, with a maximum distance of 100bp                

from the breakpoint at GC percentage as close as possible to 50%, for a total of 18148 custom                  

probes. These custom capture probes were then ordered from Twist Biosciences. Then,            

libraries for COLO829 and COLO829BL were prepared and hybridized with the biotin-labelled            

custom targeted probes following the manufacturer's protocol (Twist Biosciences catalog IDs:           

100253, 100255, 100527, 100400). Using streptavidin beads the hybridized DNA was pulled            

from the DNA pool, and amplified by PCR. Enriched targeted libraries were sequenced on the               

Illumina NextSeq platform. NextSeq-Capture validation sequencing data were mapped with          

BWA mem (v0.7.5,(Li, 2013)) and SV calling was performed with Manta (v, REF), independently              

for COLO829 and COLO829BL. SV calls for COLO829 and COLO829BL were merged using             

SURVIVOR (v1.0.6, overlap distance of 50bp, (Jeffares et al., 2017)) and only calls with no               

evidence in COLO829BL were considered as somatic and validated. 
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PCR: We selected 88 high-confidence SV candidates for PCR validation based on an initial              

screening of the somatic SV truth set with IGV and added 296 randomly selected additional SV                

candidates for a total of 384 assays. We automatically designed primers for these SV              

breakpoints using Primer3 (v1.1.4, (Untergasser et al., 2012)). PCR assays were performed on             

COLO829 and COLO829BL genomic DNA. Libraries were prepared for PCR results and            

sequenced on both the MiSeq and ONT-MinION platforms. MiSeq-PCR validation sequencing           

data were mapped with BWA mem (v0.7.5,(Li, 2013)) and SV calling was performed with Manta               

(v0.29.5, (Chen et al., 2016)), independently for COLO829 and COLO829BL. ONT PCR            

validation sequencing data were mapped with minimap2 (v2.15, (Li, 2018)), and SV calling was              

performed with NanoSV (v1.2.2, default parameters, (Cretu Stancu et al., 2017)) independently            

for COLO829 and COLO829BL. Moreover, 70 additional SV calls that were shown as somatic in               

the Capture validation set were also subjected to PCR and products were sequenced on the               

MinION through the same protocol described above. 

SV calls for COLO829 and COLO829BL from the Miseq-PCR and the two Nanopore-PCR sets              

were merged using SURVIVOR (v1.0.6, overlap distance of 50bp, (Jeffares et al., 2017)). Only              

SV calls with no evidence in any of the COLO829BL sets were considered somatic and               

validated.  

 

FISH: For FISH validation, we selected probes that bind to 6 genomic regions, including              

Chromosome Enumeration Probes (CEP) for the centromeric region of chromosome 13, 16 and             

18 (CEP13, CEP16, CEP18), labeled with SpectrumOrange (Abbott Vysis, Downers Grove, IL)            

and centromeric region of chromosome 9 (CEP9), labeled with SpectrumAqua (Leica           

Biosystems, Amsterdam). Furthermore, locus specific break-apart probes for chromosome 2p23          

fusion (SpectrumOrange/SpectrumGreen, Vysis ALK Break Apart, Abbott Vysis, Downers         

Grove, IL) and 9p24 fusion (SpectrumOrange/SpectrumGreen Leica Biosystems, Amsterdam)         

were used. 

COLO829 cells were dissociated using trypsin, counted, washed and diluted to contain a total of               

50,000 cells in 100 µl. Monolayer cell suspensions were concentrated on a microscope slide              

using cytospin. Then, FISH was performed according to diagnostic standards. Slides were            

visualized on a Leica DM5500 fluorescence microscope and for each probe, 100 cells/slide             

were recorded. 

 

SV selection pipeline 
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Merged somatic SV calls were overlapped with the validation outcomes with SURVIVOR (v.             

1.0.6, (Jeffares et al., 2017)) using an overlap distance of 50bp (PCR, CAPTURE) and 1kbp               

(BNG). Only somatic SV calls with support from multiple datasets and calls with support from a                

single dataset which were validated were selected. SVs involving unstable microsatellites were            

not considered as part of our analyses. All calls were manually curated by using the SV-plaudit                

cloud based framework (Belyeu et al., 2018) that uses Samplot to generate images from SV               

coordinates and BAM files. We generated such images for the somatic SV calls for each dataset                

(ILL, ONT, PB and 10x) and for the validations (PCR-ONT, PCR-MISEQ and CAPTURE). We              

evaluated each of these image datasets independently and classified each somatic SV call as              

“somatic”, “germline” or “false positive”. We also used the Integrated Genome Viewer (IGV,             

v2.4.0, (Robinson et al., 2017)) to verify some SVs. We performed the same analysis on 176                

randomly selected SV calls belonging to a single dataset and which were not validated. Finally,               

we gathered the somatic SV calls and generated the final somatic VCF file.  

 

Comparison to external sources 
CNA calls from (Arora et al., 2019) were downloaded (HiSeq dataset,           

https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/) and lifted to    

GRCh37 genomic coordinates with liftOver (UCSC). CNA calls from the four different single cell              

clusters were obtained from (Velazquez-Villarreal et al., 2020). These datasets were then            

merged using 1MB bins to calculate Pearson’s correlation between datasets and for plotting. 

The two somatic SV sets from (Arora et al., 2019) (HiSeq and NovaSeq sets,              

https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/) were  

downloaded. Since these are BEDPE files based on GRCh38 genomic coordinates, we            

converted our somatic SV truth set to BEDPE format and lifted it to those coordinates using the                 

liftOver tool from UCSC. We then intersected those SV sets with our truth set using Bedtools                

(v2.25.0, (Quinlan and Hall, 2010)) and differentiated between SVs with overlap on both sides,              

overlap only on one side and not overlapping. We lifted all SVs with no overlap or one-sided                 

overlap and manually evaluated them in our data using IGV v2.4.0, (Robinson et al., 2017)). 

 

Tumor purity and sequencing depth analysis 

For tumor purity simulations in each of the ILL, ONT and PB datasets, COLO829 and               

COLO829BL BAM files were randomly subsampled and mixed in different ratios, dependent on             

the sequencing depth to achieve in silico tumor purities of 10, 20, 25, 50 and 75 with                 
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Sambamba (v0.6.5, (Tarasov et al., 2015)). The same somatic SV calling pipeline used for the               

different datasets was applied to each of the tumor purity subsets. The resulting somatic SV file                

of each tumor purity subset was overlapped using a window of 100bp with the truth set VCF to                  

determine the number of true and false positives and true negatives. This experiment was              

performed in triplicate for each tumor purity and each technology with the original COLO829              

BAM file as positive control (100% tumor purity) and the original COLO829BL BAM file as               

negative control (0% tumor purity). 

For sequencing depth simulations using the ILL dataset, one of the triplicates from each tumor               

purity simulation was selected together with the COLO829 and COLO829BL files. Each of these              

BAM files was subsampled to depths of 1x, 5x, 10x, 30x and 50x (plus the original 98x) with                  

Sambamba (v0.6.5, (Tarasov et al., 2015)). Somatic SV calling was performed independently            

for each of the subsets and the resulting somatic SV VCF file was overlapped with the truth set                  

to determine the number of true and false positives and false negatives.  

 

Data availability 

Genomic data is available on EGA project PRJEB27698 

Raw, somatic and truth set VCF files, and CNA files are available in Zenodo DOI:               

10.5281/zenodo.3988185 

 

Code availability 
All code used in the preparation of the somatic SV truth set is available at:               

https://github.com/UMCUGenetics/COLO829_somaticSV 

The code used for simulations of tumor purity and sequencing depth is available at: 

https://github.com/UMCUGenetics/tumps 

Figure panels 2-A, 3-C and 3-D were created using Biorender.com. 
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Supplementary Figure 1 - Related to figure 1: Copy number correlation within our datasets and 
external datasets.  
Correlation index of CNA calls for (A) each of the pairwise comparisons of the datasets generated in our 
study and (B) the comparison of our ILL dataset and the external sets from bulk sequencing in NYGC 
(Arora et al., 2019) and the 4 clusters differentiated by single cell sequencing (scA-D) (Arora et al., 2019; 
Velazquez-Villarreal et al., 2020). (C) Copy number profile of the ILL and the external sets. (D) Copy 
number status of 6 distinct genomic locations as determined by FISH 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.340497doi: bioRxiv preprint 

https://paperpile.com/c/Dw3Lty/sJJRx
https://paperpile.com/c/Dw3Lty/sJJRx+J229
https://paperpile.com/c/Dw3Lty/sJJRx+J229
https://doi.org/10.1101/2020.10.15.340497
http://creativecommons.org/licenses/by/4.0/


 

 
 
 
Supplementary Figure 2 - Related to figure 2: Generation of a somatic SV truth set 
(A) Intersection of the total of 8,831 candidate SV calls merged from all platforms used and presence per 
in the raw call set per technology. (B) Number of validated somatic SV calls per validation approach 
including multi technology support (MULT). Manual curation statistics for (C) validated or multi-dataset SV 
calls and (D) non-validated and single-dataset SV calls. FP = false positive, GL = evidence in germline, 
DUP = duplication of an already called SV, SOM = real somatic variant.  
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Supplementary Figure 3 - Related to figure 3: Characterization of the somatic SV truth set 
(A, B) IGV screenshots of mapped reads from the ILL, ONT and PB datasets for COLO829 (T) and 
COLO829BL (BL) of two CNAs on chromosome 1 without associated somatic SVs in the truth set. 
Overlap of somatic SV calls between our truth set and the two somatic SV sets reported by (Arora et al., 
2019), the Hiseq set (C) and the Novaseq set (D). One-sided overlaps (i.e. when only one breakpoint of 
the SV overlaps) are included on the overlap. Numbers in parenthesis indicate the overlap from the Arora 
set point of view.  
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Supplementary Movie - Reconstruction of the breakage-fusion-bridge event in         
chromosome 3: Animated reconstruction of a breakage-fusion-bridge event consistent with the           
breakpoints and copy number profile of chromosome 3 in COLO829. This circos plot shows the               
evolution in time and over various cell divisions of the chromosome involving 4 cycles of               
breakage-fusion-bridge followed by a genome doubling event. The innermost track shows minor            
allele ploidy (orange indicates loss, blue amplification). The next track shows the copy number              
profile (purple indicates loss, green amplification). The line track shows the reconstructed            
chromosome. Breakpoints are represented by triangles and connecting arcs, telomeric ends of            
the chromosome by squares, and unrepaired double-stranded breaks by circles. DNA gained by             
replication and new breakpoints formed through DNA repair are indicated in blue, with lost DNA               
in orange. The outer track shows chromosome number and coordinate. A non-linear            
chromosomal coordinate scale is used with distances between breakpoints shown in black            
overlaying the copy number track. A cell cycle clock is shown in the upper left corner indicating                 
at what point in the cell cycle each rearrangement occurs. The final stabilising repair to the                
centromere of another chromosome is omitted for clarity. 
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