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Abstract

The study of cellular and developmental processes in physiologically relevant

three-dimensional (3D) systems facilitates an understanding of mechanisms

underlying cell fate, disease and injury. While cutting-edge microscopy

technologies permit the routine acquisition of 3D datasets, there is currently a

lack of user-friendly, open-source software to analyse such images. Here we

describe GIANI (djpbarry.github.io/Giani), new software for the analysis of 3D

images, implemented as a plugin for the popular FIJI platform. The design

primarily facilitates segmentation of nuclei and cells, followed by quantification

of morphology and protein expression. GIANI enables routine and reproducible

batch-processing of large numbers of images and also comes with scripting and

command line tools, such that users can incorporate its functionality into their

own scripts and easily run GIANI on a high-performance computing cluster. We

demonstrate the utility of GIANI by quantifying cell morphology and protein

expression in mouse early embryos. More generally, we anticipate that GIANI

will be a useful tool for researchers in a variety of biomedical fields.

Introduction 1

The ability to routinely acquire multi-dimensional datasets with modern 2

microscopy techniques is transforming, among other fields, cell biology, 3

developmental biology and cancer research. There has long been an acceptance 4

that two-dimensional (2D) cell cultures may not accurately recreate behaviours 5

found in complex, three-dimensional (3D) in vivo environments [1]. 6

Commonly-used 3D culture formats include, but are not limited to, populations 7

of single cells in organotypic matrices, spheroid models, tissue sections or 8
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whole embryos and organisms. 9

However, the development of user-friendly software for the quantitative 10

analysis of such data has not kept pace with imaging advances [2]. This presents 11

an obvious challenge - how does one quantitatively analyse these datasets in a 12

routine manner? Manual annotation of such data is not feasible, due to the time 13

required to do so. Commercial packages, such as Imaris (Bitplane) and Vison4D 14

(Arivis) provide excellent visualisation functionality and are also equipped with 15

analysis tools. However, licenses for such software are expensive and they also 16

rely on their own proprietary file formats. Furthermore, the closed-source nature 17

of such software prevents detailed interrogation of specific calculations and 18

processes. 19

There are numerous excellent, freely-available bioimage analysis tools in the 20

open source domain. However, their support for 3D analysis is either limited 21

(for example, several CellProfiler [3] modules are not yet compatible with 3D 22

images) or challenging to execute and/or automate for the uninitiated (FIJI [4], 23

Icy [5]). This can lead to undesirable compromises being made, such as 2D 24

slices from a 3D volume being analysed individually, blinding the analysis to 25

information in adjacent slices. Alternatively, 3D data may be compressed into 26

2D via projection, which, consequently, artificially reduces distances between 27

objects. A number of very useful open-source MATLAB (MathWorks, 28

Cambridge, UK) -based tools have also been implemented, most notably MINS, 29

which has been effectively used to analyse embryo datasets [6] and 30

LOBSTER [7]. However, these require the purchase of a MATLAB license and 31

active maintenance of the code by the developers to avoid problems with 32

backwards compatibility in newer versions of MATLAB. 33

We have therefore developed GIANI (https://djpbarry.github.io/Giani), a 34
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user-friendly, generally-applicable, open source tool, implemented as a plugin 35

for the widely-used image analysis platform, FIJI. With an emphasis on 36

detection and segmentation of cells in 3D microscopy images, GIANI has been 37

implemented specifically with batch-processing and minimal user interaction in 38

mind. While an understanding of fundamental concepts of bioimage analysis is 39

beneficial, GIANI has been implemented in a wizard format to facilitate use by 40

non-specialists and is fully documented (https://github.com/djpbarry/Giani/wiki). 41

Analysis protocols may be reproduced by loading a single, small parameter file. 42

The utility of GIANI is illustrated here using two examples. In the first, we 43

generated a series of simulated datasets to evaluate the accuracy of 44

segmentations produced by GIANI using known “ground truths”. In the second 45

proof-of-concept we use a series of mouse preimplantation embryo datasets and 46

demonstrate the ability of GIANI to detect variations in morphology and protein 47

expression in different experimental conditions. It should be noted that GIANI 48

can be used to quantify 3D images from a range of cellular and developmental 49

contexts and we anticipate that it will be a useful tool to automate quantification 50

of a wide variety of complex imaging data. 51

Materials and methods 52

Simulated data generation 53

Simulated embryos were generated using an extension of a previously described 54

method [8]. Simulated nuclei positions were generated as previously 55

described [8], then cell membranes were approximated using a Euclidean 56

Distance Map constructed around nuclei. The simulated images were then 57

convolved with a Gaussian point-spread function, sub-sampled and noise added 58
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from a gamma distribution. The complete code for simulated image generation 59

is available on GitHub (https://github.com/djpbarry/Embryo-Generator). 60

Metrics for segmentation quality assessment 61

We calculated the cell count error Ec, as 62

Ec = |Ng −Ngt| (1)

where Ngt is the actual number of cells present in a simulated embryo and Ng is 63

the number counted by GIANI. Nuclear (Enl) and cell (Ecl) centroid localisation 64

errors were calculated based on the euclidean distance between the known 65

ground truth centroids and the centroids of the segmentations produced by 66

GIANI. 67

Mouse zygote collection 68

Four- to eight-week-old (C57BL6 × CBA) F1 female mice were super-ovulated 69

using injection of 5 IU of pregnant mare serum gonadotrophin (PMSG; 70

Sigma-Aldrich). Forty-eight hours after PMSG injection, 5 IU of human 71

chorionic gonadotrophin (HCG; Sigma-Aldrich) was administered. 72

Superovulated females were set up for mating with eight-week-old or older 73

(C57BL6 × CBA) F1 males. Mice were maintained on a 12 h light–dark cycle. 74

Mouse zygotes were isolated in EmbryoMax FHM mouse embryo media 75

(Sigma-Aldrich; MR-122-D) under mineral oil (Origio; ART-4008-5P) and 76

cumulus cells were removed with hyaluronidase (Sigma-Aldrich; H4272). All 77

animal research was performed in compliance with the UK Home Office 78
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Licence Number 70/8560. 79

Mouse embryo culture 80

Mouse embryos were cultured in drops of pre-equilibrated Global medium 81

(LifeGlobal; LGGG-20) supplemented with 5 mg/ml protein supplement 82

(LifeGlobal; LGPS-605) and overlaid with mineral oil (Origio; ART-4008-5P). 83

Preimplantation embryos were incubated at 37°C and 5.5% CO2 and cultured up 84

to the day of analysis. 85

Inhibitor treatment 86

Inhibitor experiment was performed as previously described [9]. Briefly, the 87

aPKC inhibitor CRT0276121 (Cancer Research Technology LTD) was dissolved 88

in DMSO to 10 mM stock concentration and diluted to the optimal 89

concentration of 8 µM in pre-equilibrated embryo culture media. Control mouse 90

embryos were developed in pre-equilibrated media where the same amount of 91

DMSO was added. 92

Immunofluorescence 93

Embryos were fixed with freshly prepared 4% paraformaldehyde in PBS that 94

was pre-chilled at 4°C. Embryo fixation was performed for 20 min at RT and 95

then the embryos were transferred through 3 washes of 1X PBS with 0.1% 96

Tween-20 to remove residual paraformaldehyde. Embryos were permeabilized 97

with 1X PBS with 0.5% Triton X-100 and then blocked in blocking solution (3% 98

BSA in 1X PBS with 0.2% Triton X-100) for 2 h at RT on a rotating shaker. 99

Then, embryos were incubated with primary antibodies (listed in Table 1) 100

diluted in blocking solution overnight at 4°C on rotating shaker. 101

October 14, 2020 6/20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.340810doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.340810


Table 1. Primary antibodies used in this study and the dilution at which
they were used.

Antibody Supplier Catalogue Number Dilution
YAP1 Abnova H00010413-M01 1:50
GATA3 R&D AF2605 1:200
E-CADHERIN Life Technologies 131900 1:400

The following day, embryos were washed in 1X PBS with 0.2% Triton X-100 102

for 20 min at RT on rotating shaker and then incubated with secondary 103

antibodies diluted in blocking solution for 1 h at RT on rotating shaker in the 104

dark. Next, embryos were washed in 1X PBS with 0.2% Triton X-100 for 20 105

min at RT on rotating shaker. Finally, embryos were placed in 1X PBS with 106

0.1% Tween-20 with Vectashield with DAPI mounting medium (Vector Lab; 107

H-1200) (1:30 dilution). Embryos were placed on µ-Slide 8 well dishes (Ibidi; 108

80826) for confocal imaging. 109

Image Acquisition 110

All images were acquired on a Leica SP5 laser scanning confocal microscope 111

using a Leica 1.3 NA 63x HCX PL APO CS glycerol objective and a voxel size 112

of approximately 0.1 x 0.1 x 1.0 µm in x, y and z, respectively. 113

Software 114

GIANI was written using Java 8 as a plug-in for FIJI [4], making extensive use 115

of the underlying FIJI and ImageJ [10] libraries. A number of other open-source 116

projects are leveraged. Reading of image data is facilitated by interfacing to 117

Bio-Formats [11]. Detection of nuclear blobs makes use of either TrackMate’s 118

spot detector [12] or FeatureJ 119

(https://imagescience.org/meijering/software/featurej). Segmentation of cells 120
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and nuclei takes advantage of the marker-controlled watershed functionality in 121

MorphoLibJ [13] and 3D Image Suite [14]. The browsing of results is based 122

upon the 3D Region of Interest (ROI) Manager from 3D Image Suite. Complete 123

source code, documentation and test data are available online 124

(https://djpbarry.github.io/Giani). 125

Results & Discussion 126

Software implementation 127

The design philosophy behind GIANI is inspired by CellProfiler. It is assumed 128

that the user wishes to detect “primary objects” of some sort (typically cell 129

nuclei), followed by the subsequent segmentation of “secondary objects” 130

(typically cells) and then wishes to measure either the morphology of said 131

objects, or the expression of a fluorescent signal within these objects. The 132

principal difference in the case of GIANI is that, in order to facilitate ease of use, 133

the order of steps in the pipeline is fixed, although some flexibility is present 134

where necessary (Fig 1). 135

Analysis of simulated embryos 136

To first validate the performance of GIANI, we generated a series of 189 137

“simulated embryos” exhibiting different levels of signal-to-noise ratio and cell 138

density (Fig 2A). Simulated data has the significant advantage of having a 139

known “ground truth” (Fig 2B). That is, because the images are generated 140

artificially, we know what the ”correct” segmentation should look like. This 141

permits us to compare the segmentation results generated with any piece of 142

analysis software with the known ”true” values. 143
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Fig 1. Overview of GIANI’s operation All embryo images represent a single
slice of a 3D stack. A: The GIANI Graphical User Interface. B: An example
dataset, consisting of a 3D stack image of a mouse embryo showing DAPI
(blue), E-Cadherin (red) and GATA-3 (green). C: Positions of nuclei are first
approximated using a blob detector, which provides an estimate of each nuclear
centroid. D: Prior to complete segmentation, the nuclear image stack is
Gaussian filtered in three dimensions. E: Complete segmentation of the nuclei is
achieved using a marker-controlled watershed approach, with the filtered image
from D serving as the input and centroids from C serving as the markers. The
extent of the nuclei is based on an intensity threshold, calculated using one of
FIJI’s in-built thresholding algorithms, specified by the user. F: Prior to
conducting cell segmentation, the image channel delineating cells is Gaussian
filtered in three dimensions. Either a volume marker or membrane marker can
be used, but the latter will result in more accurate segmentation. G: Cell
segmentation is achieved using a marker-controlled watershed approach, with
the filtered image from F serving as the input and nuclei segmentations from E
serving as the markers. The extent of the cells is again based on an intensity
threshold, calculated using one of FIJI’s thresholding algorithms. H:
Quantification of fluorescence intensities in any number of user-specified
channels is performed using the segmentations from E and G. Results are
generated for each nucleus, cell and cytoplasmic region in each input stack. I:
Once a batch analysis has been completed, segmentations and associated
fluorescence quantifications can be explored using the provided results browser.

Fig 2. Validation of GIANI using simulated embryo data. In each of the
heat maps, a single tile represents the average of three simulated embryos. A: A
2D slice of an exemplar 3D simulated embryo. B: The ground truth
segmentation of ‘A’. C - H: Absolute errors in cell counts (Ec, calculated
according to Eq 1), nuclear centroid localisation error (Enl) and cell centroid
localisation error (Ecl) produced by GIANI for simulated embryos with the
indicated number of cells and signal-to-noise ratios (SNR). Results were
obtained using either GIANI’s basic (C - E) or advanced (F - H) nuclear detector.

The number of false positives and false negatives produced by GIANI is 144

consistently extremely low, although cell count errors do generally increase with 145

cell density and decreasing signal-to-noise ratio (SNR; Fig 2C, F). At high SNR 146

and low cell densities, GIANI localises nuclei to within approximately 600 nm 147

of their true positions (Fig 2D, G). Even at high cell densities and low SNR, this 148

error never exceeded 1 µm (the simulated nuclei are ellipsoidal with axis 149
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dimensions of approximately 10.0 x 7.5 x 7.5 µm). In addition to nuclear 150

localisation error, we also quantified the cell centroid localisation error on a per 151

cell basis (Fig 2E, H). 152

The accurate characterisation of a multi-cellular dataset, such as an embryo, 153

is fundamentally dependent on the correct identification and segmentation of 154

nuclei. While GIANI presently employs generic blob detectors for this purpose, 155

which is similar to other previously-described methods [6], other approaches are 156

also possible [15–19]. It is intended that some alternative functionality will be 157

added in future releases. In particular, incorporating machine-learning classifiers 158

trained with, for example, Weka [20] or Ilastik [21] will be prioritised. 159

In addition to the convolution of the ground truth data, the simulation process 160

also takes into consideration depth of slices within a sample when modelling 161

fluorescent intensity - deeper slices will be more prone to scattering effects and 162

therefor exhibit lower intensity. This means that finding a single global 163

thresholding strategy that does not under-segment the dimmer cells while also 164

not over-segmenting the brighter cells is challenging. Taking all this into 165

consideration, any metric used to assess the accuracy of cell segmentations will 166

have its limitations. 167

There are strategies that could be employed to mitigate against these factors. 168

For example, some form of adaptive thresholding, whereby the intensity 169

threshold changes according to z-location, could be used. However, while an 170

optimal adaptive thresholding strategy could be found for a given dataset (such 171

as the simulated data used in this study), implementing a universally-applicable 172

strategy would be difficult. One of the principle design aims of GIANI was 173

simplicity of use, which does not allow for the incorporation of a variety of 174

case-specific segmentation approaches. 175
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Analysis of mouse embryos 176

We subsequently applied GIANI to the analysis of two populations of mouse 177

preimplantation embryos at the morula stage, one control and one treated with a 178

small molecule inhibitor [9]. At this stage, two distinct cell populations are 179

discernible: inner and outer cells. In subsequent cell divisions, a blastocyst is 180

formed, whereby the inner cells give rise to an inner cell mass (ICM), and the 181

outer cells become the trophectoderm (TE), a polarized epithelium that will 182

form fetal components of the placenta [22]. 183

At the morula stage, inner and outer cells display different polarisation states, 184

which influence their cell fate acquisition. The outer cells acquire an apical 185

domain, enriched with the atypical protein kinase C (aPKC) [23]. In the polar 186

outer cells, aPKC prevents activation of downstream Hippo pathway kinases, 187

Large tumor suppressor kinases 1/2 (LATS1/2) [24]. Consequently, in outer 188

cells, YAP1 accumulates in the nucleus, where it promotes the expression of 189

GATA3 [25]. In contrast, in the apolar inner cells, the activation of the Hippo 190

pathway results in YAP1 cytoplasmic retention, thus maintaining the inner cells 191

in an unspecified state [24, 26, 27]. 192

We therefore divided cells within each embryo into an ‘inner’ and ‘outer’ 193

population (Fig 3A, B). This division is based on the distance of the detected 194

nuclear centroid from the embryo centroid. A cell was classified as ‘inner’ if the 195

following condition held true: 196

Di

Dm

< DT (2)

where Di is the Euclidean distance of cell i from the embryo centroid, Dm is the 197
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maximum Euclidean distance from any cell in the same embryo to the embryo 198

centroid and DT is an arbitrarily set distance threshold. For the purposes of this 199

study, we chose a value of 0.5 for DT - it was found that modifying this value 200

slightly (±10%) did not significantly impact the results (data not shown). The 201

embryo centroid was calculated as the average of all nuclear centroids. 202

Fig 3. GIANI reveals differences in morphology and protein expression in
mouse embryos. All box plots show the median and inter-quartile range, with
the whiskers extending 1.5 times the inter-quartile range from the 25th and 75th
percentiles. Unless otherwise stated, each dot represents a single cell. A.
Illustration of the division of embryo cells into ‘outer’ (red) and ‘inner’ (green)
sub-populations. The embryo centroid is indicated by the white square. The
blue circle has radius Dm (see Eq 2) and indicates the distance from the embryo
centroid to the most distant nucleus centroid. The radius of the yellow circle is
DT ×Dm (Eq 2). B. The number of cells in each embryo divided into outer and
inner sub-populations using a value of 0.5 for DT in control embryos. Each dot
represents a single embryo (ncontrol = 18). C: Volume of nuclei in inner/outer
populations in control embryos. D: Volume of cells in inner/outer populations in
control embryos. E: Ratio of cell-to-nuclear volume in inner and outer cells in
control embryos. F: Nuclear/cytoplasmic ratio of YAP1 expression in control
embryos. G: Difference in expression profiles of nuclear GATA3 expression,
normalised to DAPI, in control and treated embryos (ntreated = 20). H:
Difference in nuclear/cytoplasmic ratiometric expression profiles of YAP1 in
control and treated embryos.

GIANI shows differences in cell morphology, YAP1 and GATA3 203

expression within inner and outer cells in control embryos 204

We then applied GIANI to detect variations in morphology and protein 205

expression in mouse preimplantation embryos. We began with a morphological 206

analysis of cells in control embryos. While no significant difference was found 207

between median nuclear volumes in inner and outer cell populations 208

(Fig 3C; p = 0.861, Wilcoxon rank sum test), a difference in size distributions is 209

evident. A difference in median cell volume between the two populations was 210

also identified, although it fell slightly short of being statistically significant 211
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(Fig 3D; p = 0.069). However, a comparison of cell-to-nucleus volume ratios 212

revealed a significant difference between median values, with outer cells having 213

a proportionately greater cytoplasmic volume than inner cells (Fig 3E; 214

p < 0.001). We also confirmed previous analysis of YAP1 translocation [28], 215

illustrating that nuclear localisation is significantly higher in outer versus inner 216

cells (Fig 3F; p < 0.001). Similarly, GATA3 expression was shown to be higher 217

in outer compared to inner cells (Fig 3G; p < 0.0001). 218

GIANI reveals differences in YAP1 and GATA3 expression in mouse 219

embryos after pharmacological treatment 220

To further demonstrate the utility of GIANI, we sought to analyse GATA3 and 221

YAP1 expression after treating mouse embryos with a small molecular inhibitor 222

against aPKC, the upstream regulator of YAP1 and GATA3. The aPKC inhibitor, 223

CRT0276121, has previously been confirmed to specifically inhibit aPKC in 224

various biological and cellular contexts [29–31]. Specifically, in mouse 225

pre-implantation embryos, aPKC inhibition has been recently shown to 226

efficiently abrogate YAP1 and GATA3 expression in outer cells [9]. 227

Expression of GATA3 in the nucleus (normalised to DAPI to correct for 228

diminished signal intensity with increasing sample depth) was found to be 229

similarly low in the inner cells of both control and treated embryos (Fig 3G; 230

p = 0.841). However, GATA3 expression in outer cells was found to be 231

significantly lower in the treated embryos relative to the control group 232

(p < 0.002). Normalised expression of GATA3 was also found to be 233

significantly higher in outer cells of control embryos relative to their inner cells 234

(p < 0.001), while the same was not true of treated embryos (p = 0.171). In 235

addition, differences in distribution are evident between control and treated 236
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embryos, with two distinct populations evident in both inner and outer cells in 237

control populations (Fig 3G). 238

While no statistically significant difference in nuclear YAP1 expression 239

(normalised to cytoplasmic expression) between control and treated cells were 240

observed when comparing inner cells (Fig 3H; p = 0.609), a large difference 241

was observed in outer cells (p < 0.0001). However, nuclear/cytoplasmic YAP1 242

expression was still higher in the outer cells of treated embryos versus inner 243

(p < 0.0001). Altogether, this demonstrates that GIANI allows for the 244

automated quantification of expression differences between cells following 245

perturbation. 246

Future developments 247

Given the ongoing interest in studying cells in “native” 3D extracellular 248

environments [32], future extension to the capabilities of GIANI will include the 249

ability to analyse time-lapse data, as there is currently a lack of open source 250

tools for the quantification of 3D cell migration [33]. The incorporation of 251

additional functionality from TrackMate (and MaMuT [34] or Mastodon) will 252

be explored to facilitate 3D cell tracking. 253

Future development will also include the replacement of the 3D ROI 254

Manager interface for visualizing results with a new, custom-built interface. 255

This will probably be replaced in a subsequent release with a new custom-built 256

interface. At present, segmented objects are saved solely as FIJI ROI files, but it 257

is intended that support for other formats (such as .stl, .ply, .obj and .x3d) will 258

be added to allow the import of objects into a variety of different software. 259

More generally, with a view to improving and optimising performance, 260

further use of ImgLib2 [35] will be incorporated in future releases. Taking 261
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advantage of GPU acceleration is also an aim, most likely by exploiting 262

CLIJ [36]. For this study, analysis of a single mouse embryo dataset (approx. 263

1024 x 1024 x 76 voxels) took approximately 5 minutes on a desktop PC (Intel 264

Xeon E5-2630 v4, 32GB RAM) versus 10 minutes on a laptop (Intel Core 265

i7-6600U, 16 GB RAM). 266

Conclusion 267

We have used GIANI to quantitatively analyse mouse embryos in 3D. This 268

analysis has revealed differences in morphology and protein expression between 269

different experimental conditions. Analysis of simulated ground truth data was 270

used to confirm the validity of these results. Further development of GIANI is 271

planned, with the specific aim of improving segmentations in noisy and dense 272

fields of view, common in 3D images of cells. Extension to timelapse analysis is 273

also planned. GIANI is freely available on GitHub (github.com/djpbarry/Giani) 274

and we anticipate that it will be a useful resource for the community to perform 275

routine, automated quantification of complex imaging data. 276
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