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Abstract 14 

Sample multiplexing facilitates single cell sequencing by reducing costs, revealing subtle difference 15 

between similar samples, and identifying artifacts such as cell doublets. However, universal and cost-16 

effective strategies are rather limited. Here, we reported a Concanavalin A-based Sample Barcoding 17 

strategy (CASB), which could be followed by both single-cell mRNA and ATAC (assay for transposase 18 

accessible chromatin) sequencing techniques. The method involves minimal sample processing, 19 

thereby preserving intact transcriptomic or epigenomic patterns. We demonstrated its high labeling 20 

efficiency, high accuracy in assigning cells/nuclei to samples regardless of cell type and genetic 21 

background, as well as high sensitivity in detecting doublets by two applications: 1) CASB followed by 22 

scRNA-seq to track the transcriptomic dynamics of a cancer cell line perturbed by multiple drugs, which 23 

revealed compound-specific heterogeneous response; 2) CASB together with both snATAC-seq and 24 

scRNA-seq to illustrate the IFN-γ-mediated dynamic changes on epigenome and transcriptome profile, 25 

which identified the transcription factor underlying heterogeneous IFN-γ response. 26 
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Introduction 27 

Single-cell mRNA sequencing (scRNA-seq) and single-nucleus assay for transposase-accessible 28 

chromatin using sequencing (snATAC-seq) have emerged as powerful technologies for interrogating 29 

the heterogeneous transcriptional profiles and chromatin landscapes of multicellular subjects 30 

(Buenrostro, Wu et al., 2015, Cusanovich, Daza et al., 2015, Hashimshony, Wagner et al., 2012, 31 

Ramskold, Luo et al., 2012). Early scRNA/snATAC-seq workflows were limited to analyzing tens to 32 

hundreds of individual cells at a time. With the latest development of single-cell sequencing technologies 33 

based on microwells (Gierahn, Wadsworth et al., 2017), combinatorial indexing (Rosenberg, Roco et al., 34 

2018) and droplet-microfluidics (Klein, Mazutis et al., 2015, Macosko, Basu et al., 2015), the parallel 35 

analysis of thousands of single cells or nuclei has become routine. The increase in throughput does not 36 

only lower the reagent costs per cell, but also enable the analysis of whole organs or entire organisms 37 

in one experimental run. 38 

 39 

Recently, with the ever-increasing throughput, these technologies have also been used to reveal the 40 

temporal response of heterogeneous cell population under diverse perturbations, which require tens of 41 

samples to be processed in parallel (Hurley, Ding et al., 2020, Weinreb, Rodriguez-Fraticelli et al., 2020). 42 

Based on existing methods, sample-specific barcodes (for example, Illumina library indices) are often 43 

incorporated at the very end of standard library preparation workflow. Such workflow requires parallel 44 

processing of multiple individual samples until the final step, therefore not only is labor-intensive and 45 

limits the number of samples, but also increase the reagent costs if a small number of cells would be 46 

sufficient to characterize the heterogeneity of each individual sample. To overcome this, alternative 47 

multiplexing approaches should label cells from each sample with distinct barcodes before pooling for 48 

single-cell sequencing experiment. The sample-specific barcodes could then be linked to cell barcodes 49 

during single-cell sequencing library preparation. Several methods have been developed in this 50 

endeavor, which introduce sample barcodes using either genetic or non-genetic mechanisms. 51 

Genetically, researchers have used various strategies to express an exogenous gene with sample-52 

specific barcodes at its 3’ UTR, which can be captured similarly as endogenous genes (Hurley et al., 53 

2020, Weinreb et al., 2020); non-genetically, people have used oligonucleotide containing a sample 54 

barcode followed by a poly-A sequences, which can be immobilized on the cell or nuclear membrane 55 

through anchoring molecules (e.g. antibody and lipid) (McGinnis, Patterson et al., 2019, Stoeckius, 56 

Hafemeister et al., 2017) or chemical cross-linking reaction (Gehring, Hwee Park et al., 2020), or 57 
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defused into permeabilized nuclei (Srivatsan, McFaline-Figueroa et al., 2020), and then captured during 58 

reverse transcription. Although being already quite powerful, each of these methods has still its own 59 

liabilities, including issues with scalability, universality or the potential to introduce artefactual 60 

perturbations. Moreover, all of these methods have only been combined with scRNA/snRNA-seq, and 61 

have not yet been applied and are likely incompatible with snATAC-seq. 62 

Here, we developed a Concanavalin A-based Sample Barcoding strategy (CASB) that overcomes many 63 

of these limitations. Taking advantage of the glycoprotein-binding ability of concanavalin A (ConA), 64 

CASB was used to label cell or nucleus with biotinylated single-strand DNA (ssDNA) through a 65 

streptavidin bridge. CASB could be easily adapted into scRNA/snATAC-seq workflows, and showed 66 

high accuracy in assigning cells or nuclei regardless of genetic background as well as in resolving cell 67 

doublets. The application of CASB in samples with time-series experiments, followed by scRNA- and/or 68 

snATAC-seq, allows revealing diverse transcriptome/epigenome dynamics. 69 
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Results 70 

CASB enables cell and nucleus labeling with ssDNA 71 

The CASB consists of three components: biotinylated ConA, streptavidin and biotinylated ssDNA as 72 

barcoding molecules. Both ConA and streptavidin form homo-tetramer autonomously, allowing the 73 

assembly of ConA-streptavidin-ssDNA complex (Fig 1A). Relying on the glycoprotein-binding ability of 74 

ConA, such assembled complex can be immobilized on the cell or nuclear membrane (Fig 1A). To 75 

measure how many ssDNA molecules can be immobilized on the cell membrane, a biotinylated ssDNA 76 

with 5’ and 3’ PCR handles flanking an eight-nucleotide (N8) random sequence was used to label the 77 

cells (Fig 1A). After incubation with different quantity of preassembled ConA-streptavidin-ssDNA 78 

complex in PBS at 4 °C (Methods), the number of ssDNA molecules immobilized on mouse embryonic 79 

stem cells (mESC) was quantified using qPCR. As shown in Figure 1B, the amount of ssDNA 80 

immobilized on cells increased with the increased usage of ConA-streptavidin-ssDNA complex, and 81 

could reach as many as 50,000 molecules per cell. To test whether ssDNA may fall off from labeled 82 

cells and cause cross-contamination during sample pooling, a mouse embryonic fibroblast (MEF) cell 83 

population expressing mCherry fluorescent proteins was labeled with the ssDNA and then mixed with 84 

another MEF cell population expressing GFP fluorescent proteins, which was only coated with “empty” 85 

ConA (Methods). After 30 min incubation in PBS at 4 °C, mCherry and GFP positive cells were 86 

separated using FACS and subjected to qPCR measurement. As shown in Figure 1C, the ssDNA 87 

immobilized on mCherry+ cells was not detectable from GFP+ cells, demonstrating the stability of CASB 88 

labeling. In addition to labeling the whole cell, we also measured the labeling efficiency of CASB for cell 89 

nucleus, in which nuclei were labeled with preassembled ConA-streptavidin-ssDNA complex in nuclear 90 

extraction buffer at 4 °C (Methods). As shown in Figure EV1A, the amount of ssDNA immobilized on 91 

nuclei increased with the increased usage of ConA-streptavidin-ssDNA complex, and reached at least 92 

120,000 molecules per nucleus. Taken together, these results demonstrated that CASB is able to stably 93 

label both cell and nucleus with ssDNA. 94 

 95 

CASB enables scRNA-seq sample multiplexing 96 

In scRNA-seq, cell specific barcodes are attached to the cDNA during reverse transcription (RT) by 97 

using primers consisting of a cell barcode sequence, a unique molecular identifier (UMI) sequence and 98 

a poly-T sequence that anchors to the poly-A tail of mRNA molecule. To make our CASB compatible 99 
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with the standard scRNA-seq workflow, we designed a biotinylated barcoding ssDNA with a 5’ PCR 100 

handle followed by a N8 barcode and a 30 nt poly-A tail, which can be captured by a RT primer consisting 101 

of a PCR handle followed by a 30 nt poly-T tail (Fig 2A). After CASB labeling, MEF cells were directly 102 

lysed and subjected to RT reaction (Methods). The barcoding ssDNA immobilized on cell membrane 103 

was quantified together with the endogenous housekeeping gene ActB using qPCR. As shown in Figure 104 

EV1B, both barcoding ssDNA and ActB gene can be efficiently capture by RT primer. Therefore, CASB 105 

could be easily adapted into scRNA-seq workflow with high efficiency. 106 

 107 

To demonstrate the strength of CASB in scRNA-seq, a breast cancer cell line MDA-MB-231 was 108 

perturbed with 5 different compounds, collected at 3 different time points after treatment and pooled with 109 

3 other breast cancer cell lines as well as MEF cells after separate sample labelling using CASB (Fig 110 

2B). Unlabeled MDA-MB-231 cells were also added into the sample pool to measure the potential 111 

influence of CASB on transcriptome profile. Sample pool was then subjected to scRNA-seq using the 112 

10x Genomics Chromium system with minor modifications: 1) in order to examine the efficiency of CASB 113 

to detect doublets, we intentionally overloaded  the system (~20,000 instead of ~10,000 cells 114 

recommended by the manufacturer) to create more cell doublets; 2)  CASB barcode and transcriptome 115 

library were separated by size selection before next-generation sequencing library construction, 116 

enabling pooled sequencing at user-defined proportions (Methods).  117 

 118 

As a result, a total of 12068 cells were captured with sufficient reads for transcriptome analysis. For 119 

each cell, the reads derived from each of the 20 different sample barcodes were counted and used to 120 

demultiplex the samples using HTODemux method (Stoeckius, Zheng et al., 2018) (Methods). A total 121 

of 483 cells were assigned as ‘Unlabeled’, as expected due to the inclusion of unlabeled MDA-MB-231 122 

cells (Fig EV1C). Among the remaining ones, 3962 cells were assigned as cell doublets encapsulated 123 

in the same droplet, as they contained two or three major barcodes (Fig EV1C). Indeed, the doublets 124 

consisting of both mouse and human cells, which could be unambiguously detected based on their 125 

mapping results, could also be efficiently identified based on the mixture of CASB barcodes.  As shown 126 

in Figure 2C, out of 110 mouse-human doublets, 107 (97.3%) were defined as doublets based on our 127 

CASB data. When compared with singlets, more UMI derived from both CASB barcode and mRNA 128 

transcripts were detected in doublets (Fig EV1D), further validating the correct assignment of cell 129 

doublets. Within 7623 singlets, the number of detected UMI from CASB per cell ranged from 245 to 130 
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2134 (5-95 percentile), and significantly correlated with UMI detected for endogenous transcripts in the 131 

same cell (Fig EV1E), suggesting a similar cell-specific capture efficiency between CASB barcode and 132 

endogenous transcripts, and that CASB did not impair mRNA capture. Based on the qPCR quantification, 133 

the same amount of CASB mixture could label cells with ~20,000 ssDNA (Fig 1B), mean UMI (1051) 134 

detected in the scRNA-seq indicates a ~5% capture efficiency at current sequencing depth (25 million 135 

total sequencing reads). To determine the variation of labeling efficiency among different cells, given 136 

the cell-specific capture efficiency, we first normalized the number of UMI numbers from CASB by that 137 

of UMI derived from the endogenous transcripts in the same cell. As shown in Figure EV1F, the CASB 138 

barcoding manifested a good uniformity of labeling efficiency among all singlets and within individual 139 

cell samples. Taken together, our CASB strategy could achieve high sensitivity in detecting cell identity 140 

and doublets in scRNA-seq experiments. 141 

 142 

For the 7623 cells with unambiguously assigned sample origin, we then clustered them based on their 143 

scRNA-seq profiles. As shown in Figure 2D, different human and mouse cells formed 5 distinct cell 144 

clusters, respectively. Each cluster was composed of cells from individual cell line labeled with distinct 145 

CASB indices (Fig 2D). We also compared the untreated MDA-MB-231 cells with to those without CASB 146 

labelling. As shown in Figure EV1G and H, single cell profiles were intermingled together and their 147 

cumulative transcriptome were highly correlated, demonstrating a negligible influence of CASB labeling 148 

on transcriptome profile. Within the MDA-MB-231 cell population, all 16 sample barcodes can be 149 

detected (Fig EV1I). Cells associated with 24 h-treatment of Niraparib, Rucaparib and OSI-027 could 150 

be well distinguished from untreated cells, whereas those with LCL161 and Fludarabine could not (Fig 151 

EV1J). As expected, Niraparib- and Rucaparib-treated cells were intermingled due to their common 152 

molecular target PARP. 153 

 154 

MDA-MB-231 is of triple-negative breast cancer origin, which lacks efficient targeted therapy. As 155 

intratumoral heterogeneity has been associated with therapy resistance, we investigated whether drug 156 

treatments could lead to heterogeneous response in the MDA-MB-231 cells. We focused on compound 157 

OSI-027, as it induced the largest transcriptomic changes (Fig EV1J). As shown in Figure 2E and EV2A, 158 

in which cells treated with OSI-027 were plotted with untreated cells, there indeed existed three cell 159 

populations with distinct transcriptomic responses. Whereas one showed clearly time-dependent 160 

transcriptomic changes (Fig 2E, cluster 0 circled in pink), the other two had limited alteration in gene 161 
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expression even after 24 h (Fig 2E, cluster 1&2 circled in green and blue, respectively), suggesting that 162 

the latter were less sensitive to the OSI-027. Neighbor proportion analysis also confirmed that, untreated 163 

cells were well separated from treated cells in cluster 0, while it is not the case for cluster 1 and 2 (Fig 164 

EV2B). As cellular heterogeneity existed already in the untreated MDA-MB-231 cells (Fig EV2C), we 165 

sought to further check whether the insensitive cell populations were also resistant to other effective 166 

compounds. Indeed, as shown in Figure 2F and EV2D, the same two cell clusters also appeared less 167 

sensitive to Niraparib and Rucaparib, suggesting the intrinsic multidrug insensitivity. To explore the 168 

underlying factors, we perform function enrichment analysis on genes that were commonly up- or 169 

downregulated in cluster 1 and 2 compared to cluster 0 using IPA software (Methods). Interestingly, 170 

these genes were highly enriched in the cellular compromise and movement pathways (Table EV1 & 171 

Fig EV2E). Importantly, many of them (e.g. VIM) were upregulated in cluster 1 and 2, and known to 172 

promote cellular movement (Fig EV2F). In tumor cells, increased cell motility mediated by epithelial-173 

mesenchymal transition (EMT) is also highly associated with drug resistance (Singh & Settleman, 2010, 174 

Zhang & Weinberg, 2018). Our results suggested that the intrinsic multidrug insensitivity of MDA-MB-175 

231 cells may result from the activated EMT. More interestingly, when overlap the potential insensitivity-176 

causing genes in cluster 1 and 2 with OSI-27-regulated genes, we observe that many genes, including 177 

VIM, SQSTM1, NPM1 and RACK1, were also upregulated by OSI-027 in sensitive cells (Fig 2G). Given 178 

these genes are involved in promoting EMT and potentially also drug resistance (Fig EV2F), this 179 

observation indicated the potential of OSI-027 treatment in inducing acquired therapy resistance. 180 

 181 

CASB enables snATAC-seq sample multiplexing 182 

So far, no sample multiplexing method has been developed for droplet-based snATAC-seq. In droplet-183 

based snATAC-seq, cell nuclei are firstly incubated with transposase in bulk, where genomic DNA is 184 

fragmented and tagged with adapter sequences. Afterwards, single cells are encapsulated, and cell 185 

barcodes are added to DNA fragments during PCR in individual droplets using primers targeting the 186 

adapter sequences. To adapt CASB into snATAC-seq workflow, we designed a 222 nt barcoding ssDNA 187 

with S5-ME and S7-ME adapter sequences flanking a sequence containing sample barcodes (Fig 3A). 188 

S5-ME and S7-ME adapter sequences were used as primer anchoring sites during snATAC-seq library 189 

amplification (Methods). The labeling efficiency using such ssDNA was measured similarly as before, in 190 

which nuclei were directly labeled with preassembled ConA-streptavidin-ssDNA complex in nuclear 191 

extraction buffer at 4 °C (Methods). As shown in Figure EV3A, the amount of ssDNA immobilized on 192 
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nuclei increased with the increased usage of ConA-streptavidin-ssDNA complex, and could reached at 193 

least 80,000 molecules per nucleus. 194 

 195 

To demonstrate the application of CASB in snATAC-seq, we sought to monitor the temporal chromatin 196 

changes induced by interferon-gamma (IFN-γ) in HAP1 cells. IFN-γ is an important cytokine in the host 197 

defense against infection by viral and microbial pathogens (Shtrichman & Samuel, 2001). It mediates 198 

innate immunity through regulating effector gene expression, which is accompanied by substantial 199 

changes at epigenetic level (Ivashkiv, 2018). However, how heterogeneously and dynamically cells 200 

respond to IFN-γ stimulation at the chromatin level has remained elusive. Taking advantage of CASB, 201 

we analyzed the changes in chromatin accessibility of HAP1 cells at 7 different time points after IFN-γ 202 

stimulation using snATAC-seq. MDA-MB-231 cells were added into the pool here as an outlier control. 203 

After sequencing, a total of 2890 cells were obtained with sufficient reads, 305 of which were identified 204 

as cell doublets that have at least two major CASB barcodes (Fig 3B, marked in black), and 23 cells 205 

were unlabeled (Fig EV3B). MDA-MB-231 cells with its specific CASB barcode presented as an isolated 206 

cluster (Fig EV3C). As revealed by UMAP projection, HAP1 cells showed a continuous shift in chromatin 207 

profile from 0 to 12 h (Fig 3C). To uncover the key transcription factors (TFs) that mediate IFN-γ-induced 208 

chromatin remodeling, we analyzed their binding motifs on the ATAC-peaks across all cells and 209 

observed that peaks containing motifs of IRF, STAT and NF-kB TF showed large variation in their 210 

intensity, indicating their functions in modulating IFN-γ response (Fig 3D) (Methods). Indeed, IRF and 211 

STAT peaks showed continuous activation (Fig 3E&F). This is expected as IFN-γ is able to activate 212 

JAK/STAT signaling through binding to its receptor, which in term activates the expression of IFN-γ-213 

responsive genes, including transcription factors IRFs (Leonard & O'Shea, 1998). Interestingly, the large 214 

variation of NF-kB peak intensity did not result from IFN-γ treatment, but was instead largely due to the 215 

heterogeneity of HAP1 cells (Fig 3F). It is known that NF-kB can be activated by IFN-γ and able to 216 

facilitate the transcription activation of IFN-γ targets, including CXCLs (Pfeffer, 2011, Qin, Roberts et al., 217 

2007). This result suggested that heterogeneous NF-kB activity may give rise to heterogeneous IFN-γ 218 

response. 219 

 220 

To evaluate whether heterogeneous NF-kB activity causes heterogeneous IFN-γ response, IFN-γ 221 

treated samples from the same time points were also analyzed using CASB followed by scRNA-seq. A 222 

total of 3407 cells were captured, 294 of which were identified as cell doublets and 9 cells were 223 
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unlabeled (Fig EV4A&B). As shown in Figure 4A, HAP1 cells showed a continuous shift in the 224 

transcriptome profile from 0 to 12 h on UMAP projection. To globally evaluate the correlation between 225 

chromatin accessibility and gene expression, we analyzed the dynamic expression patterns of predicted 226 

IRF and STAT target genes. In consistent with the activity of IRF and STAT observed in snATAC-seq 227 

(Fig 3C), the expression of their target genes also exhibited continuous upregulation (Fig 4B). 228 

 229 

As revealed by unsupervised clustering with Louvain method, cells at later time points (4, 6, 8 and 12 h) 230 

were clustered into two populations, one of which exhibited more divergent transcriptome profile from 231 

earlier time points (Fig 4C, cluster 2, circled in red). To see whether this is associated with 232 

heterogeneous NF-kB activity identified in snATAC-seq, the expression of predicted NF-kB target genes 233 

was compared between the two cell populations. Consistent with the heterogeneous NF-kB activity, its 234 

target genes also exhibit heterogeneous expression, and were expressed at a higher level in cluster 2 235 

at later time points (Fig 4D). The high induction of CXCL10 and 11, well-known targets of IFN-γ, only in 236 

cluster 2 cells further corroborate that the heterogeneous NF-kB activity indeed results in differential 237 

responses to IFN-γ in HAP1 cells (Fig 4E&S4C). 238 
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Discussion 239 

CASB is a flexible sample barcoding approach, ready to be prepared in an average molecular biology 240 

laboratory. CASB could be used to label cells and nuclei of different cell types and from different species. 241 

Moreover, the binding of CASB molecules to the subject is fast and stable, and takes place even at low 242 

temperature, which is critical to preserve sample integrity. Importantly, the design of CASB barcoding 243 

ssDNA is extremely flexible, which can be easily adapted to different single cell sequencing workflows. 244 

 245 

CASB allows scalable sample multiplexing by solely increasing the variety of barcoding ssDNAs. In this 246 

study, we tested CASB’s scalability by performing a 20-plex perturbation assay followed by scRNA-seq, 247 

which revealed new information about drug response of triple-negative breast cancer cells. Specifically, 248 

it demonstrated the different response dynamics of different compounds, and different response of 249 

different cell subpopulations to the same drug. The scalability of CASB could be potentially enhanced 250 

by combinatorial indexing. When integrated with automated cell handling system, CASB following by 251 

scRNA-seq could serve as a powerful platform for single-cell sequencing-based drug screens. 252 

 253 

Cell doublets, i.e. two or more cells encapsulated in a same droplet, posed a challenge for single cell 254 

sequencing data analysis. Without sample barcoding, cell doublets from the same species could only 255 

be estimated mathematically with certain ambiguity (DePasquale, Schnell et al., 2019). To reduce the 256 

doublet rate, an often-sought strategy is to limit the number of cells loaded in the microwell- or droplet-257 

based systems. As demonstrated in this study, CASB could reveal cell doublets in high accuracy and 258 

as such its application would allow to increase the throughput of single-cell sequencing systems by 259 

loading more cells. Indeed, similar strategy has been proposed by using antibody-based barcoding 260 

approach (Stoeckius et al., 2018). However, the efficiency of doublet identification correlated to the 261 

diversity of sample barcodes. By increasing the sample barcodes to hundreds or even thousands, which 262 

could be easily achieved using CASB, we would envisage a much higher doublet detection efficiency, 263 

which allows the further optimization of cell loading rate. 264 

 265 

Due to the universal presence of glycoprotein on plasma membrane, CASB is applicable to any sample 266 

with an accessible plasma membrane. Worth noting, after 1 h transposition reaction at 37 °C, the CASB 267 

barcodes remained abundant and showed minimal cross contamination. We believe that CASB can 268 

become compatible with many other single-cell sequencing technologies such as CITE-seq (Stoeckius 269 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.340844doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.340844


 12 

et al., 2017) and SNARE-seq (Chen, Lake et al., 2019), and for samples preserved in different ways 270 

such as flash-freezed and formalin-fixed ones. Moreover, by using biotin and fluorophore dual-labeled 271 

barcoding ssDNA, one could further enrich cells that are successfully barcoded. 272 

 273 

In summary, CASB allows to incorporate additional layers of information into single-cell sequencing 274 

experiments. With the ever-increasing throughput of single-cell sequencing technologies, CASB does 275 

not only reduce reagent costs, improve data analysis, minimize the batch effect, but also can become a 276 

versatile tool in this field by incorporating more diverse types of information, including time-points, 277 

treatment conditions and potentially also spatial coordinates. With further improvement, such as using 278 

ConA-Streptavidin fusion protein or fluorophore-labeled ssDNA, it will facilitate more novel applications 279 

of single cell sequencing technology. 280 
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Materials and Methods 281 

Experimental materials and methods 282 

Cell culture and pre-processing 283 

The MDA-MB-231, MDA-MB-453, T-47D and MCF7 cells were obtained from the ATCC, while HAP1 284 

from Horizon discovery. The MEF cells and mESC were kindly gifted by the Qi Zhou’s and Wei Li’s Lab 285 

at the Institute of Zoology, Chinese Academy of Sciences. MDA-MB-231, MDA-MB-453, T-47D, MCF7, 286 

HAP1 and MEF cells were cultured in DMEM (11995040, Gibco) with 10% FBS (10270106, Gibco) and 287 

1% P/S (15070063, Gibco) with 5% CO2 at 37°C, while the mESC were cultured in Neuralbasal (21103-288 

049, Gibco)-DMEM/F12 (11330-032, Gibco) based medium with N2 (17502048, Gibco), B27(17504-289 

044, Gibco), PD0325901 (s1036, Selleck), Chir99021 (s1263, Selleck) and mLIF (ESG1107, Millipore) 290 

with 5% CO2 at 37°C. For stimulation with IFN-γ, HAP1 cells were treated with 100 ng/mL IFN-γ (#300-291 

02，Peprotech) for 2, 4, 6, 8 and 12 hours. For scRNA-seq related experiments, cells were tyrpsinized 292 

and washed once with PBS, while for snATAC-seq related experiments, after washing with PBS, cells 293 

were cryopreserved in 200 µL cryo-medium (10% DMSO, 40% FBS, 50% culture medium) and kept in 294 

-80 °C. 295 

Compounds and treatment 296 

The compounds used in this study include LCL161 targeting XIAP, Fludarabine inhibiting DNA synthesis, 297 

OSI-027 blocking mTOR, Rucaparib and Niraparib targeting PARP1, which were chosen based on their 298 

selective inhibitory effect on MDA-MB-231 cells (Garnett, Edelman et al., 2012, Iorio, Knijnenburg et al., 299 

2016). Compounds LCL161, Fludarabine, OSI-027, Niraparib and Rucaparib (HY-15518, HY-B0069, 300 

HY-10423, HY-10619 and HY-10617) were obtained from MedChemExpress and dissolved in DMSO. 301 

For scRNA-seq experiment, 0.1 µM of LCL161, 0.15 µM of Fludarabine, 2.5 µM of OSI-027, 15 µM of 302 

Rucaparib and 12.5 µM of Niraparib were used to treat the cells for 4, 8 or 24 h. 303 

Design and synthesis of CASB barcoding ssDNA 304 

For measuring the number of ssDNA molecules immobilized on cell or nuclear membrane, a 5’-305 

biotinylated ssDNA with 5’ and 3’ PCR handles flanking a N8 random sequence was designed: 5’-306 

TCGTCGGCAGCGTCAGATGTGTATA-NNNNNNNN-TATACACATCTCCGAGCCCACGAGAC-3’. For 307 

scRNA-seq related experiments, 5’-biotinylated ssDNAs with a 5’ PCR handle followed by a N8 barcode 308 

and a 30 nt poly-A tail were designed: 5’-GCTGCGCTCGATGCAAAATA-NNNNNNNN-309 

BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’. For snATAC-seq related experiments, a 5’-310 
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biotinylated forward primer (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-311 

CTTGTGGAAAGGACGAAACACCG-3’) and a revers primer (5’-312 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GTGTCTCAAGATCTAGTTACGCCAAGC-3’) 313 

were used to amplify 222 bp fragments from CROPseq-Guide-Puro plasmids (#86708, Addgene) which 314 

have been inserted with different gRNA sequences. To generate ssDNAs, purified PCR products were 315 

denatured at 95 °C for 2 mins and immediately put on ice. Information of CASB barcode sequences and 316 

their corresponding samples can be found in Table EV2. 317 

Assembly of CASB barcode 318 

Biotinylated ConA (C2272, Sigma-Aldrich) and streptavidin (CS10471, Coolaber) were dissolved in 50% 319 

glycerol at concentration of 1.6 µM and store in -20 °C, while different biotinylated ssDNAs were diluted 320 

at concentration of 100 nM in nuclease-free water and stored in -20 °C. To assemble CASB barcode, 321 

streptavidin was firstly mixed with biotinylated ssDNA at molar ratio of 4:1 and incubated for 10 min at 322 

room temperature. Afterwards, biotinylated ConA was added to the streptavidin-ssDNA mix at molar 323 

ratio of 1:1 and incubated for 10 min at room temperature.  324 

Cell labeling with CASB 325 

Half a million cells were collected and suspended in 0.5 mL PBS. Indicated amount of CASB barcode 326 

was added to the cells and incubated for 10 mins on ice after thorough mixing. For labeling mCherry+ 327 

MEF cells, 2.5 µL assembled CASB was used. For RT-qPCR and scRNA-seq, 5 µL assembled CASB 328 

barcode was used. Afterwards, cells were washed once with PBS and then subjected to direct qPCR, 329 

direct RT reaction or mixed for scRNA-seq. For qPCR quantification, three independent biological 330 

replications were performed for each experiment. 331 

Nuclei labeling with CASB 332 

Cells were thawed by adding 800 µL warm culture medium and collected by centrifugation. Afterwards, 333 

cells were resuspended in 0.5 mL nuclei extraction buffer (NUC101-1KT, Sigma-Aldrich), incubated for 334 

5 min on ice, and collected by centrifugation (500 g). Extracted nuclei were incubated again with 0.5 mL 335 

nuclei extraction buffer, in which indicated amount of CASB barcode was added, for another 5 min on 336 

ice. For snATAC-seq, 2.5 µL assembled CASB barcode was used. Nuclei were then washed once with 337 

nuclei wash buffer (10 mM Tris 7.4, 10 mM NaCl, 3mM MgCl2, 1% BSA, 0.1% Tween-20) and then 338 

subjected to direct qPCR or mixed for snATAC-seq. For qPCR quantification, three independent 339 

biological replications were performed for each experiment. 340 

Quantification of ssDNA immobilized on cell or nuclear membrane 341 
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For all quantification experiments using qPCR, standard curves were always first drawn using serially 342 

diluted pure ssDNA for calculating the precise number of ssDNA in each reaction. For each reaction of 343 

qPCR, 2000 labeled cells in 5 µL PBS were directly mix with 5 µL of primer mix (1 µM) and 10 µL of 344 

qPCR master mix (11201ES03, Yeasen). Primers used for quantifying barcoding ssDNA are 5’-345 

TCGTCGGCAGCGTCAG-3’ and 5’-GTCTCGTGGGCTCGGAG-3’. 346 

For measuring the ssDNA with the polyA tail, 20000 cells were directly lysed in 6 µL of 0.17% TrionX-347 

100 (T8787, Sigma-Aldrich) for 3 min at 72 °C, and then revers transcribed with 1st strand cDNA 348 

synthesis kit (11119ES60, Yeasen) using RT primer 5’-CACGCACTGACTGACAGAC-349 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTV-3’ (final concentration 2.5 µM). The qPCR was performed 350 

with ssDNA-specific forward primer 5’-GCTGCGCTCGATGCAAAATA-3’ and Actb-specific forward 351 

primer 5’-GTGACAGCATTGCTTCTGTGTAAAT-3’ combining with common reverse primer 5’-352 

CACGCACTGACTGACAGACT-3’. 353 

scRNA-seq and snATAC-seq 354 

The scRNA-seq experiments were performed according to the standard protocol of single cell 3’ reagent 355 

kits v2 (PN-120237, 10X Genomics) with following modifications. During cDNA amplification, additional 356 

primer (5’-GCTGCGCTCGATGCAAAATA-3’, 0.1 µM) was added to amplify CASB barcode.  To capture 357 

amplified CASB barcode, during “post cDNA amplification reaction cleanup”, the amplified full-length 358 

cDNA library was purified with 2X SPRIselect Reagent (B23318, Beckman Coulter) and eluted in 40 µL 359 

of nuclease-free water, 10 µL of which was subject to PCR with primer pair 5’-360 

AATGATACGGCGACCACCGAGATCT-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ and 5’-361 

CAAGCAGAAGACGGCATACGAGAT-CTGATC-TGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-362 

GCTGCGCTCGATGCAAAATA-3’ using PrimeSTAR Max PCR master mix (R045A, Takara) to add 363 

sequencing adapter sequences to CASB barcode. 364 

The snATAC-seq experiments were performed according to the standard protocol of single cell ATAC 365 

reagent kits (PN-1000111, 10X Genomics) with no modification. 366 

Next generation sequencing 367 

All sequencing experiments were performed with Illumina NovaSeq 6000 System. The service for 368 

scRNA-seq was provided by Haplox genomics center, while for snATAC-seq by Genergy Bio. For 369 

scRNA-seq, paired-end 150 bp with i7 8 bp sequencing strategy was used, while for snATAC-seq, 370 

paired-end 150 bp with i7 8 bp and i5 16 bp sequencing strategy was applied. All sequencing data were 371 

submitted to GEO under the accession number GSE153116. 372 
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 373 

Computational methods 374 

CASB barcode analysis 375 

For scRNA-seq, raw barcode library FASTQ files were converted to barcode UMI count matrix using 376 

custom script leveraging the pysam (Li, Handsaker et al., 2009) package (https://github.com/pysam-377 

developers/pysam). This procedure was similar with a previous method (McGinnis et al., 2019). Briefly, 378 

raw FASTQ files were first parsed to use only the reads where the first 16 bases of R1 perfectly match 379 

any of the cell barcodes predefined by Cell Ranger. Then, reads where the 20-28 bases of R2 align with 380 

at most 1 mismatch to any predefined sample barcodes were used. Reads were grouped by cell 381 

barcodes and duplicated UMIs were identified as reads where 17-26 bases of R1 exactly matched.  382 

In snATAC-seq, sample barcodes were in R2 reads and cell barcodes were in R1 reads. Reads with 383 

sample and cell barcodes were first extracted from raw FASTQ files of snATAC library using custom 384 

script to get the cell-by-sample count matrix. 385 

HTODemux method (Stoeckius et al., 2018) implemented in Seurat package was used to define 386 

‘doublets’, ‘singlets’ and ‘negatives’. 387 

scRNA-seq gene expression analysis 388 

FASTQ files were processed using Cell Ranger (10X Genomics, v3.1.0). The reads were aligned to the 389 

concatenated hg38-mm10  or hg38 reference using STAR (Dobin, Davis et al., 2013). Cell-associated 390 

barcodes were defined by Cell Ranger. Gene expression UMI count matrix (h5 file) was obtained using 391 

Cell Ranger with default parameters. 392 

After the pre-processing, RNA UMI count matrices were prepared for scRNA-seq analysis using the 393 

‘Seurat’ R package (Butler, Hoffman et al., 2018). Cells with no more than 4000 reads or 2000 expressed 394 

genes were removed. Outlier cells with elevated mitochondrial gene expression were visually defined 395 

and discarded. Ribosomal genes and mitochondrial genes were then filtered out.  396 

‘sctransform’ R package (Hafemeister & Satija, 2019) was used to normalize the RNA UMI count data 397 

and find highly variable genes. These variable genes were then used during principal component 398 

analysis (PCA). Elbow plot was used to select the top principal components. Then these principal 399 

components were used for dimensionality reduction with UMAP and unsupervised clustering with 400 

Louvain method. Differential gene expression analysis was performed using the ‘FindMarkers’ function 401 

in Seurat with ‘MAST’ method (Finak, McDavid et al., 2015). To quantify the magnitude of perturbation 402 

induced by drug on gene expression, we compared the proportion of each cell’s k (k=9) nearest 403 
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neighbors in principal component space with the ‘knn.covertree’ R package. The proportion was 404 

normalized by the cell numbers of different groups. 405 

snATAC-seq data analysis 406 

After filtering out the reads with sample barcodes, Cellranger-atac (version 1.2.0) was used to process 407 

the raw FASTQ files. The reads were aligned to hg38 reference using BWA-MEM (Li & Durbin, 2009). 408 

The filtered peak-by-cell matrix (h5 file) obtained after cellranger-atac processing was used in the 409 

subsequent analysis. The matrix was first binarized. Cells of low quality (no more than 2000 peaks or 410 

more than 500000 peaks, percent of reads in peaks <= 30%, percent of peaks in ENCODE black list >5%) 411 

were filtered out. Only cells defined by HTODemux as ‘singlet’ were used for subsequent analysis. ATAC 412 

peaks with low coverage (less than 50 cells) or ultra-high coverage (more than 2000 cells) were also 413 

removed. The binarized count matrix was normalized by term frequency inverse document frequency 414 

(TF-IDF). Latent semantic indexing analysis was performed as applying singular value decomposition 415 

(SVD) on the normalized count matrix. Only the 2nd-50th dimensions after the SVD were passed to 416 

UMAP for 2D visualization. Motif analysis was performed using chromVAR (Schep, Wu et al., 2017).  417 

The predicted target genes of TF were defined by the nearest genes within 100 kb of the activated ATAC 418 

peaks with the TF motif at 12h. The activated ATAC peaks were called by using FindMarkers function 419 

with parameter test.use=’LR’. The average expression levels of these predicted target genes were 420 

calculated using ‘AddModuleScore’ function in Seurat package. 421 

Gene function enrichment and network analysis using IPA software 422 

The commonly up- or downregulated genes in cluster 1 and 2 compared to cluster 0 of untreated MDA-423 

MB-231 cells were subjected to the Ingenuity Pathway Analysis (IPA) (QIAGEN) (Kramer, Green et al., 424 

2014) to gain insights into the gene functions. The “Diseases & Functions” module under the “Expression 425 

Analysis” were used for this purpose. In “Diseases & Functions” module, the analysis was restricted to 426 

“Molecular and Cellular Functions”.  427 
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Figures 536 

Figure 1. Cell labeling with CASB. A, An illustration of CASB. Biotinylated ssDNA was immobilized on 537 

glycoprotein on cell/nuclear membrane through streptavidin and biotinylated ConA. The ssDNA contains 538 

5’ and 3’ PCR handles that flank an 8 nt random sequence. B, mESC were labeled with different quantity 539 

of CASB, and the number of ssDNA molecules immobilized on mESC was quantified used qPCR. The 540 

amount of ssDNA immobilized on cells increased with the increased usage of ConA-streptavidin-ssDNA 541 

complex, and reach as many as 50,000 molecules per cell. C, CASB-labeled mCherry+ MEF cells were 542 

incubated with unlabeled GFP+ MEF cells. The number of ssDNA molecules immobilized on mCherry+ 543 

and GFP+ cells was quantified used qPCR after FACS separation. The ssDNA immobilized on 544 

mCherry+ cells was not detectable from GFP+ cells. “n” means number of qPCR reactions. Error bars 545 

represent SD. 546 

 547 

Figure 2. CASB enables scRNA-seq sample multiplexing. A, An illustration of CASB used in scRNA-548 

seq. A biotinylated barcoding ssDNA with a 5’ PCR handle followed by an 8 nt barcode and a 30 nt poly-549 

A tail was used to mimic the endogenous transcripts. B, The design of the experiment. MDA-MB-231 550 

cells were perturbed with 5 different compounds, collected at 3 different time points, CASB labeled, and 551 

then pooled with 3 other breast cancer cell lines and MEF cells. C, Scatter plot depicting the number of 552 

UMIs associated with transcripts from human or mouse genome. Cell doublets revealed by CASB were 553 

marked in black. Out of 110 mouse-human doublets, 107 were detected as doublets by CASB barcodes. 554 

Three interspecies cell doublets that were not detected by CASB were circled in red. Beside interspecies 555 

cell doublets, cell doublets from one species were also detected by CASB. D, Transcriptome-based 556 

UMAP of cells captured in scRNA-seq. Cells were colored according to the CASB barcodes, and 557 

doublets were excluded. Different human and mouse cells formed 5 distinct cell clusters, respectively. 558 

E&F, Transcriptome-based UMAP of untreated and (E) OSI-027-, (F) Niraparib- and Rucaparib-treated 559 

MDA-MB-231 cells. Three cell populations with distinct transcriptomic responses were observed in each 560 

UMAP: sensitive cell subpopulation was circled in red, while insensitive ones in green and blue, 561 

respectively. G, Transcriptome-based UMAP of untreated and OSI-027-treated MDA-MB-231 cells. 562 

Sensitive cell subpopulation was circled in red, while insensitive ones in green and blue, respectively. 563 

Expression level of VIM, SQSTM1, NPM1 and RACK1 are indicated by color code, which were 564 

expressed in untreated insensitive cell populations and induced by OSI-027 in sensitive cells. 565 
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 566 

Figure 3. CASB enables snATAC-seq sample multiplexing. A, An illustration of CASB used in 567 

snATAC-seq. A biotinylated barcoding ssDNA with S5-ME and S7-ME adapter sequences flanking a 568 

sequence containing sample barcodes was used to mimic the transposed genomic DNA. B, t-SNE 569 

projection based on the CASB barcode reads captured in snATAC-seq. Cells were colored according 570 

to the CASB barcodes, and doublets were marked in black. C, ATAC-based UMAP of all HAP1 cells 571 

captured in snATAC-seq. Cells were colored according to the CASB barcodes, and doublets were 572 

excluded. HAP1 cells showed a continuous shift in chromatin profile from 0 to 12 h. D, Dot plot revealing 573 

the TFs with the most variable activity across all cells including IRF, STAT and NF-kB. E, ATAC-based 574 

UMAP of all HAP1 cells, in which the TF activity was presented by bias-corrected deviation z-score 575 

across all cells in color code. F, Violin plots demonstrating the deviation z-score of different TFs across 576 

different cells at different time points. IRF and STAT associated peaks showed continuous activation 577 

upon IFN-γ stimulation, while the variation of NF-kB peak intensity was largely due to the heterogeneity 578 

within HAP1 cells. 579 

 580 

Figure 4. Transcriptomic heterogeneity within HAP1 cells. A, Transcriptome-based UMAP of HAP1 581 

cells captured in scRNA-seq, in which cells were colored according to the CASB barcodes. HAP1 cells 582 

showed globally a continuous shift from 0 to 12 h. B, Violin plots demonstrating the continuous 583 

transcriptional activation of predicted IRF and STAT target genes across different cells. C, 584 

Transcriptome-based UMAP of HAP1, in which cells were unsupervised clustered and colored 585 

according to the transcriptomic feature revealed by Louvain algorithm. Cells were clustered into two 586 

populations at 4-12 h, one of which exhibited more divergent transcriptome profile from earlier time 587 

points. D, Violin plots comparing the expression of predicted NF-kB target genes between cluster 0 and 588 

2 at 4-12 h. Predicted target genes were heterogeneously expressed and more actively induced in 589 

cluster 2. E, Transcriptome-based UMAP of HAP1 cells, in which the expression of CXCL10 were 590 

presented with color code and showed activation only in cluster 2 (circled in red) at later time points. 591 
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Supplementary Materials 592 

Supplementary Figures 593 

Figure EV1. CASB facilitates scRNA-seq sample multiplexing. A, The number of ssDNA molecules 594 

immobilized on mESC nuclei was quantified used qPCR. The amount of ssDNA immobilized on nuclei 595 

increased with the increased usage of ConA-streptavidin-ssDNA complex, and reached at least 120,000 596 

molecules per nucleus. B, The poly-A ssDNA molecules immobilized on MEF was detected using RT-597 

qPCR. Both poly-A ssDNA and ActB transcripts can be efficiently capture by RT primer. As expected, 598 

barcoding ssDNA can be detected by qPCR even without RT reaction. Error bars represent SD. C, 599 

Heatmap showing the detected levels of each CASB barcode in individual cells in scRNA-seq. A total 600 

of 12068 cells with sufficient reads were captured; 3962 cells that contained at least two major barcodes 601 

were assigned as cell doublets; 483 cells were assigned as ‘unlabeled’, as expected due to the inclusion 602 

of unlabeled MDA-MB-231 cells. D, Boxplot demonstrating the number of UMI derived from both CASB 603 

barcode and mRNA transcripts in cell doublets and singlets. Comparing with singlets, more UMI derived 604 

from both CASB barcode and mRNA transcripts were detected in doublets. E, Scatterplot illustrating the 605 

significant positive correlation between the number of detected UMI from CASB and endogenous 606 

transcripts among individual cells. “R” means Pearson's correlation coefficient. F, Distribution of 607 

normalized CABS UMI counts of singlets and individual cell samples. The CASB barcoding manifested 608 

a good uniformity of labeling efficiency (5-95 percentile: 2.1% - 21.8%) (upper panel); comparing with 609 

human cell samples, MCF7 cells had slightly lower labeling efficiency (lower panel). G, Transcriptome-610 

based UMAP comparing labeled and unlabeled untreated MDA-MB-231 cells, in which two cell 611 

populations were intermingled. H, Scatterplot demonstrating the well correlated gene expression profiles 612 

between labeled and unlabeled untreated MDA-MB-231 cells. “R” means Pearson's correlation 613 

coefficient. I, t-SNE projection based on the CASB barcode reads captured in scRNA-seq. Cells were 614 

colored according to the CASB barcodes, and doublets were marked in black. All 20 sample barcodes 615 

can be detected. J, Transcriptome-based UMAP of all MDA-MB-231 cells captured in scRNA-seq. 616 

Untreated and 24-h treated cells were highlighted. Cells associated with 24 h-treatment of Niraparib, 617 

Rucaparib and OSI-027 could be well distinguished from untreated cells, whereas those with LCL161 618 

and Fludarabine could not. 619 

 620 
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Figure EV2. Intrinsic heterogeneity of MDA-MB-231 cells. A, Transcriptome-based UMAP of 621 

untreated and OSI-027-treated MDA-MB-231 cells. Cells were unsupervised clustered into three distinct 622 

groups with Louvain method. B, Neighbor proportion analysis of untreated and OSI-027-treated MDA-623 

MB-231 cells. In cluster 0, untreated cells were distant from treated cells, while, in cluster 1 and 2, 624 

untreated cells were 50% neighbored with treated cells. C, Transcriptome-based UMAP of untreated 625 

MDA-MB-231 cells. Cells were unsupervised clustered into three distinct groups with Louvain method. 626 

D, Transcriptome-based UMAP of untreated and Niraparib- and Rucaparib-treated MDA-MB-231 cells. 627 

Cells were unsupervised clustered into three distinct groups with Louvain method. E&F, Function 628 

analysis of genes that were commonly up- or downregulated in insensitive cell populations. E, Gene 629 

function enrichment revealed that these genes were highly enriched in the cellular compromise and 630 

movement pathways. F, Genes that were upregulated in insensitive cell populations and predicted to 631 

promote cell movement, including VIM, SQSTM1, NPM1 and RACK1. 632 

 633 

Figure EV3. CASB facilitates snATAC-seq sample multiplexing. A, The number of ATAC-barcode 634 

molecules immobilized on mESC nuclei was quantified used qPCR. The amount of ssDNA immobilized 635 

on nuclei increased with the increased usage of ConA-streptavidin-ssDNA complex, and could reached 636 

at least 80,000 molecules per nucleus. Error bars represent SD. B, Heatmap showing the detected 637 

levels of each CASB ATAC-barcode in individual cells in snATAC-seq. A total of 2890 cells were 638 

obtained with sufficient reads, 305 of which were identified as cell doublets and 23 cells were unlabeled. 639 

C, ATAC-based UMAP of MDA-MB-231 and HAP1 cells. Cells were colored according to the cell line 640 

specific barcodes. MDA-MB-231 cells with its specific CASB barcode presented as an isolated cluster. 641 

 642 

Figure EV4. CASB helps to reveal the dynamic transcriptome change in HAP1 cells. A, Heatmap 643 

showing the detected levels of each CASB barcode in individual cells in scRNA-seq. A total of 3407 644 

cells were captured, 294 of which were identified as cell doublets and 9 cells were unlabeled. B, t-SNE 645 

projection based on the CASB barcode reads captured in scRNA-seq. Cells were colored according to 646 

the CASB barcodes, and doublets were marked in black. C, Transcriptome-based UMAP of HAP1 cells, 647 

in which the expression of CXCL11 were presented with color code. At later time points, CXCL11 were 648 

only actively induced in cluster 2 (circled in red). 649 

 650 
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Supplementary Tables 651 

Table EV1. Genes commonly up- or down-regulated in cluster 1 and 2 of untreated MDA-MB-231 652 

cells. 653 

 654 

Table EV2. CASB barcode sequences for samples in scRNA/snATAC-seq. 655 
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