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Abstract The brain is capable of processing several streams of information that bear on13

different aspects of the same problem. Here we address the problem of making two decisions14

about one object, by studying difficult perceptual decisions about the color and motion of a15

dynamic random dot display. We find that the accuracy of one decision is unaffected by the16

difficulty of the other decision. However, the response times reveal that the two decisions do not17

form simultaneously. We show that both stimulus dimensions are acquired in parallel for the18

initial ∼0.1 s but are then incorporated serially in time-multiplexed bouts. Thus there is a19

bottleneck that precludes updating more than one decision at a time, and a buffer that stores20

samples of evidence while access to the decision is blocked. We suggest that this bottleneck is21

responsible for the long timescales of many cognitive operations framed as decisions.22

23

Introduction24

Decisions are often informed by several aspects of a problem, each guided by different sources25

of information. In many instances, these aspects are combined to support a single judgment. For26

example, an observer might judge the distance of an animal by combining perspective cues, binoc-27

ular disparity and motion parallax. In other instances, the aspects are distinct dimensions of the28

same object. For example, the animal’s distance and its identity as potential predator or prey. The29

former problem of cue combination (Jacobs, 1999; Ernst and Banks, 2002) is a topic of study in30

what has been termed the Bayesian vision or the Bayesian Brain (Knill and Pouget, 2004). The lat-31

ter is the subject of this paper. It arises in a wide variety of problems whose solutions depend on32

identifying a set of conjunctions such as the ingredients of a favorite dish, or when onemust make33

multiple judgments, or decisions, about the same stimulus.34

The neuroscience of decision-making has focused largely on perceptual decisions, contrived35

to promote the integration of noisy evidence over time toward a categorical choice about one36

stimulus dimension. A well studied example is a decision about the net direction of motion of ran-37

domly moving dots. In such binary decisions (e.g., left or right), behavioral and neural studies have38

shown that humans and monkeys accumulate noisy samples of evidence and commit to a choice39
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when the accumulated evidence reaches a threshold (Ratcliff, 1978; Palmer et al., 2005; Gold and40

Shadlen, 2007; Stine et al., 2020). The framework has been extended to more than two categories41

(e.g., Churchland et al. 2008; Bogacz et al. 2007; Ditterich 2010) but it remains focused on a com-42

mon stream of evidence bearing on a single stimulus feature. Less is known about how multiple43

streams of evidence are accumulated for a multidimensional decision (Lorteije et al., 2015). Given44

the parallel organization of the sensory systems, one might expect all available evidence to be in-45

tegrated simultaneously. However, there are also reasons to suspect that two decisions cannot46

be made in parallel. This is based on a variety of experiments that expose a “psychological refrac-47

tory period” (PRP; Welford 1952). When participants are asked to make two decisions in a rapid48

succession, it appears that the second decision is delayed until the first decision is complete (Pash-49

ler, 1994). Based on such observations, it has been argued that there is a structural bottleneck in50

the response selection step, such that only one response can be selected at a time (Sigman and51

Dehaene, 2005).52

Here we develop a task in which the participant views one visual stimulus and makes two de-53

cisions about the same object. The stimulus comprises elements that give rise to two streams54

of evidence bearing on their motion and color, and the participant must decide on both aspects55

and report the combined category. The task was designed to allow participants to integrate both56

streams of evidence simultaneously from the same location in the visual field and to require just57

one response. We show that, even in this situation, the two streams of evidence are accumulated58

one at a time. We show that this seriality arises despite the parallel access of the visual system to59

both streams. We suggest that seriality is explained by a bottleneck between the parallel acquisi-60

tion of evidence and its incorporation into separate decision processes. We elaborate a model of61

bounded evidence accumulation, used previously to explain both the speed and accuracy of mo-62

tion (Palmer et al., 2005) and color decisions (Bakkour et al., 2019), and show that these accumula-63

tionsmust occur in series. The results have implications for a variety of psychological observations64

concerning sequential vs. parallel operations, and they address the fundamental question of why65

mental processes take the time they do.66

Results67

We studied variants of a perceptual task that required binary decisions about two properties of68

a dynamic random dot display. Human participants decided the dominant color and direction of69

motion in a small patch of dynamic random dots (Fig. 1). The stimulus is similar to one introduced70

by Mante et al. (2013), who studied the problem of gating when making a decisions about only a71

single dimension, either color or motion. On each video frame, each dot has a probability of being72

colored blue or yellow and it has another probability of being plotted either at a displacement Δ𝑥73

relative to a dot shown 40ms earlier or, alternatively, at a random location in the display. We refer74

to the probability of a displacement as the coherence or strength and use its sign to designate75

the direction. We use an analogous signed probability for the color coherence or strength (see76

Methods). Participants reported their answer by making an eye or hand movement to select one77

of four choice targets. We refer to this as a double-decision and refer to the two aspects as stimulus78

dimensions. We employed several variants of this basic task in our study.79

A brief précis of the experimental results may be helpful. We first present the main finding80

using a free response paradigm, what we term double-decision reaction time. It demonstrates no81

interference in choice accuracy—that is, the difficulty of the color decision does not affect the ac-82

curacy of motion decisions, and vice versa—but critically, the double decision time is the sum of83

the two single decision times. The analysis suggests that the motion and color decisions are not84

formed at the same time. This establishes the prediction that with brief stimulus presentations,85

successful color decisions ought to be attained at the expense of motion, and vice versa—that is,86

choice interference. We then test this prediction and fail to confirm it. We show that color and87

motion can be acquired in parallel but are unable to update the decision simultaneously. This88

confirms the response selection bottleneck predicted by Pashler (Fagot and Pashler, 1992) and it89
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implies the existence of buffers (Sperling, 1960; Kamienkowski and Sigman, 2008), where sensory90

information can be held before it updates a decision variable—the accumulated evidence for color91

or motion.92

The combination of a buffer and serial updating leads to a revised prediction that interference93

in accuracy should occur over a narrow range of stimulus viewing duration, controlled by the exper-94

imenter. We confirm this prediction, showing that there is no interference at short viewing times,95

but that there is a narrow regime of the stimulus duration in which accuracy on one dimension suf-96

fers because a limited amount of deliberation time needs to be shared with the other dimension,97

which reconciles conflicting observations of parallel and serial patterns of decision-making in the98

literature (e.g., Schumacher et al. 2001; Tombu and Jolicœur 2004). We then introduce a bimanual99

version of the task which affords direct report of both the color and motion termination times. It100

confirms the assumption that the double-decision time is the sum of two sequential sampling pro-101

cesses, each with its own stopping time, and it shows that the color andmotion decisions compete102

before the first decision terminates. This implies some form of time-multiplexed alternation. In103

the last experiment we ask participants to judge whether the motion in a pair of patches are the104

same or different and find that this binary decision also exhibits additive decision times. Finally, we105

introduce a conceptual model of the double-decision process that serves as a platform to connect106

the computational elements with known and unknown neural mechanisms.107

Double-decision reaction time108

Participants were asked to judge both the net direction (left or right) and dominant color (yellow109

and blue) of a patch of dynamic random dots and to indicate both decisions with a single move-110

ment to one of four choice targets (Fig. 1A). Different groups of participants performed the task by111

indicating their choices with an eye movement or a reach (see Fig. 5A). On each trial the strength112

and direction of motion as well as the strength and sign of color dominance were chosen indepen-113

dently, leading to 81 (9 × 9 eye) or 121 (11 × 11 arm) combinations. The single movement furnished114

two decisions and one reaction time (RT). Participants were given feedback that the decision was115

correct if the motion and color were both correct (see Methods).116

Fig. 2A & B shows choices and mean RT as a function of stimulus strength for the eye and117

hand tasks, respectively. The graphs in the left column of each panel show the data plotted as118

a function of motion strength and direction. Each color on this graph corresponds to a different119

difficulty of the other dimension (i.e., color). Similarly, the graphs in the right columns show the120

data plotted as a function of color strength and dominance; the uninformative dimension, motion,121

is shown by color. Unsurprisingly, the proportion of rightward choices increased as a function of122

the sign and strength of the motion coherence, and the proportion of blue choices increased as a123

function of the sign and strength of color coherence. The slopes of these logistic functions supply124

an estimate of sensitivity. The striking feature of these graphs is that sensitivity to variation in the125

stimulus along each dimension is unaffected by the difficulty along the uninformative dimension.126

This is evident from the superposition of the colored data points. It is also supported by a logistic127

regression analysis, which favored a choice model in which the sensitivity along one dimension is128

not influenced by the stimulus strength along the other dimension (ΔBIC = 23 and 22 for motion129

and color in the eye task, respectively; ΔBIC = 37 and 50 for the hand task; positive values are130

support for the regression model of Eq. 12 without the 𝛽3 term). It implies that the two stimulus131

dimensions do not interfere with each other. This is consistent with the well established idea that132

color and motion are processed by parallel, independent channels (Carney et al., 1987). However,133

another possibility is that the two dimensions do not interfere because they are not processed134

simultaneously but serially.135

Indeed, the RTs support this serial hypothesis. The reaction times, plotted as a function of either136

motion or color, exhibit inverted U-shapes, such that longer reaction times are associated with the137

most difficult stimulus strength and the fastest with the easiest. In contrast to the choice functions,138

the uninformative dimension—that is, with respect to the dimension of the abscissa—affects the139
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scale of these RTs, giving rise to a stacked family of inverted U-shaped functions. Themore difficult140

the other dimension, the longer the RT.141

We attempted to explain the choice-RT data in Fig. 2 with models of bounded evidence inte-142

gration (e.g., drift-diffusion; Ratcliff 1978; Palmer et al. 2005). Such models provide excellent ac-143

counts of choice and RT on the motion-only and color-only versions of these tasks (Palmer et al.,144

2005; Bakkour et al., 2019). To explain the double-decision data set we pursued two variants of145

these models under the assumption that motion and color are processed in parallel or in series.146

The curves in Fig. 2 are a mixture of fits and predictions. To fit the data (open symbols), we used147

all trials in which at least one of the dimensions was at its strongest level (32 purple conditions in148

Fig. 1B for the eye task and 40 conditions for the hand task). We used these fits to predict the data149

from the remaining conditions (49 amber conditions for the eye, Fig. 1B and 81 for the hand; filled150

symbols, Fig. 2). Both models are consistent with no interference in the choice functions. Thus the151

fit to the 32 or 40 conditions supplies all the predicted choice functions.152

The models can be distinguished on the basis of the RT data. For an experiment with only a153

single dimension (e.g. motion), the RT is the sum of the amount of time that evidence is integrated154

to reach a terminating bound (the decision time, 𝑇m or 𝑇c, for motion and color choice respectively)155

plus additional time for sensory and motor delays, termed the non-decision time (𝑇nd). If the color156

and motion decisions are made in parallel, then the total decision time should be determined by157

the slower process (max[𝑇m, 𝑇c]), whereas if the decisions are made serially, the total decision time158

would be determined by the sum of the two decision times (𝑇m + 𝑇c). In both cases, we expect159

both motion and color strengths to affect the RT. In the serial case, an increase in the difficulty160

of color, say, should augment the total RT by the same amount for all motion strengths, giving161

rise to stacked functions of the same shapes (solid curves, middle row, Fig. 2A,B). In the parallel162

case, an increase in the difficulty of color should augment the total RT by an amount that depends163

on the difficulty of motion (solid curves, bottom row Fig. 2A,B). The color dimension is likely to164

determine the total RT when motion is strong, but it has less control when the motion is weak.165

The logic should produce stacked bell-shaped functions that pinch together in the middle of the166

graph. The data are better explained by the serial predictions (e.g, large mismatches when both167

dimensions are weak). Formal model comparison provides strong support for the serial models168

overall (geometric mean of Bayes factor across participant and task combinations: > 1039) and for169

9 out 11 participants individually (Figure 2–Figure Supplement 1).170

We pursued a second approach to compare serial and parallel integration strategies, focusing171

specifically on the decision times. Unlike the fits to choice-RT, this method uses each participant’s172

choices as ground truth. It considers only the distribution of RTs and attempts to account for them173

under serial and parallel logic. Instead of diffusionmodels, we estimated themarginal distributions174

for each 1D decision time and the four 𝑇nd distributions (for each choice) with gamma distributions.175

For the serial case the predicted RT distributions are established by convolution of the marginal176

single-dimension distributions and the distribution of 𝑇nd. For the parallel case the marginals are177

combined using the max logic, and the result is convolved with the appropriate distribution of 𝑇nd178

(see Methods). Figure 2–Figure Supplement 2 shows fits to the reaction time distribution for the179

more informative conditions for the serial and parallel models. The model comparisons, based on180

all the data, yield “decisive” support (Kass and Raftery, 1995) for the serial processing of motion181

and color (geometric mean of Bayes factor for participant and task combinations > 1018 with all182

participants’ individually supporting the serial rule; Figure 2–Figure Supplement 3). We also display183

the mean RTs derived from the fits in the same format as Fig. 2 (Figure 2–Figure Supplement 4 &184

Figure 2–Figure Supplement 5).185

The finding favors additive decision times, from two independent decision processes, each with186

its own termination rule. However, it does not discern the nature of the serial processing (e.g.,187

whether they alternate or one is prioritized). We will consider this issue later.188
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Brief stimulus presentation189

The results from the double-decision RT experiment support sequential updating of two decision190

variables, which represent accumulated evidence for the motion and color choices. If this is true,191

it leads to a straightforward prediction. If the stimulus duration is not controlled by the decision192

maker but by the experimenter, and if it is brief, then the two stimulus dimensions would compete193

for the limited processing time, and we ought to observe choice-interference. We therefore con-194

ducted a second experiment in which we limited the duration of the stimulus viewing time to just195

120 ms. We know from previous experiments with 1D tasks that performance increases with stim-196

ulus durations greater than one half second (Kiani et al., 2008; Waskom and Kiani, 2018). Thus197

it is reasonable to assume that performance accuracy would suffer if it is not possible to make198

use of the full 120 ms of evidence for both motion and color. We predicted that sensitivity to both199

color andmotion should be worse on the double-decision task than on color-only andmotion-only200

versions of the identical task.201

To our surprise, double-decisions were just as accurate as their 1D controls (Fig. 3A). We also202

observed no change in the sensitivity to color across the range ofmotion difficulties, and vice versa203

(ΔBIC = 9 and 10 for motion and color choices, respectively, in support of no interaction; Eq. 11,204

𝐻0 ∶ 𝛽3 = 0). This suggests that evidence for color and motion were acquired simultaneously, in205

parallel, and without interference. Further support for this conclusion is adduced from an analysis206

of the stimulus information used tomake the decisions—what is known as psychophysical reverse207

correlation or kernel (Beard and Ahumada, 1998;Okazawa et al., 2018). Fig. 3B displays the degree208

to which trial-by-trial variation in the noisy displays influences the choice (see Methods). It shows209

that these stimulus fluctuations influenced choices almost identically in the double-decision task210

and 1D controls.211

At first glance, the observation seems to be at odds with our interpretation of the double-212

decision RT experiment, which provided strong support for serial processing, primarily in the pat-213

tern of RTs. Here, the entire stimulus stream lasts only 120 ms, which is less than a typical sac-214

cadic latency to a bright spot. Nevertheless, participants exhibited variation in the time of their215

responses as a function of stimulus strength (Fig. 3A, bottom panels) and these response times216

were surprising long. The fastest were ∼300 ms longer than the stimulus (𝑅𝑇 > 400 ms). Impor-217

tantly, they are approximately 100-200 ms longer in the double-decisions than in single decisions.218

It is difficult to make too much of this observation, because the participants might have procras-219

tinated for reasons unrelated to the dynamics of the decision process. However, procrastination220

would not explain the difference between the two conditions. As parallel acquisition of the 120 ms221

color and motion take the same amount of time as acquisition of either of the streams alone (by222

definition), the extra time in the double decision is probably explained by serial incorporation of223

evidence into the two decisions. This observation also implies the existence of buffers that store224

the information from one stream as it awaits incorporation into the decision.225

Our results so far suggest that color and motion information are acquired in parallel but are226

incorporated into the decision in series. We therefore wondered if the same schema might apply227

to the double-decision RT task. For this to hold, some kind of alternation must occur such that228

segments of one or the other stimulus stream is not incorporated into its decision. Suppose, for229

example, that at t=120 ms, motion information had been incorporated into decision variable 𝑉m,230

and color information had been stored in a buffer. Suppose further that motion continues to231

update the decision variable, 𝑉m, until it reaches a termination bound at 𝑡 = 𝑇m, and only then232

can the buffered color information be incorporated into decision variable, 𝑉c. From then on color233

information could update 𝑉c until this decision terminates. In this imagined scenario, the color234

information between 0.12 < 𝑡 < 𝑇m is not incorporated in the decision.235

Onemight also imagine two alternatives to the latter part of this scenario. In both, the informa-236

tion from color continues to update the buffer (but not 𝑉c) throughout themotion decision without237

loss. Then at 𝑡 = 𝑇m either (𝑖) all the information about color is incorporated immediately into 𝑉c238
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or (𝑖𝑖) the buffered information is incorporated in 𝑉c over time (e.g., as if the recorded color infor-239

mation is played back). The first alternative is equivalent to the parallel model that is inconsistent240

with the data. The second scenario, implausible as it may seem, implies the color decision is blind241

to the color information in the display during the playback of the recorded color information (i.e.,242

𝑇m < 2𝑇m). These alternatives are not intended as serious models but to convey two general intu-243

itions. First, if there is a buffer at play in the 2D reaction time task then it must take time for the244

buffered information to be incorporated, or the RTs would have conformed to the parallel logic.245

Second, if the duration of the buffer is finite, when both 1D processes require more processing246

time than the duration of the buffer, there will be portions of the color and/or motion stimulus247

that do not affect the decision.248

One might therefore ask why the second point does not lead to a reduction in sensitivity (or249

accuracy) in color, say, when motion is weak and competes with color for processing time. The250

answer is that when the decision maker controls the termination of the decision, they can com-251

pensate the missing information by collecting more until the level reaches the same terminating252

bound. This leads to a straightforward prediction. If the experimenter controls the termination253

of the evidence stream, then missing portions of the color and/or motion stimulus might impair254

performance, especially when the other stimulus dimension is weak.255

Variable stimulus duration256

We therefore predicted that under conditions in which the experimenter controls the viewing du-257

ration, there is an intermediate range of viewing durations, greater than 120 ms and less than the258

average RT of difficult double decisions, where we might observe interference in sensitivity. To259

appreciate this prediction, it is essential to recognize that when the experimenter controls view-260

ing duration of a random dot display, the decision maker applies a termination criterion, as they261

do in free response (RT) experiments (Kiani et al., 2008). There is no overt manifestation of this262

termination, although it can be identified by introducing perturbations to the stimulus (see also263

Kang et al. 2017). Before such termination, accuracy improves by the square root of the stimulus264

viewing duration (√𝑡) as expected for perfect integration of signal-plus-noise. In a double-decision,265

when the two decision processes are splitting the time equally, the accuracy of each should only266

improve by √𝑡/2. However, when one process terminates, the rate of improvement of the other267

process should recover, until that process reaches its terminating bound. The model predicts a268

range of stimulus strengths and viewing durations in which interference in accuracy ought to be269

evident. It also predicts that the range and degree of interferencemight depend onwhich stimulus270

dimension the participant prioritizes. Here we set out to test this prediction.271

Two participants performed this variable stimulus duration task in 12-16 sessions. The task272

was identical in structure to the brief-duration experiment. However, stimuli were presented at273

fixed durations ranging from 120 to 1200 ms (in steps of 120 ms). Only three levels of difficulty274

were used for each dimension: one easy and two difficult coherence levels (adjusted individually275

to yield 80% and 65% accuracy, respectively; see Methods). All 6 × 6 combinations of motion ×276

color coherences were presented.277

Fig. 4 shows the sensitivity to motion and color as a function of stimulus duration, when the278

other stimulus dimension was easy or difficult. The sensitivity is the slope of a logistic fit of the279

motion (or color) choices to the three levels of difficulty (see Methods). Notice that for both partic-280

ipants, there is no difference in the slopes at the shortest stimulus duration (120 ms), consistent281

with the findings above. However both participants exhibited lower sensitivity at intermediate282

durations when color choices were coupled with difficult motion. This difference implies an inter-283

ference. It is less compelling, if present at all, when motion choices are coupled with difficult color.284

This pattern in which motion difficulty affects color sensitivity but not vice-versa is consistent with285

participants prioritizing one decision over the other. This would arise if participants consistently286

monitored themotion streamfirst and turned to color after themotion decision terminated. In this287

case the difficulty of the color would not affect the decisions for motion, but harder motion would288
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take longer to terminate thereby leaving less time for color processing. We therefore used amodel289

in which one decision was prioritized over another by including a parameter that determined the290

probability that motion would be processed first. We also included a parameter that controls the291

duration of the stimulus streams that can be held in the buffer. This is, effectively, the amount292

of stimulus information that can be acquired in parallel. The best fits of the model, shown by the293

smooth curves (Fig. 4A) suggest the buffer capacity of 40-200 ms worth of stimulus information294

(Fig. 4B & Figure 4–Figure Supplement 1) and prioritization of motion on approximately 80-96% of295

trials. Had the buffer capacity been tiny, the model would be purely serial and if the buffer dura-296

tion was very large, then the model would be parallel. Both such buffer capacities provide very297

poor fits to the data (Figure 4–Figure Supplement 2).298

The findings therefore support our prediction and in doing so, they support the hypothesis that299

a common principle explains the double decisions ranging from a tenth to at least two seconds and300

whether this duration is controlled by the experimenter or by the decisionmaker. Namely, there is301

parallel acquisition but serial incorporation of color and motion into the double-decision process.302

The interference in choice accuracy demonstrated in this experiment is the only example of choice303

interference in our study. It is remarkably elusive, because it can be observed only for stimulus du-304

rations for which three conditions are satisfied: (𝑖) the duration of the stimulus is long enough that305

parallel acquisition is no longer possible; (𝑖𝑖) the duration of the stimulus is short enough that ac-306

curacy on one dimension would benefit from additional sensory evidence; (𝑖𝑖𝑖) the duration should307

support termination of the other dimension for strong but not weak stimuli. The interference is308

also deceptive. It is explained by a competition for processing time, not by an interaction affecting309

the fidelity of the sensory streams themselves. It is an example of resource sharing (Tombu and310

Jolicœur, 2002, 2005; Kahneman, 1973), but the resource is time, specifically.311

Separate effectors (bimanual)312

There are two important features of the serial model: the existence of two decision variables that313

are terminated independently, and that these accumulations are not updated at the same time314

but in series. A limitation in the experiments so far is that we had access to the completion of the315

double decision but not to the completion of each component. Therefore, we could only speculate316

about which decision completed first and when. Without knowledge of the first decision time, we317

cannot tell how often a participant switched between updating the motion and color decision vari-318

ables. For example, the prioritization considered in the previous section could arise by completing319

one decision before deliberating on the second or by alternating back and forth on a schedule320

that allocates more time to motion. Therefore, we conducted an experiment in which participants321

indicated their choice and RT for each stimulus dimension using separate effectors.322

The eight participants who performed the unimanual version of the double-decision RT task323

also performed a bimanual version of the same task (Fig. 5A). In the unimanual version, partici-324

pants used a handle to move a cursor to one of four targets that simultaneously communicated325

color and motion decisions. In the bimanual version, participants indicated their motion decision326

by moving one of the handles in a left/right direction and indicated their color decision with a for-327

ward/backward movement of the other handle. Participants were encouraged to independently328

indicate their color and motion decisions. To facilitate this, they received extensive training, con-329

sisting of blocks in which one of the stimulus dimensions was set at its easiest level. Both the order330

of the tasks (unimanual and bimanual) and the hand assignments (left/right × color/motion) were331

balanced between the participants (see Methods).332

Before tackling thequestions thatmotivate the bimanual experiment, we first ascertainedwhether333

participants used the same strategy tomake bimanual double-decisions as they did on the uniman-334

ual version. It seemed conceivable that by using separate hands to indicate the motion and color335

decisions, participants could achieve parallel decision formation, for example, as a pianist reads336

the treble and bass staves with the left and right hands, typically. We therefore conducted amodel337

comparison similar to that of Fig. 2. To fit the models, we used the color and motion choice on338
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each trial along with the second response time (D2nd) regardless of whether it was to indicate di-339

rection or color. This allows us to fit models that are identical to those used in the unimanual task340

(Fig. 2). In the bimanual task, the final RTs (RT2nd) are well described by the fits to the unimanual341

double-decision RTs (Fig. 5). We illustrate this in two ways. In the figure, the solid traces are not342

fits to the bimanual data; they are fits to the unimanual data shown in Fig. 2B. Clearly the choice343

probabilities and response times displayed in the bimanual task are well captured by the model fit344

to the unimanual task. The actual fits are shown in Figure 5–Figure Supplement 1, and model com-345

parison favors the serial over the parallel model for seven of the eight participants (Figure 2–Figure346

Supplement 1). Importantly, the participants’ behavior was strikingly similar in the unimanual and347

bimanual versions of the task.348

The similarity between the two versions of the task is also supported with a model-free analy-349

sis. In Figure 5–Figure Supplement 2 we superimpose the accuracy and the reaction times for the350

unimanual and bimanual tasks. There is an almost perfect overlap between these two aspects of351

choice behavior, providing further support for a common set of processes operating in both ver-352

sions of the task. It provides direct evidence for two termination events, as assumed in our model353

fits. This rules out a class of models of the double decision as a race among four accumulations354

for each of the color-motion combinations, what we term targetwise integration, as these models355

posit only one double-decision time.356

The bimanual task allows us to distinguish between two variants of the serial model that were357

not distinguishable in the unimanual task. In the first variant, the single-switchmodel, the decision358

maker only switches from one decision to the next when the first decision is completed. Thus the359

decision that terminates first (D1st) is the one that is evaluated first, and only then the other deci-360

sion is evaluated. In the second variant, the multi-switch model, the decision maker can alternate361

between decisions even before finalizing one of them. If little time is wasted when switching, these362

two models make similar predictions for the response time in the unimanual task: the response363

time will be the sum of the two decision times plus the non-decision latencies. However, the mod-364

els make qualitatively different predictions for how the response time for D1st depends on the365

difficulty of the other decision.366

The single-switch model predicts the response time for D1st is independent of the difficulty of367

the decision reported second (D2nd). That is because D2nd is not evaluated until the first decision368

is completed. The prediction of the multi-switch model is less straightforward. Suppose that in a369

given trial the motion decision is easy and the color decision is difficult. If the color was reported370

first, the motion was probably not evaluated at all before committing to D1st, since if it had been371

evaluated it would most likely have ended before the color decision. In contrast, if both dimen-372

sions were difficult, which decision was reported first is largely uninformative about the number373

of alternations between color and motion that occurred before committing to the first decision;374

since both decisions take longer to complete, it is possible that both have been evaluated before375

one of them terminated. Therefore, the multi-switch model predicts that the first decision takes376

longer the more difficult the other decision is: when D2nd is easy, it is more likely that it was not377

considered before committing to the D1st decision and thus the average response time is shorter.378

To disambiguate between the single-switch and multi-switch models, we fit both models to the379

data from the bimanual task. First, we fit a serial model identical to that of Fig. 2 to the data from380

the bimanual task. We used the same procedure as in Fig. 2; that is, we ignore RT1st and fit RT2nd381

and the choices given to the two decisions. Then, we used three additional parameters to attempt382

to explain RT1st. These parameters are the average time between switches (𝜏▵), the probability of383

starting the trial evaluating the motion decision (𝑝motion-1st), and the non-decision time for the first384

decision (𝑇 1st
nd ). These parameters only affect RT1st; they do not influence RT2nd nor the choices385

made for the two decisions. The three parameters were fit to minimize the mean-squared error386

between the models’ predictions and the data points (Fig. 6; Table 3). The single switch model is387

a special case of the multi-switch model where 𝜏▵ is very large (i.e., longer than the slowest first388

decision time).389
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The model comparison provides clear support for multiple switches. Fig. 6 shows the average390

response time for the decision reported first (RT1st), split by whether the first decision was color391

or motion, and grouped by either color or motion strength. Both the single- and multi-switch392

models provide a good explanation of the RT1st when grouped as a function of the coherence of393

the decision that was reported first (Fig. 6, panels A and D). However, only the multi-switch model394

could explain the interaction between RT1st and the coherence of D2nd (Fig. 6B and C). The data395

shows that RT1st is longer when D2nd is more difficult, and this effect was well explained by the396

multi-switch model. Unlike what is seen in the data, the single-switch model predicts that RT1st397

should not vary with the coherence of D2nd (as depicted by flat lines in panels B and D). Because398

we fit the models for each participant individually, we can analyze the frequency of alterations399

predicted by the model with multiple switches. For one of the participants, the best-fitting inter-400

switch interval was higher than the slowest decision time, and thus the model was no different401

from the single-switch model. For the other 7 participants, alternations were sparse: the average402

inter-switch interval was 920±290 ms (mean ± s.e.m. across participants).403

To summarize, the bimanual version of the double-decision task allowed us to infer not only404

that the two dimensions were addressed serially, but that people may alternate between both405

attributes of the stimulus in a time-multiplexed manner. The model suggests that alternations406

were sparse, as if the participants considered one decision for a few hundred milliseconds, and407

switched temporarily to the other decision if they found no conclusive evidence about the first.408

Double decision with binary response409

Up tonowwehaveobserved serial decisionmakingwhenparticipants had to provide twoanswers—410

that is, four possible responses. A possible concern is that the reason we observed the serial pat-411

tern of double-decisions was that it required a quaternary response. We therefore designed a412

task that involves a double decision but only a binary choice. Two participants were asked to re-413

port whether the net direction in two patches of random dots were the same or different (Fig. 7A).414

The two motion stimuli were presented to the left and right of a central fixation cross Fig. 7A. The415

direction (up or down) and strength of motion were controlled independently in the two stimuli.416

Both participants exhibited accuracy-RT functions that depended on the difficulty of both mo-417

tion stimuli. Fig. 7B shows proportion of correct choices plotted as a function of the coherences418

for both the 1D (up-down) and 2D (same-difference) trials. The RTs associated with same-different419

judgment were almost twice as long as the RTs from a 1D direction judgment. Part of this differ-420

ence might be attributed to the conversion from two direction judgments to the same-different421

response, but that should not depend on difficulty and it is hard to reconcile this with the magni-422

tude of the difference. Instead they suggest additive decision times. The horizontal red lines in423

Fig. 7B are fits to a drift diffusion model that assume the 2D same/different decision is formed424

from two 1D direction decisions. We constrained the fits to share the same sensitivity to motion425

strength (see Methods, Eq. 2).426

To compare serial and parallel accounts of these extended reaction times, we used the same427

strategy as in Figure 2–Figure Supplement 2 which attempts to account for the observed RT distri-428

butions as combinations of underlying 1D decision times and the non-decision time. This analysis429

provides strong support for the serial account (Figure 7–Figure Supplement 1C; BF > 107 for both430

participants). Like the color-motion task, there is every reason to assume that the acquisition of431

evidence from the two patches of random dots occurs in parallel. Yet once again, the pattern of432

RTs supports serial incorporation into the double decision. The use of a binary response in the433

same-different task also rules out the possibility that the long decision time in our 2D experiments434

are explained by the doubling of alternatives (Hick’s law; Hick 1952; Luce 1986; Usher et al. 2002).435

Parallel acquisition with serial incorporation model436

Taken together, the results from our five experiments suggest that the prolongation of RTs in dou-437

ble decisions is the result of serial integration of evidence during the decision-making process,438
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independent of the modality of choice implementation and number of response options. Paral-439

lel acquisition of the two sensory streams followed by serial incorporation into decision variables440

reconciles the findings of the short duration experiment with those of the double-decision RT ex-441

periment. The variable duration and bimanual experiments suggest that (𝑖) parallel acquisition442

and serial incorporation is not limited to the short duration experiment and (𝑖𝑖) serial alternation443

of color and motion can occur before one process terminates. Here we attempt to incorporate444

these features into a common framework intended to illuminate how this might work in terms445

that relate to the neurobiology of perceptual decision making. We will proceed by illustrating the446

steps that underlie the acquisition of evidence samples, their temporary storage in buffers, and447

their incorporation into the decision variables that govern choice and the two decision times. We448

first make the case for the buffer using a simulated trial from the short duration experiment. We449

then elaborate the diagram to account for the serial pattern of decision times when the stimulus450

duration is longer.451

Consider the example in Fig. 8A of a process leading to a decision in the short duration task.452

Suppose that visual processing of the 120 ms motion stream gives rise to a single sample of evi-453

dence that captures the information from the brief pulse, and the same is true for the color stream.454

These samples of evidence are acquired in parallel and placed in buffers, where they can be stored455

temporarily. The values in these buffers may be thought of as latent instructions to a cortical cir-456

cuit to update a decision variable (𝑉m or 𝑉c) by some amount (Δ𝑉m and Δ𝑉c). While the samples457

can be acquired simultaneously, only one sample can update the corresponding decision variable458

at a time. This is the bottleneck. One of the samples must be held (buffered) until the other up-459

date operation has cleared. If motion is the first to be updated, then 𝑉c cannot be updated until460

the circuit receiving the motion-update instruction has received it (green arrow). This takes some461

amount of time, 𝜏ins (for instruct). The update instruction is realized by an integrator with a time462

constant (𝜏v = 40 ms) leading to slow cortical dynamics (red and blue traces).463

In this example, each buffer receives all the information available in the stimulus. Were there464

additional samples in the stimulus, the motion buffer would be ready to receive another sample465

when it sends its content, whereas the color buffer cannot be updated until it is cleared, 𝜏ins later.466

The bottleneck is between the buffer and the update of the decision variable, more specifically,467

the initiation of the dynamic process that implements this update in a cortical circuit. In this case468

there is no consequence beyond a delay, because there is no more evidence from the stimulus469

after 120 ms.470

Fig. 8B elaborates the diagram inpanel A using another trial from the short duration experiment.471

We now represent the transformation of sensory data to evidentiary samples by applying a stage472

of signal processing to the raw luminance and color data, 𝐿(𝑥, 𝑦, 𝑡) and𝐶(𝑥, 𝑦, 𝑡). These functions are473

just shorthand for the noisy spatiotemporal displays. The motion filter is meant to capture the im-474

pulse response of direction selective simple and complex cells in the visual cortex (Movshon et al.,475

1978b,a; Adelson and Bergen, 1985; Britten et al., 1993; DeAngelis et al., 1993), and we assume476

a similar operation on the stimulus color stream. They are also shorthand for a difference signal,477

such as right minus left and blue minus yellow. The filtering introduces a delay and a smearing478

of these streams. While the motion filters must sample the 𝐿(𝑥, 𝑦, 𝑡) at rates sufficient to support479

the extraction of fast fluctuations and fine spatial displacement, the neurons ultimately pool these480

signals nonlinearly over space and time (Britten et al., 1993; Zylberberg et al., 2016). These are481

the signals represented by the maroon filter traces in the Fig. 8B. This is the convolution of 𝐿(𝑥, 𝑦, 𝑡)482

and the function in Fig. 3B (bottom). The same filter is applied to 𝐶(𝑥, 𝑦, 𝑡) to make the filtered color483

traces (blue). Importantly, for purposes of integrating the information in the color-motion random484

dot displays, 11 Hz sampling (𝜏s = 90 ms) is sufficient. Notice that the filtered representation lasts485

longer than the stimulus. Therefore, in this case the decision is based on at least two samples of486

evidence per sensory stream.487

The buffers acquire their first samples at 𝜏s = 90 ms (Fig. 8B, arrows 1⃝ & 1⃝) The motion buffer488

is cleared as soon as it is acquired (arrow 2⃝) and thus begins to impact 𝑉m 90 ms later (i.e., 𝜏ins).489
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We set 𝜏ins = 90 ms mainly to simplify the figure (but see below). Thus it is only at 𝑡 = 180 ms490

(i.e., 𝜏s + 𝜏ins) that the instruction arrives to update 𝑉m. This unblocks the bottleneck ( 3⃝), thereby491

allowing the first color sample to be cleared from its buffer (open rectangle, 4⃝). This permits ac-492

quisition of a second color sample ( 3⃝ and filled blue rectangle, 𝑡 = 180 ms). Notice that the second493

motion sample is also acquired at 𝑡 = 180 ms, that is, 𝜏s after the first acquisition (and its immediate494

clearance). The first color sample instructs 𝑉c 𝜏ins after it was cleared (𝑡 = 270 ms), which unblocks495

the bottleneck ( 5⃝). Because we are assuming alternation in this example, this leads to the second496

update of 𝑉m ( 6⃝). With the motion buffer available, it would be possible to obtain a third sample497

from the motion stream at 𝑡 = 270 ms, but the filtered signal has decayed to zero, and we assume498

extinction of the stimulus is registered by the brain by this time to terminate sampling. Upon re-499

ceipt of Δ𝑉m, the bottleneck is lifted (𝑡 = 360 ms; 7⃝) and the second color sample is cleared from its500

buffer (𝑡 = 360 ms) to instruct 𝑉c ( 8⃝). There is no signal left to integrate, and the decision is made501

based on the signs of 𝑉m and 𝑉c. Thus the decision is based on simultaneous (parallel) acquisition502

of two samples of evidence, which are incorporated serially into their respective decision variables.503

The exercise helps us appreciate how a stream of evidence lasting only 120 ms could lead to a504

double-decision 400-600ms later (Fig. 3A). It also illustrates the compatibility of parallel acquisition505

and serial incorporation into the decisions, and it suggests that serial processing is imposed at the506

step between buffered samples and incorporation into the decision variables. This is the “response507

selection” bottleneck hypothesized by Harold Pashler (1994) and others (e.g.,Marti et al. 2012; see508

Discussion).509

The idea extends naturally to double-decisions that are extended in time. Fig. 8C illustrates a510

simulated double-decision in a free response task. The double-decision is made once both deci-511

sion variables reach their terminating bounds. The example follows the same initial steps as the512

short duration experiment, except that when the 2nd motion and color samples are cleared from513

their respective buffers, they are replaced with a 3rd sample. Notice that beginning with the third514

motion sample, the interval to the next sample has doubled (180 ms), because the example posits515

regular alternation (for purposes of illustration only; see below). This longer interval begins with516

the 2nd sample. From that point forward, until the color decision terminates, the streams are ef-517

fectively undersampled. Decision processes ignore approximately half of the evidence supplied518

by the stimulus. This is because both streams supply independent samples of evidence at a rate519

greater than 5.5 Hz (i.e., an interval of 180 ms).520

In the example, it is 𝑉c that reaches the bound first (𝑇c ≈ 1.4 s; 9⃝). There may be no overt521

behavior associated with this terminating event, as in the eye and unimanual reaching tasks, but522

direct evidence for this termination is adduced from the bimanual reaching task.523

From this point forward the processing is devoted solely to motion until it terminates at a neg-524

ative value of 𝑉m (10⃝). Notice that when the bottleneck clears, there is always a buffered sample525

ready to be cleared, and this occurs at intervals of 𝜏ins = 𝜏s = 90 ms. The process is now as effi-526

cient as a single decision process. Indeed, a simple 1D decision about motion (or color) is likely to527

involve the same instruction delays and bottleneck. If 𝜏s = 𝜏ins, then like the first sample of motion,528

all subsequent samples of motion could pass immediately from the buffer to update 𝑉m without529

loss of information. The model is thus a variant of standard symmetrically bounded random walk530

or drift-diffusion (Laming, 1968; Link, 1975; Ratcliff, 1978; Shadlen et al., 2006; Ratcliff and Rouder,531

1998; Palmer et al., 2005). It is compatible with the long time it takes for visual evidence to impact532

the representation of the decision variable in cortical areas like the FEF and LIP (e.g., ∼180 ms).533

The diagrams in Fig. 8 are intended for didactic purposes, to lay out the need for a buffer and the534

seriality imposed by a bottleneck between the buffer and the update of theDV in circuits associated535

with working memory. The values for the delays and time constants (𝜏x terms) were chosenmainly536

to simplify an already complex diagram, and the sameholds for the assumption of strict alternation.537

The logic does not change if the serial processing were to involve many updates of color or motion538

before switching to the other dimension. The important assumption is that it takes time to update539

a decision variable, and during this update there is a bottleneck that precludes another update.540

11 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Importantly, whether alternating, as in Fig. 8C, or starting one process after completing the other,541

there is a period of time in which information in the sensory stream is not affecting one of the542

decisions. This loss is apparent in the additivity of decision times, but it leads to no interference543

in accuracy in the RT task, because the termination criterion has not changed, and this (and the544

stimulus strength) determines accuracy. This is the insight that led to the prediction that under545

certain conditions in which the experimenter controls the duration of the color-motion display,546

there ought to be interference between color and motion sensitivity (Fig. 4).547

Discussion548

In one sense the present study extends the framework of bounded evidence accumulation tomore549

complex decisions composed of the conjunction of two decisions about two distinct features. In550

another more important sense, the findings highlight a bottleneck in information processing that551

touches on the very speed of thought. The experimental findings demonstrate that a double-552

decision about the dominant color and direction of motion of a patch of random dots is formed553

serially. This is surprising, because color andmotion are canonical examples of parallel visual path-554

ways from the retina through the visual and extrastriate visual association cortex, and there are555

compelling demonstrations of this parallel processing on conscious perception (Carney et al., 1987;556

Cavanagh et al., 1984, 1985). Indeed we confirmed that the color and motion information in the557

random dot stimulus used here was acquired in parallel. The stimulus was designed to minimize558

interference or competition for spatial attention. It was restricted to a small aperture in the center559

of the visual field, and the same individual dots supply the motion and color information. It seems560

fair to say that the deck was stacked in favor of parallel processing.561

Indeed with one notable exception, there was not a hint of an interaction between color or562

motion on choice performance in our experiments. That is, changing the difficulty of one dimen-563

sion, say color, did not affect the perceptual accuracy—or more precisely, sensitivity—to the other564

dimension, say motion. This held over a wide range of difficulties spanning chance to perfect per-565

formance. The one exception was when we controlled viewing duration (Fig. 4) and this turns out566

to be explained by a competition of the two streams for processing time, not by an interaction af-567

fecting the fidelity of the sensory streams themselves. Had we attended solely to the choice data,568

we would have likely concluded that the motion and color decisions were formed in parallel, con-569

sistent with 40 years of vision science (Livingstone and Hubel, 1988; Ramachandran and Gregory,570

1978).571

Evidence for seriality of the decision process is adduced mainly from the pattern of double-572

decision reaction times. The RT is the time from the onset of the color-motion stimulus to the initi-573

ation of the movement used to indicate the decision: the sum of the time it takes to complete the574

double decision, plus time delays that are not affected by task difficulty, termed the non-decision575

time (𝑇nd). If the color and motion decisions are made in parallel, then the double-decision time576

is the larger of the two decision times, max[𝑇m, 𝑇c]. If the decisions are made serially, the double-577

decision time is the sum, 𝑇m + 𝑇c. We focused on max vs. sum distinction using a combination of578

fitting and prediction. The simplest approach relies only on fits of the double-decision RT distribu-579

tions (Figure 2–Figure Supplement 2) derived from a smaller set of latent 1D decision-time distribu-580

tions under the appropriate operations for parallel and serial combination (Eq. 7 and convolution,581

respectively). We found this method themost robustly identifiable—that is, it almost always favors582

the appropriate generating model—and it is sufficiently powerful to apply to the smaller data sets583

from individual participants. It reveals “decisive” support (Kass and Raftery, 1995) for seriality in584

all but one of the 11 participants (Figure 2–Figure Supplement 3). A drawback of the approach is585

that it does not constrain the relationship between choice accuracy and decision time. For this we586

used a variety of bounded drift-diffusion models. These are the fits shown in Fig. 2. Here too, we587

attempted to contrast the max and sum logic by predicting the RT distribution for the majority of588

conditions. We fit the choice-RT data from the subset of conditions in which at least one of the stim-589

ulus dimensions was at its strongest level. The fits, under themax or sum rule, supply the marginal590
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1D distributions used to predict the RT of the remaining conditions, through application of the591

same rule. This approach also provides decisive support for the serial model (see Figure 2–Figure592

Supplement 1).593

The strong support for serial processing does not specify where in the processing chain the se-594

riality arises. The answer to this question resolves the apparent contradiction with vision science,595

and highlights a connection with a body of literature from psychology that addresses the topic of596

dual task interference, more specifically the psychological refractory period. The key is the short597

and variable duration experiments (Figs. 3 and 4). If seriality were imposed at the level of sensory598

acquisition, thenwhenboth color andmotion are difficult, accuracy ononedimension should come599

at the expense of accuracy on the other, on average. We did not observe this at short durations,600

and not for lack of power, as made clear by the interference that was detected at intermediate du-601

rations. Nor did we observe any reduction in accuracy compared to single decisions, and there was602

no difference in the magnitude and time course over which momentary fluctuations of color and603

motion predicted the individual choices on single- and double-decisions (Fig. 3B). These observa-604

tion also rule out the possibility that there was interference but it was balanced across trials—that605

is, a mixture of trials in which successful motion processing impaired color processing on half the606

trials and successful color processing impaired motion processing on the other half.607

If color andmotion information are incorporated into the decision serially in the short duration608

experiment, then there must be a mechanism to store the evidence from at least one of the pro-609

cesses while the other is incorporated into the decision. We refer to this temporary storage as a610

buffer. There are several reasons to believe that incorporation is serial. First, the response times611

were longer in the double-decision task than in the single decision task, but the extra time was not612

associated with improved accuracy on either dimension. Second, the finding was replicated in the613

variable duration task, which revealed interference of motion on color at intermediate durations,614

consistent with a serial account.615

Thus the short duration experiment demonstrates parallel processing and the necessity of at616

least one buffer. The results in the variable duration experiment might lead us to entertain the617

possibility that only color is buffered, because motion was prioritized. However, the bimanual task618

demonstrates that motion is not always processed first, and both color and motion are processed619

before the first process terminates. We therefore conclude that there are two buffers which are620

capable of holding a sample of evidence about color ormotion, respectively, while the other dimen-621

sion is incorporated into the decision. This places the bottleneck between the buffered evidence622

and the representation of the decision variable. We believe the bottleneck arises because of an623

anatomical constraint. It is simply impossible to connect in parallel every possible source of evi-624

dence with the neural circuits responsible for representing a proposition or plan. As Zylberberg625

et al. (2010) theorized, the brain’s routing problem holds the key to why many mental operations626

operate serially. We will return to this idea after interpreting our results in the context of the neu-627

robiology of decision making. We do this by pursuing the neural correlates of a computational628

model that supports parallel acquisition of sensory evidence and its serial incorporation into two629

decisions.630

The double decision is formed by two decision processes representing the accumulation of631

samples of evidence bearing on the dominant color or the dominant direction of motion. Their632

only interaction is through a competition for access to evidentiary samples, which cannot be sup-633

plied to both decision processes at the same time, hence the bottleneck. If one process terminates634

the other carries on from that time with unfettered access to its momentary evidence. For visual635

perceptual decisions, parallel acquisition is identified with central visual pathways in the primary636

and extrastriate cortex. The representation of decision variables is identified with parietal and pre-637

frontal cortical areas and with neurons that exhibit long time scales to support the representation638

of working memory, planning, and the integration of positive and negative inputs as a function of639

time. The operations depicted in Fig. 8 are intended to reconcile what is known about the neuro-640

biology of simple 1D decisions with the constraints introduced by the double-decision task. The641
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mathematical instantiation of the model requires only minor modifications of two bounded drift-642

diffusion processes with temporal multiplexing (see Methods). However the architecture implied643

by Fig. 8B & C facilitate interpretation of the experimental findings in relation to neural processing.644

In the mathematical depiction of drift-diffusion, the momentary evidence is a biased Wiener645

process. However, in reality the stimulus is not a Wiener process, nor is the representation of646

momentary evidence by neurons (Zylberberg et al., 2016), which arise through application of a647

transfer function that effectively spreads the impact of a pair of displaced dots over 100-150 ms648

(Fig. 3B, bottom; Adelson and Bergen (1985)). Thus the neural representation of the motion can649

be approximated by a process of leaky integration (Cain et al., 2013; Barlow and Tripathy, 1997).650

Such smoothing would not be warranted for the detection of fast changes, but it is adequate for651

a signal that is to be integrated over time. We know less about the filtration of a color difference,652

but the same logic applies. The conceptual transition from Wiener processes to discrete samples653

allows us to appreciate the similarity between the accumulation of evidence frommovie-like stimuli654

and the broader class of decisions based on discrete samples of evidence from the environment655

and memory. This informs hypotheses about the neurobiology, because the sample of evidence656

ultimately bears on a decision in units of belief or relative value. That is obvious when considering657

a choice between items on a menu, but it has been camouflaged to some extent in the perceptual658

decision-making literature. This is in part because the time-integral of a difference in firing rates659

from right- and left-preferring neurons is the number of excess spikes for right, which is itself660

proportional to the accumulated logLR that this excess was observed because motion was in fact661

rightward (Gold and Shadlen, 2001; Shadlen et al., 2006). For the wider class of decisions, such662

difference variables are elusive, whereas the possibility of associating a sample with log-likelihood663

is a natural dividend of learning and memory (Yang and Shadlen, 2007; Kira et al., 2015; Shadlen664

and Shohamy, 2016).665

The results imply the maintenance of separate decision variables each capable of reconciling666

decision and choice for the one stimulus dimension. We will consider variations and alternatives667

below, but there must be separate control of termination and negligible cross talk. Specifically, the668

state of the accumulated evidence bearing on the direction of motion does not affect the amount669

of accumulated evidence required to reach a decision about color dominance, and the same can670

be said about the state of the accumulated evidence about color on the decision about direction671

of motion. In the model the decision variables, 𝑉m and 𝑉c, represent the integrated evidence for672

right (and against left) and for blue (and against yellow). Neural correlates of these 1D processes673

are known, mainly in the parietal and prefrontal cortex (Gold and Shadlen, 2007), although they674

are organized in pairs: 𝑅–𝐿, 𝐿–𝑅 (and presumably 𝐵–𝑌 and 𝑌 –𝐵). Each of the four processes is675

the accumulation of positive and negative increments, and each is terminated by an upper bound.676

Because evidence for 𝑅 and 𝐿 are anticorrelated (likewise for 𝐵 and 𝑌 ), the pair of opposing pro-677

cesses is approximated by 1D drift-diffusion to symmetric upper and lower terminating bounds.678

All model-fits adopt this approximation.679

An alternative formulation, which we term target-wise integration, would accumulate evidence680

for the pair of features associatedwith each choice target (e.g.,𝑅𝐵,𝑅𝑌 ,𝐿𝐵,𝐿𝑌 ). If suchmechanism681

were to terminate when the total accumulation reaches a threshold, it would predict a type of682

choice-interference such that sensitivity tomotion, say, would be impairedwhen the color strength683

was high, because the decision time is shortened by the stronger stimulus. We have not pursued all684

variants of target-wise integration, but critically, the bimanual experiment demonstrates that the685

double decision comprises two terminating events. There may well be neurons that represent the686

target-wise accumulation of evidence, but they would require additional mechanisms that process687

color and motion until the first decision terminates. At that time, a threshold could be applied to688

the target-wise accumulators at a level equal to the sum of the color and motion thresholds, and689

only the unfinished dimension contributes to the decision. A solution of this type seems a likely690

possibility in areas of the brain that represent the decision variable as an evolving plan of action.691

We find it useful to characterize integration as the implementation of a sequence of instruc-692
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tions to increment and decrement persistent activity in cortical areas that represent the decision693

variables. In Fig. 8, the instructed change is realized by simple 1st order dynamics chosen to ap-694

proximate neural responses from area LIP. The implementation ismerely phenomenological, but it695

jibes with emerging ideas in theoretical neuroscience that characterize computation as a change in696

circuit configuration to establish stable states and dynamics (Remington et al., 2018). For decision697

making, it replaces the requirement for continuous integration, with the realization of instructions698

as if drawn from a memory stage. This characterization also extends to the buffer.699

Recall, the buffer was introduced to explain the observation that a brief pulse of color-motion,700

acquired in parallel, appears to be incorporated into the decision serially. We characterized the701

length of the buffer—its storage capacity—using the data from the variable duration experiment702

Fig. 4, where we equate it with the duration of parallel acquisition. This is reasonable because703

thereafter, the process is serial. However, this depiction appears to limit the role of the buffer704

to the beginning of the decision, and it fails to specify how long the information can be held. If705

there are alternations between color and motion processing before the first process terminates,706

as shown in Fig. 6, then information might be buffered beyond the initial parallel phase. As shown707

in Fig. 8C, during alternation a sample might be held for at least 2𝜏ins—that is, the time it takes708

the cleared sample to instruct the appropriate decision process and the time the bottleneck is709

in play while the other dimension performs its update. If the alternations are less frequent, the710

buffer might need to hold information longer, and if there is only one transition, then the buffer711

might be expected hold a sample of information for the duration of the entire first decision. There712

is presumably a limit on how long a sample can be stored, but studies of visual iconic memory713

suggest that a sample of evidence might be buffered for ∼500 ms (Sperling, 1960; Gegenfurtner714

and Kiper, 1992).715

We conceive of the buffer residing between the cortical areas that represent the filtered evi-716

dence and other cortical circuits that represent the decision variables. Notice that the operations717

depicted in Fig. 8 assign two duties to the buffer: (i) storage of a sample of evidence while the718

bottleneck precludes updating the associated decision variable and (ii) conversion of the sample719

into an instruction to update a decision variable by Δ𝑉 . These duties could be carried out by dif-720

ferent circuits. An appealing candidate for both operations is the striatum. The striatum receives721

input from the extrastriate visual cortex (Ding and Gold, 2012a), and it is known to play a role in722

connecting value to action selection (Hikosaka et al., 2014) as well as working memory (Akhlagh-723

pour et al., 2016). In the context of our results, we would characterize the operation as follows. A724

sample of filtered evidence, represented by the firing rates of neurons in extrastriate cortex (e.g.,725

areas MT/MST) leads to a change in the state of a striatal circuit, such that its reactivation trans-726

mits the Δ𝑉 instruction to the cortical areas that represent the decision variables, and this takes727

time (𝜏ins). On this view, the bottleneck is the striato-thalamo-cortical pathway. There has been an728

observation of the bottleneck in a split-brain patient, supporting such a subcortical bottleneck at729

least in certain instances (Pashler et al., 1994).730

A second possibility is that the buffered evidence is stored in visual cortical association areas,731

especially areas with persistent representations. For example, it has been suggested that short732

term visual iconic memory is supported by the slowly decaying spike rates of neurons in area V2733

(O’Herron and von der Heydt, 2009) and the anterior superior temporal sulcus (STSa) (Keysers et al.,734

2005). This would place the bottleneck between extrastriate cortex and the parietal and prefrontal735

areas that represent the decision variable (see also Marti et al. 2012). This possibility does not736

provide an explanation for why communication between these areas would impose a substantial737

delay (e.g., 𝜏ins).738

A third possibility would identify the buffer with control circuitry within the very cortical areas739

that represent the decision variables. This might seem far-fetched but there is evidence for such740

an operation in the premotor cortex of mice, where it underlies the implementation of the logical741

‘exclusive or’ (XOR) operation (Wu et al., 2020). In that case the bottleneck would be intracortical. It742

would correspond to the implementation of a circuit state from its “silent” representation—that is,743
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in cellular and subcellular (e.g., synaptic) states rather than persistent spike activity. The bottleneck744

is the conversion from this state to the establishment of the spiking dynamics that instantiate the745

Δ𝑉 instruction. This might resemble the recall of an associative memory, which must facilitate the746

establishment of cortical persistent activity in a state suitable for computation, be it for further747

updating or comparison to a criterion. The three possibilities are not mutually exclusive; nor are748

they exhaustive. In any case, the instigating event is the clearance of the bottleneck, signaled by749

the circuit that receives the Δ𝑉 instruction.750

This brings us to the bottleneck itself. Up to now we have alluded to the bottleneck as a tem-751

porary obstruction to color or motion processing, but the bottleneck itself does not add time. It752

is the instructive step that takes time (𝜏ins). This step comprises the conversion of a sample of753

evidence to a Δ𝑉 instruction and its transmission to a cortical circuit. Indeed, the same delay is754

encountered in simpler decisions. For example, in the 1D random dot motion task, the incorpo-755

ration of evidence into the neural representation of the decision variable is first evident ∼180 ms756

after direction neurons in area MT exhibit direction selective responses (De Lafuente et al., 2015;757

Ding and Gold, 2012b; Kim and Shadlen, 1999) and this delay holds for perturbations of the stim-758

ulus throughout decision formation (Huk and Shadlen, 2005). This is too long to be explained by759

synaptic latencies. It implies either a complex routing through intermediate structures or more760

sophisticated processing that serves to facilitate the linkage and/or the conversion of the sample761

to an instruction suitable for establishing the cortical dynamics that ultimately realize the Δ𝑉 in-762

struction. The delay corresponds to the sum, 𝜏s + 𝜏ins, (circles 1 and 2 in Fig. 8).763

Decision variables are represented in the persistent activity of neurons in the parietal and pre-764

frontal cortex of primates. Such persistent activity is associated with working memory, attention765

and planning. This functional localization conforms to the notion of a “response selection” bottle-766

neck hypothesized by Harold Pashler to explain dual task interference (Pashler, 1994), in particular767

a phenomenon known as the psychological refractory period (PRP): the prolonged latency of the768

second of two adjacent decisions without an effect on accuracy. In his and our formulation, it re-769

flects a limitation that restricts the flow of information to affect higher processes such as decision-770

making and short-term working memory. On initial consideration, there is no obvious reason why771

the formation of working memory should necessitate a bottleneck. If acquisition can be parallel,772

why not working memory? equivalently, the formation of a provisional plan or intention.773

Framed in the language of decision-making, seriality arises as a consequence of limited con-774

nectivity between the brain’s evidence acquisition systems—sensory, memory, and emotion—and775

the systems that represent information in an intentional frame of reference, that is, as provisional776

affordances. Any possible intention might be informed by a variety of sources of evidence, which777

may be acquired in parallel but from different locations in the brain. The brain lacks the anatomy778

to support independent connections from all sources of evidence to all possible intentions—that779

is, the circuits that represent them. Instead the communication must share connections, and this780

invites some form of time-slice multiplexing. It is not possible for every source of evidence to781

communicate with the circuits that form decisions at the same time. For some dedicated opera-782

tions, it is likely that many sources of “evidence” do converge on the same intentional circuitry (e.g.,783

escape response; Evans et al. 2018; Lee et al. 2020), and the tracts can be established through784

development. But, for flexible cognitive systems that learn and solve problems, the connections785

between evidence and intention must be multipotent and malleable, since connecting 𝑁 sources786

of evidence and 𝑀 intentions will need at least 𝑁 × 𝑀 wires if they are connected exhaustively,787

whereas if they are routed centrally, it will only need 𝑁 + 𝑀 . This solution necessitates some type788

of multiplexing (Zylberberg et al., 2010)).789

We suspect that the constraints leading to serial processing in the color-motion task also apply790

to other decisions and cognitive functions. For example, deciding between two familiar food items791

can take a surprisingly long time when those items are valued similarly. This holds when the items792

are both highly valued or both undesired or both of moderate value. Like decisions about the793

direction of random dot motion, there is a lawful relationship between the RT to choose an item794
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and the likelihood that the preference is consistent with one’s previously stated value (Krajbich795

et al., 2010; Krajbich and Rangel, 2011). Like the choice-RT accompanying 1D motion (or color) de-796

cisions, the relationship suggests that some type of process like noisy evidence accumulation—or797

more generally, sequential sampling with optional stopping—reconciles choice and decision time.798

However, such expressions of preference differ from perceptual decisions in two important ways.799

First, there is no objectively correct response, only consistency with the sign of the inequality in800

the decision-maker’s valuations of the individual items, which are ascertained before the experi-801

ment. Second, the food items are not shown as a movie and there is no uncertainty about their802

identity. Therefore it is not clear what gives rise to independent samples of evidence. Bakkour et al803

(2019) showed that the samples are likely to arise through constructive processes using hippocam-804

pal memory systems. This begs the question why this process would unfold in time like a movie805

of random dots. An attractive idea is that the use of memory guided valuation—in particular the806

step to enable it to affect a decision variable—encounters a bottleneck. Even if memories could807

be retrieved in parallel, they would require buffering and serial updates of the decision variable808

(Shadlen and Shohamy, 2016).809

While it is unsurprising that a movie of random dots supplies evidence to be incorporated se-810

rially toward a decision, it is shocking that two samples of evidence, supplied simultaneously by811

the same dots and acquired through parallel sensory channels, do not support simultaneous de-812

cisions. In the experiments that require prolonged viewing, non-simultaneity manifests in serial813

time-multiplexed alternation of the decision processes and the failure to incorporate all informa-814

tion in the stimulus stream into one or both decisions. In a free response design the decisionmaker815

compensates by acquiring more evidence, so the interference is not apparent in the accuracy of816

the perceptual choice. However, if such compensation is precluded by the experimenter (variable817

duration experiment), the failure to incorporate information can affect accuracy too. That this818

bottleneck arises despite parallel acquisition of color and motion (or motion from two locations),819

whether we use one or two effectors to express the decision, and whether we decide between820

2 × 2 conjunctions or two categories (same/different) suggests that the bottleneck is pervasive. In821

addition to the PRP, we suspect that it plays a role in other psychological phenomena, such as822

post-stimulus masking, iconic memory, the attentional blink, rapid sequential visual processing,823

and conjunction search. These phenomena represent forms of sequential interference and all can824

be stated as challenges to the brain’s routing system (Zylberberg et al., 2010).825

On the other hand, onemust wonder if the brain can ever take advantage of parallel acquisition826

to perform cognitive functions in parallel. It certainly seems so to a musician using their feet and827

hands to convey time and sonority on a piano or counter rhythms on a drum kit. Yet the time scales828

of alternation discussed in this paper are on the order of 10 Hz. It seems possible that we achieve829

parallel processing despite the bottleneck by enhancing signal-processing at the filter stage before830

the bottleneck and by grouping (or chunking) processes after the bottleneck in higher order con-831

trollers of movement and strategy. For example, face selective neurons compute conjunctions of832

features in less than 100ms. This is just one example of the sophisticated properties of association833

sensory neurons in the extrastriate visual cortex, and analogous operations are presumed to oc-834

cur in secondary somatosensory cortex and belt regions of the auditory cortex. Similarly, complex835

movement sequences and the rules to coordinate themmay be specified in premotor cortex or at836

the level of the controller. If so, then the only way to overcome the bottleneck is to develop the837

expertise of the reader or the musician/athlete, leaving most of flexible cognition to negotiate the838

bottleneck between the acquisition of information and its incorporation into representations that839

support states of knowledge: decisions, working memory, plans of action. It is the price the brain840

pays to use its senses (andmemory) to bear on a plethora of possible intentions, despite its limited841

connectivity. The payment is in time, but in another sense, it is time well spent, for without seriality842

of thought there is no contour to our experiences, no appreciation of cause and consequence, no843

meaning or narrative.844

17 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Acknowledgments845

We thank Daphna Shohamy and Mariano Sigman for contributions to the theoretical underpin-846

nings of our study, and we thank Stanislas Dehaene, Gabriel Stine, Naomi Odean, and Aniruddha847

Das for comments on an earlier draft of the manuscript.848

18 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

References849

Acerbi L, Ma WJ. Practical Bayesian optimization for model fitting with Bayesian adaptive direct search. In:850

Advances in neural information processing systems; 2017. p. 1836–1846.851

Adelson E, Bergen J. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985;852

2:284–299.853

Akhlaghpour H, Wiskerke J, Choi JY, Taliaferro JP, Au J, Witten IB. Dissociated sequential activity and stimulus854

encoding in the dorsomedial striatum during spatial working memory. Elife. 2016; 5:e19507.855

Bakkour A, Palombo D, Zylberberg A, Kang Y, Reid A, Verfaellie M, Shadlen M, Shohamy D. The hippocampus856

supports deliberation during value-based decisions. Elife. 2019; 8.857

Barlow H, Tripathy SP. Correspondence noise and signal pooling in the detection of coherent visual motion.858

Journal of Neuroscience. 1997; 17(20):7954–7966.859

Beard BL, Ahumada AJ. Technique to extract relevant image features for visual tasks. In: Human vision and860

electronic imaging III, vol. 3299 International Society for Optics and Photonics; 1998. p. 79–85.861

Bogacz R, Usher M, Zhang J, McClelland J. Extending a biologically inspired model of choice: multi-862

alternatives, nonlinearity and value-basedmultidimensional choice. Philos Trans R Soc Lond B Biol Sci. 2007;863

362(1485):1655–1670.864

Brainard D. The Psychophysics Toolbox. Spat Vis. 1997; 10(4):433–436.865

Britten K, Shadlen M, Newsome W, Movshon J. Responses of neurons in macaque MT to stochastic motion866

signals. Vis Neurosci. 1993; 10(6):1157–1169.867

Cain N, Barreiro A, Shadlen M, Shea-Brown E. Neural integrators for decision making: a favorable tradeoff868

between robustness and sensitivity. J Neurophysiol. 2013; 109(10):2542–2559.869

Carney T, Shadlen M, Switkes E. Parallel processing of motion and colour information. Nature. 1987;870

328(6131):647–649. doi: 10.1038/328647a0.871

Cavanagh P, Boeglin J, Favreau OE. Perception of motion in equiluminous kinematograms. Perception. 1985;872

14(2):151–162.873

Cavanagh P, Tyler CW, Favreau OE. Perceived velocity of moving chromatic gratings. Journal of the Optical874

Society of America A, Optics and image science. 1984 Aug; 1(8):893–899.875

Cavanagh P, MacLeod DI, Anstis SM. Equiluminance: spatial and temporal factors and the contribution of876

blue-sensitive cones. JOSA A. 1987; 4(8):1428–1438.877

Chang J, Cooper G. A practical difference scheme for Fokker-Planck equations. Journal of Computational878

Physics. 1970; 6(1):1–16.879

Churchland A, Kiani R, Shadlen M. Decision-making with multiple alternatives. Nat Neurosci. 2008; 11(6):693–880

702.881

De Lafuente V, Jazayeri M, Shadlen M. Representation of accumulating evidence for a decision in two parietal882

areas. J Neurosci. 2015; 35(10):4306–4318.883

De Leeuw JR. jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior884

research methods. 2015; 47(1):1–12.885

DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s886

striate cortex. I. General characteristics and postnatal development. Journal of neurophysiology. 1993 Apr;887

69(4):1091–1117.888

Ding L, Gold J. Separate, causal roles of the caudate in saccadic choice and execution in a perceptual decision889

task. Neuron. 2012; 75(5):865–874.890

Ding L, Gold JI. Neural correlates of perceptual decisionmaking before, during, and after decision commitment891

in monkey frontal eye field. Cerebral Cortex. 2012; 22(5):1052–1067.892

Ditterich J. A comparison between mechanisms of multi-alternative perceptual decision making: ability to893

explain human behavior, predictions for neurophysiology, and relationship with decision theory. Frontiers894

in neuroscience. 2010; 4:184.895

19 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Drugowitsch J, Moreno-Bote R, Churchland A, Shadlen M, Pouget A. The cost of accumulating evidence in896

perceptual decision making. J Neurosci. 2012; 32(11):3612–3628.897

Ernst M, Banks M. Humans integrate visual and haptic information in a statistically optimal fashion. Nature.898

2002; 415(6870):429–433.899

Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T. A synaptic threshold mechanism for computing900

escape decisions. Nature. 2018; 558(7711):590–594.901

Fagot C, Pashler H. Making two responses to a single object: Implications for the central attentional bot-902

tleneck. Journal of Experimental Psychology: Human Perception and Performance. 1992; 18(4):1058. doi:903

10.1037/0096-1523.18.4.1058.904

Gegenfurtner KR, Kiper DC. Contrast detection in luminance and chromatic noise. JOSA A. 1992; 9(11):1880–905

1888.906

Gold J, Shadlen M. Neural computations that underlie decisions about sensory stimuli. Trends Cogn Sci. 2001;907

5(1):10–16.908

Gold J, Shadlen M. The neural basis of decision making. Annu Rev Neurosci. 2007; 30:535–574.909

Hanks T, MazurekM, Kiani R, Hopp E, ShadlenM. Elapsed decision time affects theweighting of prior probability910

in a perceptual decision task. J Neurosci. 2011; 31(17):6339–6352.911

Hick WE. On the rate of gain of information. Quarterly Journal of experimental psychology. 1952; 4(1):11–26.912

Hikosaka O, Kim HF, Yasuda M, Yamamoto S. Basal ganglia circuits for reward value–guided behavior. Annual913

review of neuroscience. 2014; 37:289–306.914

Howard I, Ingram J, Wolpert D. A modular planar robotic manipulandum with end-point torque control. J915

Neurosci Methods. 2009; 181(2):199–211.916

Huk A, Shadlen M. Neural activity in macaque parietal cortex reflects temporal integration of visual motion917

signals during perceptual decision making. J Neurosci. 2005; 25(45):10420–10436.918

Jacobs R. Optimal integration of texture and motion cues to depth. Vision Research. 1999; 39(21):3621–3629.919

Kahneman D. Attention and effort, vol. 1063. Citeseer; 1973.920

Kamienkowski JE, Sigman M. Delays without mistakes: response time and error distributions in dual-task.921

PloS one. 2008 Sep; 3(9):e3196.922

Kang Y, Petzschner F, Wolpert D, Shadlen M. Piercing of Consciousness as a Threshold-Crossing Operation.923

Curr Biol. 2017; 27(15):2285–2295.e6.924

Kass R, Raftery A. Bayes Factors. Journal of the American Statistical Association. 1995; 90(430):773–795.925

Keysers C, Xiao DK, Földiák P, Perrett D. Out of sight but not out of mind: The neurophysiology of iconic926

memory in the superior temporal sulcus. Cognitive Neuropsychology. 2005; 22(3-4):316–332.927

Kiani R, Corthell L, Shadlen M. Choice certainty is informed by both evidence and decision time. Neuron. 2014;928

84(6):1329–1342.929

Kiani R, Hanks T, Shadlen M. Bounded integration in parietal cortex underlies decisions even when viewing930

duration is dictated by the environment. J Neurosci. 2008; 28(12):3017–3029.931

Kiani R, Shadlen M. Representation of confidence associated with a decision by neurons in the parietal cortex.932

Science. 2009; 324(5928):759–764.933

Kim J, Shadlen M. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature934

Neuroscience. 1999; 2(2):176–185.935

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv. 2014; .936

Kira S, Yang T, Shadlen M. A neural implementation of Wald’s sequential probability ratio test. Neuron. 2015;937

85(4):861–873.938

Knill D, Pouget A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in939

Neurosciences. 2004; 27(12):712–719.940

20 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in simple choice.941

Nat Neurosci. 2010; 13(10):1292–1298.942

Krajbich I, Rangel A. Multialternative drift-diffusion model predicts the relationship between visual fixations943

and choice in value-based decisions. Proceedings of the National Academy of Sciences. 2011; 108(33):13852–944

13857.945

Laming D. Information theory of choice reaction time. Wiley; 1968.946

Lee KH, Tran A, Turan Z, Meister M. The sifting of visual information in the superior colliculus. ELife. 2020;947

9:e50678.948

Li Q, Joo S, Yeatman J, Reinecke K. Controlling for Participants’ Viewing Distance in Large-Scale, Psychophysical949

Online Experiments Using a Virtual Chinrest. Sci Rep. 2020; 10(1):904.950

Link S. The relative judgment theory of two choice response time. Journal of Mathematical Psychology. 1975; .951

Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and percep-952

tion. Science. 1988; 240(4853):740–749.953

Lorteije J, Zylberberg A, Ouellette B, De Zeeuw C, Sigman M, Roelfsema P. The Formation of Hierarchical954

Decisions in the Visual Cortex. Neuron. 2015; 87(6):1344–1356.955

Luce D. Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press;956

1986.957

Mante V, Sussillo D, Shenoy K, Newsome W. Context-dependent computation by recurrent dynamics in pre-958

frontal cortex. Nature. 2013; 503(7474):78–84.959

Marti S, Sigman M, Dehaene S. A shared cortical bottleneck underlying Attentional Blink and Psychological960

Refractory Period. Neuroimage. 2012; 59(3):2883–2898.961

Movshon JA, Thompson ID, Tolhurst DJ. Receptive field organization of complex cells in the cat’s striate cortex.962

The Journal of physiology. 1978; 283(1):79–99.963

Movshon JA, Thompson ID, Tolhurst DJ. Spatial summation in the receptive fields of simple cells in the cat’s964

striate cortex. The Journal of physiology. 1978; 283(1):53–77.965

O’Herron P, von der Heydt R. Short-term memory for figure-ground organization in the visual cortex. Neuron.966

2009; 61(5):801–809.967

Okazawa G, Sha L, Purcell BA, Kiani R. Psychophysical reverse correlation reflects both sensory and decision-968

making processes. Nature communications. 2018 Aug; 9(1):1–16.969

van Opheusden B, Acerbi L, Ma WJ. Unbiased and Efficient Log-Likelihood Estimation with Inverse Binomial970

Sampling. arXiv preprint arXiv:200103985. 2020; .971

Palmer J, Huk A, ShadlenM. The effect of stimulus strength on the speed and accuracy of a perceptual decision.972

J Vis. 2005; 5:376–404.973

Pashler H. Dual-task interference in simple tasks: data and theory. Psychol Bull. 1994; 116(2):220–244.974

Pashler H, Luck SJ, Hillyard SA, Mangun GR, OʼBrien S, Gazzaniga MS. Sequential operation of disconnected975

cerebral hemispheres in split-brain patients. Neuroreport: An International Journal for the Rapid Communi-976

cation of Research in Neuroscience. 1994; .977

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch:978

An imperative style, high-performance deep learning library. In: Advances in neural information processing979

systems; 2019. p. 8026–8037.980

Ramachandran V, Gregory R. Does colour provide an input to human motion perception? Nature. 1978;981

275(5675):55–56.982

Ratcliff R. A theory of memory retrieval. Psychological Review. 1978; 85(2):59.983

Ratcliff R, Rouder J. Modeling response times for two-choice decisions. Psychological Science. 1998; 9(5):347–984

356.985

21 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Remington ED, Egger SW, Narain D, Wang J, Jazayeri M. A dynamical systems perspective on flexible motor986

timing. Trends in cognitive sciences. 2018; 22(10):938–952.987

Resulaj A, Kiani R, Wolpert D, Shadlen M. Changes of mind in decision-making. Nature. 2009; 461(7261):263–988

266.989

Schumacher EH, Seymour TL, Glass JM, Fencsik DE, Lauber EJ, Kieras DE, Meyer DE. Virtually Perfect Time990

Sharing in Dual-Task Performance: Uncorking the Central Cognitive Bottleneck. Psychological Science. 2001;991

12(2):101108. doi: 10.1111/1467-9280.00318.992

Shadlen M, Hanks T, Churchland A, Kiani R, Yang T. The speed and accuracy of a simple perceptual decision: a993

mathematical primer. Bayesian Brain: Probabilistic Approaches to Neural Coding, ed K Doya et al. 2006; p.994

209–237.995

Shadlen M, Shohamy D. Decision Making and Sequential Sampling from Memory. Neuron. 2016; 90(5):927–996

939.997

Sigman M, Dehaene S. Parsing a cognitive task: a characterization of the mind’s bottleneck. PLoS Biol. 2005;998

3(2):e37.999

Smith LN. Cyclical Learning Rates for Training Neural Networks. arXiv. 2015; .1000

Sperling G. The information available in brief visual presentations. Psychological monographs: General and1001

applied. 1960; 74(11):1.1002

StineG, Zylberberg A, Ditterich J, ShadlenM. Differentiating between integration and non-integration strategies1003

in perceptual decision making. Elife. 2020; 9.1004

Tombu M, Jolicœur P. Testing the predictions of the central capacity sharing model. Journal of Experimental1005

Psychology: Human Perception and Performance. 2005; 31(4):790.1006

TombuM, Jolicœur P. Virtually No Evidence for Virtually Perfect Time-Sharing. Journal of Experimental Psychol-1007

ogy: Human Perception and Performance. 2004; 30(5):795. doi: 10.1037/0096-1523.30.5.795.1008

Tombu M, Jolicœur P. All-or-none bottleneck versus capacity sharing accounts of the psychological refractory1009

period phenomenon. Psychological research. 2002; 66(4):274–286.1010

Usher M, Olami Z, McClelland JL. Hick’s law in a stochastic race model with speed–accuracy tradeoff. Journal1011

of Mathematical Psychology. 2002; 46(6):704–715.1012

Waskom ML, Kiani R. Decision making through integration of sensory evidence at prolonged timescales. Cur-1013

rent Biology. 2018; 28(23):3850–3856.1014

Welford AT. The ‘PSYCHOLOGICAL REFRACTORY PERIOD’ AND THE TIMING OF HIGH-SPEED PERFORMANCE-A1015

REVIEW AND A THEORY. British Journal of Psychology General Section. 1952; 43(1):2–19. doi: 10.1111/j.2044-1016

8295.1952.tb00322.x.1017

Wu Z, Litwin-Kumar A, Shamash P, Taylor A, Axel R, Shadlen M. Context-Dependent Decision Making in a1018

Premotor Circuit. Neuron. 2020; 106(2):316–328.e6.1019

Yang T, Shadlen M. Probabilistic reasoning by neurons. Nature. 2007; 447(7148):1075–1080.1020

Zylberberg A, Fernández Slezak D, Roelfsema P, Dehaene S, Sigman M. The brain’s router: a cortical network1021

model of serial processing in the primate brain. PLoS Comput Biol. 2010; 6(4):e1000765.1022

Zylberberg A, Fetsch C, ShadlenM. The influence of evidence volatility on choice, reaction time and confidence1023

in a perceptual decision. Elife. 2016; 5.1024

Zylberberg A, Ouellette B, SigmanM, Roelfsema P. Decisionmaking during the psychological refractory period.1025

Curr Biol. 2012; 22(19):1795–1799.1026

Zylberberg A, Wolpert D, Shadlen M. Counterfactual Reasoning Underlies the Learning of Priors in Decision1027

Making. Neuron. 2018; 99(5):1083–1097.e6.1028

22 of 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.15.341008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341008
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Methods1029

Participants1030

Thirteen participants (5 male and 8 female, age 23–40, median = 26, IQR = 25-32, mean = 28.3, SD1031

= 5.74) provided written informed consent and took part in the study. All participants had normal1032

or corrected-to-normal vision and were naïve about the hypotheses of the experiment. The study1033

was approved by the local ethics committee (Institutional Review Board of Columbia University1034

Medical Center).1035

Apparatus1036

Visual stimuli were displayed on high resolution CRT monitors with 75 Hz screen refresh rate. The1037

experiments were conducted in two labs. Table 1 lists the display parameters used in the four ex-1038

periments. In the eye-tracking experiments, a head- and chin-rest was used, and eye position was1039

monitored at 1 kHz using an Eyelink 1000 device (SR Research Ltd., Mississauga, Ontario, Canada).1040

In the reaching task participants used robotic handles (vBots, Howard et al. 2009) to indicate their1041

choices, and movement trajectories were recorded at 1 kHz. The experiments were run using Mat-1042

lab and Psychtoolbox (Brainard, 1997) and for the online experiments jsPsych (De Leeuw, 2015).1043

Overview of experimental tasks1044

Participants sat in a semi-dark booth in front of a CRT monitor. They were required to decide the1045

net direction and the dominant color in a patch of dynamic random dots. Individual dots were1046

displayed for a single video frame (1/75 s). Task difficulty for motion was conferred by the proba-1047

bility that in frame 𝑛 + 3 (i.e., Δ𝑡 = 40 ms), it would be displaced in apparent motion vs. randomly1048

replaced in the aperture. We prepend the probability by plus or minus to indicate the direction,1049

and refer to this signed quantity in units of coherence (coh). For color, task difficulty was conferred1050

by the probability that a dot would be colored blue or yellow on each frame. We refer to the signed1051

quantity, 2(𝑝blue − 0.5), as the color coherence. Both coherences share the range {−1, 1}. Through-1052

out, we use positive coherence for rightward and blue dominant stimuli. The coherences were1053

stationary during a trial but randomized independently across trials. A calibration procedure was1054

used to match the luminance of the blue and yellow for each participant (see below). For the first1055

experiment (choice-reaction time, participants S1-S3) the color of the dots in the first three frames1056

of a trial was balanced to give no net color information. The procedure was intended to match1057

the state of the motion stimulus which is effectively zero-coherence until the fourth video frame.1058

Subsequent experience demonstrated that this procedure was unnecessary, and we discontinued1059

this practice for the other experiments.1060

We conducted two types of tasks, a double-decisions (2D) in which both the dominant color and1061

motion direction were reported on each trial, or single-decisions (1D) in which only the dominant1062

color or net motion direction were reported (as in Mante et al. 2013). For 1D experiments the1063

“irrelevant” dimension was varied from trial to trial just as in the 2D task. Variations on this basic1064

design are described in the following sections. We first describe the choice-reaction time task (eye)1065

and then the differences for the other experiments.1066

For each experiment, the sample size was determined based on prior psychophysics studies1067

with within-subject designs (Palmer et al., 2005; Resulaj et al., 2009; Zylberberg et al., 2012; Kiani1068

et al., 2014). Furthermore, trial numbers were chosen such that the number of trials within each1069

dimension given the other dimension’s strengthwere similar to prior studies (e.g., Kang et al. 2017).1070

We recruited three participants for the first and second experiment (Choice-reaction time task and1071

short duration, eye). For the remaining experiments we recruited 2–8 participants. A larger num-1072

ber was necessary for the arm experiments because fewer trials per hour are acquired and the1073

effort is greater. Unless otherwise stated, participants were randomly allocated to experiments.1074
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Choice-reaction time task (eye)1075

Three participants (1 male and 2 female, aged 25–40) performed the task in which they could view1076

the random dots until ready with a response (Fig. 1a). Participants were required to fixate a central1077

spot for 0.5 s to initiate a trial. In the main task (2D), four choice targets appeared at four corners1078

of the display, evenly spaced from each other and the same distance from the fixation spot. The1079

top two targets were colored yellow and the bottom two blue, consistent with the color choices1080

they indicate. For example, to report rightward motion and yellow color, the participant would1081

saccade to the top right target, whichwas yellow. After a randomdelay, a patch of dynamic random1082

dots appeared which were restricted between invisible circles of diameter 1 and 5∘ centered on1083

the fixation spot. The random dots were extinguished when the participant initiated the choice1084

response. Participants were required to respond within 5 seconds of the stimulus onset. Trials in1085

which no response was initiated and those aborted by breaking fixation were repeated at a later1086

time in the experiment. At the end of each trial, the correct target was marked on the screen, and1087

auditory feedback was provided when both dimensions were judged correct.1088

Participants performed three trial types: color-only, motion-only and color-motion (i.e., dou-1089

ble) decisions. For color-motion trials four targets were displayed as in the experiments described1090

above. For motion-only trials two white targets were shown to the left and right of the stimulus,1091

respectively. For the color-only task, one blue and one yellow target were presented above and1092

below the center of the screen, respectively. Participants performed the three trial types in sep-1093

arate 13-min blocks in a random order, in 24–49 blocks over 11–17 days (4775–10973 trials). For1094

the 2D task, 5 strengths (or 9 signed coherences including 0) were used on both dimensions (see1095

Table 2). The set of non-zero motion strengths was doubled for one participant (S1) because they1096

failed to achieve >90% correct at coh=0.256 during training. Likewise, the range of color strengths1097

was doubled for two participants (S1 and S3). For the 1D task, two of the strengths were not used1098

for the irrelevant dimension.1099

Minimum-motion procedure. Prior to the experiment, we calibrated the two colors (yellow and1100

blue) to be equiluminant using the minimum-motion procedure (Cavanagh et al., 1987). Two ver-1101

tical sinusoidal gratings with a spatial frequency of 1.25 cyc/deg were shown with a temporal fre-1102

quency of 6.25 Hz. The first grating had alternating yellow and blue, and the second grating had1103

alternating light and dark green, and they were arranged in a way that if yellow were brighter than1104

blue, the gratings appear to move in one direction (e.g., left), and vice versa. The participant ad-1105

justed the luminance of yellow until they did not see netmotion, starting from a random luminance1106

value. After 24 trials, the mean luminance of the yellow was computed and used throughout the1107

experiment for the participant.1108

Training sessions. Participants completed 11–13 training blocks (13minutes, 200 trials) over 4–71109

days, beginning with either an easy motion or color 1D task (counterbalanced across participants)1110

and with viewing durations controlled by the experimenter. The incorporation of weaker stimulus1111

strengths and the range of stimulus durations were adjusted progressively. Transitions to the1112

next level were made if the participant met fixation requirements and achieved >90% accuracy on1113

the strongest coherence. The aim was to identify four levels of motion strength ≥ 0.032 and four1114

levels of color strength ≥ 0.031 in octaves steps such that the strongest level (8 times the lowest1115

logit) supported >90% accuracy. We then changed from variable duration to the reaction time1116

version of the 1D task, again ensuring that the range of difficulties led to at least 90% accuracy1117

for the easiest condition. We then repeated these steps for the other stimulus dimension before1118

introducing the 2D choice-RT task. They received a session of practice to gain familiarity with the1119

4-choice design. For participants S1 and S3, wemade a final adjustment of the difficulty levels. The1120

stimulus strengths were then fixed for all test sessions (Table 2).1121

Brief duration task (eye)1122

The same participants from the choice-reaction time task then performed a task that was identical1123

except that the dynamic random dots turned off after 120 ms from the onset. Participants were1124
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free to respond after the offset of the dynamic random dots. The “RT” in this task was measured1125

as the time between the onset of the stimulus and the response (the time the gaze left the center1126

of the screen).1127

Participants completed a total of 35–43 test blocks that each lasted 13 minutes (7309–77451128

trials over 12–19 days). The stimulus strengths used are listed in Table 2.1129

Variable duration task (eye)1130

Two participants (2 female, aged 26 and 32; both right-handed) participated and completed a total1131

of 12-26 test sessions that each lasted between 1-2h.1132

After a training phase (see below) the task alternated between blocks of 72-144 trials where1133

participants either performed the 2D variable duration task, a 1D variable duration task or 2D1134

choice-reaction time task. The majority of blocks were 2D variable duration (total of 11,808 tri-1135

als). Ten fixed stimulus durations ranging from 120-1200 ms (in steps of 120 ms) were presented1136

in pseudo-random order. Warning messages were displayed if participants initiated an eye move-1137

ment before the end of the stimulus (“too early!”) or if a movement was not initiated within 5 sec of1138

stimulus offset (“too slow!”). In both cases, the trial was aborted and repeated at a later, randomly1139

determined, trial within the same block.1140

Only three levels of difficulty were used for each dimension: one easy and two difficult coher-1141

ence levels. The easy coherence level was 0.512 for motion and 0.758 for color. The two diffi-1142

cult coherence levels were adjusted individually in order to match color and motion performance.1143

Specifically, low coherences for each dimension were chosen to yield 65% and 80% accuracy on1144

each dimension, respectively, based on participants’ performance in the final two training sessions1145

(double-decision RT). All low-coherence levels were < 0.1 for both participants. All 3 × 3 combina-1146

tions of motion × color were presented. However, since the main model predictions are based on1147

a comparison of trials with hard-hard vs. hard-easy combinations, easy-easy combinations were1148

only presented in 2.4% of trials. All other coherence combinations were presented with equal1149

frequency and counter-balanced within each stimulus duration. Participants also completed 2,1601150

trials each of motion-only and color-only trials and 1,296 trials of the 2D choice-RT task which were1151

included to ensure that they maintained appropriate speed-accuracy trade-offs throughout the1152

experiment.1153

Training sessions. Participants first completed 6-9 training sessions. In the first 2 sessions,1154

they were trained on a variable duration task where stimulus durations were drawn randomly1155

from a truncated exponential distribution ranging between 500-2000 ms (session 1) or 100-16001156

ms (session 2). Participants first completed 1D-motion and 1D-color tasks in separate blocks,1157

followed by the 2D task. In the remaining training sessions, participants mainly performed a1158

2D RT task until they reached stable performance (at least 60% accuracy on the 2nd coherence1159

level for both decision dimensions, with little to no changes in choice performance or RTs over1160

blocks). Occasionally, additional 1D blocks were introduced in order to obtain similar performance1161

levels for motion and color judgments. Throughout training, all 6 coherence levels for motion1162

{0, 0.032, 0.064, 0.128, 0.256, 0.512} and color {0, 0.064, 0.128, 0.250, 0.472, 0.758}, and all their possible1163

combinations, were presented.1164

Isoluminance calibration. At the start of the experiment, participants completed a flicker fu-1165

sion procedure to match luminance of yellow and blue. A square (4.9 × 4.9∘) was presented in the1166

center of the screen. The color of the square flickered at 37.5 Hz between cyan and yellow. For1167

efficiency we only explored values [𝑅 𝐺 𝐵] = [0 𝑥 𝑥] and [𝑅 𝐺 𝐵] = [𝑦 𝑦 0], for cyan and yellow,1168

respectively, where 𝑥, 𝑦 ∈ {ℕ ∶ 0, ⋯ , 255}. Participants pressed the left or right arrow key to mini-1169

mize the perceived flicker. One key changed 𝑥 and 𝑦 by +1 and −1, respectively, and the other key1170

had opposite effect. Participants pressed the space bar to signal the subjective point of minimal1171

flicker. This procedure was repeated 10 times, each time starting with new initial values [𝑥 𝑦], cho-1172

sen pseudo-randomly, such that either yellow or blue was dark while the other color was bright1173

(counter-balanced across trials). The precise initial values were chosen to be equidistant from 2251174
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and were between 195-200 for the darker color and 250-255 for the brighter color (e.g., blue would1175

start at [0 197 197] and yellowwould start at [253 253 0]). This ensured sufficient contrast to induce1176

a flicker at the start of each trial. The averages across the 10 trials were adopted as the isolumi-1177

nant setting for the participant. After the procedure, participants were presented with a single trial1178

with the obtained color values and were asked to report if they perceived a flicker. If they did, the1179

procedure was repeated. The same calibration procedure was also used for the next experiment.1180

Choice-reaction time task (arm)1181

Twelve right-handed participants were initially recruited for the experiment. After training, 8 par-1182

ticipants were selected for the actual experimental sessions based on their overall performance.1183

Participants completed two test sessionswith a unimanual version of the task and two test sessions1184

with a bimanual version (order counterbalanced across participants). In each experimental session,1185

all 6 color× 6motion strengths combinationswere presented – that is {0, 0.032, 0.064, 0.128, 0.256, 0.512}1186

× {0, 0.064, 0.128, 0.25, 0.472, 0.758} – pseudo-randomly in 12 blocks of 96 trials each (total of 1152 tri-1187

als). The order of unimanual and bimanual sessions was counterbalanced across participants.1188

Unlike the eye experiments, no choice targets were present on the screen. Instead, there were1189

arrow icons that indicated the mapping of color and motion to forward/backward (appropriately1190

colored) and left/right directions of the hand (Fig. 5A). The mapping of blue/yellow to bottom/top1191

target locations was counterbalanced across participants. The movements themselves were re-1192

stricted to virtual channels in the plane. In the unimanual task, participants moved a single robotic1193

handle with either their left or right hand (counterbalanced across each half of a session) in one of1194

the 4 diagonal target directions (2 color × 2 motion; as in the other experiments). In the bimanual1195

task, participants used two separate robotic handles tomove their left and right hand in a left/right1196

(motion judgments) and forward/backward (color judgments) direction, respectively (hand assign-1197

ment counterbalanced across participants). Feedback about the hand position(s) was provided by1198

two black bars on top of the arrow icons (for clarity shown as grey in Fig. 5A). Participants were in-1199

structed to move each bar in the chosen direction until their hand(s) reached a virtual ‘wall’ at the1200

end of the channel, at which point their decisions were registered. Movement distances between1201

starting positions and target locations were identical in the uni- and bimanual task (5 cm). On 2D1202

trials the random dots were extinguished when both decisions were indicated, that is when the1203

hand left the home position in the unimanual task and when both hands had left the home posi-1204

tion in the bimanual task. Warning messages were presented if participants initiated a response1205

before stimulus onset (“too early”) or when RTs exceeded 5 sec (“too slow!”). In both cases, the trial1206

was aborted and was repeated at a later, randomly determined, trial within the same block.1207

Once participants indicated their decision, green/red frames were presented around the re-1208

sponse arrows to indicate correct/incorrect choices separately for each decision dimension. If both1209

decisionswere correct, additional auditory feedbackwas provided (700Hz tone) indicating that par-1210

ticipants hadwon one point. Participants were instructed tomaximize points by responding as fast1211

and accurately as possible. At the end of each trial, they received feedback regarding their current1212

rate of rewards (points/min) as well as a graph of their scores in each 2 minute period over the1213

last 10 minutes. To further motivate participants to adopt appropriate speed-accuracy trade-offs,1214

feedback duration was longer for errors than correct responses, hence delaying the onset of the1215

next trial (correct: 1250ms; error on one dimension: 2000ms; error on both dimensions: 3000ms).1216

At the end of the trial the robotic interface actively moved the hand(s) back to the home position(s).1217

Training All participants completed 3-4 initial training sessions, using the version of the task that1218

they were assigned to first (uni- or bimanual, counterbalanced; see above). In the first two training1219

sessions, participants performed a variable duration task with stimulus durations varying between1220

500-2000 ms. The third training session introduced the choice-RT design. To train participants1221

to maximally separate their two hands in the bimanual version, the RT training task alternated1222

between easy-motion (motion coherence = 0.512) and easy-color (color coherence = 0.758) blocks,1223

and participants were encouraged to respond as quickly as possible to the easy dimension while1224
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taking more time to make a correct choice on the harder dimension. For participants who were1225

first trained on the unimanual version, stimulus coherences were also presented in blocks of easy-1226

motion vs. easy-color to ensure consistency in training across all participants. Participants were1227

invited for the experimental sessions only if their overall rate of warning messages was less than1228

5% and if their average accuracy was at least 95% on the easy dimension and at least 65% on the1229

3rd highest coherence level of the harder dimension (motion: 0.064; color: 0.128).1230

After initial training, participants completed 2 experimental sessions of the task they had been1231

trained on (either uni- or bimanual RT task). They then completed another practice session, in1232

which they were trained on the other version of the task (either bi- or unimanual RT task), before1233

completing 2 final experimental sessions with this version of the task. Experimental sessions only1234

differed in motor implementation of decisions (uni- vs. bimanual), but were otherwise identical,1235

and S-R mappings were kept constant within participants.1236

Binary choice-reaction time task1237

The experiment was conducted remotely during the SARS-CoV-2 pandemic (summer 2020). Two1238

participants who had also completed the uni- and bimanual tasks were recruited for this experi-1239

ment. Participants completed the task online using a Google Chrome browser on Windows 10 and1240

macOS Catalina (version 10.15.4), respectively. Both participants completed eight separate one1241

hour sessions within a two week time period. The task was programmed in JavaScript and jsPsych1242

(De Leeuw, 2015).1243

During the task, two random dot motion patches with rectangular apertures (each 3 × 5∘) were1244

presented to the left and right of a red fixation and separated by a central gray bar (2 × 5∘) cross1245

Fig. 7A. Motion direction (up/down) and coherence ({0.128, 0.256, 0.512}, referred to as low, medium1246

and high) of the two stimuli were independent of each other. The six unique coherence combina-1247

tions were presented with equal frequency and in randomized order. The stimuli directions and1248

allocation to the left vs. right side of the screen were counterbalanced. Participants had to judge1249

whether the dominantmotion directions of the two stimuli were the same or different and indicate1250

their choice by pressing the F or J key with their left/right index finger, respectively, when ready.1251

The response mapping was counterbalanced across the two participants and was shown at the1252

bottom of the screen throughout the task. Visual feedback was provided at the end of each trial.1253

For correct responses, participants won 1 point. After errors and miss trials (too early/late), partic-1254

ipants lost 1 point. Miss trials were repeated at a random trial during the same block. Participants1255

were instructed to try and win as many points as possible and they received an extra bonus of one1256

cent for every point they won. Their point score was shown in the corner of the screen throughout1257

the task and additional feedback about percent accuracy was provided at the end of every block.1258

Participants first completed 3 training sessions after which they completed 4 sessions of the1259

same-different task (3072 trials in total). Finally, participants completed a single session (768 trials)1260

of a 1D task in the random dot motion was restricted to the left or right patch (counterbalanced1261

across trials) and participants had to judge the motion direction (up/down) by pressing the M or K1262

key with their right index/middle finger, respectively.1263

At the end of each session, participants completed a separate block of 32 trials with 100% co-1264

herence stimuli only (sessions 1-7: same-different task; sessions 8: 1D task). Participants were1265

instructed that decisions in this block would be very easy and that they should respond as fast as1266

they could while still being accurate. The reaction times obtained from these blocks (not shown)1267

serve as a check on our estimate of the non-decision time (Stine et al., 2020). Participants were1268

instructed to maintain fixation throughout the task. At the end of each session, they provided self-1269

report judgments indicating to what extent they kept fixation during the task on a scale from 11270

(“not at all”) to 4 (“always”). The mean and interquartile range of the reports were 3.75 and 3.5–41271

(combined for the two participants). Prior to the experiment, participants completed a virtual chin-1272

rest procedure in order to estimate viewing distance and calibrate the display in terms of viewing1273

angle (Li et al., 2020). This involves first adjusting objects of known size displayed on the screen to1274
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match their physical size and then measuring the distance from fixation to the blind spot on the1275

screen (corresponding to around 13.5∘).1276

Serial and parallel drift diffusion models1277

Both the serial and parallel models assume that decisions are based on the accumulation of evi-1278

dence over time. The decision processes for color and motion are described by two independent1279

Wiener processes with drift. The decision variable for one of the dimensions (heremotion), evolves1280

according to the sum of a deterministic and a stochastic component:1281

Δ𝑉m = 𝜇𝑚Δ𝑡 + 𝒩 (0, √Δ𝑡) (1)

The deterministic term depends on the drift 𝜇𝑚,1282

𝜇𝑚 = 𝜅𝑚(𝑠m + 𝑠0
𝑚), (2)

where 𝑠m is the stimulus motion strength (signed coherence). By convention, 𝑠m is positive1283

(negative) when the motion is to the right (left). 𝜅𝑚 is a parameter that converts coherence to a1284

signal-to-noise ratio, which we fit to the data. 𝑠0
m is a bias that allows us to explain, for example,1285

why left and right responses may not be equiprobable even when there is no net motion in either1286

direction. We model the bias term as an offset in the coherence rather than the starting point1287

of the accumulation. This approximates the optimal way of incorporating a bias in drift-diffusion1288

models when there is uncertainty about the reliability of evidence (e.g., the coherence levels vary1289

across trials) (Hanks et al., 2011; Zylberberg et al., 2018).1290

The second term of Eq. 1 describes the stochasticity that affects the evolution of the decision1291

variable. It captures the variability introduced by the stimulus and the brain. This variability is1292

modeled as samples from a normal distribution with zero mean. By convention, the standard1293

deviation is√Δ𝑡, which results in the variance of the decision variable equal to 1 after accumulating1294

evidence for 1 second. This choice does not lead to any loss of generality since for any other value1295

it would be possible to define a new model that has the same behavior in which the variance is 11296

and the other parameters are a scaled version of the original ones (Palmer et al., 2005).1297

The accumulationprocess stops and adecision ismadewhen the accumulated evidence reaches1298

one of two bounds. The choice is ‘rightward’ if the decision terminates at the upper bound, and1299

‘leftward’ if it terminates at the lower bound. The decision time is the time 𝑇m that it takes the1300

decision variable to cross the bound. The upper and lower bounds are assumed symmetric with1301

respect to zero. To explain why errors are (often) slower than correct responses, the bounds are1302

allowed to collapse over time. We parameterize the bound as a logistic function with slope 𝑎𝑚. The1303

bound reaches a value of 𝑢𝑚/2 at 𝑡 = 𝑑𝑚 and approaches 0 as 𝑡 → ∞:1304

𝐵𝑚(𝑡) = 𝑢𝑚
1 + 𝑒𝑎𝑚(𝑡−𝑑𝑚) (3)

with lower bound simply −𝐵𝑚(𝑡).1305

Although the previous explanation focused on the motion decision, the same equations de-1306

scribe the decision process for color. We use subscript 𝑐 instead of 𝑚 to refer to the color decision,1307

and adopt the convention that positive (negative) evidence supports the blue (yellow) choice.1308

Given a set of parameters (Φ𝑥 = [𝜅𝑥, 𝑠0
𝑥, 𝐵0

𝑥, 𝑎𝑥, 𝑑𝑥]), where 𝑥 ∈ {𝑐, 𝑚}, we can estimate the proba-1309

bility density function for the decisions time 𝑇x, and the two possible choices𝑅 (right/left formotion1310

and blue/yellow for color). This density function, denoted 𝑝𝑠
𝑥(𝑇 , 𝑅), depends on the signed stimu-1311

lus coherence, 𝑠. We obtain it by numerically solving the Fokker-Planck equation associated with1312

the Wiener process with drift (Kiani and Shadlen, 2009), using the numerical method of Chang &1313

Cooper (1970).1314

So far, the model description applies to making single decisions (1D) for motion and color. The1315

serial and parallel models are used to explain how combined color-motion decisions (2D) aremade.1316
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In the serial model the accumulation of evidence at any time can only be for color or motion and1317

therefore the total decision time 𝑇 is the sum of the decision times for motion (𝑇m) and color (𝑇c),1318

and the distribution of decision time is given by:1319

𝑝𝑠m,𝑠c
serial(𝑇 | 𝑅c, 𝑅m) = 𝑝𝑠m (𝑇m|𝑅m) ∗ 𝑝𝑠c (𝑇c|𝑅c), (4)

where 𝑅c and, 𝑅m are the responses (i.e., choices) for color and motion, respectively, and ∗1320

denotes convolution.1321

In contrast in the parallel model both the motion and color are processed simultaneously and,1322

therefore, the decision time is the maximum of either decision time: max(𝑇c, 𝑇m). We can numeri-1323

cally derive the distribution of decision times from the single-modality distributions by noting that1324

the decision time is equal to 𝑡 if (𝑖) motion ended at time 𝑡 and color ended before time t, (𝑖𝑖) color1325

ended at time 𝑡 and motion ended before time 𝑡. Thus,1326

𝑝𝑠m,𝑠c
parallel(𝑇 | 𝑅c, 𝑅m) = 𝑝𝑠m (𝑇 |𝑅m) ∫

𝑇

0
𝑝𝑠c (𝜏|𝑅c)𝑑𝜏 + 𝑝𝑠c (𝑇 |𝑅c) ∫

𝑇

0
𝑝𝑐𝑚 (𝜏|𝑅m)𝑑𝜏 (5)

Besides the decision-time, there are sensory, motor and processing delays that contribute to1327

the total response time. We assume that the combined non-decision latencies, 𝑇nd are normally1328

distributed with a mean of 𝜇𝑡𝑛𝑑 and a standard deviation of 𝜎𝑡𝑛𝑑 . The observed RT distribution1329

for each stimulus condition and choice is then obtained by convolving the distributions of the de-1330

cision times and the non-decision times, which follows from the assumption that decision and1331

non-decision times are additive and independent.1332

To avoid over-fitting, our strategy for comparing the serial and parallel models was to fit all1333

parameters using the subset of trials in which one of the two dimensions had maximum strength1334

(Fig. 1b). Weused the Bayesian AdaptiveDirect Searchmethod (Acerbi andMa, 2017) to search over1335

the space of parameters. The best-fitting parameters are shown in Table 4, for each participant1336

and model type.1337

From the marginal distributions, we predict the choices and response times for all combina-1338

tions of motion and color coherence, and compare the models by the probability that each one1339

assigns to the data that was not used for fitting. Because the two models have the same num-1340

ber of parameters (𝑁 = 12: 5 each for Φ𝑚 and Φ𝑐 , plus 2 for non-decision time), we can directly1341

compare the raw likelihoods (Figure 2–Figure Supplement 1).1342

We conducted a model recovery exercise to verify that our fitting procedure would recover the1343

correct model if the data were generated by either the serial or the parallel model. For each partic-1344

ipant and model type (serial/parallel), we generated a synthetic data set with the same number of1345

trials per condition (combination of color and motion coherence) as completed by the participant.1346

The parameters used to generate the synthetic data set were those that best fit the participants’1347

data (that is, those shown in Table 4). Then we repeated the model comparison (just as we did for1348

the participants’ data) and assessed whether it favored the model that was used to generate the1349

simulated data. Figure 2–Figure Supplement 1 shows that our model comparison procedure can1350

reliably identify the correct model for 37 out of 38 comparisons.1351

For the binary choice-reaction time task we fit a serial drift diffusion model jointly to the 1D1352

and 2D choices and mean RTs for each participant. The 1D model is simple diffusion to stationary,1353

symmetric bounds, which determine the proportion of up and down choices as a function of mo-1354

tion coherence, as in Eqs. 1 and 2. For the 2D trials we assumed that participants applied the same1355

decision process to each stimulus to determine an up-down choice and that the same-difference1356

response was made by comparing the two decisions. We assumed that sensitivity was the same1357

for the 1D and 2D choices but allowed separate bounds and non-decision times. The application1358

of stationary (i.e., non-collapsing) bounds fails to account for the distribution of RTs and it underes-1359

timates the mean RT on errors (Ratcliff and Rouder, 1998; Drugowitsch et al., 2012). We therefore1360

fit the mean RTs for the correct choices. For the same-different task, we are assuming negligible1361

contribution of double errors (i.e., incorrect direction decisions for both the left and right patch)1362
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to the mean RT. The fit maximized the likelihood of the choice assuming binomial error (from the1363

model) and Gaussian error (from the data).1364

Comparison of double-decision reaction times under serial and parallel rules1365

We pursued a second approach to compare serial and parallel integration strategies, focusing1366

specifically on the decision times. Unlike the fits to choice-RT, this method uses each participant’s1367

choices as ground truth. It considers only the distribution of RTs and attempts to account for them1368

under serial and parallel logic. Instead of diffusion models, we estimated the marginal distribu-1369

tions for each 1D decision time with gamma distributions. Specifically, for each motion strength1370

and choice (𝑠m &𝑅m) and each color strength and choice (𝑠m &𝑅c) wemodeled the 1Ddecision time1371

distributions as a gamma distribution (two parameters governing mean and standard deviation).1372

These 1D distributions allowed us to predict the decision time on 2D trials under a serial (additive)1373

and parallel (max) rule. The non-decision times were also modeled as four gamma distributions,1374

one for each combination of the four choices (𝑅m & 𝑅c). The reaction time distribution was ob-1375

tained by convolution of the decision time and non-decision time distribution. Each participant’s1376

datawas fit under the serial and parallelmodel bymaximum likelihood (usingMatlab fmincon). For1377

robustness, only combinations of strengths and choices with more than 10 trials were included in1378

the fit. The analysis is therefore heavily weighted toward correct trials. Comparison of models was1379

based on log likelihoods of the data given the fitted parameters for each participant.1380

We validated this method on synthetic data from a parallel and serial simulation and showed1381

that model recovery was accurate (Figure 2–Figure Supplement 2).1382

We also deployed the fit-predict strategy used in Fig. 2, where we estimated the gamma distri-1383

butions for the 1D decision times and using only the conditions in which one or the other stimulus1384

dimension was at its maximum strength (|𝑠|) (Figure 2–Figure Supplement 5).1385

For the binary response task (same/different judgments), a simplified version of this model was1386

used (Figure 7–Figure Supplement 1). Only absolute coherence levels of eachmotion stimuluswere1387

considered to fit the marginal gamma distributions. Additionally, only RTs from correct trials were1388

included in this model. Finally, in order to estimate the distribution of 𝑇nd, only a single gamma1389

distribution was fitted.1390

Variable duration model1391

We assume that when the duration of the color-motion stimulus is controlled by the experimenter,1392

the choices are still governed by bounded integration. Thus decisions can terminate (e.g. at time1393

𝑇m for motion) before the stimulus duration, 𝑇dur (Kiani et al., 2008). For example in a 1D decision1394

about motion stimulus with strength 𝑠m, the choice is determined by (1) the distribution of termi-1395

nation times, 𝑓 𝑠m
+ (𝑇m) and 𝑓 𝑠m− (𝑇m), at the positive and negative bounds, respectively, up to 𝑇dur1396

and (2) the probability that the sign of the unabsorbed 𝑉m(𝑡 = 𝑇dur) is of the corresponding sign.1397

For example the probability of rightward decision for a stimulus duration 𝑇dur is1398

𝑝(𝑅m = 1) = 𝑝{𝑉m(𝑇dur) > 0} + ∫
𝑇dur

0
𝑓 𝑠m

+ (𝑇m = 𝑡)𝑑𝑡 (6)

Note that 𝑓 𝑠m
+ is not a proper density; the total probability at 𝑡 = 𝑇dur comprises absorption times1399

at both bounds and the probability of unterminated 𝑉𝑚(𝑇dur).1400

To fit the data in Fig. 4 we employ two drift diffusion models, for color and motion, which only1401

interact in the way they access the stream of sensory evidence. This interaction is governed by1402

two parameters, one that determines the amount of time (𝑇buf) for which processing occurs in1403

parallel before proceeding to a serial processing stage, and the second (𝑝motion-1st) the probability1404

that motion is prioritized over color during the serial stage. If motion is prioritized on a particular1405

trial, for example, the motion process accumulates evidence in the serial phase until a decision1406

bound is crossed at which point color evidence continues to accumulate. Therefore, if 𝑉𝑚 does1407
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not reach a decision bound before the sensory stream terminates, no further color evidence is1408

accumulated after the parallel phase.1409

To model the double-decisions, we used the two 1D processes to specify the duration of the1410

stimulus that was used for motion processing, 𝑇m, and color processing, 𝑇c. On a trial in which1411

motion is prioritized, the time component that contributed to the motion accumulation (𝑇m) is1412

either the time, 𝑇m, that 𝑉m reaches a termination bound or 𝑇dur if it does not reach a bound.1413

These two possibilities bear on the maximum time available for color processing (𝑡cmax):1414

𝑡cmax =
⎧
⎪
⎨
⎪
⎩

𝑇dur if 𝑇dur ≤ 𝑇buf or 𝑇m ≤ 𝑇buf
𝑇buf + (𝑇dur − 𝑇m) 𝑇m > 𝑇buf
𝑇buf if 𝑇dur > 𝑇buf and no 𝑇m

(7)

The three conditions in Eq. 7 can be understood intuitively. (1) If the stimulus is shorter than1415

the parallel phase or if motion has terminated in this phase, then the maximum time available for1416

color processing is the full duration of the stimulus. (2) If motion terminates in the serial phase,1417

then the maximum time available for color is the duration of the parallel phase and what time1418

remains of the serial phase after motion has terminated. (3) If motion does not terminate, then1419

color is only processed during the parallel phase. With probability 1 − 𝑝motion-1st, color is prioritized,1420

and the complementary logic holds.1421

Note that if 𝑇buf = 0, the model is purely serial with one change from motion to color with1422

probability 𝑝motion-1st or from color to motion with probability 1 − 𝑝motion-1st. Although realized1423

as a single switch, the model is qualitatively indistinguishable from other alternation schedules1424

that preserve the same competition for processing time. For 𝑇dur ≤ 𝑇buf, the model is effectively1425

parallel. We fit a parallel model to the data (Figure 4–Figure Supplement 2) by fixing 𝑇buf to the1426

longest duration tested (1.2 s).1427

Each of the 1D diffusions were modeled similar to those used for the RT task, except for the1428

following minor modifications. (1) We did not include a parameter for nondecision times, because1429

we only modeled choices. (2) We parameterized the bound as an exponential function that is1430

clipped to have a maximum at 𝑢𝑚 and start decreasing from 𝑡 = 𝑔𝑚 with a half-life of 𝑑𝑚:1431

𝐵m(𝑡) = 𝑢mmin(2−(𝑡−𝑔m)/𝑑m , 1) (8)

with lower bound simply −𝐵m(𝑡). The same parameterization applies to the color bound (terms1432

with subscript c in Table 5).1433

The model was implemented in PyTorch (Paszke et al., 2019) with an Adam optimizer (Kingma1434

and Ba, 2014) and a modified version of the cyclical learning rate schedule that simply switched1435

back and forth between 0.05 and 0.025 every 25 epochs (Smith, 2015). We verified that this proce-1436

dure reliably recovers the 𝑇buf (see Figure 4–Figure Supplement 1). Briefly, in Adam, the learning1437

rate gives an approximate upper bound to the change each parameter takes per epoch, and the1438

step size is also adapted for individual parameters based on the running estimates of the first and1439

second moments of the gradient. That is, a high learning rate updates parameters fast and a low1440

learning rate allows better convergence at the expense of speed. We fit the model separately for1441

each 𝑇buf in steps of 40ms from 0 to 240ms and then in steps of 120ms up to 1200ms, the longest1442

duration of the stimulus we used. The reported estimate of 𝑇buf is the sample value withmaximum1443

log likelihood. The intervals reported are guided by the observation that choice predictions change1444

little with the buffer duration when the duration is long.1445

To evaluate the validity of the estimates of buffer capacity (𝑇buf) shown in Fig. 4, we performed1446

two types of analyses for each participant (Figure 4–Figure Supplement 1). The first approximates1447

the specificity, the second the sensitivity of the estimates. (1) We used the parameters of the best1448

fitting diffusion models to the data in Fig. 4 (solid curves; see Table 5) to simulate synthetic data1449

using buffer duration of 𝑇buf = 80ms. We fit the synthetic data withmodels with the buffer capacity1450

fixed to other values (from 0 to 240 ms in steps of 40 ms, and from 240 to 1200 ms in steps of1451
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120 ms). We then compared log likelihood of those fits with that of the 80-ms buffer model, and1452

repeated the simulation 12 times. (2)Weused the parameters of the best fitting diffusionmodels to1453

the data in Fig. 4 to simulate synthetic data using the buffer durations, 𝑇buf ≠ 80 ms, and compared1454

two fits: with 𝑇buf = 80 ms or the simulated value.1455

Multi-switch model (arm)1456

In the serial phase of the 2D task, the motion and color processes alternate. Experiments that pro-1457

vide only one response time to report both decisions allow us to estimate the overall prioritization1458

of one stream over the other but not the frequency of alternation. In contrast, the bimanual task1459

provides two response times on each trial. This allows us to estimate the frequency of alternation1460

between stimulus dimensions by fitting a model with multiple switches to the response times of1461

the first decision in the bimanual task.1462

The fitting was carried out in two steps. First, we fit the serial model described in Eq. 4 to1463

the second response in the bimanual task. The parameters that best fit the data are shown in1464

Table 4. Second, with the serial model parameters fixed, we used three additional parameters1465

to account for the response times to the decision that was reported first. The three parameters1466

are: 𝜏▵, controlling the average time between alternations of color and motion; 𝑝motion-1st, the1467

probability of starting with motion; and 𝑇 1st
nd , the expectation of the non-decision time for the first1468

response.1469

The alternations are modeled as a renewal. The intervals are independent and identically dis-1470

tributed (iid) as1471

𝑓int(𝑡) = max[𝑎, 𝑏] , (9)

where 𝑎 and 𝑏 are draws from an exponential distribution with mean 𝜏▵. The expectation of the1472

interval is1473

𝔼 [𝑓int(𝑡)] = 1.5𝜏▵ (10)

We chose this parameterization so that the distribution of inter-switch intervals has a single peak1474

and the max operation reduced the probability of very short intervals.1475

Because there is no closed-form solution to the multi-switch model, we used simulations to fit1476

the model parameters to each participants’ data. For fitting, we simulate the model 1,000 times1477

for each unique combination of color and motion strengths. From the simulations, we average1478

the response times for the first decisions split by whether motion or color was reported first, and1479

binned them by both motion strength and color strength. This gives the four groupings in Fig. 6.1480

The parameters were fit to minimize the sum of squared-errors summed over these four groups;1481

in other words, we minimize the sum of the squared errors for the data points shown in Fig. 6.1482

We used this approach rather than maximum likelihood because of the difficulties of reliably esti-1483

mating the likelihood of the parameters from model simulations for continuous quantities (here,1484

response times) (van Opheusden et al., 2020).1485

Data Analysis1486

We used logistic regression to evaluate the influence of task type (single,double) on performance1487

in the short-stimulus duration task (Fig. 3). Separate regression models were fit for the color and1488

motion decisions. The logistic regression model is:1489

𝑙𝑜𝑔𝑖𝑡[𝑝+] = 𝛽0 + 𝛽1𝑠 + 𝛽2𝐼double + 𝛽3𝑠𝐼double +
𝑁subj−1

∑
𝑖

𝛽3+𝑖𝐼subj (11)

where 𝑝+ is the probability of a positive (‘rightward’ for the motion task, ‘blue’ for the color task)1490

response, 𝑠 is (signed) stimulus strength, 𝐼double is an indicator variable for task type (single or1491

double), 𝛽3 is an interaction term which indicates how the influence of strength on choice changes1492

in the double task relative to the single task, and 𝐼subj is an indicator variable that takes a value of1493
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1 if the trial was completed by subject subj and 0 otherwise. The final term with the summation1494

allows for the possibility that different participants had different overall choice biases.1495

We also used logistic regression to assess whether the strength of one stimulus dimension1496

affected the accuracy of the other decision. Separate regression models were fit for the color and1497

motion decisions. The logistic regression model to assess whether color strength affects motion1498

choice is1499

𝑙𝑜𝑔𝑖𝑡[𝑝+] = 𝛽0 + 𝛽1𝑠𝑚 + 𝛽2|𝑠𝑐| + 𝛽3𝑠𝑚|𝑠𝑐| (12)

where the 𝛽3 term accommodates the possibility that the color coherence could affect the slope1500

of the logistic function of motion coherence. We used an analogous equation to ask whether mo-1501

tion strength affected color sensitivity. For both logistic regression models (Eq. 11 Eq. 12, to test1502

whether the interaction (𝛽3) has explanatory power in the model we compared the Bayesian Infor-1503

mation Criterion (BIC) for nested regression models with and without the 𝛽3 term. For Eq. 12 data1504

were fit for each participant and the BICs were added.1505

For the model-free analysis of the time course of the influence of motion and color informa-1506

tion on choice Fig. 3, we obtained choice-conditioned averages of the color and motion energies1507

extracted from the random-dot stimuli. Because the stimulus is stochastic, the motion and color1508

energies vary from one trial to another, and even within a trial. We quantified the motion fluctua-1509

tions by convolving the sequence of random dots presented in each trial with a filter selective to1510

rightward and leftward motion (see details in Adelson and Bergen (1985); Kiani et al. (2008)). The1511

results of the convolution are combined over space to obtain the motion energy for each direction1512

and as a function of time, and the netmotion energy is obtained by subtracting leftward from right-1513

ward motion. This time-dependent signal comprises a deterministic component, associated with1514

the motion strength and direction of each trial, and a stochastic component (i.e., each random1515

dot movie uses a unique random sequence of dots). Because only the latter provides informa-1516

tion about the time-course of decision formation, we subtracted from the motion energy profile1517

of each trial, the average motion energy associated with the strength and direction of motion of1518

that trial. The motion energy residuals were then averaged across trials, separately for 1D and 2D1519

trials (Fig. 3B).1520

We performed a similar analysis to extract the color energy from the stimulus. We calculated1521

the difference between the number of blue and yellow dots shown on each video frame. We1522

subtracted the expectation of this difference, given by the color strength of the trial and the pre-1523

dominant color, to obtain the excess of color dots for blue over yellow. These calculations were1524

performed independently for each video frame; the visual system, however, blurs the color infor-1525

mation over time. Since we do not know the time constant of this operation, we used an impulse1526

response function that matches the motion filter (Fig. 3B). That is, we convolve the excess of color1527

dotswith the temporal impulse response obtained from themotion energy filters. This choice does1528

not affect the conclusions we draw from this analysis – even if we used the unfiltered color residu-1529

als, we would still conclude that the same evidence samples were used to form color decisions in1530

1D and 2D trials.1531
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A B

Fixation

Stimulus

Feedback

Figure 1. Double decision task. A. Timeline of the behavioral task. Participants first fixated a gray dot at the center of the screen. A dynamic
random dot stimulus was displayed and the participant was asked to judge the overall motion direction and the dominant color (the arrow is for
visualization purposes only and was not presented to the subject). They reported this double decision by selecting one of four targets to indicate
motion direction (left and right target for leftward and rightward motion, respectively) and color (top yellow vs. bottom blue targets). The
response was deemed correct when both motion and color judgments were correct. Participants received auditory feedback as to whether they
were correct and the correct target was also indicated by a white ring. Across the experiments the targets could be indicated with an eye
movement or a hand movement, either when the participant was ready to report (reaction time) or when the dot display was extinguished
(experimenter-controlled duration). B. Motion and color strengths were varied independently across trials, represented by a matrix of
combinations of difficulty levels (here shown for the eye reaction time experiment with 81 combinations; see Methods). Insets illustrate typical
motion and color for three of the conditions. Correctness was assigned randomly when the coherence was zero. For the combinations shown in
purple, at least one stimulus dimension was at its strongest value (easiest). For some analyses, the data from these combinations are used to fit
a model, which is evaluated by predicting the data from the remaining combinations (yellow).
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Figure 2. Double-decisions exhibit additive response times but no interference in accuracy. Participants judged the dominant color and
direction of dynamic random dots and indicated the double-decision by an eye movement (A) or reach (B) to one of four choice-targets. All
graphs show the behavioral measure (proportion of choices, top row; mean reaction time, rows 2 and 3) as a function of either signed motion or
color strength. Positive and negative color strength indicate blue- or yellow-dominance, respectively. Positive and negative motion strength
indicate rightward or leftward, respectively. Colors of symbols and traces indicate the difficulty (unsigned strength) of the other stimulus
dimension (e.g., color, for the graphs with abscissae labeled “Motion strength”). Symbols are combined data from three participants (Eye) and
eight participants (Hand). Open symbols identify the conditions used to fit the parallel and serial models. These are the conditions in which at
least one of the two stimulus strengths was at its maximum (purple shading, Fig. 1B). The models comprise two bounded drift-diffusion
processes, which explain the choice and decision times as a function of either color or motion. They differ only in the way they combine the
decision times to explain the double-decision RT. For the serial model, the double decision time is the sum of the color and motion decision
times. For the parallel model the double-decision time is the longer of the color and motion decisions (see Methods). Smooth curves are the
predictions based on the fits to the open symbols. Both models predict no interaction on choice (top row). The serial predictions (middle row)
are superior to the parallel model. Data are the same in the lower two rows. Stimulus strengths in A were not identical for the 3 participants and
were combined to a common scale.
Figure 2–Figure supplement 1. Statistical comparison of the drift diffusion model under serial vs. parallel rules.
Figure 2–Figure supplement 2. Comparison of parallel and serial rules applied to reaction time distributions.
Figure 2–Figure supplement 3. Statistical comparison of parallel and serial rules applied to reaction time distributions.
Figure 2–Figure supplement 4. Mean reaction time for parallel and serial rules applied to the reaction time distribution analysis.
Figure 2–Figure supplement 5. Mean reaction time for parallel and serial rules applied to reaction timedistribution analysis with the fit-prediction
approach
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Figure 3. Parallel acquisition and serial incorporation of a brief color-motion pulse. Participants completed a short-duration variant of the
double-decision task in which the stimulus was presented for only 120 ms. They also performed blocks in which they were asked to report only
the color or only the motion direction (single decision in which they could ignore the irrelevant dimension). Data from double- and
single-decision blocks are indicated by color. A. Choice probability and response times for single and double decision blocks. Top-left,
proportion of rightward choices as a function of motion strength. Top-right, proportion of blue choices as a function of color strength. The solid
lines are logistic fits. They are nearly identical for single- and double-decisions. Bottom row, Response times for the single- and double-decisions
plotted as a function of motion strength (left) and color strength (right). For the double decisions, these are the same data plotted as a function
of either the motion or color dimension. (Three participants performed a total 9,959 double-decision and 12,527 single-decision trials). Data
points show the average response time as a function of motion or color coherence, after grouping trials across participants and all strengths of
the “other” dimension (i.e., color, left; motion, right). Error bars indicate s.e.m. across trials. Although the stimulus was presented for only 120
ms, response times were modulated by decision difficulty. Importantly, response times were longer in the double-decision task than in the
single-decision task. B. Psychophysical reverse correlation analysis. Top, Time course of the average motion information favoring rightward,
extracted from the random-dot display on each trial, that gave rise to a left or right choice. Shading indicates s.e.m. Middle, Time course of the
average color information favoring blue, extracted from the random-dot display on each trial, that gave rise to a blue or yellow choice. The
shaded area indicates the s.e.m. across trials. The similarity of the green and orange curves indicates that participants were able to extract the
same amount of information from the stimulus when making single- and double-decisions. Bottom, Impulse response of the filters used to
extract the motion and color signals (see Methods). They explain the long time course of the traces for the 120 ms duration pulse.
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parallel

A

B

parallel

Fig 5

serial serial

Figure 4. Interference in choice accuracy can be elicited at intermediate viewing durations. Two participants (columns) performed the
color-motion double-decision task with a random dot display that varied in duration between 120 and 1200 ms. A. Top, Motion sensitivity as a
function of stimulus duration and color strength. Symbols are the slope of a logistic fit of the proportion of rightward choices as a function of
signed motion strength, for each stimulus duration. Data are split by whether the color strength was strong (blue) or weak (green). Error bars
are s.e. Bottom, Analogous color-sensitivity split by whether the motion strength was strong (purple) or weak (red). Curves are fits to the data
from each participant using two bounded drift diffusion models that operate serially after an initial stage of parallel acquisition, here termed the
buffer capacity. During the serial phase, one of the dimensions is prioritized until it terminates. The prioritization favored motion for both
participants (𝑝motion-1st = 0.80 and 0.96, for participants S4 and S5, respectively). B. Negative log likelihood of the model fits as a function of the
buffer capacity, relative to the model fit at 80 ms capacity. The model is equivalent to a purely serial model, when the buffer capacity is zero, and
to a purely parallel model when the buffer capacity exceeds the maximum stimulus duration. Negative log likelihoods were computed for a
discrete set of buffer capacities (black points). Black dashed lines are at Bayes factor = 1 (log10BF = 0). Gray dashed lines show where the Bayes
factor = 100 (“decisive” evidence for the best fit model compared to the models above the line; Kass and Raftery 1995).
Figure 4–Figure supplement 1. Parameter recovery analysis
Figure 4–Figure supplement 2. Fits to the choice data with strictly serial and parallel models
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Figure 5. Replication of double-decision choice-reaction time when the decisions are reported with two effectors. A. Participants performed the
color-motion double-decision choice-reaction task, but indicated the double-decision with either a unimanual movement to one of four
choice-targets or a bimanual movement in which each hand reports one of the stimulus dimensions (N=8 participants performed both tasks in a
counterbalanced order). In both conditions the hand or hands were constrained by a robotic interface to move only in directions relevant for
choice (rectangular channels). The display was the same across unimanual and bimanual tasks with up-down movement reflecting color choice
and left-right movement reflecting motion choice. A scrolling display of proportion correct was used to encourage accuracy. In the unimanual
trials both choices were indicated simultaneously. However, in the bimanual trials each choice could be indicated separately and the dot display
disappeared only when the second hand left the home position. B. Choice proportions and double-decision mean RT on the bimanual task. The
double-decision RT on the bimanual task is the latter of the two hand movements. The data are plotted as a function of either signed motion or
color strength (abscissae), with the other dimension shown by color (same conventions as in Fig. 2). Solid traces are identical to the ones shown
in Fig. 2 for the unimanual task, generated by the method of fitting the conditions containing at least one stimulus condition at its maximum
strength and predicting the rest of the data. They establish predictions for the bimanual data from the same participants. The agreement
supports the conclusion that the participants used the same strategy to solve the bimanual and unimanual versions of the task.
Figure 5–Figure supplement 1. Choice and double-decision reaction time for the bimanual responses
Figure 5–Figure supplement 2. Model-free comparison of performance in the unimanual (blue) vs. bimanual (red) task.
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Figure 6. First response times in the bimanual task suggest multiple switches in decision updating. For bimanual double decisions, participants
indicate two RTs per trial. Whereas up to now we have only considered the RT corresponding to completion of both color and motion decisions,
the analyses in this figure concern the RT of the first of the two. Symbols are means ± s.e. (N=8 participants). Curves are fits to single- and
multi-switch model (colors). A. RT as a function of motion strength when motion was reported first. B. RT as a function of color strength when
motion was reported first. C. RT as a function of motion strength when color was reported first. D. RT as a function of color strength when color
was reported first. In panels A and D, the 1st response corresponds to the stimulus dimension represented on the abscissa. The data exhibit the
expected pattern fast RT when the stimulus is strong and slow RT when the stimulus is weak (i.e., near 0). This would occur if the serial
processing of motion and color ensued one after the other (single-switch) or with more than one alternation (multi-switch), although the latter
provides a better account of the data. In panels B and C, the 1st response corresponds to the stimulus dimension that is not represented on the
abscissa. Here the single-switch model fails to account for the data. If there were only one switch and color terminates first, then the strength of
motion is irrelevant, because all processing time was devoted to color. Similarly, if there were only one switch and motion terminates first, then
the strength of color is irrelevant, because all processing time was devoted to motion.
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A
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Figure 7. Serial decision making in a Same vs. Different task. A. Task. Two dynamic random dot motion displays were presented in rectangular
patches to the left and one to the right of a central fixation cross. The direction and motion strength were randomized from trial to trial and
between the patches (up or down × three motion strengths). Participants judged whether the dominant direction of the left and right patches is
the same or different and indicated the decision when ready by pressing a response key with their left or right index finger. At the end of each
trial, participants received feedback. In a separate block, participants also performed a 1D direction discrimination task in which only one patch
of random dots was displayed. B. Top, Proportion of correct choices as a function of the level of absolute motion strength (L = low; M = medium;
H = High). Bottom, Reaction times for each level of motion strength. The first three bars represent the direction task where only a single motion
stimulus was presented. The six bars on the right of each plot represent the same-different task. Horizontal red lines are fits of a serial
drift-diffusion models to the means. Only correct trials were included for RT analyses.
Figure 7–Figure supplement 1. Comparison of parallel and serial rules applied to reaction time distributions in the Same vs. Different task
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Figure 8. Parallel acquisition of evidence and serial updating of two decision variables. An elaborated drift diffusion model permits reconciliation
of the serial processing implied by the double-decision choice-RT experiment and the failure to observe interference in choice accuracy when
the color-motion stimulus is restricted to a brief pulse. The main components of the model are introduced in panel A and elaborated in panels B
and C. In all panels, red and blue indicate motion and color processes, respectively. A. Simulated trial from the short duration experiment.
Information flows from top to bottom graphs for motion; and from bottom to top graphs for color. Time is left to right. The evidence from both
color and motion is extracted from the 120 ms random dot stimulus in parallel. Both can be stored temporarily in separate buffers (filled
rectangles), which send an instruction to the circuits representing the respective decision variables in their persistent firing rates. The instruction
is to change the firing rate by an amount (Δ𝑉m or Δ𝑉c). This latency from clearance of the sample from the buffer to receipt of the Δ𝑉
instruction takes time (𝜏ins, black diagonal arrows), and this is followed by the realization of the instruction in the evolving firing rates of cortical
neurons (smooth colored curves). In the example, the 𝑉m is the first to update. A central bottleneck precludes updating 𝑉c. The bottleneck is
cleared when the Δ𝑉m instruction is received by the circuit that represents the motion decision variable (green arrow). This allows the buffered
evidence for color to update 𝑉c. Open rectangle represents clearance of the buffer content, which occurs immediately for motion and after a
delay for color in this example. Dashed lines associated with decision stage show the instructed change in the decision variable (Δ𝑉m and Δ𝑉c).
Smooth colored curves show the evolution of the decision variables. B. Elaboration of the example in panel-A. The boxes representing the
120 ms stimulus are replaced by the two outer rows: (𝑖) raw luminance and color data stream, 𝐿(𝑥, 𝑦, 𝑡) and 𝐶(𝑥, 𝑦, 𝑡), respectively, represented as
biased Wiener processes (duration 120 ms); (𝑖𝑖) filtered evidence streams containing the relevant motion (right minus left) and color (blue minus
yellow) signals. The filters introduce a delay and smoothing. The filtered signals can be sampled by the buffer every 𝜏s ms, so long as the buffer
is available (i.e., empty). The bottleneck shows the process that is accessing the update channel. Other than the first sample, the prioritization is
equal and alternating. Only one process can update at a time. Circled numbers identify the key events described in Results. Events sharing the
same number are approximately coincidental. C. Example of a double-decision in the choice-reaction time task. The first eight steps parallel the
logic of the process shown in panel B. The decision variables then continue to update serially, in alternation, until 𝑉c reaches a terminating
bound ( 9⃝). The decisions then continues as a 1D motion process until 𝑉m reaches a terminating bound (10⃝). Bound height is indicated by 9⃝ and
10⃝. Note that the sampling rate is the same as it was in the parallel phase, whereas during alternation it was half this rate for each dimension.
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choice-RT (eye) brief duration (eye) variable duration (eye) choice-RT (arm) binary choice-RT
Dot density (dots deg−2 s−1) 15.3 15.3 16 16 16
Dot speed (deg/s) 1.67 1.67 5 5 5
Central fixation diameter (deg) 0.4 gray circle 0.4 gray circle 0.6 red cross & bullseye 0.6 red cross & bullseye 0.6 red cross & bullseye
Random delay (s) 0.1-0.5 0.1-0.5 0.5–0.8 0.5–0.8 0.4-0.8
Choice target diameter (deg) 0.4 0.4 1.2 N/A N/A
Target spacing (deg) 6 6 15 N/A N/A
Movement initiation gaze > 2.5º gaze > 2.5º gaze > 3º hand > 1 cm key press
CRT Vision Master 1451 Vision Master 1451 Sony CRT CPD-G420S Dell CRT P1110 N/A
Resolution (pixels) 1400 × 1050 1400 × 1050 1280 × 1024 1280 × 1024 S7: 1280 × 720; S12: 1440 × 900
Pixels per degree 39.6 39.6 32.7 24.3 S7: 40.94; S12: 33.45
Viewing distance (cm) 55 55 50 38 S7: 54; S12: 38
Cyan 𝑐𝑑/𝑚2 [M(SD)] N/A N/A 25.20 (0.81) 12.16 (1.93) N/A
Cyan CIE x/y [M] N/A N/A x = 0.26, y = 0.24 x = 0.27, y = 0.24 N/A
Yellow 𝑐𝑑/𝑚2 [M(SD)] N/A N/A 22.98 (0.05) 12.68 (1.80) N/A
Yellow CIE x/y [M] N/A N/A x = 0.54, y = 0.38 x = 0.54, y = 0.38 N/A

Table 1. Experimental parameters.

experiment participant motion strengths color strengths
choice-RT (eye) S1 0, 0.064∗, 0.128, 0.256∗, 0.512 0, 0.062∗, 0.124, 0.245∗, 0.462

S2 0, 0.032∗, 0.064, 0.128∗, 0.256 0, 0.031∗, 0.062, 0.124∗, 0.245
S3 0, 0.032∗, 0.064, 0.128∗, 0.256 0, 0.062∗, 0.125, 0.245∗, 0.462

brief duration (eye) S1–S3 0, 0.064∗, 0.128, 0.256∗, 0.512 0, 0.124∗, 0.245, 0.462∗, 0.762
variable duration (eye) S4 0.03, 0.063, 0.512 0.052, 0.104, 0.758

S5 0.044, 0.084, 0.512 0.046, 0.104, 0.758
choice-RT (arm) S6–S13 0, 0.032, 0.064, 0.128, 0.256, 0.512 0, 0.064, 0.128, 0.250, 0.472, 0.758
binary choice-RT S7 & S12 0.128, 0.256, 0.512 N/A

Table 2. Motion and color strength parameters. For 2D trials all combinations of motion and color
strengths were used. For 1D trials all strengths were used for the dimension that informed the decision but
some strengths (∗) were omitted for the other dimension.

participant ID 𝜏▵ (s) 𝑝motion-1st 𝑇 1st
nd (s)

6 1.93 0.52 0.51
7 1.6 0.15 0.59
8 4.49 0.86 0.38
9 1.33 0.87 0.44

10 0.15 0.14 0.38
11 0.22 0.89 0.7
12 0.1 0.79 0.52
13 1.13 0.85 0.69

Table 3. Parameter values for the best-fitting switching model.
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Task Subj. 𝜅𝑚 𝑢𝑚 𝑎𝑚 𝑑𝑚 (s) 𝑠0
𝑚 𝜅𝑐 𝑢𝑐 𝑎𝑐 𝑑𝑐 (s) 𝑠0

𝑐 𝜇𝑛𝑑 (s) 𝜎𝑛𝑑 (s)
Eye RT 1 9.97 0.98 6.45 3.47 −0.02 5.77 0.83 10 4 −0.01 0.3 0.001

2 21.99 0.99 3.65 2.52 0.01 11.39 0.68 10 2.61 0.02 0.35 0.002
3 39.25 0.83 9.91 3.26 −0.01 6.29 3.62 1.23 −0.19 0 0.31 0.004

Unimanual 6 13.93 1.29 2.11 3.96 0.01 7.29 0.91 3.09 2.16 0.04 0.34 0.001
7 13.69 1.38 2.18 3.61 −0.01 4.69 1.11 −2 −1.97 0.06 0.46 0.002
8 9.95 1.11 3.89 4 0 7.19 1.02 2.28 2.9 0.02 0.32 0.002
9 16.24 1.04 −2 0 0 6.24 0.88 10 3.28 0.01 0.74 0.08
10 20.84 0.88 10 4 −0.01 7.38 1.59 0.15 2.24 −0.06 0.36 0.001
11 20.12 0.84 2.93 2.79 0 8.35 0.87 4.47 1.92 −0.03 0.45 0.032
12 11.98 0.96 2.52 4 0 5.29 0.97 1.76 3.92 0.04 0.43 0.002
13 13.15 1 2.05 4 −0.02 5.79 1.01 1.19 3.09 0.01 0.41 0.001

Bimanual 6 7.88 0.75 10 3.45 0 4.34 0.98 10 4 0.04 0.3 0.069
7 8.19 0.82 10 4 −0.03 4.8 0.96 7.97 3.91 0.05 0.29 0.001
8 11.75 2.65 0.46 −0.56 −0.04 6.85 1.06 1.57 1.87 −0.02 0.35 0.001
9 13.57 0.87 10 4 0 7.08 0.86 4.46 2.5 −0.1 0.44 0.001
10 13.15 1.36 1.48 3.82 0 6.77 2.36 0.18 −0.61 0.07 0.37 0.02
11 12.72 1.4 1.21 2.7 0 6.84 0.96 2.32 3.03 0.05 0.47 0.002
12 12.74 1.03 6.37 3.33 0.01 5.98 1.13 1.37 3.66 −0.03 0.3 0.001
13 9.08 1.14 5.81 3.87 0.01 3.79 0.99 10 3.69 −0.1 0.31 0.001

Table 4. Parameter values for the best-fitting serial model. Note that the rate of collapse parameters 𝑎𝑚 and
𝑎𝑐 are limited to a maximum of 10 (an almost instantaneous bound collapse) and the time of the start of the
collapse 𝑑𝑚 and 𝑑𝑐 are limited to 4 s.

Task Subj. 𝜅𝑚 𝑢𝑚 𝑔𝑚 (s) 𝑑𝑚 (s) 𝑠0
𝑚 𝜅𝑐 𝑢𝑐 𝑔𝑐 (s) 𝑑𝑐 (s) 𝑠0

𝑐 𝑝motion-1st

VD 4 22.29 0.86 0.47 1.19 0.01 9.18 1.39 0.18 0.27 −0.01 0.80
5 9.60 0.99 0.68 0.40 0.01 12.11 0.74 0.11 0.11 0.04 0.96

Table 5. Parameter values for the best-fitting buffer + serial model.
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Figure 2–Figure supplement 1. Statistical comparison of the drift diffusion model under serial vs.
parallel rules. The analysis focuses on the data and predictions represented by the solid symbols
and lines in Fig. 2. Left, Difference in log likelihood of the predictions under parallel and serial rules
for each participant and condition. Gray vertical dashed lines (close to the midline) show where
the Bayes factor is 1/100 and 100 (log10BF = −2 and 2; “decisive” evidence in support of the model
on that side; Kass and Raftery 1995). Negative and positive values correspond to support for the
serial and parallel model, respectively. Middle and right, Validation of the method. After fitting,
these parameters were used to generate simulated data under the serial (left) and parallel (right)
rules. Each dataset was then fit using both the serial and parallel rule. The validation shows that
37/38 simulated datasets were correctly categorized. Average log10BF ± SEM are -58±20, -101±14,
44±8 for the data, simulated serial, and simulated parallel, respectively.
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Fig 2 Supp - Gamma distrib 
fit all data

A B C

Figure 2–Figure supplement 2. Comparison of parallel and serial rules applied to reaction time
distributions. The graphs show averages of the fitted distributions (thick colored traces) across
participants. A. 3 participants who responded with an eye movement to one of four targets. B.
8 participants who responded with a hand movement to one of four targets. C. The same 8 par-
ticipants who responded with two hands (the RT is the time of the last movement). The averages
are taken at each time bin across participants for each condition, weighted by the number of trials.
Only the conditionswith theweakest and strongest stimulus strengths are shown. The comparison
provides strong support for the serial combination rule (see Figure 2–Figure Supplement 3).
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Figure 2–Figure supplement 3. Statistical comparison of parallel and serial rules applied to re-
action time distributions. The analysis focuses on the full set of RT distributions, exemplified in
Figure 2–Figure Supplement 2. The results are presented in the same format as Figure 2–Figure
Supplement 1. Average log10BF ± SEM are -17±2, -16±2, 10±1 for the data, simulated serial, and
simulated parallel, respectively. For the binary-choice task (pink), the simplified version of the RT
model was used and 20 simulations were performed for each participant under the serial and
parallel rule, respectively (bars represent the mean across the 20 simulations). For the remaining
data, the full RT model was used and only a single serial/parallel simulation was performed for
each participant.
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Figure 2–Figure supplement 4. Mean reaction time for parallel and serial rules applied to the re-
action time distribution analysis exemplified in Figure 2–Figure Supplement 2. The graphs display
the mean RTs and fits in the same format as Fig. 2, with responses reported by eye (A), uniman-
ually (B), or bimanually (C). Mean RTs are computed from the average RT distribution computed
as in Figure 2–Figure Supplement 2 for correct choice trials within each condition (or for the zero
stimulus strength condition, all trials). Note that these averages across time bins and across par-
ticipants are used for visualization only; fits were performed for individual participants using the
full RT distribution. Here, the fits are derived from the best fitting gamma distributions, described
in association with Figure 2–Figure Supplement 3. Open symbols are the data; the traces are line
segments connecting the fitted means. In each panel of four graphs, the upper and lower pair
of graphs show fits to the serial and parallel models, respectively. Panels display data from the
double-decision RT tasks using the three response modalities as indicated.
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Figure 2–Figure supplement 5. Mean reaction time for parallel and serial rules applied to reaction
time distribution analysis with the fit-prediction approach. Format is identical to Figure 2–Figure
Supplement 4, except the fits of the marginal 1D distributions were obtained using only the con-
ditions where color or motion strength was at its strongest level. The symbols corresponding to
these ‘fitted’ conditions are open. Where the symbols are solid, the data are not fit, but predicted
by the serial or parallel logic (traces). Responses were reported by eye (A), unimanually (B), or
bimanually (C).
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Figure 4–Figure supplement 1. Parameter recovery analysis. The graphs evaluate the sensitivity
and specificity of the estimates of buffer capacity (𝑇buf) shown in Fig. 4. Columns are the two
participants. We used the parameters of the best fitting diffusionmodels to the data in Fig. 4 (solid
curves; see Table 5). The analysis in the top row addresses specificity. The simulations use 80
ms, but the model fits used 𝑇buf fixed to each of the durations shown on the abscissa, computed
for a discrete set of buffer capacities (black points). The ordinate shows the difference of each
model’s negative log likelihood from that of the 80-ms buffer model (smaller is better). Error bars
are standard deviations across 12 simulations. Gray dashed lines show where the Bayes factor
= 100 and 1/100 (“decisive” evidence for the best fit model compared to the models above the
top line and against the best fit model below the bottom line; Kass and Raftery 1995). The analysis
suggests fiducial confidence limits of roughly 80-200ms. The analysis in the bottom row addresses
identifiability. The simulations use 𝑇buf shown on the abscissa. We then compare two fits, using
𝑇buf = 80ms or the simulated value. Misidentification is limited to a narrow range similar to the
fiducial confidence interval.
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Figure 4–Figure supplement 2. Fits to the choice data with strictly serial and parallel models. The
best fittingmodel to the choice data in the variable duration task implicates a finite buffer, allowing
motion or color information to be held for a period before updating the decision. If 𝑇buf = ∞ or 0,
the model is purely parallel or purely serial. The graphs show the best fits of these models for two
subjects. The format of the graphs is identical to Fig. 4. Left column, reproduction of the fits in Fig. 4.
Middle column, best fitting parallel model. Right column, best fitting serial model. Two participants
(rows) performed the color-motion double-decision task with a random dot display that varied in
duration between 120 and 1200 ms. Top, Motion sensitivity as a function of stimulus duration and
color strength. Symbols are the slope of a logistic fit of the proportion of rightward choices as a
function of signedmotion strength, for each stimulus duration. Data are split by whether the color
strength was strong (blue) or weak (green). Error bars are s.e. Bottom. Analogous color-sensitivity
split by whether the motion strength was strong (purple) or weak (red). Curves are fits to the data
from each participant using two bounded drift diffusionmodels that operate serially after an initial
stage of parallel acquisition, here termed the buffer capacity. During the serial phase, one of the
dimensions is prioritized until it terminates. The prioritization favoredmotion for both participants
( 𝑝motion-1st = 0.80 and 0.96, for participants S4 and S5, respectively)
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Figure 5–Figure supplement 1. Choice and double-decision reaction time for the bimanual re-
sponses in the same format as Fig. 2B. These are the same data shown in Fig. 5 but replacing the
predictions from the unimanual fits with the fits to the data from the bimanual task. We use the
same fit/prediction strategy as in Fig. 2B. The model comparison summarized in Figure 2–Figure
Supplement 1.
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Figure 5–Figure supplement 2. Model-free comparison of performance in the unimanual (blue) vs.
bimanual (red) task. A. Top: Sensitivity of color choices as a function of motion strength (absolute
coherence). Sensitivity is the slope of a logistic regression of color choice as a function of signed
color coherence, obtained separately for each level of motion strength. Bottom: RTs in the uni- vs.
bimanual task as a function of absolute motion strength when color was weak (3 lowest strengths;
light shading) vs. strong (3 highest strengths; dark shading). For the bimanual task, RTs correspond
to the final response of a given trial. B. Similar to A, but with color strength on the abscissa. Top:
motion sensitivity. Bottom: RTs as a function of absolute color strength when motion was either
weak (light shading) or strong (dark shading). No differences in overall choice sensitivity were
found between the uni- and bimanual task (repeated-measures ANOVA, motion sensitivity: F1,7 =
0.21, p = 0.664; color sensitivity: F1,7 = 0.70, p = 0.431). Similarly, overall RTs were similar in the
uni- and bimanual task (motion: F1,7 = 0.56, p = 0.477; color: F1,7 = 0.57, p = .476). Furthermore,
the modulation of RTs by the informative and uninformative dimensions, respectively, was not
affected by task (uni-/bimanual; all interactions 𝑝 > 0.05). This suggests that overall performance,
and modulation of RTs by each decision dimension, were similar in the uni- and bimanual tasks.
Data points represent mean ± s.e.m. (N = 8).
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Figure 7–Figure supplement 1. Comparison of parallel and serial rules applied to reaction time
distributions in the Same vs. Different task. The analysis is a variant of the one introduced in Fig-
ure 2–Figure Supplement 2, applied to RT distributions associatedwith the six unique combinations
of motion strength (correct choices only). The analysis optimizes the parameters of gamma distri-
butions representing three 1D decision times, corresponding to the three uniquemotion strengths,
and one non-decision time to best explain the six observed distributions of RTs. A. Best fitting
RT distributions for each participant, shown as cumulative probability distributions. Dashed black
curves are data. Solid curves are best fitting distributions under serial (red) and parallel (blue) com-
bination rules. B. Superposition of the expectations obtained from the fitted distributions (panel
A) on the mean RT and DDM fits shown in Fig. 7B).
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