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Abstract (<150 words) 21 

In the United States, tick-borne disease cases have tripled since the 1990s and cost upwards of 10 22 

billion USD annually. Tick density and densities and diversity of non-human mammalian 23 

reservoir hosts are hypothesized to drive tick-borne disease dynamics and are targets for 24 

interventions. Here, we relate human prevalence of four tick-borne diseases (Lyme disease, 25 

monocytic ehrlichiosis, granulocytic anaplasmosis, and babesiosis) to tick and reservoir host 26 

community data collected by the U.S. National Ecological Observatory Network (NEON) across 27 

the contiguous U.S. We show that human disease prevalence is correlated positively with tick 28 

and reservoir host densities and negatively with mammalian diversity for Lyme disease and 29 

ehrlichiosis, but positively for anaplasmosis and babesiosis. Our results suggest that the efficacy 30 

of tick-borne disease interventions depends on tick and host densities and host diversity. Thus, 31 

policymakers and disease managers should consider these ecological contexts before 32 

implementing preventative measures. 33 

 34 

Significance (<120 words) 35 

Tick-borne disease incidence has increased in the United States over the last three decades. 36 

Because life-long symptoms can occur if reactive antibiotics are not administered soon after the 37 

tick bite, prevention is imperative. Yet, control of tick-borne zoonoses has been largely 38 

unsuccessful, at least partly because of a limited understanding of the ecological complexities of 39 

these diseases, especially non-Lyme disease tick-borne zoonoses. We use continental-scale data 40 

to quantify the relationships among four tick-borne diseases and tick and reservoir host 41 

communities, revealing that disease incidence is driven by a combination of tick densities and 42 

reservoir host densities and diversity. Thus, the efficacy of tick-borne disease interventions is 43 

likely dependent on these ecological contexts. 44 

  45 
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Introduction 46 

Vector-borne diseases and tick-borne diseases, specifically, are on the rise globally (1). In 47 

the United States, tick-borne disease incidence has more than doubled since 2004 and Lyme 48 

disease incidence has tripled since the 1990s (2, 3). There are an estimated 240,000-440,000 new 49 

cases of Lyme disease annually (4). Lyme disease costs the United States >$1 billion in 50 

healthcare costs (5), and $5 to $10 billion in economic and societal costs annually (6), and is 51 

only one of several major tick-borne disease in the U.S. Antibiotics are often ineffective at 52 

preventing life-long symptoms of bacterial tick-borne diseases (e.g. Lyme disease, human 53 

granulocytic anaplasmosis) if they are not prescribed soon after the tick bite (7) and, thus, 54 

effective prevention of tick-borne diseases is crucial. However, control of tick-borne zoonoses 55 

has been largely unsuccessful, in part because of a limited understanding of the ecological 56 

complexities and drivers of these diseases (1, 8, 9). 57 

Tick densities, reservoir host densities, and reservoir host diversity are hypothesized 58 

drivers of tick-borne diseases (Fig. 1) (1, 10, 11). The causative agents of human Lyme disease 59 

(Borrelia burgdorferi [sensu lato]), human granulocytic anaplasmosis (Anaplasma 60 

phagocytophilum; hereafter anaplasmosis), and human babesiosis (Babesia microti) are 61 

transmitted by Ixodes scapularis (eastern blacklegged ticks) in the eastern U.S. and Ixodes 62 

pacificus (western blacklegged ticks) in the western U.S., while the causative agent of human 63 

monocytic ehrlichiosis (Ehrlichia chaffeensis; hereafter ehrlichiosis) is transmitted by 64 

Amblyomma americanum (lone star ticks) throughout the U.S. (12–14). Larval ticks become 65 

infected following a blood-meal from an infected host, such as mammals (e.g. rodents, 66 

insectivores, and scurids (15)) that can serve as reservoir hosts (organisms that maintain and 67 

transmit pathogen populations (16)) for these pathogens. Importantly, reservoir competence 68 
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(ability for a host to transmit pathogens to uninfected vectors (16)) of mammalian host species 69 

varies among these pathogens (Fig. 1; Table S1) (15, 17, 18). 70 

Although there is some support for the hypotheses that densities of ticks and densities and 71 

diversity of wildlife hosts drive Lyme disease dynamics, most of the support is at local rather 72 

than country or continental scales (14, 15, 19) and has not incorporated human disease (e.g. 73 

reported cases) (10, 11, 19) (but see (20)). Linking wildlife and densities of infected ticks to 74 

human disease is difficult, because human behavior, such as avoidance and chemical deterrents 75 

(21), can disrupt this link. Further, support for the hypotheses that tick densities and wildlife host 76 

densities and diversity drive tick-borne diseases is lacking in systems other than Lyme disease. A 77 

major impediment to understanding the drivers of tick-borne diseases was a lack of broad-scale 78 

spatial datasets that combined reservoir host communities, tick densities, and tick infection 79 

prevalence with human disease incidence at similar scales (22). With the establishment of the 80 

U.S. National Ecological Observatory Network (NEON), there are now data on reservoir host 81 

communities, tick densities, and tick infection prevalence from across the U.S. collected using 82 

standardized methodologies that can be coupled with U.S. Center for Disease Control (CDC) 83 

data on human tick-borne disease incidence to finally elucidate the role of wildlife factors on 84 

human prevalence of tick-borne diseases. 85 

The objectives of our study are to: 1) identify the combination of host and vector 86 

community variables that best explain human tick-borne disease prevalence across space and 87 

time, 2) evaluate the direct and indirect effects of these variables on human disease prevalence 88 

mediated through density of infected ticks, and 3) evaluate the human health burden of tick-89 

borne diseases across a mammalian diversity gradient. In accordance with the dilution effect 90 

hypothesis (14, 23), we expect a negative biodiversity-disease relationship (dilution) when the 91 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.15.341107doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341107


most abundant hosts have the highest reservoir competence, because as rare host species are 92 

added to communities the mean competence of the community, and thus disease risk, decreases 93 

(assuming host community assembly is substitutive; i.e. competitive for niche space). We expect 94 

a negative biodiversity-disease relationship (amplification) when hosts do not or weakly differ in 95 

their reservoir competence because as rare hosts are added the mean competence of the host 96 

community would not change, whereas host densities and disease risk could increase if assembly 97 

is additive (Fig. 1; see Supplement Text for further details) (10, 14, 23). Hence, we predict that 98 

increasing small mammal richness will dilute B. burgdorferi (causative agent of Lyme disease) 99 

and E. chaffeensis (causative agent of ehrlichiosis), because the most abundant mammal hosts 100 

are typically the most competent for these pathogens (Fig. 1, Table S1), but we expect increasing 101 

small mammal richness to amplify A. phagocytophilum (causative agent of anaplasmosis) and B. 102 

microti (causative agent of babesiosis), because small mammal hosts exhibit similarly poor 103 

competencies for these pathogens (Fig. 1, Table S1). 104 

To address these objectives, we linked tick density, and mammal density and diversity 105 

data collected by NEON from 2014-2018 to CDC data on human cases of Lyme disease, 106 

anaplasmosis, babesiosis, and ehrlichiosis gathered for the same counties and time as the NEON 107 

data (see Table S2 for specific county-year replicates included in analyses; Fig. S1). Because of 108 

differences in disease reporting and data availability (Materials and Methods), sample sizes (site-109 

year replicates) for model selection were variable (n = 95 for Lyme disease, n = 116 each for 110 

anaplasmosis and ehrlichiosis, and n = 57 for babesiosis). To analyze correlations among 111 

ecological factors and human tick-borne disease prevalence, we used generalized linear mixed 112 

effects models with a binomial distribution and county as a random effect (24), and conducted 113 

model selection of all main effects and biologically relevant two-way interactions among wildlife 114 
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variables (interactions between tick and host densities and host diversity and densities; see Table 115 

S3 for competing models). To account for differences in questing height of blacklegged ticks 116 

along a north-south gradient (25), we included latitude as a covariate for blacklegged tick-borne 117 

diseases. Additionally, to account for potential climate-related differences in relationships 118 

between wildlife variables and human disease incidence (20), all models included covariates of 119 

mean annual temperature and annual precipitation. The previously described analyses did not 120 

include tick infection data because these data were collected at only 13 NEON sites (Materials 121 

and Methods), which would have reduced the statistical power to test our hypotheses. To 122 

investigate direct and indirect effects of tick and host community metrics on human disease 123 

prevalence mediated through density of infected ticks, we used sequential regressions (see Fig. 1 124 

for a priori relationships). 125 

Results 126 

Tick density, reservoir host density, and small mammal species richness predicted human 127 

disease prevalence, but the direction of effects and interactions among these variables differed 128 

across diseases (Table 1, Table S3; Fig. 2). For Lyme disease and anaplasmosis, the relationship 129 

between reservoir host density and human disease prevalence became more positive as tick 130 

density increased (Fig. 2A,B). Thus, for Lyme disease and anaplasmosis, the reduction of a 131 

single tick per 1,000 m2 would reduce incidence by 29.4% and 26.1% at median host densities, 132 

and 99.9% and 102.0% at high host densities (4 mice per 10,000 m2 for Lyme diseaase and 7 133 

small mammal individuals per 10,000 m2 for anaplasmosis), respectively. For babesiosis and 134 

ehrlichiosis, the reduction of tick density by a single individual per 1,000 m2 would reduce 135 

disease incidence by 27.1% and 25.8%, respectively. Like reducing ticks, decreasing reservoir 136 

host densities also reduces human tick-borne diseases (Fig. 2). In fact, when other factors in the 137 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.15.341107doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341107


model are at median values, a reduction in one tick per 1,000 m2 and a reduction of one reservoir 138 

host individual per 10,000 m2 (lowering of deer density category for ehrlichiosis) is predicted to 139 

prevent annually ~2,300 and ~2,500 total (across all four diseases) U.S. tick-borne disease cases, 140 

respectively, and ~300 and ~20 U.S. Lyme disease disability-adjusted life years (DALYs) (26), 141 

respectively, relative to 2017 data (Fig. S2). DALY information is unavailable for the other three 142 

tick-borne diseases, which should be addressed in future research given that tick-borne diseases 143 

vary in symptoms and virulence (2, 8, 26) and, thus, cases of tick-borne diseases do not represent 144 

human disease burden.  145 

Because of the opposing direction of the diversity-disease relationship for Lyme disease 146 

and anaplasmosis, a non-monotonic relationship emerged between small mammal richness and 147 

total tick-borne disease cases, such that human disease incidence was higher at the extremes of 148 

small mammal richness (<8 and >14 species per 10,000 m2) than at intermediate numbers of 149 

species (9–13 species; Fig. 3). A similar pattern emerged when babesiosis and ehrlichiosis were 150 

included in the calculation of total human disease, likely due to low incidence of these diseases 151 

(Fig. S3). Thus, while mean mammal richness at NEON sites was 8 [7.6, 8.5] species per 10,000 152 

m2, our model suggests that maintaining 9-13 species per 10,000 m2 should result in the lowest 153 

incidence of human tick-borne diseases regardless of tick and host densities (Fig. 3). 154 

Specifically, the conservation of small mammal richness to 9-13 species per 10,000 m2 is 155 

predicted to prevent ~8,600 additional total U.S. tick-borne disease cases annually and an 156 

average of 1,000, and as high as 5,700 (when tick and reservoir host densities are high), 157 

additional U.S. Lyme disease-caused DALYs annually, relative to 2017 data (Fig. S2). 158 

Finally, to evaluate the contribution of changes to density of infected ticks on human 159 

disease prevalence (Fig. 1), we conducted sequential regressions. For Lyme disease, 160 
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anaplasmosis, and babesiosis, we found that human disease was positively associated with 161 

density of infected ticks (Fig. 4A,D,H), which was driven by the proportion of infected ticks 162 

(Fig. 4B,E,I, Table S4). For Lyme disease, the diluting relationship between small mammal 163 

diversity and human disease (Fig. 4, Table S4) seemed to be mediated by the effect of small 164 

mammal richness on the association between the proportion of infected ticks and reservoir host 165 

density (Fig. 4C). When small mammal richness was low, the proportion of infected ticks was 166 

positively related to reservoir host density, but this relationship was not different from zero when 167 

small mammal richness was high (Fig. 4C). Conversely, the amplifying relationship between 168 

small mammal diversity and anaplasmosis and babesiosis was a function of reservoir host 169 

density increasing with small mammal richness (Fig. 4G,K), which in turn fueled an increase in 170 

the proportion of infected ticks (Fig. 4F,J; Table S4). Despite observing a small mammal dilution 171 

effect and a positive effect of deer densities for ehrlichiosis in the model selection analyses that 172 

included all sites, we did not find evidence for these effects in the sequential regressions (Table 173 

S4), likely because subsetting the data resulted in both reduced samples sizes and the exclusion 174 

of sites with no deer. 175 

Discussion 176 

The incidences of tick-borne diseases are increasing globally (1). Because reactive 177 

antibiotics can be ineffective at preventing long-term symptoms of these zoonoses if 178 

administered too late following infection (7), prevention of these diseases is imperative. Yet, 179 

preventative interventions are largely unsuccessful in reducing human disease (1, 8, 9). Here, we 180 

related incidence of human tick-borne diseases to tick densities and the densities and diversities 181 

of mammalian reservoir hosts across the contiguous U.S. Our results indicate that reservoir host 182 

and tick densities are correlated with human disease prevalence for all four diseases. We also 183 
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found support for our hypothesis that reservoir host richness is associated with human disease 184 

prevalence in directions that are predictable by reservoir competence of the host community. 185 

We show that reservoir host and tick densities are correlated with human disease 186 

prevalence for all four diseases, likely because as tick and mammal densities increase, so do the 187 

density of infected ticks and transmission, as suggested by our sequential regressions. These 188 

findings are consistent with previous studies showing positive relationships between reservoir 189 

host densities and densities of infected ticks (14, 15). Alternatively, spatial genetic variation in 190 

pathogens and host competence could have altered the strength of the relationships among 191 

ecological variables and human disease incidence (20, 27). Yet, the inclusion of spatially explicit 192 

covariates likely account for much of this potential variation. 193 

Our results indicate that the commonly employed host- and vector-density-targeted 194 

interventions should effectively reduce human disease (8, 9); however, these control measures 195 

have not translated to fewer cases of human tick-borne diseases in practice (21, 28). The 196 

disparity between the expectations from statistical/mathematical models and actual reductions in 197 

human disease (21, 28) could be a function of the ecological contexts in which the interventions 198 

have been applied, which may have influence over the effectiveness of these interventions, as 199 

suggested by our results. For example, in ecological contexts with high Lyme disease risk (low 200 

mammal richness, high tick and host densities), our results indicate that the targeted control of 201 

both ticks and host densities would synergistically reduce Lyme disease incidence. Conversely, 202 

in ecological contexts with moderate Lyme disease risk (median mammal richness, tick density, 203 

and host density), our results indicate that the reduction of tick density alone would be most 204 

effective in reducing Lyme disease incidence. Therefore, disease interventions targeting ticks 205 

would be most effective in reducing Lyme disease, regardless of ecological context, but in high 206 
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risk contexts, both tick- and host-targeted interventions would prevent the greatest disease 207 

incidence. Alternatively, these interventions may be ineffective, because, generally, these models 208 

focus on changes to the density of infected ticks (10, 11, 19), which does not directly translate to 209 

human disease, because human-tick encounters are the product of both density of infected ticks 210 

and human behavior (e.g. repellents, tick checks, etc.) (9, 29).  211 

Because current interventions do not change the species richness of host species, which 212 

may be a driver of human disease, an alternative or complementary approach to reducing ticks 213 

and reservoir hosts is to conserve or increase the number of reservoir host species. However, this 214 

has been a controversial approach to managing tick-borne diseases for several reasons (10, 19, 215 

22, 23, 30), such as concerns that it might increase certain tick-borne diseases while decrease 216 

others (10, 19, 22). As predicted, for pathogens with variably competent hosts (i.e. coefficients of 217 

variation for reservoirs > 1, Table S3; Lyme disease and ehrlichiosis), human disease prevalence 218 

was negatively correlated with small mammal richness, supporting a dilution effect. Specifically, 219 

for Lyme disease, the negative relationship between small mammal richness and human disease 220 

prevalence increased in magnitude as reservoir host density increased. Also, in agreement with 221 

our predictions, human disease prevalence was positively correlated with small mammal richness 222 

for anaplasmosis (a pathogen with similarly poor hosts, Table S3), supporting an amplification 223 

effect. For babesiosis, the weak positive relationship between small mammal richness and human 224 

disease prevalence became negative as reservoir host density increased, supporting an 225 

amplification effect. These results imply that determining reservoir competence of a range of 226 

host species for vector-borne pathogens may provide valuable insights into whether or not 227 

biodiversity conservation would dilute or amplify disease risk (10, 23, 30). Thus, caution must be 228 

taken when conserving mammal species as a tool for tick-borne disease control, given the non-229 
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monotonic relationship between mammalian richness and total tick-borne disease cases (Fig. 3).  230 

The goal of our study was to evaluate the role of ticks and reservoir host communities in 231 

driving broad-scale spatial patterns of human tick-borne diseases, which was not possible until 232 

the establishment of NEON. Yet, the ecological data collected by NEON are not without 233 

limitations. Specifically, because NEON only employed one type of small mammal sampling 234 

(e.g., nocturnal sampling with traps set on the ground), we may be lacking good information on 235 

the presence and abundance of some competent reservoir hosts species, resulting in 236 

underestimates of host richness and abundance. In using host abundance of the most competent 237 

reservoir host for models of Lyme disease and ehrlichiosis, we may be lacking a measure of the 238 

abundance of other potentially competent reservoir hosts. Yet, of the species with relatively high 239 

realized reservoir competence for B. burgdorferi (>0.5; Peromyscus leucopus and Tamias 240 

striatus) (15), P. leucopus was found in higher abundances and at more sites, so we chose this 241 

species as the main reservoir host for the Lyme disease models. Further, in the western U.S., as 242 

the most competent reservoir host (Sciurus griseus) (31) was not sampled at NEON sites, we 243 

used moderately competent reservoirs (Peromyscus boylii, P. truei, and P. maniculatus) (31), 244 

which may not fully represent the influence of S. griseus on B. burgdorferi transmission at these 245 

sites. Additionally, we recognize that lizards play an important role in regulating transmission of 246 

B. burgdorferi in the western U.S. (31), but information on the densities of these species at 247 

NEON sites was not available, so we are unable to elucidate their role in our models. Finally, in 248 

the limited data on reservoir competence for E. chaffeensis, the main reservoir hosts are 249 

Ruminants (the only native ruminant in the eastern U.S. is white-tailed deer) and Leporidae 250 

(rabbits/hares) (17). Yet, because of the high encounter rate between white-tailed deer and A. 251 

americanum (i.e. reservoir potential) (17), white-tailed deer are still likely the major reservoir 252 
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hosts for E. chaffeensis, and as such, we selected this species as the reservoir host for the 253 

ehrlichiosis models.  254 

Additionally, the tick sampling methodology used by NEON may limit detections of 255 

nymphal I. scapularis in the southeastern U.S. (32); thus, despite the regular sampling of 256 

nymphal ticks at these sites, tick densities at these sites might be underestimated. Importantly, 257 

although nymphal and adult ticks play different roles in human disease, the use of nymphal ticks 258 

instead of pooling all tick stages does not appreciably alter the results nor interpretation of our 259 

analyses (Table S5). Similarly, including NEON sites without forest land-cover in our analyses, 260 

and, thus without the ecotonal habitat of the focal tick species, could have generated spurious 261 

patterns, but removing these sites from the analyses did not change the results nor interpretation 262 

of our analyses (Table S6). Thus, we believe that the established patterns in our results are robust 263 

and ecologically sound. 264 

As tick-borne disease incidence continues to rise across the U.S. (2, 4), preventative 265 

measures, such as controlling ticks and reservoir host densities and diversity, are essential to 266 

reduce human tick-borne disease. While individual relationships among reservoir hosts, ticks, 267 

density of infected ticks, and human disease incidence have been previously supported (11, 15, 268 

19, 20, 22), our study is the first to support all links among these variables at broad spatial scales, 269 

supporting the promise of proactive rather than reactive approaches to tick-borne disease 270 

management. Although host- and vector-targeted interventions reduce densities of infected ticks 271 

(33–35), the individual use of these interventions to reduce human disease have shown some 272 

shortcomings in practice (21, 28, 33, 35, 36). Our results indicate that the ecological context (tick 273 

and host densities and host diversity) may influence the relative effectiveness of these control 274 

measures. Further, an alternative and/or complimentary approach to traditional tick-borne disease 275 
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control may be the conservation of small mammal species within a feasible but specific range of 276 

richness levels. Consequently, future work should investigate the effectiveness of control 277 

measures targeting tick and reservoir host densities across a mammalian host richness gradient to 278 

determine what levels and combinations of interventions would be most effective at preventing 279 

human tick-borne diseases. 280 

Materials and Methods 281 

Study area 282 

Our analyses paired site-level estimates of tick density, tick-borne pathogen prevalence, 283 

and small mammal communities from 38 climatically and ecologically variable sites in the 284 

National Ecological Observatory Network (NEON; Figure S1; Table S2) with county-level 285 

human case counts of tick-borne diseases collected by the Center for Disease Control (CDC) 286 

Notifiable Diseases Surveillance System (NNDSS) and Division of Parasitic Diseases and 287 

Malaria (DPDM). The study area included 35 counties in 21 states across the contiguous United 288 

States (Table S2). Due to variability in data collection across NEON sites and availability of 289 

disease incidence data, not all sites or counties were included in each year of the data (see Table 290 

S2 for site-year replicates). 291 

NEON Data 292 

Sampling protocols for ticks, tick-borne pathogens, and small mammals in this section 293 

will be described briefly, as detailed information on sampling protocols are available through the 294 

appropriately cited NEON sampling protocols (37, 38). NEON data used in this study were 295 

downloaded on 1 November 2019; datasets used in this study are outlined in Table S7.  296 

Tick sampling 297 

Starting in 2014, at each site, tick sampling occurred in six plots that were iteratively 298 
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sampled. Sampling frequency was dependent on whether ticks were detected. Sampling began 299 

with a sampling events every six weeks, but collection of one or more ticks prompted sampling 300 

events every three weeks (37). The start of sampling at a site coincided within two weeks of the 301 

onset of vegetation green-up and ended within two weeks of senescence (typically April-302 

September, but may be March-October depending on site and weather). Each tick sampling plot 303 

was 40 x 40m; the perimeter of each sampling plot was sampled with a 1 x 1m drag cloth. If 304 

vegetation within a sampling plot was too thick to allow dragging, flagging was used either 305 

instead of dragging or in conjunction with dragging. Ticks were identified to species and life 306 

stage. For each focal species and sampling event, nymph and adult abundances were pooled. 307 

Tick abundances were converted to densities based on area sampled (individuals per m2) and 308 

scaled to individuals per 1,000 m2. We then calculated the density of focal tick species (Ixodes 309 

scapularis, Ixodes pacificus, or Amblyomma americanum) as the mean number of individuals 310 

collected per sampling event per sampling plot, to account for differences in the number of tick 311 

sampling events across sites and years. See Fig. S1 for NEON sites at which each focal tick 312 

species was sampled. Ticks were not supplementally sampled from small mammal hosts. 313 

Tick-borne pathogen prevalence 314 

Testing of pathogen prevalence in ticks occurred at 13 sites in the eastern U.S. (Table 315 

S8), starting in 2014 (37). At the time of data analysis, tick pathogen prevalence was only 316 

available for 2014-2017. At a given site, a subset of sampled nymphal ticks were tested annually 317 

for the presence of zoonotic pathogens (Table S8). Ixodes scapularis (eastern blacklegged ticks) 318 

were tested for Anaplasma phagocytophilum, Babesia microti, and Borrelia burgdorferi. 319 

Amblyomma americanum (lone star ticks) were tested for Ehrlichia chaffeensis. Pathogens status 320 

in nymphal ticks was tested using next-generation sequencing and 16S rRNA primers. As quality 321 
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control, we excluded all pathogen status results that did not also test positive for hard-tick DNA. 322 

Pathogen prevalence at a site was estimated as the proportion of nymphal ticks that tested 323 

positive for a given pathogen.  324 

Small mammal trapping 325 

Starting in 2014, at each site, trapping plots were arranged in three to eight plots of 100 326 

live traps (Sherman) arranged in a 10 x 10 grid, with 10 m spacing (100 x 100m area) (38). 327 

Trapping plots were separated by at least 135 m. NEON field technicians trapped, identified, and 328 

released small mammals from each grid either one or three nights (depending on whether 329 

sampling for diversity or pathogens, respectively) per month or every other month (depending on 330 

site designation as core or relocatable, respectively) during the growing season within a 21 day 331 

window centered on the new moon (typically April-September, but may be March-October 332 

depending on site and weather). Ethical approval was obtained from IACUC (38). 333 

Small mammal richness was the total number of unique species collected across all 334 

sampling plots at a given site each year. Small mammal abundance for a given site each year was 335 

calculated as the mean number of individuals of all species collected per trap night per sampling 336 

plot (individuals per 10,000 m2), to account for differences in the number of sampling events and 337 

plots across sites and years. Because captured individuals were marked, we excluded recaptures 338 

from the estimates of small mammal abundance. See Table S9 for species by site matrix. 339 

Similarly, the abundance of main reservoir species for B. burgdorferi, the white-footed mouse 340 

(Peromyscus leucopus) in the eastern US and the brush mouse (Peromyscus boylii), the pinyon 341 

mouse (Peromyscus truei), and the deer mouse (Peromyscus maniculatus) at sites located within 342 

the range of Ixodes pacificus (western blacklegged tick) in the western U.S. (NEON sites: 343 

ABBY, ONAQ, SOAP, and SJER), was calculated as the mean number of individuals collected 344 
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per trap night per sampling plot (individuals per 10,000 m2). The abundances of these four 345 

species were pooled and termed “B. burgdorferi reservoir density”. 346 

Deer density estimates 347 

 As white-tailed deer are the assumed main reservoir host for E. chaffeensis (17, 39), we 348 

included deer densities as a predictor of ehrlichiosis. The most recent white-tailed deer density 349 

estimates for the United States cover 2001-2005, were compiled by the Quality Deer 350 

Management Association, and are hosted by U.S. Forest Service (40). Deer densities were not 351 

meant to be a measure of absolute white-tailed deer density, but rather were meant to provide an 352 

estimate for relative densities across the continental United States. Therefore, we grouped deer 353 

density estimates into three categories: No Deer, Low Density, and High Density. The “No 354 

Deer” category represents areas where white-tailed deer are absent, the “Low Density” category 355 

represents deer densities (<11.6 deer/km2) that are below or on the cusp of ecologically 356 

damaging, and the “High Density” category represents deer densities (>11.6 deer/km2) that are 357 

ecologically damaging and are greatly above historic, pre-European settlement densities (41). 358 

Human cases of tick-borne diseases  359 

 We obtained the annual number of reported cases of Lyme disease, anaplasmosis, 360 

ehrlichiosis caused by E. chaffeensis, and babesiosis at the county level from the CDC NNDSS 361 

and DPDM from 2014 – 2018. At the time of analysis, Lyme disease and babesiosis cases were 362 

only available from 2014-2017. Tick-borne disease case definitions by the CDC includes both 363 

confirmed and probable cases, to address under-reporting (42, 43). Due to differences in Lyme 364 

disease case definitions between the CDC and Massachusetts Department of Health starting in 365 

2016, most cases for Massachusetts are not reported to the CDC (42, 44); thus, case data from 366 

Worcester, Massachusetts was limited to 2014 and 2015. Anaplasmosis, ehrlichiosis, and 367 
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babesiosis are not reportable conditions for all states in all years: anaplasmosis and ehrlichiosis 368 

was not reported in Colorado and New Mexico across years, while babesiosis was not reported in 369 

Arizona, Colorado, Georgia, Kansas, New Mexico, and Oklahoma across years. Further, 370 

babesiosis was not reported from Virginia and Florida before 2017, so data from sites in these 371 

states before 2017 were not included in the analyses. Tick-borne disease cases are reported in the 372 

patient’s county of residence, so reporting errors due to travel are possible, especially in non-373 

endemic and non-emerging areas.  374 

Statistical analyses 375 

 All statistical analyses were conducted in R version 3.6.1 (45). For the national-scale 376 

analyses, we used model selection and generalized linear mixed effects models (GLMMs) with a 377 

binomial distribution to explore patterns among human cases of tick-borne disease prevalence, 378 

tick densities, small mammal diversity, and reservoir species abundance. Responses for each 379 

model were a binary county-level tick-borne disease case count and population. For Lyme 380 

disease and anaplasmosis models, we used glmer in the lme4 package (24) and for the 381 

ehrlichiosis and babesiosis models, we used bglmer in the blme package (46) with a gamma 382 

covariance prior, due to issues of singular fit related to low incidence of these diseases. Predictor 383 

variables included tick densities, reservoir host abundance, and small mammal richness. For 384 

Lyme disease, anaplasmosis, and babesiosis, tick densities were the densities of the eastern (I. 385 

scapularis) and western (I. pacificus) blacklegged ticks. For ehrlichiosis, tick densities were the 386 

densities of the lone star tick (A. americanum). For the measure of reservoir host abundance, we 387 

used the abundance of the primary competent reservoir host. Specifically, for Lyme disease we 388 

used the abundance of the eastern reservoir (white-footed mice) and the western mammalian 389 

reservoirs (pinyon, brush, and deer mice). For ehrlichiosis, we used the abundance of white-390 
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tailed deer for the measure of reservoir host abundance. For both anaplasmosis and babesiosis 391 

(diseases with evenly poor reservoir hosts, Table S1 (15, 18)), we used abundance of all small 392 

mammals for the measure of host reservoir abundance. County was included as a random term in 393 

all models, because annual observations within the same county are not independent.  394 

We conducted model selection in which we fit all possible combinations of main effects 395 

and biologically relevant two-way interactions of all biotic variables (interactions between host 396 

density and tick density and between host density and host richness; dredge function in MuMIn 397 

R package) (47). To account for differences in questing height of blacklegged ticks along a 398 

north-south gradient (25), we included latitude as a covariate for blacklegged tick-borne diseases. 399 

Further, to account for potential climate-related differences in relationships between wildlife 400 

variables and human disease incidence (20), all models included covariates of mean annual 401 

temperature and annual precipitation. Analysis of correlations among of variables indicated 402 

correlation >0.6 for only a single pair of variables that jointly appear in any GLMMs: 403 

temperature and latitude (Fig. S4). Despite this correlation, the inclusion of both variables in 404 

models is important to capture known ecological/behavioral gradients along each variable. To 405 

find best fitting models, we used a combination of the lowest Akaike’s Information Criterion 406 

with bias-correction (AICc) and the law of parsimony; such that competing models (ΔAICc < 2) 407 

with fewer degrees of freedom than models with lowest AICc were selected as the best model. 408 

Likelihood ratio tests against a null model containing only the random term of county and fixed 409 

effects of mean annual temperature and annual precipitation (and latitude for blacklegged tick-410 

borne disease models) were used to determine overall p-values for best models. We calculated 411 

AICc weights (w) and marginal (fixed) and conditional (fixed and random effects) R2 values 412 

(48). We performed model diagnostics on residuals of best models using the DHARMa R 413 
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package (49), which indicated model assumptions had been met and no spatial autocorrelation. 414 

For models with significant effects of small mammal richness on human disease 415 

prevalence, we calculated the differences in case prevalence from 2017 (the year with the most 416 

recent complete data) by subtracting the median state-level prevalence for a given disease in 417 

2017 from best model-predicted prevalence. We then multiplied this relative change in 418 

prevalence by the U.S. population from all states reporting anaplasmosis cases to get total change 419 

in disease incidence across the U.S. These are reported in Figure 3 in the main text. Change in 420 

Lyme disease incidence was then converted to change in annual disability-adjusted life years 421 

(DALYs) to provide an estimate of overall disease burden from changing disease incidence. 422 

Average case DALYs for Lyme disease have been estimated for patients with different Lyme 423 

disease outcomes: erythema migrans (0.005 DALYs), disseminated Lyme disease (0.113 424 

DALYs), and Lyme-related persisting symptoms (1.661 DALYs) (26). Relative prevalence of 425 

these outcomes per Lyme disease diagnosis are 82.8% for erythema migrans, 8.6% for 426 

disseminated LD, and 8.6% for persisting Lyme disease symptoms (7). Thus, the estimated 427 

DALYs per Lyme disease case is 0.156.  428 

 To address our second objective of direct and indirect effects of tick density and reservoir 429 

host metrics on human disease prevalence, we used sequential regressions rather than traditional 430 

structural equation models (SEMs), because of limited data on tick infection prevalence (<30 431 

replicates per pathogen). Models were fit using generalized linear models with either a normal 432 

error distribution (for tick and mammal density models) or a binomial error distribution (for tick 433 

and human disease prevalence models). All models were hypothesized a priori from national-434 

scale analyses, the ecology of these pathogens, and previous studies (10, 19, 23, 50); see Fig. 1 in 435 

main text for a priori hypothesized links. Significance of relationships was found with type 3 436 
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error and p-values were adjusted using the Holm-Bonferroni sequential correction (51), by which 437 

k relationships are ranked (i) by their p-values (Pi) and p-values are adjust by the equation: 438 

(𝑘 − 𝑖 + 1) ∗  𝑃𝑖 . Significance levels of all models was P < 0.05. 439 
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Figures and Tables 563 

Figure 1. Conceptual diagram for linkages connecting wildlife to human prevalence of tick-borne 564 

diseases, per the dilution effect hypothesis. (A), hypothesized links among wildlife and human 565 

disease prevalence for pathogens with hosts that differ in reservoir competence (ability to 566 

transmit pathogen to uninfected ticks; coefficient of variation (CV) for tested B. burgdorferi 567 

reservoirs: 1.28, CV for tested E. chaffeensis reservoirs: 1.10). (B), hypothesized interaction 568 

between host diversity and competent host density, by which the effect of competent host density 569 

on tick infection prevalence is strongest when host diversity is low. (C), hypothesized links 570 

among wildlife and human disease prevalence for pathogens with hosts that are similarly poor 571 

reservoir hosts (CV for tested A. phagocytophilum [human strain] reservoirs: 0.80; CV for tested 572 

B. microti reservoirs: 0.81). (D), hypothesized additive relationship between host diversity and 573 

competent host density, such that the effect of increased host diversity in an area will increase 574 

reservoir density and, in turn, tick infection prevalence. In (A) and (C), links between density of 575 

infected ticks and human disease prevalence can be disrupted by human behavior (e.g. acaricides 576 

and avoidance). For each link in (A) and (C), signs are representative of whether relationship is 577 

positive (+), negative ( ̶ ), or variable (±). Dotted arrows from host diversity to human disease 578 

prevalence in (A) and (C) are the overall, indirect effect of diversity on disease. Data for host 579 

reservoir competence in (A) and (C) are from ref (15, 17, 18).  580 

  581 
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Figure 2. Human prevalence of tick-borne diseases is correlated with reservoir and vector 582 

metrics. Model predicted relationships among vector tick density, small mammal community 583 

metrics, and human prevalence of disease for A) Lyme disease, B) anaplasmosis, C) babesiosis, 584 

and D) ehrlichiosis. For (A) Lyme disease, (B) anaplasmosis, and (C) babesiosis, blacklegged 585 

ticks are both Ixodes scapularis and Ixodes pacificus. Facets of increasing small mammal 586 

richness along the top are 5, 8, and 11 species, respectively. For (A) Lyme disease, facets of 587 

increasing host density down the right side are 0, 2, and 4 mice per 10000 m2, respectively. For 588 

(B) anaplasmosis and (C) babesiosis, facets of increasing host density down the right side are 3, 589 

5, and 7 small mammal individuals per 10000 m2, respectively. For (D) ehrlichiosis, the facets of 590 

increasing host density down the right side are no deer, low deer density, and high deer density. 591 

Coloration for reservoir host abundance is consistent across diseases: blue lines are no/low 592 

abundance, orange lines are mean abundance, and pink lines are high abundance. Models 593 

indicate positive correlations of vector tick density with human prevalence of disease, such that 594 

human disease prevalence is predicted to be highest in areas with high vector tick density. For 595 

Lyme disease (A), anaplasmosis (B), and ehrlichiosis (D) there was a positive relationship 596 

between host abundance and disease prevalence. Accounting for differences in tick and reservoir 597 

host abundance, we found significant negative correlations between diversity and disease 598 

incidence for Lyme disease (A) and ehrlichiosis (D), but a significant positive correlation 599 

between diversity and disease for anaplasmosis (B). The observed patterns are consistent with 600 

the dilution effect hypothesis, which posits that a diluting (negative) relationship between 601 

diversity and disease is expected when hosts differ in their ability to maintain and transmit 602 

pathogens (e.g. Lyme disease and ehrlichiosis); when this condition is not met (e.g. 603 

anaplasmosis), an amplifying (positive) relationship is expected. 604 
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 605 

Figure 3. Changes in human tick-borne disease incidence. Changes in human disease incidence 606 

for Lyme disease (green lines), anaplasmosis (pink lines), and the sum of the two diseases (total; 607 

black solid lines) relative to incidence in the U.S. in 2017. Facets of low, medium, and high tick 608 

density along the top are 0.75, 2, and 4 blacklegged ticks (Ixodes scapularis and Ixodes 609 

pacificus) per 1000 m2, respectively. Facets of host density down the right are 0, 2, and 4 mice 610 

per 10000 m2 and 3, 5, and 7 small mammals per 10000 m2 for Lyme disease and anaplasmosis 611 

respectively. Vertical dark grey line indicated median small mammal richness across NEON 612 

sites. Light grey rectangle from 9 to 13 small mammal species represents the mammal richness 613 

required to maintain the lowest disease incidence across tick and reservoir host densities. Figures 614 

suggest that the magnitude of the relationship between small mammal richness and total tick-615 

borne disease incidence is dependent on the densities of ticks and reservoir hosts. Similarly, 616 

figures suggest that the relationship between small mammal richness and total tick-borne disease 617 

incidence is non-monotonic and is driven by the reductions in Lyme disease as small mammal 618 

richness increases from low (<8 species) to median (8 species), then by the increase in 619 

anaplasmosis as small mammal richness increases from median (8 species) to high (>13 species). 620 
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 623 

Figure 4. Mammal richness is indirectly correlated with human prevalence of tick-borne 624 

diseases. Relationships among (A) human prevalence of Lyme disease and density of Borrelia 625 

burgdorferi-infected blacklegged ticks; (B) density of infected ticks and proportion of B. 626 

burgdorferi-infected ticks; (C) proportion of infected ticks, white-footed mouse density, and 627 

small mammal richness; (D) human prevalence of anaplasmosis and density of Anaplasma 628 

phagocytophilum-infected blacklegged ticks; (E) density of infected ticks and proportion of A. 629 

phagocytophilum-infected ticks; (F) proportion of infected ticks and small mammal density; (G) 630 

small mammal density and small mammal richness; (H) human prevalence of babesiosis and 631 

density of Babesia microti-infected blacklegged ticks; (I) density of infected ticks and proportion 632 

of Ba. microti-infected ticks; (J) proportion of infected ticks and small mammal density; and (K) 633 

small mammal density and small mammal richness. Figures indicate indirect effects of small 634 

mammal species richness on human prevalence mediated through increases in proportion of 635 

infected ticks, and, in turn, density of infected ticks. Figures support predictions of a negative 636 

diversity-disease relationship (dilution) for Lyme disease (A-C), but positive diversity-disease 637 

relationships (amplification) for anaplasmosis (D-G) and babesiosis (H-K). Lines for all panels 638 

are generalized linear regression coefficients from sequential regressions (see Table S4); ribbons 639 

are model indicated standard error. Regression coefficients and statistics are described in Table 640 

S. Note: y-axis of (B), (E), (G), (I), and (K) are natural-log transformed. Points on panels are 641 

slightly jittered, but do not alter interpretation. 642 
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Table 1. Regression coefficients and statistics from best-fit models from Table S3. Predictor 644 

variables were blacklegged tick density, lone star tick density, B. burgdorferi reservoir density, 645 

small mammal richness, small mammal density, and white-tailed deer density. Models included a 646 

random effect of county. All models included covariates of annual mean temperature and annual 647 

precipitation. Lyme disease models included covariates of CDC reporting type. R2 values 648 

represent marginal/conditional (fixed/random + fixed) R2.  649 

 650 
Model/Variable Estimate 

(SE) 

DF Chisq P 

Lyme disease (w = 0.99, R2 = 0.17/0.78, n = 95, Χ2(5) = 38.323, p < 0.001) 
  

 
Blacklegged tick density -0.177 (0.12) 1 2.12 0.146  
B. burgdorferi reservoir abundance 0.299 (0.21) 1 2.09 0.148  
Small mammal richness 0.057 (0.08) 1 0.58 0.445  
Blacklegged tick density*B. burgdorferi reservoir 

density 

0.217 (0.05) 1 19.99 < 0.001 

 
B. burgdorferi reservoir density*Small mammal 

richness 

-0.097 (0.03) 1 12.25 < 0.001 

Anaplasmosis (w = 0.69, R2 = 0.32/0.82, n = 116, Χ2(4) = 17.346, p = 0.002) 
 

 
Blacklegged tick density -0.946 (0.47) 1 4.04 0.044  
Small mammal density -0.065 (0.04) 1 2.87 0.090  
Small mammal richness 0.340 (0.12) 1 7.44 0.006  
Black-legged tick density*Small mammal density 0.236 (0.07) 1 10.29 0.001 

Babesiosis (w = 0.51, R2 = 0.73/0.74, n = 57, Χ2(4) = 20.938, p < 0.001) 
  

 
Blacklegged tick density 0.240 (0.12) 1 4.31 0.038  
Small mammal density 0.875 (0.63) 1 1.94 0.164  
Small mammal richness 0.657 (0.55) 1 1.42 0.234  
Small mammal density*Small mammal richness -0.119 (0.06) 1 3.36 0.067 

Ehrlichiosis (w = 0.22, R2 = 0.44/0.46, n = 116, Χ2(3) = 19.61, p < 0.001) 
 

 
Lone star tick density 0.230 (0.08) 1 7.44 0.006  
Deer density 1.660 (0.46) 1 12.88 <0.001 

  Small mammal richness -0.197 (0.11) 1 3.37 0.066 
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