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Abstract 1 

 2 

The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-3 

driven activity. What this diversity reflects is unclear, and appears counter-productive in 4 

generating selective somatic responses to specific stimuli. We propose that synaptic diversity 5 

arises because neurons decode information from upstream populations. Focusing on a single 6 

sensory variable, orientation, we construct a probabilistic decoder that estimates the stimulus 7 

orientation from the responses of a realistic, hypothetical input population of neurons. We provide 8 

a straightforward mapping from the decoder weights to real excitatory synapses, and find that 9 

optimal decoding requires diverse input weights. Analytically derived weights exhibit diversity 10 

whenever upstream input populations consist of noisy, correlated, and heterogeneous neurons, 11 

as is typically found in vivo. In fact, in silico weight diversity was necessary to accurately decode 12 

orientation and matched the functional heterogeneity of dendritic spines imaged in vivo. Our 13 

results indicate that synaptic diversity is a necessary component of information transmission and 14 

reframes studies of connectivity through the lens of probabilistic population codes. These results 15 

suggest that the mapping from synaptic inputs to somatic selectivity may not be directly 16 

interpretable without considering input covariance and highlights the importance of population 17 

codes in pursuit of the cortical connectome. 18 

 19 

Introduction 20 

 21 

Cortical neurons are driven by large populations of excitatory synaptic inputs. Synaptic 22 

populations ultimately shape how sensory signals are encoded, decoded, or transformed. The 23 

sensory representation or functional properties of an excitatory input population will define and 24 

constrain the operations a neuron can perform and reflects the rules neurons use to form 25 

connections. Electrophysiological and anatomical studies suggest that connections between 26 

excitatory neurons exhibits functional specificity, where inputs are tuned for similar features as 27 

the soma (Cossell et al., 2015; Ko et al., 2011; Lee et al., 2016; Reid and Alonso, 1995).  In 28 

contrast, synaptic imaging techniques have revealed that synaptic populations exhibit functional 29 

diversity, deviating from canonical connectivity rules, such as ‘like-connects-to-like’ (Scholl and 30 

Fitzpatrick, 2020). This functional diversity within input populations has been observed in a variety 31 

of mammalian species, from rodents to primates, and for a variety of sensory cortical areas (Chen 32 

et al., 2013, 2011; Iacaruso et al., 2017; Jia et al., 2011, 2010; Ju et al., 2020; Kerlin et al., 2019; 33 
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 3 

Scholl et al., 2017; Wertz et al., 2015; Wilson et al., 2018, 2016). This apparent discrepancy 34 

challenges our understanding about how synaptic inputs drive the selective outputs of cortical 35 

neurons and leads to a simple fundamental question: If the goal is to produce selective somatic 36 

responses, why would a neuron have excitatory synaptic inputs tuned far away from the somatic 37 

preference? 38 

 To answer this question, we turn to population coding theory; starting with the idea that to 39 

accurately represent sensory signals, cortical neurons must decode the activity of upstream 40 

populations. This decoding is likely accomplished by combing signals across neural populations 41 

(Graf et al., 2011; Jazayeri and Movshon, 2006). Many studies have examined how sensory 42 

variables might be decoded from cortical populations (Butts and Goldman, 2006; Graf et al., 2011; 43 

Shamir and Sompolinsky, 2006), an endeavor increasingly applied to larger population sizes with 44 

innovative recording techniques (Rumyantsev et al., 2020; Stringer et al., 2019). These decoding 45 

approaches are often used as a tool to quantify the information about a stimulus available in a 46 

neural population, carrying the assumption that downstream areas could perform such a process 47 

(Berens et al., 2011; DiCarlo et al., 2012). In real brain circuits, decoders must be composed of 48 

individual neurons, driven by sets of synaptic inputs, akin to a decoder’s weights over a given 49 

input population. To date, few studies have explicitly examined the weight structure of population 50 

decoders (Jazayeri and Movshon, 2006; Rust et al., 2006; Zavitz and Price, 2019).  51 

In this paper, we investigate the weights of a simple population decoder and how they 52 

compare to real synaptic inputs measured in vivo. Focusing on a single sensory variable, 53 

orientation, we derive the maximum-likelihood readout for a simulated input population that 54 

encodes stimuli with noisy tuning curves (e.g., Ecker et al., 2011). Under reasonable assumptions, 55 

the decoder weights can be interpreted as the synaptic connectivity between the input population 56 

and the downstream decoder neurons. This allows us to examine how synaptic connectivity 57 

depends on properties of the input population and to directly compare population decoders to 58 

synaptic input measured in vivo. We then test a hypothesis that an optimal decoder will show 59 

substantial heterogeneity in its synaptic weights given a biologically realistic input population. We 60 

find that when input populations are shifted copies of the same tuning curve, the synaptic 61 

excitatory inputs closely resemble the somatic output. However, with a biologically realistic input 62 

population, the expected inputs onto readout neurons exhibit functional diversity. We then 63 

compare the orientation tuning of simulated inputs with large populations of dendritic spines 64 

(excitatory synaptic inputs) onto individual neurons of ferret primary visual cortex (V1), recorded 65 

with two-photon calcium imaging in vivo. This comparison revealed similar diversity in the 66 

orientation tuning of dendritic spines on ferret V1 neurons and simulated decoder weights. The 67 
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similarity between the synaptic populations of actual V1 neurons and the optimal neural decoder 68 

suggest that diversity and heterogeneity observed in dendritic spines across sensory cortices are, 69 

in fact, expected when considering how information is propagated through neural circuits in the 70 

presence of noise.  71 

 72 

Results 73 

 74 

Following several decades of work on population coding theory, we derive a Bayesian 75 

decoder to report the probability of a visual stimulus given inputs from a neural population (Fig. 76 

1).  With this framework, and given the specifics of the encoding population, we can analytically 77 

derive the optimal decoding weights of a population of readout neurons. Here, we use “optimal” 78 

to refer to the maximum-likelihood solution. Previous work has shown that a population of neurons 79 

could perform such probabilistic decoding with weighted summation and divisive normalization, 80 

as long as their inputs exhibit Poisson-like noise (Jazayeri and Movshon, 2006; Ma et al., 2006). 81 

Starting from that basic framework, we derived a decoder that represents the probability that each 82 

possible stimulus orientation was present given the responses of a large population of upstream, 83 

input neurons (PIN). This is effectively a categorical decoder, where each possible orientation is a 84 

different category. Similar decoders have been used throughout the literature to estimate how 85 

much information is in a neural recording and suggest how downstream neurons might read it out 86 

(Graf et al., 2011; Stringer et al., 2019). Our decoder has weight vectors for each possible stimulus 87 

Figure 1: A population decoding framework to study synaptic diversity. An upstream population of neurons are 

tuned for a single stimulus variable (orientation) (top). This input population is readout by downstream decoder neurons 

(bottom). Downstream neurons decode stimulus identify by reading out spikes from the upstream input population. 

Each decoder neuron is defined by a set weights (middle) over the upstream population, which are summed and 

rectified to produce an output.  
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orientation, which integrate across PIN and are passed through a static nonlinearity (the 88 

exponential function) and normalized. As we will show below, given specific assumptions about 89 

the variability in PIN, the weights over PIN depend systematically on the tuning functions and 90 

covariance of PIN. Following a characterization of this decoding framework, we will make direct 91 

comparisons with real data: defining an effective "synaptic input population" (PSYN) as nonzero, 92 

positive weights over PIN. Although our strategy applies to any one-dimensional stimulus variable, 93 

we describe this model in the context of orientation of drifting gratings presented to V1 neurons 94 

for a direct comparison with in vivo measurements.  95 

  96 

A neural population as a probabilistic decoder 97 

 98 

A categorical probabilistic decoder reports the probability that a particular stimulus 99 

orientation, k, was present given the spiking responses of an input population, R. This can be 100 

expressed as a normalized exponential function of the log-likelihood plus the log prior for each k, 101 

𝑝(𝜃𝑘|𝑅) =
𝑝(𝑅|𝜃𝑘)𝑝(𝜃𝑘)

∑ 𝑝(𝑅|𝜃𝑖)𝑖 𝑝(𝜃𝑖)
=

𝑒𝐿(𝜃𝑘)

∑ 𝑒𝐿(𝜃𝑖)
𝑖

 102 

where 103 

𝐿(𝜃𝑘) = 𝑙𝑛(𝑝(𝑅|𝜃𝑘)) + 𝑙𝑛(𝑝(𝜃𝑘)) 104 

The likelihood, p ( R  k ), is the probability of the observed responses in an input population given 105 

the stimulus k and p ( k ) is the prior probability of that stimulus class. If p ( R  k ) is in the exponential 106 

family, then L ( k ) can be written as a weighted sum of the input population response vector plus 107 

an offset, which can be estimated numerically via multinomial logistic regression (Ma et al., 2006). 108 

For simplicity, we assume the input population has a response that is a function of the stimulus 109 

plus Gaussian noise, and equal covariance across all stimulus conditions. Although this 110 

assumption about the covariance structure deviates from real neural activity, this assumption 111 

means the weights and offset can be solved analytically (see Methods), and as will be shown 112 

below, such a simple model makes substantial headway in explaining biological phenomena. Our 113 

goal here is to provide a plausible alternative to “somatic selectivity” for the connectivity rules in 114 

cortex. Under the Gaussian assumption, the decoder amounts to: 115 

𝑝(𝜃𝑘|𝑅) =
𝑒(𝑹𝑻𝑤𝑘 + 𝛽𝑘)

∑ 𝑒(𝑹𝑻𝑤𝑖 + 𝛽𝑖)𝐾
𝑖=1

          (1) 116 

where   117 

𝑤𝑘 = 𝑄−1𝑓(𝜃𝑘) 118 
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𝛽𝑘 = − (
1

2
) 𝑓(𝜃𝑘)𝑇𝑄−1𝑓(𝜃𝑘) + 𝑙𝑛 𝑝(𝜃𝑘) 119 

Here, f  ( k ) is the mean input population response to stimulus orientation, k, K is the total number 120 

of orientations, and Q is the covariance matrix. The covariance term captures the influence of 121 

each neuron’s response variance (diagonal elements) and the variability shared with other 122 

neurons (off-diagonal elements). Intuitively, in the absence of covariability (i.e., off-diagonal 123 

elements are zero), the weights are proportional to the signal-to-noise ratio of the neuron (the 124 

mean divided by the variance). The term RT wk is the dot product between the population response 125 

and weights. The second term, k, is an offset for each stimulus. 𝑙𝑛 𝑝(𝜃𝑘) is a constant reflecting 126 

the log prior probability of stimulus k. It is worth noting that if the covariance depends on the 127 

stimulus, the optimal readout is no longer a linear function of R and is quadratic, which can be 128 

interpreted as a complex-cell (Jaini and Burge, 2017; Pagan et al., 2016) and is a potentially 129 

fruitful future direction.  130 

In this study, we focus on the weights of this simple Gaussian, equal covariance decoder 131 

in order to examine how synaptic tuning from such a simple decoder would arise. Because the 132 

optimal weights have an analytic solution (eq. 1), we can see how they depend on the parameters 133 

of PIN. The simplifying assumptions we use to derive the maximum-likelihood weights help build 134 

intuitions about what can be expected in biological circuits, and linear weights such as these could 135 

be learned by real neural systems (Dayan and Abbott, 2001). A key difference here from prior 136 

work is that rather than focus on discrimination (Haefner et al., 2013), we treat orientation 137 

estimation as a multiclass identification problem, discretizing  such that for each possible k, 138 

there is a separate weight vector. Thus, in this derivation, the optimal weights depend on the 139 

tuning curves themselves, not the derivative. 140 

 141 

Characteristics of a neural population decoder 142 

 143 

To understand how synaptic weights depend on input statistics, we derived maximum-144 

likelihood weights for input populations, PIN, with different tuning and covariance. To generate PIN 145 

we simulated N neurons responding to K oriented stimuli ( = [-90o:K/180:+90o]). We briefly 146 

describe the construction of PIN here (full details are described in the Methods). Each neuron is 147 

defined by a tuning function and noise term, describing trial-by-trial variability, which are summed 148 

to generate stimulus-driven responses. We compared two fundamentally different types of input 149 

populations that have been used in the literature, homogeneous and heterogenous, as well as 150 

the role of correlated variability in shaping readout weights. A homogeneous PIN consists of shifted 151 
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 7 

copies of a single tuning curve (Fig. 2a). Heterogenous PIN have diverse tuning functions and 152 

were generated to match measurements from macaque V1 (Ringach et al., 2002). The 153 

heterogenous PIN consisted of tuning curves closely resembling V1 physiology in terms of the 154 

variation in peak firing rate, bandwidth, and baseline firing rate (Fig. 2d). Varying amounts of 155 

limited-range correlations were included such that the noise correlation between two neurons 156 

depends on the difference in their tuning preferences (Ecker et al., 2011; Kohn et al., 2016).  157 

The statistics of PIN responses, R, will dictate the weight structure for neurons in a decoding 158 

population. For a homogeneous PIN, the weights are smooth across orientation space and exhibit 159 

three primary features: a prominent peak about the preferred orientation of the output tuning, 160 

slight negative weights for orientations just outside the preferred, and near-zero weights at 161 

orthogonal orientations (Fig. 2c). With more realistic tuning diversity (heterogenous PIN), optimal 162 

weights are no longer smooth (Fig. 2d-e). While the optimal weights appear to roughly have the 163 

same overall shape as for homogeneous PIN, there is considerable positive and negative 164 

Figure 2: Model simulations with homogenous and heterogeneous input populations.  

(a) Orientation tuning of a homogenous input population. Shown is a subset of the total population (n = 20/1000). 

Ordinate is orientation preference, restricted between -90o and 90o. (b) Derived weights for a single decoder neuron 

(preferring 0o) reading out the homogenous (blue) input population in (a). Weights for homogenous populations 

smoothly vary over orientation space. (c) Response output of the decoder neuron whose weights are shown in (b). (d-

f) Same as in (a-c) for a heterogeneous input population with moderate correlation (co = 0.25). Note that decoder 

weights for heterogeneous input populations are not smooth. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2020.10.15.341131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341131
http://creativecommons.org/licenses/by-nd/4.0/


 8 

weighting across orientation space. Despite substantial changes in optimal weight vectors, the 165 

decoder output (i.e. somatic response) tuning was narrow (Fig. 2f), similar to the output for the 166 

homogeneous case (Fig. 2e). 167 

To explore the importance of decoding weight diversity, we imposed a smoothing penalty 168 

on weight vectors (Park and Pillow, 2011). We calculated cross-validated decoder accuracy using 169 

the mean-squared error between the maximum a posteriori estimation and true stimulus (see 170 

Methods). Different degrees of smoothing are shown for an example set of weights in Figure 3a. 171 

We simulated a range of population sizes (N = 2 - 2048) and correlations (co = 0, 0.25, 0.50). 172 

Without noise-correlations, the accuracy of all decoders increases with population size, 173 

with a homogenous PIN preforming best (Fig. 3b). In the presence of noise-correlations, accuracy 174 

saturates for large homogenous PIN (Fig. 3c-d). As previously shown (Ecker et al., 2011), accuracy 175 

for heterogeneous populations with limited-range correlations does not saturate (Fig. 3c-d). 176 

However, this depends on weight diversity. Smoothing the weights for heterogeneous PIN caused 177 

saturation and decreased accuracy (Fig. 3c-d), demonstrating that weight amplitude diversity in 178 

analytically derived weights distributions are critical for the decoder performance.  179 

 180 

Simulating excitatory weight tuning 181 

 182 

Figure 3: Decoder performance of heterogeneous input populations depends on population size, correlations, 

and weight diversity. (a) Example weight distribution for a decoder neuron reading out a heterogeneous input 

population (top). Shown are the effects of progressively smoothing weights. Smooth parameters (see Methods) from 

top to bottom: (0,0), (0.1,1), (0.2, 2), (1,10). Ordinate is orientation preference, restricted between -90o and 90o. (b) 

Decoder performance (inverse mean-squared-error) plotted for homogenous and heterogeneous input populations of 

increasing size. Simulations here include no correlations (co = 0). Shading indicates standard error. (c) Same as in (b) 

for input populations with moderate correlation (co = 0.25). (d) Same as in (b) for input populations with stronger 

correlation (co = 0.50). 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2020.10.15.341131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341131
http://creativecommons.org/licenses/by-nd/4.0/


 9 

In order to compare analytically derived weights with the synaptic inputs onto V1 neurons 183 

measured in vivo, we generated excitatory synaptic input populations (PSYN). Under the 184 

assumption that synaptic integration is linear, two synapses of equal weight are the same as one 185 

synapse with double that weight. This creates a degeneracy where synapse count and size trade 186 

off. Because current spine imaging techniques typically capture large synapses and there is no 187 

relationship between strength and orientation preference (Scholl et al., 2021), we can assume 188 

size is fixed and convert the derived weights into a frequency distribution of ‘synaptic inputs’ (Fig. 189 

4a). The tuning curve for such a synapse is the tuning curve of the input and thus, the synaptic 190 

input population, PSYN, is the input population resampled with probabilities given by the derived 191 

weights. An example PSYN for a single decoder neuron is shown in Figure 4b (drawn from the 192 

heterogeneous PIN in Figure 2). PSYN in this example displays some specificity in orientation tuning 193 

relative to the somatic output, indicated by a larger proportion of simulated synapses with similar 194 

orientation preference as the somatic output (0o) of the decoder neuron.  195 

 196 

Empirical distribution of dendritic spine tuning is consistent with decoding of a heterogeneous 197 

input population 198 

We analyzed two-photon calcium recordings from soma and corresponding dendritic 199 

spines on individual neurons in ferret V1 during the presentation of oriented drifting gratings (see 200 

Methods). While our model draws from a PIN matched to measurements from macaque V1, the 201 

orientation tuning of layer 2/3 neurons in ferret V1, as measured by two-photon cellular imaging, 202 

exhibit a similar range in selectivity (Wilson et al., 2017). Visually responsive and isolated dendritic 203 

spines (see Methods) typically exhibit diverse orientation tuning relative to the somatic output, 204 

Figure 4: Simulation of synaptic populations from decoder neuron weight distributions. (a) Example weight 

distribution for a single decoder neuron tuned to 0o (left). Ordinates are orientation preference, restricted between -90o 

and 90o. Dashed line separates excitatory (positive) and inhibitory (negative) weights. Excitatory weight distribution 

over the input population is transformed into a frequency distribution, whereby greater amplitude equates to greater 

frequency of occurrence (right). (b) Example simulated synaptic population (n = 100 spines) from the weight distribution 

in (a). Shown are the orientation tuning curves of each simulated synapse (normalized). 
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although some individual cells show greater overall diversity (Fig. 5b) than others (Fig. 5a). To 205 

characterize PSYN diversity, both for real dendritic spines and simulated inputs, we computed the 206 

Pearson correlation coefficient between the tuning curves of individual inputs and the 207 

corresponding somatic output (Scholl et al., 2021). For these comparisons, we sampled 208 

orientation space in the model spines to match our empirical measurements (22.5 deg 209 

increments) and the number of total excitatory inputs recovered for each simulated downstream 210 

neuron was set to 100, similar to the average number of visually-responsive spines recorded for 211 

each ferret V1 neuron (n = 45, n = 158.9 ± 73.2 spines/cell). Simulations were run 10,000 times, 212 

with N = 1,000 for PIN and co = 0.20. 213 

Across all simulated inputs, input-output tuning correlation was higher for homogeneous 214 

PSYN compared to heterogeneous PSYN (median rhom = 0.60, median rhom = 0.18, n = 900,000; Fig. 215 

5c). Tuning correlation between all imaged dendritic spines and soma was low (median 𝑟𝑐𝑒𝑙𝑙  = 216 

Figure 5: Orientation tuning diversity of dendritic spine populations in ferret V1 match simulations with 

correlated, heterogeneous input populations. (a) Two-photon standard-deviation projection of example dendrite 

and spines recorded from a single cell (left). Inset: Two-photon standard-deviation projection of corresponding soma. 

Scale bar is 10 microns. Orientation tuning of soma (top) and all visually-responsive dendritic spines from this single 

cell (n = 159) are shown (right). Spine responses are normalized peak ∆F/F. Orientation preferences are shown relative 

to the somatic preference (aligned to 0o). (b) Same as in (a) for another example cell (n = 162 visually-responsive 

spines). (c) Cumulative distributions of tuning correlation between individual dendritic spines or simulated synaptic 

inputs with corresponding somatic tuning or decoder output. Shown are correlations of simulations of homogenous 

(blue) or heterogeneous (red) input populations, compared to empirical data (gray). (d) Distributions of average tuning 

correlation between synaptic input and somatic output across measured cells (n = 45). Also shown are distributions of 

average tuning correlation for simulated cells. Triangles denote median values for each distribution. (e) Comparison of 

Kullback-Leibler divergence (DKL) between data and each model type. Each data point represents an individual cell’s 

population of dendritic spines. 
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0.31, n = 7,151 spines from 45 cells), more closely resembling our model with a heterogenous 217 

PIN. As somatic orientation selectivity (i.e., tuning bandwidth) varies for single cells in ferret V1 218 

(Goris et al., 2015; Wilson et al., 2016), we next examined the average input-output tuning 219 

correlation across individual cells (Fig. 5d). Here, the homogeneous model exhibited greater 220 

specificity then the heterogeneous model (median rhom = 0.52; median rhet = 0.18, n = 90,000). For 221 

ferret V1 cells, we observed similar spine-soma correlation as the heterogeneous simulation 222 

(median rcell = 0.20, n = 45). Ferret V1 cells were not statistically different from neural decoders 223 

with a heterogeneous PSYN (p = 0.19, Mann-Whitney test), while neural decoders with a 224 

homogeneous PSYN were significantly more correlated with the inputs (p < 0.0001, Mann-Whitney 225 

test).  A small percentage of imaged cells (17.9%, n = 5/28) had synaptic populations whose mean 226 

tuning correlation were within the 95% confidence interval of the homogeneous model distribution. 227 

Additionally, some cells had negative average correlations with their spines, which never occurred 228 

in the models—potentially indicating nonlinearities between the spines and soma. It is also 229 

important to emphasize that both synaptic populations and the heterogeneous model exhibit a 230 

positive bias in tuning correlations, illustrating that while inputs are functionally diverse, they are, 231 

on average, more similarly tuned to the cell/decoder output.  232 

Given the differences between ferret V1 neurons, we quantified the degree to which 233 

synaptic populations on each neuron matched tuning correlation distributions from models of 234 

homogenous and heterogenous PIN, by calculating the Kullback-Leibler divergence (DKL, bin size 235 

= 0.05, see Methods). Across our population, imaged neurons more closely resembled 236 

simulations with heterogenous, compared to homogenous, PIN (93.3%, n = 42/45; Fig. 5e) and DKL 237 

from a heterogenous model was consistently larger (p < 0.0001, sign rank Wilcoxon test). This 238 

trend held for a range of histogram bin sizes (0.001 – 0.20). Importantly, the models are not fit to 239 

data. They are derived entirely from the statistics of the input population, so this correspondence 240 

between the heterogenous model and the data results from no free parameters. 241 

In addition to the similarity in input-output tuning correlation, we observed several trends 242 

predicted by the heterogeneous model that were evident in synaptic populations imaged in vivo. 243 

Simulated excitatory inputs correlated with the decoder output were not more selective for 244 

orientation (see Methods) (bootstrapped PCA slope = 0.001 ± 0.004 s.e., n = 10,000 simulation 245 

runs). For two-photon data, a minuscule, but significant, trend was evident (bootstrapped PCA 246 

slope = 0.03 ± 0.1 s.e., n = 7151). So while selective inputs are proposed to provide more 247 

information about encoded stimulus variables (Seriès et al., 2004; Shamir and Sompolinsky, 248 

2006; Zavitz and Price, 2019) and unselective (or poorly selective) inputs could convey 249 

information through their covariance with selective neurons (Zylberberg, 2017), our model and 250 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2020.10.15.341131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341131
http://creativecommons.org/licenses/by-nd/4.0/


 12 

experimental data suggest co-tuned and orthogonally-tuned inputs exhibit a wide range of tuning 251 

selectivity. Response variability (i.e. standard deviation) across trials for simulated excitatory 252 

inputs was significantly smaller for ‘null’ orientations (± 90 deg) than at the ‘preferred’ (median = 253 

0.30 and IQR = 0.14, median = 0.38 and IQR = 0.22, respectively; p < 0.001, Wilcoxon ranksum 254 

test). This trend was also observed in our two-photon data (null: median = 0.13 and IQR = 0.15; 255 

preferred: median = 0.23 and IQR = 0.31, respectively; p < 0.001, Wilcoxon ranksum test). As 256 

both modeled and imaged neurons had “null”-tuned excitatory inputs that exhibited less response 257 

variability, these inputs may carry useful information about when the preferred stimulus is not 258 

present. 259 

Taken together, our decoding framework with a realistic (i.e. heterogenous orientation 260 

tuning), noisy input populations suggest the collection of orthogonally-tuned excitatory inputs in 261 

cortical neurons in vivo are not unexpected. Instead, the synaptic architecture of layer 2/3 neurons 262 

in ferret visual cortex are likely optimized for the readout of upstream populations tuned to 263 

orientation.  264 

 265 

Discussion 266 

 267 

We used a population decoding framework (Jazayeri and Movshon, 2006; Kohn et al., 268 

2016; Pouget et al., 2000; Shamir, 2014) to elucidate a possible source of synaptic diversity in 269 

functional response properties. We find that even simple decoders exhibit substantial 270 

heterogeneity in their weights when the inputs are noisy, correlated neural populations with 271 

heterogeneous orientation tuning. We argue that this could naturally explain the heterogeneity in 272 

synaptic inputs measured in vivo if these cortical neurons are decoding information from upstream 273 

input populations. We compared two neural decoders: one with homogenous input (Jazayeri and 274 

Movshon, 2006) and one with heterogenous input (Ecker et al., 2011). We show that empirical 275 

measurements from dendritic spines recorded within individual cortical neurons in ferret V1 exhibit 276 

a similar amount of diversity in orientation tuning as simulated inputs (i.e. excitatory weights) from 277 

heterogeneous input populations. It may appear trivial that heterogeneous input populations 278 

would produce heterogeneous weights, but it was neither immediately obvious that the weights 279 

would not be smooth nor that excitatory weights would be evident for orthogonal orientations. 280 

Orthogonally-tuned or non-preferred inputs are often considered to be aberrant; to be pruned 281 

away during experience-dependent plasticity or development (Holtmaat and Svoboda, 2009). Our 282 

decoding approach suggests these inputs are purposeful and emerge through development as 283 

cortical circuits learn the statistics of their inputs (Avitan and Goodhill, 2018). Taken together, our 284 
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results shed light on synaptic diversity that has been puzzling, suggesting that it is, in fact, 285 

expected given known properties of the input population.  286 

We believe our study is a significant step forward in combing population coding theory 287 

(Averbeck et al., 2006; Pouget et al., 2000) and functional connectomics (Wilson et al., 2016). 288 

The ability to measure receptive field properties and statistics of sensory-driven responses of 289 

synapses in vivo provides a new testing bed for population codes. The individual neurons which 290 

synapses converge on are the real components of what has long been a hypothetical downstream 291 

population decoder. While we did not set out to build a computational or biophysical model of a 292 

neuron, we believe simplistic approaches such as ours are fruitful for understanding basic 293 

principles.  294 

To limit complexity, our decoder did not account for many aspects of cortical networks 295 

such as stimulus-dependent correlations or recurrent connections. In the case of stimulus 296 

dependent covariance, the optimal decoder is no longer linear, however, that decoder closely 297 

resembles a complex cell (Jaini and Burge, 2017; Pagan et al., 2016). Extending a decoding 298 

framework to include realistic noise has been used to capture many nonlinear features of neural 299 

responses including divisive normalization, gain control, and contrast-dependent temporal 300 

dynamics— all features which fall naturally out from a normative framework (Chalk et al., 2017). 301 

These more sophisticated approaches may be able to make predictions about the synaptic 302 

organization itself, whereby local clusters of synapses act as nonlinear subunits (Ujfalussy et al., 303 

2018).  304 

Our model does not describe a cortical transformation. Instead, to limit complexity, we 305 

focused on the propagation of orientation selectivity from one neural population to another, akin 306 

to the propagation of basic receptive field properties from V1 to higher-visual areas. Our approach 307 

was chosen to provide a starting point for predicting the tuning diversity of synaptic input 308 

populations as compared to the tuning output or downstream cells. However, this model could be 309 

modified to study the convergence and transformation of cortical inputs. An obvious case study 310 

would be complex cells in layer 2/3 V1 (Hubel and Wiesel, 1962; Movshon et al., 1978; Spitzer 311 

and Hochstein, 1988), which are thought to integrate across presynaptic cells with similar oriented 312 

receptive field with offset spatial subunits to produce polarity invariance. This extension would be 313 

better suited for a nonlinear quadratic decoder (Jaini and Burge, 2017; Pagan et al., 2016), rather 314 

than the linear one used here. We hope that future studies build upon this modeling framework, 315 

exploring quadratic decoders and work towards using richer visual stimuli and neural models 316 

(Chalk et al., 2017). We believe this will be critical for gaining insight into how information 317 
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propagates between cortical areas and from largescale measurements of cortical functional 318 

connectivity.  319 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2020.10.15.341131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341131
http://creativecommons.org/licenses/by-nd/4.0/


 15 

Materials and Methods 320 

 321 

All procedures were performed according to NIH guidelines and approved by the 322 

Institutional Animal Care and Use Committee at Max Planck Florida Institute for Neuroscience. 323 

 324 

Derivation for a Bayesian probabilistic decoder 325 

 326 

We construct a probabilistic decoder, represented by a population of neurons, that reports 327 

or estimates the identity of a stimulus from the spiking response of an input population of neurons. 328 

We assume an input population with responses that are a function of the stimulus, f ( k ), plus 329 

Gaussian noise, f ( k ), and the covariance (Q) is equal for all stimulus conditions (Q) such that Q 330 

= Qk = Qi. Then, the posterior distribution can be written as 331 

𝑝(𝜃𝑘|𝑅) =
𝑝(𝜃𝑘) 𝑁(𝑓(𝜃𝑘), 𝑄)

∑  𝑝(𝜃𝑖) 𝑁(𝑓(𝜃𝑖), 𝑄)𝐾
𝑖

 332 

where a multivariate Gaussian is 333 

𝑁(𝑓(𝜃𝑘), 𝑄) = 2𝜋−
𝑛
2 |𝑄|−

1
2  𝑒

(−
1
2(𝑹−𝑓(𝜃𝑘))

𝑻
𝑄−1(𝑹−𝑓(𝜃𝑘)))

 334 

This can be expanded and simplified such that 335 

𝑝(𝜃𝑘|𝑅) =
𝑝(𝜃𝑘)2𝜋−

𝑛
2 |𝑄|−

1
2 𝑒

(−
1
2(𝑹−𝑓(𝜃𝑘))

𝑻
𝑄−1(𝑹−𝑓(𝜃𝑘)))

∑ 𝑝(𝜃𝑖)2𝜋−
𝑛
2 |𝑄|−

1
2  𝑒

((−
1
2)(𝑹−𝑓(𝜃𝑖))

𝑻
𝑄−1(𝑹−𝑓(𝜃𝑖)))

𝐾
𝑖

 336 

𝑝(𝜃𝑘|𝑅) =
𝑝(𝜃𝑘) 𝑒

(−
1
2(𝑹𝑻𝑄−1𝑹 − 𝑓(𝜃𝑘)𝑻𝑄−1𝑹 − 𝑹𝑻𝑄−1𝑓(𝜃𝑘) + 𝑓(𝜃𝑘)𝑻𝑄−1𝑓(𝜃𝑘)))

∑ 𝑝(𝜃𝑖) 𝑒
(−

1
2(𝑹𝑻𝑄−1𝑹 − 𝑓(𝜃𝑖)𝑻𝑄−1𝑹 − 𝑹𝑻𝑄−1𝑓(𝜃𝑖) + 𝑓(𝜃𝑖)𝑻𝑄−1𝑓(𝜃𝑖)))

𝐾
𝑖

 337 

𝑝(𝜃𝑘|𝑅) =
𝑝(𝜃𝑘) 𝑒−

1
2𝑹𝑻𝑄−1𝑹 𝑒

(𝑓(𝜃𝑘)𝑻𝑄−1 𝑹   −  
1
2 𝑓(𝜃𝑘)𝑻𝑄−1𝑓(𝜃𝑘))

∑ 𝑝(𝜃𝑖) 𝑒−
1
2𝑹𝑻𝑄−1𝑹 𝑒

( 𝑓(𝜃𝑖)𝑻𝑄−1𝑹 −  
1
2 𝑓(𝜃𝑖)𝑻𝑄−1𝑓(𝜃𝑖))

𝐾
𝑖

 338 

𝑝(𝜃𝑘|𝑅) =
𝑒(𝑹𝑻𝑄−1𝑓(𝜃𝑘)   − 

1
2  𝑓(𝜃𝑘)𝑻𝑄−1𝑓(𝜃𝑘) + 𝑙𝑛 𝑝(𝜃𝑘))

∑ 𝑒(𝑹𝑻𝑄−1𝑓(𝜃𝑖) − 
1
2 𝑓(𝜃𝑖)𝑻𝑄−1𝑓(𝜃𝑖) + 𝑙𝑛 𝑝(𝜃𝑖))𝐾

𝑖

 339 

𝑝(𝜃𝑘|𝑅) =
𝑒(𝑹𝑻𝑤𝑘  + 𝛽𝑘)

∑ 𝑒(𝑹𝑻𝑤𝑖 + 𝛽𝑖)𝐾
𝑖

 340 

where   341 

𝑤𝑘 = 𝑄−1𝑓(𝜃𝑘) 342 
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𝛽𝑘 = − (
1

2
) 𝑓(𝜃𝑘)𝑇𝑄−1𝑓(𝜃𝑘) + 𝑙𝑛 𝑝(𝜃𝑘) 343 

Here, w are the weights over k for each neuron in the decoder population and  is a constant term 344 

for each k. Importantly, because we assume Gaussian input, with this formulation, w and   345 

 are derived closed form. More generally, w and , can be estimated numerically using multinomial 346 

logistic regression and this form remains optimal for any input population statistics within the 347 

exponential family (e.g., Poisson noise). 348 

 349 

Input population model 350 

 351 

To generate input populations (PIN), we simulated N neurons responding to a stimulus 352 

characterized by orientation (k  [-/2:/2K:/2]). The response of each neuron, 𝑟𝑖, depends on 353 

a tuning function, 𝑓𝑖  (), and an additive noise term, 𝑖, describing trial-to-trial variability. Noise is 354 

correlated across the population, generated from a multivariate Gaussian distribution with zero 355 

mean and covariance 𝐶. Orientation tuning functions were defined as: 356 

𝑓𝑖(𝜃) = 𝛼𝑖 + 𝛽𝑖𝑒𝑖[𝑐𝑜𝑠(𝜃−𝜙𝑖)2−1] 357 

Here,  is the baseline firing rate,  scales the tuned response,  scales the tuning bandwidth, 358 

and  is the orientation preference of each neuron. For homogeneous PIN all parameters except  359 

were fixed: (, , ) = (0, 5, 4). For heterogenous PIN, we sampled parameters to match 360 

measurements from macaque V1 (Ringach et al., 2002) and our ferret V1 data. Tuning bandwidth 361 

was generated by converting half-width at 1/2 height () values from a lognormal distribution ( 362 

= -1,  = 0.6): 363 

𝜅 = −𝑙𝑜𝑔(√2) (𝑐𝑜𝑠(𝛾2) − 1)⁄  364 

Limited-range correlations were included so neural noise correlation depends on tuning 365 

preference difference (Ecker et al., 2011). A correlation matrix, C, was specified by the difference 366 

between preferred orientations of neurons and the maximum pairwise correlation, co: 367 

𝐴𝑖𝑗 = 𝑐𝑜𝑒−|𝛿(𝜙𝑖−𝜙𝑗)| 368 

where  is the circular difference and  369 

𝐶𝑖𝑗 = 𝐴𝑖𝑗 + (1 − 𝑐𝑜)𝐼 370 

where 𝐼 is the identity matrix of size N. We scaled the correlation matrix by the mean firing rate of 371 

each neuron to produce Poisson-like noise (Ecker et al., 2011).  372 

Derived weights for a given PIN were artificially smoothed using the following equation 373 

from (Park and Pillow, 2011): 374 
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𝑆𝑖𝑗
+=𝑒

−(𝜌1+(
𝛿(𝜙𝑖−𝜙𝑗)

𝜌2
))

 375 

Here, S+ is the pseudoinverse of S,  (i - j) is the circular difference between preferred 376 

orientations of neurons, 1 scales the amplitude of smoothing, and 2 scales functional range of 377 

smoothing. 378 

 379 

Population decoder estimation accuracy 380 

 381 

Decoding accuracy was calculated with the mean-squared-error of the maximum a 382 

posterior probability (MAP) estimate across t simulated trials of each stimulus (k): 383 

𝑒𝑟𝑟𝑜𝑟(𝑘) = (
1

𝑡
) ∑ 𝑎𝑛𝑔𝑙𝑒(𝑒𝑖(𝑀𝐴𝑃(𝑤𝑘)−𝜃𝑘))

2
𝑡

1

 384 

Here, wk are the weights for a given decoder neuron and k is the true stimulus. 385 

 386 

Viral Injections 387 

 388 

Briefly, female ferrets aged P18-23 (Marshall Farms) were anesthetized with isoflurane 389 

(delivered in O2). Atropine was administered and a 1:1 mixture of lidocaine and bupivacaine was 390 

administered SQ. Animals were maintained at an internal temperature of 37 degrees Celsius. 391 

Under sterile surgical conditions, a small craniotomy (0.8 mm diameter) was made over the visual 392 

cortex (7-8mm lateral and 2-3mm anterior to lambda). A mixture of diluted AAV1.hSyn.Cre 393 

(1:25000 to 1:50000) and AAV1.Syn.FLEX.GCaMP6s (UPenn) was injected (125 - 202.5 nL) 394 

through beveled glass micropipettes (10-15 micron outer diameter) at 600, 400, and 200 microns 395 

below the pia. Finally, the craniotomy was filled with sterile agarose (Type IIIa, Sigma-Aldrich) 396 

and the incision site was sutured. 397 

 398 

Cranial Window 399 

 400 

After 3-5 weeks of expression, ferrets were anesthetized with 50mg/kg ketamine and 401 

isoflurane. Atropine and bupivacaine were administered, animals were placed on a feedback-402 

controlled heating pad to maintain an internal temperature of 37 degrees Celsius, and intubated 403 

to be artificially respirated. Isoflurane was delivered throughout the surgical procedure to maintain 404 

a surgical plane of anesthesia. An intravenous cannula was placed to deliver fluids. Tidal CO2, 405 
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external temperature, and internal temperature were continuously monitored. The scalp was 406 

retracted and a custom titanium headplate adhered to the skull (Metabond, Parkell). A craniotomy 407 

was performed and the dura retracted to reveal the cortex. One piece of custom cover-glass (3mm 408 

diameter, 0.7mm thickness, Warner Instruments) adhered using optical adhesive (71, Norland 409 

Products) to custom insert was placed onto the brain to dampen biological motion during imaging. 410 

A 1:1 mixture of tropicamide ophthalmic solution (Akorn) and phenylephrine hydrochloride 411 

ophthalmic solution (Akorn) was applied to both eyes to dilate the pupils and retract the nictating 412 

membranes. Contact lenses were inserted to protect the eyes. Upon completion of the surgical 413 

procedure, isoflurane was gradually reduced and pancuronium (2 mg/kg/hr) was delivered IV. 414 

 415 

Visual Stimuli 416 

 417 

Visual stimuli were generated using Psychopy (Peirce, 2007). The monitor was placed 25 418 

cm from the animal. Receptive field locations for each cell were hand mapped and the spatial 419 

frequency optimized (range: 0.04 to 0.25 cpd). For each soma and dendritic segment, square-420 

wave drifting gratings were presented at 22.5 degree increments (2 second duration, 1 second 421 

ISI, 8-10 trials for each field of view). 422 

 423 

Two photon imaging 424 

 425 

Two photon imaging was performed on a Bergamo II microscope (Thorlabs) running 426 

Scanimage (Pologruto et al., 2003) (Vidrio Technologies) with 940nm dispersion-compensated 427 

excitation provided by an Insight DS+ (Spectraphysics). For spine and axon imaging, power after 428 

the objective was limited to < 50 mW. Cells were selected for imaging on the basis of their position 429 

relative to large blood vessels, responsiveness to visual stimulation, and lack of prolonged 430 

calcium transients resulting from over-expression of GCaMP6s. Images were collected at 30 Hz 431 

using bidirectional scanning with 512x512 pixel resolution or with custom ROIs (frame rate range: 432 

22 - 50 Hz). Somatic imaging was performed with a resolution of 2.05 - 10.24 pixels/micron. 433 

Dendritic spine imaging was performed with a resolution of 6.10 -15.36 pixels/micron. 434 

 435 

Two Photon Imaging Analysis 436 

 437 

Imaging data were excluded from analysis if motion along the z-axis was detected. 438 

Dendrite images were corrected for in-plane motion via a 2D cross-correlation based approach in 439 
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MATLAB or using a piecewise non-rigid motion correction algorithm (Pnevmatikakis and 440 

Giovannucci, 2017). ROIs (region of interest) were drawn in ImageJ; dendritic ROIs spanned 441 

contiguous dendritic segments and spine ROIs were fit with custom software. Mean pixel values 442 

for ROIs were computed over the imaging time series and imported into MATLAB (Hiner et al., 443 

2017; Sage et al., 2012). F/Fo was computed by computing Fo with time-averaged median or 444 

percentile filter (10th percentile). For spine signals, we subtracted a scaled version of the dendritic 445 

signal to remove back-propagating action potentials as performed previously (Wilson et al., 2016). 446 

F/Fo traces were synchronized to stimulus triggers sent from Psychopy and collected by Spike2. 447 

Spines were included for analysis if the SNR of the preferred response exceeded 2 median 448 

absolute deviations above the baseline noise (measured during the blank) and were weakly 449 

correlated with the dendritic signal (Spearman’s correlation, r < 0.4). Some spine traces contained 450 

negative events after subtraction, so correlations were computed ignoring negative values. We 451 

then normalized each spine’s responses so that each spine had equal weight. Preferred 452 

orientation for each spine was calculated by fitting responses with a Gaussian tuning curve using 453 

lsqcurvefit (Matlab). Tuning selectivity was measured as the vector strength index (v) for each 454 

neuron’s response: 455 

𝑣𝑖 =
√∑(𝑟𝑖𝑐𝑜𝑠𝜃𝑘)2 + ∑(𝑟𝑖𝑠𝑖𝑛𝜃𝑘)2

∑ 𝑟𝑖
 456 

Here r is the mean responses over the orientations (k) presented for each spine (i). Note, this 457 

same index is used to characterize simulated input selectivity.  458 

 459 

Analysis 460 

 461 

To compare input tuning (derived synaptic population or measured dendritic spine 462 

population) with output tuning (downstream readout or measured somatic tuning) we computed 463 

the Pearson Correlation coefficient (Matlab). This correlation was computed on trial-averaged 464 

responses across different orientations. For dendritic spines and soma, measured responses 465 

across stimulus presentation trials were averaged. For simulated synaptic populations and 466 

corresponding downstream readout neuron, we simulated trials by adding noise to each synaptic 467 

tuning curve.  468 

 469 

Code Availability 470 

 471 
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Matlab code to generate input and readout populations used are provided: 472 

https://github.com/schollben/SpineProbablisticModel2020 473 

Figure Legends 474 

 475 

Figure 1: A population decoding framework to study synaptic diversity.  476 

An upstream population of neurons are tuned for a single stimulus variable (orientation) (top). 477 

This input population is readout by downstream decoder neurons (bottom). Downstream neurons 478 

decode stimulus identify by reading out spikes from the upstream input population. Each decoder 479 

neuron is defined by a set weights (middle) over the upstream population, which are summed and 480 

rectified to produce an output.  481 

 482 

Figure 2: Model simulations with homogenous and heterogeneous input populations. 483 

(a) Orientation tuning of a homogenous input population. Shown is a subset of the total population 484 

(n = 20/1000). Ordinate is orientation preference, restricted between -90o and 90o. (b) Derived 485 

weights for a single decoder neuron (preferring 0o) reading out the homogenous (blue) input 486 

population in (a). Weights for homogenous populations smoothly vary over orientation space. (c) 487 

Response output of the decoder neuron whose weights are shown in (b). (d-f) Same as in (a-c) 488 

for a heterogeneous input population with moderate correlation (co = 0.25). Note that decoder 489 

weights for heterogeneous input populations are not smooth. 490 

 491 

Figure 3: Decoder performance of heterogeneous input populations depends on 492 

population size, correlations, and weight diversity.  493 

(a) Example weight distribution for a decoder neuron reading out a heterogeneous input 494 

population (top). Shown are the effects of progressively smoothing weights. Smooth parameters 495 

(see Methods) from top to bottom: (0,0), (0.1,1), (0.2, 2), (1,10). Ordinate is orientation preference, 496 

restricted between -90o and 90o. (b) Decoder performance (inverse mean-squared-error) plotted 497 

for homogenous and heterogeneous input populations of increasing size. Simulations here 498 

include no correlations (co = 0). Shading indicates standard error. (c) Same as in (b) for input 499 

populations with moderate correlation (co = 0.25). (d) Same as in (b) for input populations with 500 

stronger correlation (co = 0.50). 501 

 502 

Figure 4: Simulation of synaptic populations from decoder neuron weight distributions. (a) 503 

Example weight distribution for a single decoder neuron tuned to 0o (left). Ordinates are 504 

orientation preference, restricted between -90o and 90o. Dashed line separates excitatory 505 
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(positive) and inhibitory (negative) weights. Excitatory weight distribution over the input population 506 

is transformed into a frequency distribution, whereby greater amplitude equates to greater 507 

frequency of occurrence (right). (b) Example simulated synaptic population (n = 100 spines) from 508 

the weight distribution in (a). Shown are the orientation tuning curves of each simulated synapse 509 

(normalized). 510 

 511 

Figure 5: Orientation tuning diversity of dendritic spine populations in ferret V1 match 512 

simulations with correlated, heterogeneous input populations. 513 

(a) Two-photon standard-deviation projection of example dendrite and spines recorded from a 514 

single cell (left). Inset: Two-photon standard-deviation projection of corresponding soma. Scale 515 

bar is 10 microns. Orientation tuning of soma (top) and all visually-responsive dendritic spines 516 

from this single cell (n = 159) are shown (right). Spine responses are normalized peak ∆F/F. 517 

Orientation preferences are shown relative to the somatic preference (aligned to 0o). (b) Same as 518 

in (a) for another example cell (n = 162 visually-responsive spines). (c) Cumulative distributions 519 

of tuning correlation between individual dendritic spines or simulated synaptic inputs with 520 

corresponding somatic tuning or decoder output. Shown are correlations of simulations of 521 

homogenous (blue) or heterogeneous (red) input populations, compared to empirical data (gray). 522 

(d) Distributions of average tuning correlation between synaptic input and somatic output across 523 

measured cells (n = 45). Also shown are distributions of average tuning correlation for simulated 524 

cells. Triangles denote median values for each distribution. (e) Comparison of Kullback-Leibler 525 

divergence (DKL) between data and each model type. Each data point represents an individual 526 

cell’s population of dendritic spines.  527 
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