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Numerical Instabilities in Analytical Pipelines Lead to

Large and Meaningful Variability in Brain Networks
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The analysis of brain-imaging data requires complex and often non-linear transformations to support findings

on brain function or pathologies. And yet, recent work has shown that variability in the choices that one

makes when analyzing data can lead to quantitatively and qualitatively different results, endangering the trust in

conclusions1–3. Even within a given method or analytical technique, numerical instabilities could compromise

findings4–7. We instrumented a structural-connectome estimation pipeline with Monte Carlo Arithmetic8,9, a

technique to introduce random noise in floating-point computations, and evaluated the stability of the derived

connectomes, their features10,11, and the impact on a downstream analysis12,13. The stability of results was

found to be highly dependent upon which features of the connectomes were evaluated, and ranged from perfectly

stable (i.e. no observed variability across executions) to highly unstable (i.e. the results contained no trustworthy

significant information). While the extreme range and variability in results presented here could severely hamper

our understanding of brain organization in brain-imaging studies, it also leads to an increase in the reliability of

datasets. This paper highlights the potential of leveraging the induced variance in estimates of brain connectivity

to reduce the bias in networks alongside increasing the robustness of their applications in the detection or

classification of individual differences. This paper demonstrates that stability evaluations are necessary for

understanding error and bias inherent to scientific computing, and that they should be a component of typical

analytical workflows.
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The modelling of brain networks, called connectomics,1

has shaped our understanding of the structure and function2

of the brain across a variety of organisms and scales over3

the last decade11, 14–18. In humans, these wiring diagrams are4

obtained in vivo through Magnetic Resonance Imaging (MRI),5

and show promise towards identifying biomarkers of disease.6

This can not only improve understanding of so-called “connec-7

topathies”, such as Alzheimer’s Disease and Schizophrenia,8

but potentially pave the way for therapeutics19–23.9

However, the analysis of brain imaging data relies on com-10

plex computational methods and software. Tools are trusted to11

perform everything from pre-processing tasks to downstream12
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statistical evaluation. While these tools undoubtedly undergo13

rigorous evaluation on bespoke datasets, in the absence of14

ground-truth this is often evaluated through measures of re-15

liability24–27, proxy outcome statistics, or agreement with16

existing theory. Importantly, this means that tools are not17

necessarily of known or consistent quality, and it is not un-18

common that equivalent experiments may lead to diverging19

conclusions1, 5–7. While many scientific disciplines suffer20

from a lack of reproducibility28, this was recently explored21

in brain imaging by a 70 team consortium which performed22

equivalent analyses and found widely inconsistent results1,23

and it is likely that software instabilities played a role.24

The present study approached evaluating reproducibility25

from a computational perspective in which a series of brain26

imaging studies were numerically perturbed such that the27

plausibility of results was not affected, and the biological28

implications of the observed instabilities were quantified. We29

accomplished this through the use of Monte Carlo Arithmetic30

(MCA)8, a technique which enables characterization of the31

sensitivity of a system to small perturbations. We explored32

the impact of perturbations through the direct comparision33

of structural connectomes, the consistency of their features,34

and their eventual application in a neuroscience study. Finally35

we conclude on the consequences and opportunities afforded36

by the observed instabilities and make recommendations for37

the roles stability analyses may play towards increasing the38

reliability of brain imaging research.39

Graphs Vary Widely With Perturbations40

Prior to exploring the analytic impact of instabilities, a direct41

understanding of the induced variability was required. A sub-42

set of the Nathan Kline Institute Rockland Sample (NKIRS)43

dataset29 was randomly selected to contain 25 individuals with44

two sessions of imaging data, each of which was subsampled45

into two components, resulting in four collections per individ-46

ual. Structural connectomes were generated with canonical47

deterministic and probabilistic pipelines30, 31 which were in-48

strumented with MCA, replicating computational noise at49

either the inputs or throughout the pipelines4, 9. The pipelines50

were sampled 20 times per collection and once without per-51

turbations, resulting in a total of 4,200 connectomes.52

The stability of connectomes was evaluated through the53

deviation from reference and the number of significant digits54

(Figure 1). The comparisons were grouped according to dif-55

ferences across simulations, subsampling of data, sessions of56

acquisition, or subjects. While the similarity of connectomes57

decreases as the collections become more distinct, connec-58

tomes generated with input perturbations show considerable59

variability, often reaching deviations equal to or greater than60

those observed across individuals or sessions (Figure 1A;61

right). This finding suggests that instabilities inherent to62

these pipelines may mask session or individual differences,63

limiting the trustworthiness of derived connectomes. While64

both pipelines show similar performance, the probabilistic65

pipeline was more stable in the face of pipeline perturbations66

whereas the deterministic was more stable to input pertur-67

bations (p < 0.0001 for all; exploratory). The stability of68

correlations can be found in Supplemental Section S1.69

The number of significant digits per edge across connec-70

tomes (Figure 1B) similarly decreases across groups. While71

the cross-MCA comparison of connectomes generated with72

pipeline perturbations show nearly perfect precision for many73

edges (approaching the maximum of 15.7 digits for 64-bit74

data), this evaluation uniquely shows considerable drop off75

in performance across data subsampling (average of < 4 dig-76

its). In addition, input perturbations show no more than an77

average of 3 significant digits across all groups, demonstrat-78

ing a significant limitation in the reliability independent edge79

weights. Significance across individuals did not exceed a80

single digit per edge in any case, indicating that only the81

magnitude of edges in naively computed groupwise average82

connectomes can be trusted. The combination of these results83

with those presented in Figure 1A suggests that while specific84

edge weights are largely affected by instabilities, macro-scale85
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Figure 1. Exploration of perturbation-induced deviations from reference connectomes. (A) The absolute deviations, in the

form of normalized percent deviation from reference, shown as the across MCA series relative to Across Subsample, Across

Session, and Aross Subject variations. (B) The number of significant decimal digits in each set of connectomes as obtained

after evaluating the effect of perturbations. In the case of 16, values can be fully relied upon, whereas in the case of 1 only the

first digit of a value can be trusted. Pipeline- and input-perturbations are shown on the left and right, respectively.

network topology is stable.86

Subject-Specific Signal is Amplified While Off-Target87

Biases Are Reduced88

We assessed the reproducibility of the dataset through mimick-89

ing and extending a typical test-retest experiment26 in which90

the similarity of samples across multiple measurements were91

compared to distinct samples in the dataset (Table 1, with92

additional experiments and explanation in Supplemental Sec-93

tion S2). The ability to separate connectomes across subjects94

(Hypothesis 1) is an essential prerequisite for the application95

of brain imaging towards identifying individual differences18.96

In testing hypothesis 1, we observe that the dataset is sep-97

arable with a score of 0.64 and 0.65 (p < 0.001; optimal98

score: 1.0; chance: 0.04) without any instrumentation. How-99

ever, we can see that inducing instabilities through MCA100

improves the reliability of the dataset to over 0.75 in each101

case (p < 0.001 for all), significantly higher than without102

instrumentation (p < 0.005 for all). This result impactfully103

suggests the utility of perturbation methods for synthesizing104

robust and reliable individual estimates of connectivity, serv-105

ing as a cost effective and context-agnostic method for dataset106

augmentation.107

While the separability of individuals is essential for the108

identification of brain networks, it is similarly reliant on net-109

work similarity across equivalent acquisitions (Hypothesis 2).110

In this case, connectomes were grouped based upon session,111

rather than subject, and the ability to distinguish one session112

from another was computed within-individual and aggregated.113

Both the unperturbed and pipeline perturbation settings per-114
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Table 1. The impact of instabilities as evaluated through the separability of the dataset based on individual (or subject)

differences, session, and subsample. The performance is reported as mean Discriminability. While a perfectly separable dataset

would be represented by a score of 1.0, the chance performance, indicating minimal separability, is 1/the number of classes. H3

could not be tested using the reference executions due to too few possible comparisons. The alternative hypothesis, indicating

significant separation, was accepted for all experiments, with p < 0.005.

Reference Execution Perturbed Pipeline Perturbed Inputs

Comparison Chance Target Det. Prob. Det. Prob. Det. Prob.

H1: Across Subjects 0.04 1.0 0.64 0.65 0.82 0.82 0.77 0.75

H2: Across Sessions 0.5 0.5 1.00 1.00 1.00 1.00 0.88 0.85

H3: Across Subsamples 0.5 0.5 0.99 1.00 0.71 0.61

fectly preserved differences between cross-sectional sessions115

with a score of 1.0 (p < 0.005; optimal score: 0.5; chance:116

0.5), indicating a dominant session-dependent signal for all117

individuals despite no intended biological differences. How-118

ever, while still significant relative to chance (score: 0.85119

and 0.88; p < 0.005 for both), input perturbations lead to120

significantly lower separability of the dataset (p < 0.005 for121

all). This reduction of the difference between sessions of data122

within individuals suggests that increased variance caused123

by input perturbations reduces the impact of non-biological124

acquisition-dependent bias inherent in the brain graphs.125

Though the previous sets of experiments inextricably eval-126

uate the interaction between the dataset and tool, the use of127

subsampling allowed for characterizing the separability of128

networks sampled from within a single acquisition (Hypoth-129

esis 3). While this experiment could not be evaluated using130

reference executions, the executions performed with pipeline131

perturbations showed near perfect separation between sub-132

samples, with scores of 0.99 and 1.0 (p < 0.005; optimal:133

0.5; chance: 0.5). Given that there is no variability in data134

acquisition or preprocessing that contributes to this reliable135

identification of scans, the separability observed in this exper-136

iment may only be due to instability or bias inherent to the137

pipelines. The high variability introduced through input per-138

turbations considerably lowered the reliability towards chance139

(score: 0.71 and 0.61; p < 0.005 for all), further supporting140

this as an effective method for obtaining lower-bias estimates141

of individual connectivity.142

Across all cases, the induced perturbations showed an143

amplification of meaningful biological signal alongside a re-144

duction of off-target signal. This result appears strikingly like145

a manifestation of the well-known bias-variance tradeoff32
146

in machine learning, a concept which observes a decrease in147

bias as variance is favoured by a model. In particular, this148

highlights that numerical perturbations can be used to not149

only evaluate the stability of pipelines, but that the induced150

variance may be leveraged for the interpretation as a robust151

distributions of possible results.152

Distributions of Graph Statistics Are Reliable, But153

Individual Statistics Are Not154

Exploring the stability of topological features of connectomes155

is relevant for typical analyses, as low dimensional features are156

often more suitable than full connectomes for many analytical157

methods in practice11. A separate subset of the NKIRS dataset158

was randomly selected to contain a single non-subsampled159

session for 100 individuals, and connectomes were generated160

as above.161

The stability of several commonly-used multivariate graph162

features10 was explored in Figure 2. The cumulative den-163

sity of the features was computed within individuals and the164

mean density and associated standard error were computed165

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341495doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341495
http://creativecommons.org/licenses/by-nd/4.0/


Numerical Instabilities in Analytical Pipelines Lead to Large and Meaningful Variability in Brain Networks — 5/18

0 15 15000
0   

 
1   0

 
1

0 0.5 1.0
0   

 
1   0

 
1

0 40 83
0   

 
1   0

 
1

0 0.01 0.20
0   

 
1   0

 
1

0 12 65
0   

 
1   0

 
1

Perturbed Inputs

CDF of Multivariate Statistics

W
ei

gh
t

(lo
g 

sc
al

e)
Cl

us
te

ri
ng

Co
effi

ci
en

t
Pa

th
Le

ng
th

Be
tw

ee
nn

es
s

Ce
nt

ra
lit

y
D

eg
re

e

0 12 15000
0   

 
1   0

 
1

0 0.6 1.0
0   

 
1   0

 
1

0 42 83
0   

 
1   0

 
1

0 0.01 0.20
0   

 
1   0

 
1

0 13 65
0   

 
1   0

 
1

Perturbed Pipeline

CDF of Multivariate Statistics

W
ei

gh
t

(lo
g 

sc
al

e)
Cl

us
te

ri
ng

Co
effi

ci
en

t
Pa

th
Le

ng
th

Be
tw

ee
nn

es
s

Ce
nt

ra
lit

y
D

eg
re

e

Weight
Clustering Coefficient

Path Length
Betweenness Centrality

Degree

Sum

Mean

Variance

Skew

Kurtosis

Si
gn

ifi
ca

nt
 D

ig
its

 o
f M

om
en

ts

Weight
Clustering Coefficient

Path Length
Betweenness Centrality

Degree
0

15

Sum

Mean

Variance

Skew

Kurtosis

Pipeline

Deterministic
ProbabilisticA

C

B

D

Figure 2. Distribution and stability assessment of multivariate graph statistics. (A, B) The cumulative distribution functions of

multivariate statistics across all subjects and perturbation settings. There was no significant difference between the distributions

in A and B. (C, D) The number of significant digits in the first 5 five moments of each statistic across perturbations. The dashed

red line refers to the maximum possible number of significant digits.

for across individuals (Figures 2A and 2B). There was no sig-166

nificant difference between the distributions for each feature167

across the two perturbation settings, suggesting that the topo-168

logical features summarized by these multivariate features are169

robust across both perturbation modes.170

In addition to the comparison of distributions, the stabil-171

ity of the first 5 moments of these features was evaluated172

(Figures 2C and 2D). In the face of pipeline perturbations,173

the feature-moments were stable with more than 10 signifi-174

cant digits with the exception of edge weight when using the175
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deterministic pipeline, though the probabilistic pipeline was176

more stable for all comparisons (p < 0.0001; exploratory).177

In stark contrast, input perturbations led to highly unstable178

feature-moments (Figure 2D), such that none contained more179

than 5 significant digits of information and several contained180

less than a single significant digit, indicating a complete lack181

of reliability. This dramatic degradation in stability for in-182

dividual measures strongly suggests that these features may183

be unreliable as individual biomarkers when derived from a184

single pipeline evaluation, though their reliability may be in-185

creased when studying their distributions across perturbations.186

A similar analysis was performed for univariate statistics and187

can be found in Supplemental Section S3.188

Uncertainty in Brain-Phenotype Relationships189

While the variability of connectomes and their features was190

summarized above, networks are commonly used as inputs to191

machine learning models tasked with learning brain-phenotype192

relationships18. To explore the stability of these analyses, we193

modelled the relationship between high- or low- Body Mass194

Index (BMI) groups and brain connectivity12, 13, using stan-195

dard dimensionality reduction and classification tools, and196

compared this to reference and random performance (Fig-197

ure 3).198

The analysis was perturbed through distinct samplings of199

the dataset across both pipelines and perturbation methods.200

The accuracy and F1 score for the perturbed models varied201

from 0.520 – 0.716 and 0.510 – 0.725, respectively, rang-202

ing from at or below random performance to outperforming203

performance on the reference dataset. This large variability204

illustrates a previously uncharacterized margin of uncertainty205

in the modelling of this relationship, and limits confidence in206

reported accuracy scores on singly processed datasets. The207

portion of explained variance in these samples ranged from208

88.6% -– 97.8%, similar to the reference, suggesting that the209

range in performance was not due to a gain or loss of mean-210

ingful signal, but rather the reduction of bias towards specific211

outcome. Importantly, this finding does not suggest that mod-212

elling brain-phenotype relationships is not possible, but rather213

it sheds light on impactful uncertainty that must be accounted214

for in this process, and supports the use of ensemble modeling215

techniques.216

Discussion217

The perturbation of structural connectome estimation pipelines218

with small amounts of noise, on the order of machine error,219

led to considerable variability in derived brain graphs. Across220

all analyses the stability of results ranged from nearly per-221

fectly trustworthy (i.e. no variation) to completely unreliable222

(i.e. containing no trustworthy information). Given that the223

magnitude of introduced numerical noise is to be expected224

in typical settings, this finding has potentially significant im-225

plications for inferences in brain imaging as it is currently226

performed. In particular, this bounds the success of studying227

individual differences, a central objective in brain imaging18,228

given that the quality of relationships between phenotypic229

data and brain networks will be limited by the stability of the230

connectomes themselves. This issue was accentuated through231

the crucial finding that individually derived network features232

were unreliable despite there being no significant difference233

in their aggregated distributions. This finding is not damn-234

ing for the study of brain networks as a whole, but rather is235

strong support for the aggregation of networks, either across236

perturbations for an individual or across groups, over the use237

of individual estimates.238

Underestimated False Positive Rates While the instabil-239

ity of brain networks was used here to demonstrate the lim-240

itations of modelling brain-phenotype relationships in the241

context of machine learning, this limitation extends to classi-242

cal hypothesis testing, as well. Though performing individual243

comparisons in a hypothesis testing framework will be accom-244

panied by reported false positive rates, the accuracy of these245

rates is critically dependent upon the reliability of the samples246

used. In reality, the true false positive rate for a test would be247
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Figure 3. Variability in BMI classification across the sampling of an MCA-perturbed dataset. The dashed red lines indicate

random-chance performance, and the orange dots show the performance using the reference executions.

a combination of the reported confidence and the underlying248

variability in the results, a typically unknown quantity.249

When performing these experiments outside of a repeated-250

measure context, such as that afforded here through MCA, it251

is impossible to empirically estimate the reliability of samples.252

This means that the reliability of accepted hypotheses is also253

unknown, regardless of the reported false positive rate. In254

fact, it is a virtual certainty that the true false positive rate255

for a given hypothesis exceeds the reported value simply as256

a result of numerical instabilities. This uncertainty inherent257

to derived data is compounded with traditional arguments258

limiting the trustworthiness of claims33, and hampers the259

ability of researchers to evaluate the quality of results. The260

accompaniment of brain imaging experiments with direct261

evaluations of their stability, as was done here, would allow262

researchers to simultaneously improve the numerical stability263

of their analyses and accurately gauge confidence in them.264

The induced variability in derived brain networks may be265

leveraged to estimate aggregate connectomes with lower bias266

than any single independent observation, leading to learned267

relationships that are more generalizable and ultimately more268

useful.269

Cost-Effective Data Augmentation The evaluation of reli-270

ability in brain imaging has historically relied upon the ex-271

pensive collection of repeated measurements choreographed272

by massive cross-institutional consortia34, 35. The finding that273

perturbing experiments using MCA both increased the relia-274

bility of the dataset and decreased off-target differences across275

acquisitions opens the door for a promising paradigm shift.276

Given that MCA is data-agnostic, this technique could be used277

effectively in conjunction with, or in lieu of, realistic noise278

models to augment existing datasets. While this of course279

would not replace the need for repeated measurements when280

exploring the effect of data collection paradigm or study lon-281

gitudinal progressions of development or disease, it could be282

used in conjunction with these efforts to increase the reliabil-283

ity of each distinct sample within a dataset. In contexts where284

repeated measurements are collected to increase the fidelity of285

the dataset, MCA could potentially be employed to increase286

the reliability of the dataset and save millions of dollars on287

data collection. This technique also opens the door for the288

characterization of reliability across axes which have been289

traditionally inaccessible. For instance, in the absence of a290

realistic noise model or simulation technique similar to MCA,291

the evaluation of network stability across data subsampling292

would not have been possible.293

Shortcomings and Future Questions Given the complex-294

ity of recompiling complex software libraries, pre-processing295
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was not perturbed in these experiments. Other work has shown296

that linear registration, a core piece of many elements of pre-297

processing such as motion correction and alignment, is sensi-298

tive to minor perturbations7. It is likely that the instabilities299

across the entire processing workflow would be compounded300

with one another, resulting in even greater variability. While301

the analyses performed in this paper evaluated a single dataset302

and set of pipelines, extending this work to other modalities303

and analyses is of interest for future projects.304

This paper does not explore methodological flexibility or305

compare this to numerical instability. Recently, the nearly306

boundless space of analysis pipelines and their impact on out-307

comes in brain imaging has been clearly demonstrated1. The308

approach taken in these studies complement one another and309

explore instability at the opposite ends of the spectrum, with310

human variability in the construction of an analysis workflow311

on one end and the unavoidable error implicit in the digital312

representation of data on the other. It is of extreme interest313

to combine these approaches and explore the interaction of314

these scientific degrees of freedom with effects from software315

implementations, libraries, and parametric choices.316

Finally, it is important to state explicitly that the work317

presented here does not invalidate analytical pipelines used in318

brain imaging, but merely sheds light on the fact that many319

studies are accompanied by an unknown degree of uncertainty320

due to machine-introduced errors. The presence of unknown321

error-bars associated with experimental findings limits the322

impact of results due to increased uncertainty. The desired323

outcome of this paper is to motivate a shift in scientific com-324

puting – particularly in neuroimaging – towards a paradigm325

which favours the explicit evaluation of the trustworthiness of326

claims alongside the claims themselves.327
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Methods471

Dataset472

The Nathan Kline Institute Rockland Sample (NKI-RS)29
473

dataset contains high-fidelity imaging and phenotypic data474

from over 1,000 individuals spread across the lifespan. A475

subset of this dataset was chosen for each experiment to both476

match sample sizes presented in the original analyses and to477

minimize the computational burden of performing MCA. The478

selected subset comprises 100 individuals ranging in age from479

6 – 79 with a mean of 36.8 (original: 6 – 81, mean 37.8),480

60% female (original: 60%), with 52% having a BMI over 25481

(original: 54%).482

Each selected individual had at least a single session483

of both structural T1-weighted (MPRAGE) and diffusion-484

weighted (DWI) MR imaging data. DWI data was acquired485

with 137 diffusion directions; more information regarding the486

acquisition of this dataset can be found in the NKI-RS data487

release29.488

In addition to the 100 sessions mentioned above, 25 indi-489

viduals had a second session to be used in a test-retest analysis.490

Two additional copies of the data for these individuals were491

generated, including only the odd or even diffusion directions492

(64 + 9 B0 volumes = 73 in either case). This allowed for an493

extra level of stability evaluation to be performed between the494

levels of MCA and session-level variation.495

In total, the dataset is composed of 100 downsampled496

sessions of data originating from 50 acquisitions and 25 in-497

dividuals for in depth stability analysis, and an additional498

100 sessions of full-resolution data from 100 individuals for499

subsequent analyses.500

Processing501

The dataset was preprocessed using a standard FSL36 work-502

flow consisting of eddy-current correction and alignment. The503

MNI152 atlas37 was aligned to each session of data, and the re-504

sulting transformation was applied to the DKT parcellation38.505

Downsampling the diffusion data took place after preprocess-506

ing was performed on full-resolution sessions, ensuring that507

an additional confound was not introduced in this process508

when comparing between downsampled sessions. The pre-509

processing described here was performed once without MCA,510

and thus is not being evaluated.511

Structural connectomes were generated from preprocessed512

data using two canonical pipelines from Dipy30: deterministic513

and probabilistic. In the deterministic pipeline, a constant514

solid angle model was used to estimate tensors at each voxel515

and streamlines were then generated using the EuDX algo-516

rithm31. In the probabilistic pipeline, a constrained spherical517

deconvolution model was fit at each voxel and streamlines518

were generated by iteratively sampling the resulting fiber ori-519

entation distributions. In both cases tracking occurred with 8520

seeds per 3D voxel and edges were added to the graph based521

on the location of terminal nodes with weight determined by522

fiber count.523

The random state of the probabilistic pipeline was fixed524

for all analyses. Fixing this random seed allowed for explicit525

attribution of observed variability to Monte Carlo simulations526

rather than internal state of the algorithm.527

Perturbations528

All connectomes were generated with one reference execu-529

tion where no perturbation was introduced in the processing.530

For all other executions, all floating point operations were531

instrumented with Monte Carlo Arithmetic (MCA)8 through532

Verificarlo9. MCA simulates the distribution of errors im-533

plicit to all instrumented floating point operations (flop). This534

rounding is performed on a value x at precision t by:535

inexact(x) = x+2ex−t
ξ (1)

where ex is the exponent value of x and ξ is a uniform ran-536

dom variable in the range (− 1
2 , 1

2 ). MCA can be introduced in537

two places for each flop: before or after evaluation. Perform-538

ing MCA on the inputs of an operation limits its precision,539

while performing MCA on the output of an operation high-540
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lights round-off errors that may be introduced. The former is541

referred to as Precision Bounding (PB) and the latter is called542

Random Rounding (RR).543

Using MCA, the execution of a pipeline may be performed544

many times to produce a distribution of results. Studying the545

distribution of these results can then lead to insights on the546

stability of the instrumented tools or functions. To this end,547

a complete software stack was instrumented with MCA and548

is made available on GitHub at https://github.com/549

gkiar/fuzzy.550

Both the RR and PB variants of MCA were used indepen-551

dently for all experiments. As was presented in4, both the552

degree of instrumentation (i.e. number of affected libraries)553

and the perturbation mode have an effect on the distribution554

of observed results. For this work, the RR-MCA was ap-555

plied across the bulk of the relevant libraries and is referred556

to as Pipeline Perturbation. In this case the bulk of numerical557

operations were affected by MCA.558

Conversely, the case in which PB-MCA was applied across559

the operations in a small subset of libraries is here referred560

to as Input Perturbation. In this case, the inputs to operations561

within the instrumented libraries (namely, Python and Cython)562

were perturbed, resulting in less frequent, data-centric pertur-563

bations. Alongside the stated theoretical differences, Input564

Perturbation is considerably less computationally expensive565

than Pipeline Perturbation.566

All perturbations targeted the least-significant-bit for all567

data (t = 24 and t = 53 in float32 and float64, respectively9).568

Simulations were performed 20 times for each pipeline execu-569

tion. A detailed motivation for the number of simulations can570

be found in39.571

Evaluation572

The magnitude and importance of instabilities in pipelines573

can be considered at a number of analytical levels, namely:574

the induced variability of derivatives directly, the resulting575

downstream impact on summary statistics or features, or the576

ultimate change in analyses or findings. We explore the na-577

ture and severity of instabilities through each of these lenses.578

Unless otherwise stated, all p-values were computed using579

Wilcoxon signed-rank tests.580

Direct Evaluation of the Graphs581

The differences between simulated graphs was measured di-582

rectly through both a direct variance quantification and a583

comparison to other sources of variance such as individual-584

and session-level differences.585

Quantification of Variability Graphs, in the form of adja-586

cency matrices, were compared to one another using three587

metrics: normalized percent deviation, Pearson correlation,588

and edgewise significant digits. The normalized percent devi-589

ation measure, defined in4, scales the norm of the difference590

between a simulated graph and the reference execution (that591

without intentional perturbation) with respect to the norm of592

the reference graph. The purpose of this comparison is to593

provide insight on the scale of differences in observed graphs594

relative to the original signal intensity. A Pearson correlation595

coefficient40 was computed in complement to normalized per-596

cent deviation to identify the consistency of structure and not597

just intensity between observed graphs.598

Finally, the estimated number of significant digits, s′, for599

each edge in the graph is calculated as:600

s′ =−log10
σ

|µ|
(2)

where µ and σ are the mean and unbiased estimator of601

standard deviation across graphs, respectively. The upper602

bound on significant digits is 15.7 for 64-bit floating point603

data.604

The percent deviation, correlation, and number of signifi-605

cant digits were each calculated within a single session of data,606

thereby removing any subject- and session-effects and provid-607

ing a direct measure of the tool-introduced variability across608

perturbations. A distribution was formed by aggregating these609

individual results.610

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341495doi: bioRxiv preprint 

https://github.com/gkiar/fuzzy
https://github.com/gkiar/fuzzy
https://github.com/gkiar/fuzzy
https://doi.org/10.1101/2020.10.15.341495
http://creativecommons.org/licenses/by-nd/4.0/


Numerical Instabilities in Analytical Pipelines Lead to Large and Meaningful Variability in Brain Networks — 13/18

Class-based Variability Evaluation To gain a concrete un-611

derstanding of the significance of observed variations we ex-612

plore the separability of our results with respect to understood613

sources of variability, such as subject-, session-, and pipeline-614

level effects. This can be probed through Discriminability26,615

a technique similar to ICC24 which relies on the mean of a616

ranked distribution of distances between observations belong-617

ing to a defined set of classes. The discriminability statistic is618

formalized as follows:619

Disc.= Pr(‖gi j−gi j′‖ ≤ ‖gi j−gi′ j′‖) (3)

where gi j is a graph belonging to class i that was measured620

at observation j, where i 6= i′ and j 6= j′.621

Discriminability can then be read as the probability that an622

observation belonging to a given class will be more similar to623

other observations within that class than observations of a dif-624

ferent class. It is a measure of reproducibility, and is discussed625

in detail in26. This definition allows for the exploration of626

deviations across arbitrarily defined classes which in practice627

can be any of those listed above. We combine this statistic628

with permutation testing to test hypotheses on whether differ-629

ences between classes are statistically significant in each of630

these settings.631

With this in mind, three hypotheses were defined. For632

each setting, we state the alternate hypotheses, the variable(s)633

which were used to determine class membership, and the634

remaining variables which may be sampled when obtaining635

multiple observations. Each hypothesis was tested indepen-636

dently for each pipeline and perturbation mode, and in every637

case where it was possible the hypotheses were tested using638

the reference executions alongside using MCA.639

HA1: Individuals are distinct from one another640

Class definition: Subject ID641

Comparisons: Session (1 subsample), Subsample (1642

session), MCA (1 subsample, 1 session)643

HA2: Sessions within an individual are distinct644

Class definition: Session ID | Subject ID645

Comparisons: Subsample, MCA (1 subsample)646

HA3: Subsamples are distinct647

Class definition: Subsample | Subject ID, Session ID648

Comparisons: MCA649

As a result, we tested 3 hypotheses across 6 MCA ex-650

periments and 3 reference experiments on 2 pipelines and 2651

perturbation modes, resulting in a total of 30 distinct tests.652

Evaluating Graph-Theoretical Metrics653

While connectomes may be used directly for some analyses,654

it is common practice to summarize them with structural mea-655

sures, which can then be used as lower-dimensional proxies656

of connectivity in so-called graph-theoretical studies11. We657

explored the stability of several commonly-used univariate658

(graphwise) and multivariate (nodewise or edgewise) features.659

The features computed and subsequent methods for compari-660

son in this section were selected to closely match those com-661

puted in10.662

Univariate Differences For each univariate statistic (edge663

count, mean clustering coefficient, global efficiency, modu-664

larity of the largest connected component, assortativity, and665

mean path length) a distribution of values across all perturba-666

tions within subjects was observed. A Z-score was computed667

for each sample with respect to the distribution of feature668

values within an individual, and the proportion of ”classically669

significant” Z-scores, i.e. corresponding to p < 0.05, was670

reported and aggregated across all subjects. The number of671

significant digits contained within an estimate derived from a672

single subject were calculated and aggregated.673

Multivariate Differences In the case of both nodewise (de-674

gree distribution, clustering coefficient, betweenness central-675

ity) and edgewise (weight distribution, connection length) fea-676

tures, the cumulative density functions of their distributions677

were evaluated over a fixed range and subsequently aggre-678
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gated across individuals. The number of significant digits679

for each moment of these distributions (sum, mean, variance,680

skew, and kurtosis) were calculated across observations within681

a sample and aggregated.682

Evaluating A Brain-Phenotype Analysis683

Though each of the above approaches explores the instabil-684

ity of derived connectomes and their features, many modern685

studies employ modeling or machine-learning approaches, for686

instance to learn brain-phenotype relationships or identify dif-687

ferences across groups. We carried out one such study and ex-688

plored the instability of its results with respect to the upstream689

variability of connectomes characterized in the previous sec-690

tions. We performed the modeling task with a single sampled691

connectome per individual and repeated this sampling and692

modelling 20 times. We report the model performance for693

each sampling of the dataset and summarize its variance.694

BMI Classification Structural changes have been linked to695

obesity in adolescents and adults41. We classified normal-696

weight and overweight individuals from their structural net-697

works (using for overweight a cutoff of BMI > 2513). We698

reduced the dimensionality of the connectomes through prin-699

cipal component analysis (PCA), and provided the first N-700

components to a logistic regression classifier for predicting701

BMI class membership, similar to methods shown in12, 13.702

The number of components was selected as the minimum set703

which explained > 90% of the variance when averaged across704

the training set for each fold within the cross validation of705

the original graphs; this resulted in a feature of 20 compo-706

nents. We trained the model using k-fold cross validation,707

with k = 2,5,10, and N (equivalent to leave-one-out; LOO).708

Data Availability709

The unprocessed dataset is available through The Consortium710

of Reliability and Reproducibility (http://fcon_1000.711

projects.nitrc.org/indi/enhanced/), including712

both the imaging data as well as phenotypic data which may713

be obtained upon submission and compliance with a Data Us-714

age Agreement. The connectomes generated through simula-715

tions have been bundled and stored permanently (https://716

doi.org/10.5281/zenodo.4041549), and are made717

available through The Canadian Open Neuroscience Platform718

(https://portal.conp.ca/search, search term ”Kiar”).719

Code Availability720

All software developed for processing or evaluation is publicly721

available on GitHub at https://github.com/gkpapers/722

2020ImpactOfInstability. Experiments were launched723

using Boutiques42 and Clowdr43 in Compute Canada’s HPC724

cluster environment. MCA instrumentation was achieved725

through Verificarlo9 available on Github at https://github.726

com/verificarlo/verificarlo. A set of MCA in-727

strumented software containers is available on Github at https:728

//github.com/gkiar/fuzzy.729
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S1. Graph Correlation751

The correlations between observed graphs (Figure S1) across each grouping follow the same trend to as percent deviation, as752

shown in Figure 1. However, notably different from percent deviation, there is no significant difference in the correlations753

between pipeline or input instrumentations. By this measure, the probabilistic pipeline is more stable in all cross-MCA and754

cross-directions except for the combination of input perturbation and cross-MCA (p < 0.0001 for all; exploratory).755

The marked lack in drop-off of performance across these settings, inconsistent with the measures show in Figure 1 is due756

to the nature of the measure and the graphs. Given that structural graphs are sparse and contain considerable numbers of757

zero-weighted edges, the presence or absense of an edge dominated the correlation measure where it was less impactful for the758

others. For this reason and others44, correlation is not a commonly used measure in the context of structural connectivity.759
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Figure S1. The correlation between perturbed connectomes and their reference.
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S2. Complete Discriminability Analysis760

Table S1. The complete results from the Discriminability analysis, with results reported as mean ± standard deviation

Discriminability. As was the case in the condensed table, the alternative hypothesis, indicating significant separation across

groups, was accepted for all experiments, with p < 0.005.

Reference Execution Perturbed Pipeline Perturbed Inputs

Exp. Subj. Sess. Samp. Det. Prob. Det. Prob. Det. Prob.

1.1 All All 1 0.64±0.00 0.65±0.00 0.82±0.00 0.82±0.00 0.77±0.00 0.75±0.00

1.2 All 1 All 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.93±0.02 0.90±0.02

1.3 All 1 1 1.00±0.00 1.00±0.00 0.94±0.02 0.90±0.02

2.4 1 All All 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.88±0.12 0.85±0.12

2.5 1 All 1 1.00±0.00 1.00±0.00 0.89±0.11 0.84±0.12

3.6 1 1 All 0.99±0.03 1.00±0.00 0.71±0.07 0.61±0.05

The complete discriminability analysis includes comparisons across more axes of variability than the condensed version.761

The reduction in the main body was such that only axes which would be relevant for a typical analysis were presented. Here,762

each of Hypothesis 1, testing the difference across subjects, and 2, testing the difference across sessions, were accompanied763

with additional comparisons to those shown in the main body.764

Subject Variation Alongside experiment 1.1, that which mimicked a typical test-retest scenario, experiments 1.2 and 1.3765

could be considered a test-retest with a handicap, given a single aqcuisition per individual was compared either across766

subsamples or simulations, respectively. For this reason, it is unsurprising that the dataset achieved considerably higher767

discriminability scores.768

Session Variation Similar to subject variation, the session variation was also modelled across either both or a single769

subsample. In both of these cases the performance was similar, and the finding that input perturbation reduced the off-target770

signal was consistent.771
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S3. Univariate Graph Statistics772

Figure S2 explores the stability of univariate graph-theoretical metrics computed from the perturbed graphs, including modularity,773

global efficiency, assortativity, average path length, and edge count. When aggregated across individuals and perturbations, the774

distributions of these statistics (Figures S2A and S22B) showed no significant differences between perturbation methods for775

either deterministic or probabilistic pipelines.776

However, when quantifying the stability of these measures across connectomes derived from a single session of data, the777

two perturbation methods show considerable differences. The number of significant digits in univariate statistics for Pipeline778

Perturbation instrumented connectome generation exceeded 11 digits for all measures except modularity, which contained779

more than 4 significant digits of information (Figure S2C). When detecting outliers from the distributions of observed statistics780

for a given session, the false positive rate (using a threshold of p = 0.05) was approximately 2% for all statistics with the781

exception of modularity which again was less stable with an approximately 10% false positive rate. The probabilistic pipeline782

is significantly more stable than the deterministic pipeline (p < 0.0001; exploratory) for all features except modularity. When783

similarly evaluating these features from connectomes generated in the input perturbation setting, no statistic was stable with784

more than 3 significant digits or a false positive rate lower than nearly 6% (Figure S2D). The deterministic pipeline was more785

stable than the probabilistic pipeline in this setting (p < 0.0001; exploratory).786

Two notable differences between the two perturbation methods are, first, the uniformity in the stability of the statistics,787

and second, the dramatic decline in stability of individual statistics in the input perturbation setting despite the consistency in788

the overall distribution of values. It is unclear at present if the discrepancy between the stability of modularity in the pipeline789

perturbation context versus the other statistics suggests the implementation of this measure is the source of instability or if it is790

implicit to the measure itself. The dramatic decline in the stability of features derived from input perturbed graphs despite no791

difference in their overall distribution both shows that while individual estimates may be unstable the comparison between792

aggregates or groups may be considered much more reliable; this finding is consistent with that presented for multivariate793

statistics.794
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Figure S2. Distribution and stability assessment of univariate graph statistics. (A, B) The distributions of each computed

univariate statistic across all subjects and perturbations for Pipeline and Input settings, respectively. There was no significant

difference between the distributions in A and B. (C, D; top) The number of significant decimal digits in each statistic across

perturbations, averaged across individuals. The dashed red line refers to the maximum possible number of significant digits. (C,

D; bottom) The percentage of connectomes which were deemed significantly different (p < 0.05) from the others obtained for

an individual.
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