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Proteome constraints reveal targets for improving microbial fitness in nutrient-rich 1 
environments 2 
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 2 

Cells adapt to different conditions via gene expression that tunes metabolism and stress 1 
resistance for maximal fitness. Constraints on cellular proteome may limit such expression 2 
strategies and introduce trade-offs1; Resource allocation under proteome constraints has 3 
emerged as a powerful paradigm to explain regulatory strategies in bacteria2. It is unclear, 4 
however, to what extent these constraints can predict evolutionary changes, especially for 5 
microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen 6 
sources, such as the lactic acid bacterium Lactococcus lactis. Here we present an approach 7 
to identify preferred nutrients from integration of experimental data with a proteome-8 
constrained genome-scale metabolic model of L. lactis (pcLactis), which explicitly accounts 9 
for gene expression processes and associated constraints. Using glucose-limited chemostat 10 
data3, we identified the uptake of glucose and arginine as dominant constraints, whose 11 
pathway proteins were indeed upregulated in evolved mutants. However, above a growth 12 
rate of 0.5 h-1, pcLactis suggests that available enzymes function at their maximum capacity, 13 
which allows an increase in growth rate only by altering gene expression to change 14 
metabolic fluxes, as was mainly observed for arginine metabolism. Thus, our integrative 15 
analysis of flux and proteomics data with a proteome-constrained model is able to identify 16 
and explain the constraints that form targets of regulation and fitness improvement in 17 
nutrient-rich growth environments. 18 
 19 
The fitness of unicellular organisms is determined by adaptions to environmental conditions1, 20 
and is optimized by regulating metabolic processes that generally lead to higher growth rates4. 21 
Growth rates are finite, as the metabolic processes supporting growth are constrained 22 
through limits imposed by external conditions, e.g., nutrient availability, and internal factors 23 
that relate to cell morphology, enzyme kinetics and physicochemical properties such as 24 
solvent capacities. In particular, constraints on the allocation of the proteome, due to limited 25 
membrane area or intracellular volume, have aided to understand metabolic adaptions of 26 
microorganisms5–7, specifically, the overflow metabolism in Escherichia coli8–10 and the 27 
Crabtree effect in Saccharomyces cerevisiae11–13.  28 
 29 
However, much less is known about metabolic adaptations in other organisms, and especially 30 
those cultivated under conditions with multiple available substrates, such as in nutrient-rich 31 
environments like the gut or food. It was previously shown that anaerobic overflow 32 
metabolism in the lactic acid bacterium L. lactis is not accompanied by changes in associated 33 
protein levels3, questioning the generality of the resource allocation paradigm. However, 34 
changes in gene expression were observed, in particular in amino acid metabolism, prompting 35 
us to revisit the cellular economics of L. lactis. 36 
 37 
L. lactis is an important model lactic acid bacterium and work horse for the dairy industry - 38 
production of cheese in particular14,15. Many strains are auxotrophic for at least five amino 39 
acids16,17, and thus L. lactis strains are grown in nutrient-rich environments where amino acids 40 
are usually in excess. Many of these amino acids participate not only in anabolic processes but 41 
also their catabolism can contribute to energy metabolism18. For example, arginine catabolism 42 
directly yields ATP and is tightly regulated19, while other amino acids can contribute to pH or 43 
redox homeostasis, saving ATP-costly alternatives20. It is, however, not known whether 44 
proteome constraints guide choices in non-sugar substrates, e.g., amino acids. 45 
 46 
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 3 

We therefore developed pcLactis, a proteome-constrained genome-scale metabolic model of 1 
L. lactis. We first updated a published genome-scale metabolic model for L. lactis MG136321,22 2 
mostly by adding transport capacities and gene protein reaction associations (Supplementary 3 
Data 1). Second, we added the gene expression processes, including transcription, stable RNA 4 
cleavage, mRNA degradation, tRNA modification, rRNA modification, tRNA charging, 5 
ribosomal assembly, translation, protein maturation and assembly, and protein degradation 6 
(Fig 1a). By integrating the two reconstructions, we obtained pcLactis, which accounts for 725 7 
protein-coding genes and 81 RNA genes in L. lactis MG1363. According to the PaxDb 8 
database23, pcLactis accounts for approximately 60% of the total proteome by mass 9 
(Supplementary Data 2). The model’s proteome therefore includes 40% unmodelled protein 10 
of average amino acid composition. We constrain metabolic fluxes by enzyme levels, following 11 
standard enzyme kinetics; Enzyme levels follow from mass balancing synthesis rate and 12 
degradation and dilution by growth (Fig 1b). Total protein synthesis rates are constrained by 13 
ribosomal translation capacity and by a total proteome constraint, i.e., a maximum size of the 14 
proteome. We use inactive enzyme, again with average amino acid composition, to fill up the 15 
total proteome in cases of low enzymatic activity, e.g. at low growth rates. Inactive enzyme 16 
can be seen as the excess capacity of the total modelled proteome. 17 
 18 
We used published proteomics and flux data from chemostats for model evaluation, and 19 
simulated glucose-limited conditions by minimizing the glucose concentration at a fixed 20 
specific growth rate with an upper bound on the expression of the glucose transporter. The 21 
model predicted the glucose uptake rates well (Fig 1c) and indicated -as expected- increased 22 
saturation of the glucose transporter with growth rate (Fig 1d). Additionally, pcLactis 23 
predicted overflow metabolism, i.e., a metabolic switch from mixed acid to lactic acid 24 
fermentation, corresponding to simultaneous changes at the proteome level (Fig S1a), but at 25 
a much higher growth rate than experimentally observed (Fig 1c). However, experimental 26 
evidence showed that the metabolic switch in L. lactis does not relate to considerable 27 
proteome changes3 and therefore the switch predicted by pcLactis might probably not reflect 28 
the true reason for overflow metabolism; The metabolic switch rather involves enzyme 29 
kinetics that are beyond the current stoichiometric model (see24 for a possible explanation). 30 
More importantly, the model predicted that at a dilution rate (D) higher than 0.5 h-1, the 31 
fraction of inactive enzyme becomes zero (Fig 1e). This means that at that point all proteins 32 
are maximally active and any flux change can only be brought about by changes in protein 33 
levels, not enzyme saturation. The proteomics data showed genome-wide protein reallocation 34 
when growth rate increased beyond that point3, validating the model prediction.  35 
 36 
To identify the “active” constraints, i.e., constraints that limit the growth rate in pcLactis, we 37 
developed a sensitivity analysis for proteome-constrained models. Glucose transport 38 
expression was an active constraint at low growth rates and its sensitivity dropped at the 39 
moment the inactive protein reached zero (Fig 1f); At that point, the total proteome also 40 
became limiting. This reflects the increased demand in proteome resource at high growth 41 
rates, both for metabolic fluxes and protein translation machinery (Fig S1a). Thus, around D = 42 
0.5 h-1, the model switched from glucose-limited to combined glucose and proteome limited. 43 
 44 
In the model, the transition to proteome limited growth was reflected in amino acid 45 
metabolism, not overflow metabolism. However, including amino acid uptake in pcLactis was 46 
challenging as the amino acid consumption could not be constrained by the model due to 47 
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 4 

insufficient data of expression and kinetics for amino acid transport systems. This would thus 1 
lead to an overestimation of uptake and growth rate when setting free exchange rates of all 2 
20 amino acids to mimic the medium of L. lactis, where amino acids are mostly in excess. 3 
However, published amino acid data3 showed that apart from aspartate and glutamate all the 4 
detected amino acids were taken up linearly with growth rate (Fig 2a). We therefore imposed 5 
growth rate-dependent upper bounds on the uptake rates of all amino acids based on these 6 
measurements. To distinguish anabolism and catabolism, we compared the uptake of amino 7 
acids with their tRNA charging flux, which represents the flux towards protein synthesis. To 8 
analyse the results, we performed a so-called scaled reduced cost analysis, which is a 9 
sensitivity analysis of the uptake bounds on the growth rate (Fig 2b). 10 
 11 
The predicted uptake fluxes of most amino acids follow the upper bound set by the 12 
experimental data. Many of those amino acids were overconsumed and thus catabolized, in 13 
agreement with model predictions (Fig 2a). Based on the scaled reduced cost analysis, their 14 
catabolism contributed to growth rate (the mechanistic basis of many of those were 15 
previously analysed for Lactobacillus plantarum25). Those amino acids with little impact on 16 
growth rate, based on the scaled reduced cost analysis, are taken up by L. lactis according to 17 
protein synthesis demand. Thus, pcLactis can explain overconsumption of specific amino acids 18 
according to growth rate optimisation. This is interesting, as many of the catabolic products 19 
contribute to flavour formation in food fermentations. Leucine, tryptophan and to a lesser 20 
extent valine were exceptions (Fig 2a). In L. plantarum leucine and valine catabolism 21 
contributes to the redox balance, which requires a NADP-dependent glutamate 22 
dehydrogenase25; L. lactis, however, lacks this enzyme26. The reason for overconsumption of 23 
these amino acids thus remains to be unravelled. 24 
 25 
When the total proteome becomes an active constraint at a growth rate around 0.5 h-1, we 26 
observe a drop in several amino acid overconsumptions in pcLactis. This is also reflected in a 27 
drop in reduced cost of the respective amino acids (Fig 2), indicating that the metabolic benefit 28 
was not high enough for the now constraining protein investment in the catabolic pathway. 29 
Experimentally, not all amino acids dropped at this point, although data is more variable at 30 
the highest growth rate. However, the most pronounced change in flux was observed for 31 
arginine, the amino acid that also had the highest (drop in) reduced cost. Arginine is also the 32 
only amino acid whose catabolism directly yields ATP. The predicted changes in the fluxes of 33 
catabolic products ornithine and ammonium (Fig S1b), and the concomitant changes in 34 
protein levels of the pathway (Fig S1a) together with experimental observations3,19, confirm 35 
that pcLactis correctly captured the switch in arginine catabolism.  36 
 37 
We noted that the arginine switch preceded the onset of overflow metabolism (lactate) in 38 
pcLactis (Fig S1c). We constructed a small model to analyse this switching behaviour, 39 
expecting that protein efficiency, i.e. ATP produced per protein mass per time, was key13. We 40 
defined three independent ATP-producing pathways, glycolysis pathway with mixed acid 41 
fermentation or with lactate formation, and arginine catabolism (Fig 3a), and estimated ATP 42 
yield, protein cost and protein efficiency (Fig 3b) for each pathway using pcLactis. With these 43 
parameters, we formulated a linear program to maximize ATP production flux subject to total 44 
proteome constraints with flux bounds (Fig 3c). We varied glucose uptake fluxes and found 45 
three distinct phases: when the total proteome is not constrained both mixed acid 46 
fermentation and arginine catabolism are used (phase A, Fig 3d), as mixed acid fermentation 47 
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 5 

has the highest ATP yield and arginine provides extra ATP at no protein burden. Once the total 1 
proteome is constrained (phase B, Fig 3d), the flux through arginine catabolism goes down 2 
due to its lowest protein efficiency. When arginine catabolism is completely inactive, mixed 3 
acid fermentation is traded in for lactate formation (phase C, Fig 3d), as its protein efficiency 4 
is lower than lactic acid fermentation. Furthermore, the small model reproduced the 5 
sensitivity results in terms of the constraints on glucose and arginine uptake (Fig 3d). Thus, 6 
the small model captures the behaviour of the full model, reinforcing earlier theoretical 7 
results that the number and nature of the active constraints determine behaviour, irrespective 8 
of the size of the network24.  9 
 10 
Since pcLactis uses optimisation, we investigated if the predicted high sensitivities for glucose 11 
and arginine metabolism would provide targets for fitness improvements. For the simulations 12 
we used previously experimentally determined constraints on the uptake of amino acids3, 13 
which could be suboptimal under glucose-limited chemostat conditions. We therefore 14 
compared wild type L. lactis MG1363 with a mutant strain (designated 445C1) that evolved 15 
from MG1363 under glucose-limited chemostat conditions at D = 0.5 h-1, which harbours a 16 
point mutation in the global carbon catabolite repression regulator (CcpA)27. This CcpA mutant 17 
shows a twofold increase of mixed acid fermentation at the endpoint of the laboratory 18 
evolution experiment, while fermentation towards lactate is decreased27. This change in 19 
metabolism is consistent with the prediction that the total proteome constraint is not yet 20 
active at 0.5 h-1, as that would provide a driving force towards lactate formation (Fig 3).  21 
 22 
To further validate predictions, we assessed protein allocation and amino acid metabolism of 23 
wild type and CcpA mutant, not studied before. We therefore re-cultivated both strains in 24 
glucose-limited chemostats at D = 0.5 h-1 and compared them at the proteome and metabolic 25 
level (Fig 4a). Principal component analysis of the proteomics data confirmed reproducibility 26 
(Fig S2). Apparent catabolic and total carbon balances were between 89 and 100% 27 
(Supplementary Data 3). We also found increased mixed acid and decreased lactic acid 28 
fermentation for the CcpA mutant compared to wild type (Fig S3), in agreement with the 29 
published data27.  30 
 31 
The proteomics data showed that arginine catabolism, including its uptake system are 32 
significantly upregulated in the CcpA mutant compared to the wild type (Fig 4b; Fig S4). 33 
Consequently, we found an increased arginine uptake flux in the CcpA mutant (Fig 4c), to the 34 
extent that no residual arginine was detected anymore in its supernatant (Fig 4d). Other amino 35 
acids revealed no clear changes (Fig 4c, Fig S5), even though some had nonzero reduced costs 36 
as well, likely because metabolism of these amino acids is not under control of CcpA28. Taken 37 
together arginine could be the most effective amino acid on optimizing fitness under the 38 
chosen conditions as predicted by our model.  39 
 40 
We further found a significantly increased protein fraction of glucose transporters in the CcpA 41 
mutant (p < 0.001) (Fig 4e), confirming that glucose uptake capacity was growth-limiting in 42 
the wild type. Even though the total proteome is not limiting at D = 0.5 h-1, we did find changes 43 
in cytosolic protein fractions, notably the glycolysis fraction (Fig 4e), while other proteins, not 44 
used by pcLactis under glucose limitation, were downregulated, e.g., peptide digestion and 45 
NADH oxidases (Fig 4b, Fig S4). These may be part of the global catabolite repression effect of 46 
the CcpA mutation without large fitness impact. Alternatively, upregulation of glycolysis may 47 
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 6 

relieve inhibition on glucose transport, such as the negative impact of fructose 1,6-1 
bisphosphate on the PTS system, via HPr29. 2 
 3 
We did not find a considerable change in the total protein membrane fraction (Table S1), 4 
suggesting that the membrane protein occupancy is independent of the tested conditions and, 5 
given the need to transport many nutrients, possibly maximally occupied. If fully occupied, an 6 
increase of one protein would go at the cost of another protein. In the CcpA mutant we found 7 
an overrepresentation of significantly changed membrane proteins (p = 0.030 compared to 8 
random distribution of significantly changed proteins over membrane and cytosolic protein 9 
fraction, Table S1), amongst which downregulation of unused transport systems such as for 10 
peptides (Opp operon in Fig 4b). The idea that the membrane is fully occupied with proteins 11 
would also explain why amino acid uptake is not higher in wild type. It is therefore anticipated 12 
to impose a constraint on total membrane proteins in future simulations when transporter 13 
kinetics are available.  14 
 15 
In conclusion, we show that integration of flux and proteomics data with a proteome-16 
constrained genome-scale model allows for advanced sensitivity analysis of growth in complex 17 
nutrient environments. These sensitivities are predictive for evolutionary change, providing 18 
deeper understanding of the driving forces that shape regulatory strategies. We find changes 19 
in sensitivity that reflect which constraints become active under different growth rate regimes. 20 
Rather than the shift between mixed acid and lactic acid fermentation, we show that arginine 21 
metabolism, the third ATP yielding pathway in L. lactis and many other bacteria, is subject to 22 
proteome-constraint driven protein reallocation, mediated by CcpA. And after all, also L. lactis 23 
appears to abide to the microbial growth laws30 of cellular resource allocation.  24 
 25 
Methods 26 
Proteome-constrained model construction. The detailed construction procedure is described 27 
in the Supplementary Note. Firstly, we updated the existing genome-scale metabolic model 28 
of L. lactis MG136321,22 in terms of transport reactions and gene-protein-reaction (GPR) 29 
associations by using MetaDraft (http://doi.org/10.5281/zenodo.2398336), a tool that 30 
reconstructs genome-scale metabolic networks based on previous manually curated ones by 31 
homology between genes, and subsequently manual curation. For non-spontaneous reactions 32 
with missing GPRs, we assigned a “dummy” protein as their catalysts to eliminate potential 33 
bias toward using them in simulations. Then we split reactions with isozymes into multiple 34 
reactions that each is catalysed by one isozyme, and reversible reactions into forward and 35 
reverse direction. In addition to updating and reformulating metabolic reactions, we 36 
formulated reactions for transcription, stable RNA cleavage, mRNA degradation, tRNA 37 
modification, rRNA modification, tRNA charging, ribosomal assembly, translation, protein 38 
maturation, protein assembly, enzyme formation, and protein degradation. Additionally, we 39 
formulated dilution reactions for RNA and enzymes to represent their dilution to daughter 40 
cells during cell division. Lastly, we modified the biomass equation of the metabolic model, 41 
i.e., removed protein and RNA from the equation as they were represented by dilution 42 
reactions, and added an unmodelled protein to account for all the other proteins that are not 43 
synthesized by the model. The genome-scale metabolic model was updated using CBMPy 44 
(https://doi.org/10.5281/zenodo.3485023), while pcLactis was constructed using the COBRA 45 
toolbox31.   46 
 47 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.340554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.340554
http://creativecommons.org/licenses/by/4.0/


 7 

Constraints and kinetics parameters. In addition to classical constraints of GEMs, e.g., mass 1 
balance and bounds on reaction rates, two protein constraints are imposed including a fixed 2 
bound on the total modelled proteome and an upper bound on the abundance of glucose 3 
transporter (Supplementary Note). The fraction of modelled proteome was estimated 4 
according to the PaxDb database23, where abundance of each protein is collected. The data is 5 
however available only for L. lactis IL1403, and thus we performed BLASTp for mapping 6 
protein IDs between L. lactis IL1403 and MG1363. As a result, we obtained a list of proteins in 7 
L. lactis MG1363 with available abundance data (Supplementary Data 2). It should be noted 8 
that we filtered out the proteins of blocked reactions that would never carry fluxes in the 9 
model. 10 
 11 
Besides, pcLactis accounts for coupling constraints that relate enzymes and machineries to 12 
their catalytic functions. In pcLactis such constraints are imposed for coupling enzymes to 13 
metabolic reactions, RNA polymerase to transcription reactions, ribosomes to translation 14 
reactions, and so on. All the coupling constraints are detailed in the Supplementary Note. In 15 
order to determine coefficients in the coupling constraints, we automatically retrieved 16 
turnover rates of metabolic enzymes from the BRENDA database32 using the GECKO toolbox12 17 
but also manually adjusted some according to literatures. Besides, we estimated catalytic 18 
rates of gene expression machineries, including ribosome, RNA polymerase, mRNA and tRNA, 19 
in the same way as done for ME-Model of E. coli9 based on reported data20,33 for L. lactis. 20 
Detailed description can be found in the Supplementary Note. 21 
 22 
Simulations with pcLactis for anaerobic glucose-limited conditions. Since growth rate is 23 
integrated into coupling constraints in linear programming, it should be used as input for 24 
simulations. Therefore, we used a binary search workflow to obtain the minimal extracellular 25 
glucose concentration that leads to a feasible solution for any given growth rate to simulate 26 
glucose-limited conditions. This approach is based on the Michaelis-Menten equation with a 27 
fixed upper limit on the concentration of the glucose transporter: 28 

𝑞𝑆 = 𝑘𝑐𝑎𝑡[𝐸]𝜎 = 𝑘𝑐𝑎𝑡[𝐸]
𝑆

𝐾𝑀 + 𝑆
, [𝐸] ≤ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 29 

in which 𝑞𝑆 is the glucose uptake rate, 𝑘𝑐𝑎𝑡  is the turnover rate of the glucose transporter 30 
adopted from E. coli34, [𝐸] is the concentration of the glucose transporter, 𝜎 is the saturation 31 
of the glucose transporter, 𝑆  is the extracellular glucose concentration and 𝐾𝑀  is the 32 
Michaelis constant obtained from the study27. The upper bound on the concentration of the 33 
glucose transporter was estimated using pcLactis, i.e., the minimal concentration that gives a 34 
feasible solution for the maximal growth rate. According to the Michaelis-Menten equation, 35 
searching for the minimal extracellular glucose concentration is equal to searching for the 36 
lowest saturation 𝜎, which is equivalent to minimizing the glucose uptake rate when the upper 37 
bound of the concentration of the glucose transporter is hit.  38 
 39 
The binary search solved successive individual linear programs, which maximizes the 40 
production of the dummy protein subject to stoichiometric and coupling constraints. Lower 41 
and upper bounds of some reactions were also constrained. Notably, amino acid exchange 42 
fluxes were constrained by growth rate-dependent upper bounds based on experimental 43 
data3. Besides, biomass dilution reaction, which represents the dilution of other biomass 44 
components than modelled protein and RNA, was fixed according to the growth rate. Due to 45 
the anaerobic condition we blocked two reactions, i.e., oxygen exchange reaction and 46 
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 8 

pyruvate oxidase reaction. In addition, we blocked one alcohol dehydrogenase reaction 1 
catalysed by the isozyme llmg_0955, and two glucose transport reactions due to low protein 2 
levels3. Simulations were solved using Soplex 4.0.0 (https://soplex.zib.de/). 3 
 4 
Small model and simulations. The small model was extracted from pcLactis, which contains 5 
three pathways including glycolysis pathway with mixed acid fermentation, glycolysis pathway 6 
with lactic acid fermentation and arginine catabolism.  7 
 8 
We estimated ATP yield, protein cost and protein efficiency for each pathway. Firstly, we 9 
identified the flux distribution of each pathway by solving a linear program with the metabolic 10 
part of pcLactis. For each simulation, the upper bound on ATP maintenance reaction was set 11 
free in order to account for ATP consumption. For mixed acid fermentation, the linear program 12 
is to maximize ATP maintenance reaction subject to a fixed glucose uptake rate of 1 13 
mmol/gCDW/h. For lactate acid fermentation, the linear program is to maximize lactate 14 
production subject to a fixed glucose uptake rate of 1 mmol/gCDW/h and ATP maintenance 15 
reaction rate of 2 mmol/gCDW/h. For arginine catabolism, the linear program is to maximize 16 
ATP maintenance reaction subject to a fixed arginine uptake rate of 1 mmol/gCDW/h. 17 
Accordingly, we calculated ATP yield for each pathway, i.e., the flux of ATP maintenance 18 
reaction over uptake rate of substrate. Secondly, we estimated the protein cost for each 19 
pathway based on the flux distribution, which is the protein cost of each reaction in the 20 
pathway times the corresponding flux value. The protein cost of a reaction is molecular weight 21 
of the corresponding enzyme over its turnover rate13, and therefore can be extracted from 22 
pcLactis. Lastly, the protein efficiency of each pathway is ATP yield over protein cost. 23 
 24 
With the parameters, we generated a linear program of fluxes through the three pathways, 25 
which is to maximize ATP production flux subject to constraints on uptake fluxes of substrates, 26 
i.e., glucose and arginine, and total proteome. We performed the simulations for a wide range 27 
of glucose uptake fluxes.  28 
 29 
Scaled reduced cost analysis. We performed the scaled reduced cost analysis25 for uptake 30 
rate of each amino acid on growth rate with pcLactis. The scaled reduced cost 𝑅𝑖 of the growth 31 
rate 𝜇𝑖  with respect to the uptake rate of an amino acid 𝑞𝑖  is calculated as: 𝑅𝑖 =32 
(∆𝜇 ∆𝑞⁄ )(𝑞𝑖 𝜇𝑖⁄ ). We imposed a small increase in the uptake rate of each amino acid ∆𝑞 =33 
0.01 to investigate the change in growth rate ∆𝜇. 34 
 35 
Sensitivity analysis. We performed sensitivity analysis for two constraints with pcLactis, i.e., 36 
the glucose transporter and modelled proteome, on growth rate. The sensitivity score 𝑆𝑖 of 37 
the growth rate 𝜇𝑖 with respect to a given constraint 𝑐𝑖 is calculated as: 𝑆𝑖 = (∆𝜇 ∆𝑐⁄ )(𝑐𝑖 𝜇𝑖⁄ ). 38 
With pcLactis, we imposed a small increase ∆𝑐 = 0.01  in the glucose transporter and 39 
modelled proteome to investigate the change in growth rate ∆𝜇 at different conditions. We 40 
also performed sensitivity analysis with the small model for glucose uptake, proteome 41 
allocated to the small model and arginine uptake using the small increase ∆𝑐 = 0.01  to 42 
investigate the change in ATP production rate 𝑞𝐴𝑇𝑃, i.e., the sensitivity score 𝑆𝑖 is calculated 43 
as: 𝑆𝑖 = (∆𝑞𝐴𝑇𝑃 ∆𝑐⁄ )(𝑐𝑖 𝑞𝐴𝑇𝑃⁄ ). 44 
 45 
Strains and media. Lactococcus lactis ssp. cremoris MG1363 is a plasmid cured derivative of 46 
strain NCDO71235,36. Strain 445C1 is a derivative of MG1363 isolated after prolonged 47 
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cultivation in a chemostat27. Cultivation of strains were performed in chemically defined 1 
medium for prolonged cultivation (CDMpc)27 , supplemented with 25 mM glucose as limiting 2 
carbon source at 30°C.  3 
 4 
Chemostat cultivation. Proteome, metabolite and amino acid samples were obtained from 5 
four steady state chemostats. Chemostat cultivation took place in 300 mL bioreactors with 6 
270 mL working volume, under continuous stirring (using magnetic stirrers), while standing in 7 
30°C water baths. The headspace was continuously flushed with 5% CO2 and 95% N2. pH was 8 
controlled at 6.5 using 2.5 M NaOH. The pH probe was calibrated before and after the pre-9 
culture in the reactor. CDMpc with 25 mM glucose was added at a rate of 2.25 mL/min. 10 
Superfluous liquid was continuously removed from the top of the reactor to maintain a 11 
volume of 270 mL. This results in a dilution rate of 0.5 h-1. The flow rate of each medium pump 12 
was calibrated right before inoculating the reactor and checked again at the end of the 13 
experiment. The exact volume of liquid in each reactor was determined at the end of the 14 
experiment by weighing the reactor liquid. 15 
 16 
To start up a chemostat culture, 5 mL CDMpc with 25 mM glucose was inoculated with glycerol 17 
stocks of the respective strains, taken from a -80°C. This was directly added to the reactor 18 
containing 265 mL fresh 25 mM glucose CDMpc. The reactor was operated in batch mode (no 19 
medium addition, pH regulated, effluent pump on, 30 °C, continuous stirring, headspace 20 
sparged) for 24 hours, allowing the cells to reach the stationary phase. This was verified by 21 
observing that the pH remained constant without addition of 2 M NaOH. After 24 hours the 22 
medium pump was switched on. The chemostat was operated for 8 volume changes before 23 
samples were taken. Samples were taken from the effluent of the reactor. Retention time in 24 
the effluent tube was <2 minutes. Sample tubes were kept on ice while sample was being 25 
collected. For each strain four replicate chemostats were cultivated. 26 
 27 
Sampling procedures and measurements. For extracellular metabolite concentration 28 
measurements (for both reactor broth and sterile medium), 2 mL samples were centrifuged 29 
at 27237 G for 3 minutes at 4 °C, the supernatant was filtered through a 0.22 µm polyether 30 
sulfone filter (VWR international) and stored at -20 °C until further analysis. Extracellular 31 
concentrations of lactate, acetate, formate, ethanol and glucose were determined by high-32 
performance liquid chromatography (HPLC) as described previously37.  33 
 34 
Extracellular concentrations of amino acids were determined by HPLC on a Shimadzu system 35 
with: LC-20AD pumps, DGU-14A degasser, SIL-10ADvp autosampler, CTO-10ASvp oven, SCL-36 
10Avp system controller, and RF-10AXL fluorescence detector. Separation occurred on an 37 
Agilent Zebra Eclipse plus solvent saver 3.0x150x3.5 column over a period of 38 minutes per 38 
sample, with an isocratic flow of two eluents both at a flow rate of 0.64 mL/min. Eluent 1 had 39 
composition: 0.142 % w/v NaHPO4, 0.381% w/v Na2B4O7·10H2O, 0.0325% w/v sodium azide in 40 
deionized water (DI water); and eluent 2 had composition: 45% v/v methanol, 45% v/v 41 
acetonitrile in DI water. Samples were prepared by mixing 25 µL sample with 875 µL DI water, 42 
25 µL Borate buffer (0.6% w/v boric acid, 0.4% w/v NaOH, pH 10.2), and 25 µL 1mM Norvaline 43 
as internal standard.  For amino acid derivation 3 µL phthaldialdehyde (Sigma-Aldrich), i.e. 44 
OPA, was automatically added 3 minutes before sample injection (5 µL) into the column. 45 
Concentrations were determined by comparison of sample peak areas to those of a calibration 46 
curve identically run with representative amino acid concentrations.   47 
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 1 
Proteome samples were collected in low protein binding tubes, centrifuged at 27237 G for 3 2 
minutes at 4°C. The supernatant was discarded, and the pellet was frozen in liquid N2 prior to 3 
storage at -20°C until further analysis.  4 
 5 
For dry weight measurements, 10 mL broth was collected and filtered over a pre-dried (3 days, 6 
60 °C) pre-weighed 0.2 µm cellulose nitrate filter (Whatman GmbH). The filter was then 7 
washed once with 10 mL demineralized water and dried (3 days, 60°C), before weighing again.  8 
 9 
Fluxes ( 𝑞𝑖  in mmol/gCDW/h) were calculated as: 𝑞𝑖 = 𝐷 ∙ (𝐶𝑖,𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 − 𝐶𝑖,𝑚𝑒𝑑𝑖𝑢𝑚)/10 

𝑋𝑏𝑖𝑜𝑚𝑎𝑠𝑠 , where D is the dilution rate (h-1), C the concentration of compound i (mmol/L) and 11 
Xbiomass the biomass concentration (g/L).  12 
 13 
Proteome measurements. Proteins were isolated using the FASP method as described 14 
previously38. In short, cell pellets were dissolved in 100 mM TRIS pH 8 to a concentration of 15 
7.5E8 cells/100 µl and lysed using a needle sonicator (MPE). Proteins obtained from 4.5E8 16 
lysed cells were reduced with 15 mM dithiothreitol for 30 minutes at 45 °C and subsequently 17 
alkylated in 20 mM acrylamide for 10 minutes at room temperature under denaturing 18 
conditions (100 mM TRIS pH8 + 8 M Urea). The alkylated sample was transferred to an 19 
ethanol-washed Pall 3K omega filter (Sigma-Aldrich, The Netherlands) and centrifuged for 36 20 
minutes at 12000 rpm. The filters were washed with 130 µl 50 mM ammonium bicarbonate 21 
and centrifuged again before overnight digestion with 100 µl 5 ng/µl trypsin (Roche) at room 22 
temperature. The digested peptides were eluted by centrifugation for 30 min, subsequent 23 
addition of 100 µl 1 ml/l HCOOH in water and again centrifugation for 30 min. pH was adjusted 24 
to pH 3 using trifluoroacetic acid. 25 
 26 
MS/MS analysis was done as described previously39. Raw datafiles were analyzed using 27 
MaxQuant (version 1.6.1.0) and searched against the L. lactis MG1363 database (UniProt) and 28 
frequently observed contaminants. In addition to the standard settings, Trypsin/P with a 29 
maximum of two missed cleavages was set as the digestion mode, acrylamide modifications 30 
on the cysteines was set as a fixed modification, and methionine oxidation, protein N-terminal 31 
acetylation and asparagine or glutamine deamidation were set as variable modifications. A 32 
false discovery rate of 1% at protein level was allowed and the minimum required protein 33 
length was set at 7. At least two peptides were required for protein identification of which at 34 
least one peptide was required to be unique in the database. Identified proteins were 35 
quantified. 36 
 37 
Proteomics data analysis. Statistical analysis on the MaxQuant output was performed with 38 
Perseus version 1.6.2.1. Proteins were accepted when they were represented in at least three 39 
of the four biological replicates in at least one strain. For statistical analysis log10 transformed 40 
LFQ values were used and zero values were replaced by taking random values from a normal 41 
distribution with mean (measured values per biological sample -1.8) and variation (0.3 * 42 
standard deviation of the measured values per biological replicate) to make calculations 43 
possible. We then performed a 2-sided two sample t-tests using the log10 normalized LFQ 44 
intensity columns of CcpA mutant and wild type with a FDR threshold of 0.05 and S0 equal to 45 
140. Fold changes of CcpA mutant over wild type were calculated by dividing LFQ intensity 46 
columns of CcpA mutant by wild type. A principal component analysis of the LFQ data was 47 
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used to assess the reproducibility of the data. Further analysis steps were done with Python. 1 
For fractions of protein groups, we used sums of intensity-based absolute quantitation (iBAQ) 2 
protein fractions, which were obtained by normalizing iBAQ values by the total sum of all 3 
values per biological replicate. Two-sided two sample t-tests were performed on biological 4 
groups of proteins between the wild type and CcpA mutant strain. Furthermore, a two-sided 5 
Fisher exact test was performed on the number of significantly changed proteins and 6 
unchanged proteins in the membrane and rest of the cell. For this, the protein fractions were 7 
first averaged over the biological replicates. 8 
 9 
Data availability 10 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 11 
Consortium via the PRIDE41 partner repository with the dataset identifier PXD021956. 12 
 13 
Code availability 14 
The model and codes are available online at https://github.com/SysBioChalmers/pcLactis. 15 
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Figure legend 1 

 2 
Fig1. Overview of pcLactis and simulations of glucose-limited conditions. a, The model 3 
explicitly accounts for reactions of metabolism and gene expression processes. Metabolic 4 
reactions produce metabolites and energy for not only biomass formation but also gene 5 
expression processes. The reactions of gene expression, on the other hand, synthesize RNA 6 
and proteins, which catalyse reactions of metabolism and gene expression processes as 7 
machineries or enzymes. Besides, pcLactis accounts for degradation of mRNA and proteins as 8 
well as dilution of biomass constituents during cell division. b, Coupling constraints in pcLactis. 9 
The coupling constraint allows for relating the reaction rate to the synthesis rate of its catalyst 10 
based on the reaction rate equation and steady-state assumption, where turnover rates kcat 11 
of metabolic enzymes, catalytic rates k of machineries and degradation constants kdeg of the 12 
catalysts are needed. c, Simulated exchange fluxes compared with experimentally measured 13 
data3. d, Simulated saturation of glucose transporter. e, Simulated inactive enzyme. The 14 
inactive enzyme is the sum of the enzymes that are synthesized but do not carry fluxes. The 15 
production of the inactive enzyme indicates that total proteome is not constrained. The grey 16 
area represents where the proteome switch occurs in experiments3, which is between 0.5 and 17 
0.6 h-1. f, Sensitivity analysis for glucose transporter and modelled proteome at different 18 
growth rates. Colour represents the sensitivity score. A higher score indicates a greater impact 19 
of a given increase in the constraint on growth rate. 20 
  21 
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 1 
Fig2. Amino acid analysis with pcLactis shows importance of amino acid catabolism for 2 
growth as a function of active constraints. a, Simulated fluxes of amino acids compared with 3 
experimentally measured data. For each amino acid, simulated fluxes of uptake and tRNA 4 
charging are displayed together with the measured uptake flux. The upper bound on the 5 
uptake is also displayed, which is the linear trendline of the experimentally measured data if 6 
the amino acid is consumed rather than being secreted. The measured data are from the 7 
study3. b, Scaled reduced cost analysis for uptake rates of amino acids at different growth 8 
rates. Colour represents the scaled reduced cost value. A higher value indicates a greater 9 
impact of a given increase in the amino acid uptake on growth rate. 10 
  11 
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 1 
Fig3. The switches between ATP yielding pathways in L. lactis can be explained from a 2 
protein efficiency point of view. a, A small model derived from pcLactis to investigate primary 3 
ATP-producing pathways in L. lactis. The small model consists of three independent pathways, 4 
including glycolysis pathway followed by mixed acid fermentation, glycolysis pathway 5 
followed by lactic acid fermentation and arginine catabolism. b, Parameters of ATP-producing 6 
pathways inferred from pcLactis. ATP yield is ATP generated per glucose (for pathway 1 and 2) 7 
or arginine (for pathway 3) consumed. Protein cost is protein mass (unit: g/gCDW) required 8 
per substrate flux (unit: mmol/gCDW/h) through the pathway. Protein efficiency is ATP 9 
generated per protein mass per time with the unit of mmol of ATP per gram of protein per 10 
hour. c, Linear programming to solve the small model. The objective function is to maximize 11 
the total ATP production flux JATP, which is the sum of ATP production fluxes of three pathways 12 
calculated by substrate uptake flux Ji times ATP yield YATP,i. The model is subject to two 13 
constraints. One is the total glucose uptake flux Jglc, which is the sum of the glucose fluxes 14 
towards pathway 1 J1 and 2 J2. The other is the total proteome constraint, which means that 15 
the sum of protein requirements of all pathways should be not greater than the proteome 16 
allocation in the model. For each pathway, the protein requirement is calculated by the 17 
protein cost pi times substrate flux Ji. Besides, there are lower and upper bounds on the uptake 18 
flux of each pathway. Specifically, J1 and J2 are unlimited while J3 has a limited upper bound, 19 
which is assumed to be linearly correlated with total glucose uptake flux Jglc based on 20 
experimental observation. d, Small model simulations for a range of glucose uptake flux. The 21 
top three plots show that with increasing glucose uptake flux the decline in arginine uptake 22 
occurs firstly once the inactive enzyme disappears, and subsequently the switch from mixed 23 
to lactic acid fermentation. The inactive enzyme is the difference between the total protein 24 
requirements and the total proteome. The bottom three plots show sensitivities of glucose 25 
uptake, total proteome and arginine uptake to the ATP production.  26 
  27 
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 1 
Fig4. Proteome of the CcpA mutant, which has a higher fitness than wild type L. lactis, is 2 
changed in the direction of optimality. a, Overview of experiments for comparing wild type 3 
L. lactis MG1363 and CcpA mutant 445C1 in glucose-limited chemostats at D = 0.5 h-1. Samples 4 
were taken for dry weight measurements, external metabolite and amino acid analysis and 5 
proteome measurements. b, Protein fold changes of the CcpA mutant over wild type. Log2 6 
fold changes were calculated from LFQ values p values were calculated based on 2-sided two 7 
sample t-tests with a FDR threshold of 0.05 and S0 equal to 140. Proteins outside the 8 
significance lines (FDR = 0.05, S0 = 1) are significantly changed in expression. Example sets of 9 
proteins are highlighted and are labeled with their gene names. c, Amino acid fluxes 10 
(mmol/gCDW/h) and d, Residual concentration (mM) of arginine. The arginine uptake flux is 11 
increased to such extent that the residual arginine concentration became undetectable in the 12 
CcpA mutant. Data points represent the individual chemostats; bars are average values. e, 13 
Protein fractions. Protein fractions were obtained by normalizing iBAQ values by the total sum 14 
of all values. The obtained protein fractions were then averaged over the four biological 15 
replicates for visualization. The fractions glucose transport, glycolysis, arginine pathway and 16 
remaining fraction are significantly different between the two strains (p < 0.001, calculated 17 
with two-sided two sample t-tests). 18 
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