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Progress in nearly every scientific discipline is hindered by the presence of independent noise in 5 

spatiotemporally structured datasets. Three widespread technologies for measuring neural activity—6 

calcium imaging, extracellular electrophysiology, and fMRI—all operate in domains in which shot 7 

noise and/or thermal noise deteriorate the quality of measured physiological signals. Current 8 

denoising approaches sacrifice spatial and/or temporal resolution to increase the Signal-to-Noise 9 

Ratio of weak neuronal events, leading to missed opportunities for scientific discovery. 10 

Here, we introduce DeepInterpolation, a general-purpose denoising algorithm that trains a spatio-11 

temporal nonlinear interpolation model using only noisy samples from the original raw data.  12 

Applying DeepInterpolation to in vivo two-photon Ca2+ imaging yields up to 6 times more segmented 13 

neuronal segments with a 15 fold increase in single pixel SNR, uncovering network dynamics at the 14 

single-trial level. In extracellular electrophysiology recordings, DeepInterpolation recovered 25% 15 

more high-quality spiking units compared to a standard data analysis pipeline. On fMRI datasets, 16 

DeepInterpolation increased the SNR of individual voxels 1.6-fold. All these improvements were 17 

attained without sacrificing spatial or temporal resolution. 18 

DeepInterpolation could well have a similar impact in other domains for which independent noise is 19 

present in experimental data.  20 

  21 
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Introduction 22 

Independent noise is a major impediment to any data acquisition effort. Experimental systems neuroscience 23 

is acutely impacted given the weakness of neuronal signals. For example, in vivo imaging of fluorescent 24 

reporters of cellular activity (voltage and calcium) are typically operating in low-photon-count regimes 25 

where shot noise largely dominates the recorded signal. Similarly, thermal and shot noise present in 26 

electronic circuits independently drown out in vivo electrophysiological recordings causing lower 27 

sensitivity, impairing the detection of individual spikes. Functional Magnetic Resonance Imaging (fMRI) 28 

also suffers from thermal noise present in recording circuits, as relevant changes in Blood-Oxygen-Level 29 

Dependent (BOLD) signal are typically just a few percent. The presence of independent noise in all these 30 

techniques hampers our ability to measure authentic biological signals, causing irreproducible research or 31 

inducing biases related to particular choices of denoising filters1 or statistical thresholds2. 32 

Often, nearby spatio-temporal samples share signals but are independently affected by noise. This 33 

relationship allows the creation of filters to remove noise when applied to the data. Indeed, it is common 34 

practice to apply median or Gaussian filters as a first pre-processing step. Sometimes these averaging filters 35 

are designed in the Fourier domain to efficiently separate noise from the signal. Although this approach has 36 

been successful for many applications, optimal denoising filters can be complicated to build when these 37 

data relationships span multiple dimensions (e.g., time and space) or are intrinsically non-linear. 38 

Importantly, most of these approaches also impact the signal, causing reductions in spatial or temporal 39 

resolution.  40 

The use of machine learning with large datasets permits very complex hierarchical relationships between 41 

data points to be learned3.  In this framework, learned statistical relationships between samples are exploited 42 

to reconstruct a noiseless version of the signal, rather than applying filters to remove noise from the signal. 43 

This approach has been particularly successful for learning denoising filters or upsampling filters, including 44 
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for fluorescence imaging4,5 but was limited until recently to cases where ground truth is readily available. 45 

For example, pre-acquired structural data at various spatial resolutions made it possible to train neural 46 

network models to upsample datasets and limit the amount of data necessary to reconstruct a full resolution 47 

image4. However, when dealing with the types of dynamic signals at the heart of systems neuroscience, 48 

denoised datasets or ground truth data are not readily available or may be impossible to obtain.  49 

A recent approach called Noise2Noise6 demonstrated that deep neural networks can be trained to perform 50 

image restoration without access to any clean ‘ground-truth’ data, with performance comparable or 51 

exceeding training using cleaned data. Theoretical work extended this framework to remove pixel-wise 52 

independent noise7,8. Here, we adapted these recent developments in machine learning to the problem of 53 

denoising dynamical signals at the heart of systems neuroscience, thereby building a general-purpose 54 

denoising algorithm we call DeepInterpolation. Here, we describe and demonstrate the use of 55 

DeepInterpolation for two-photon in vivo Ca2+ imaging data, in vivo electrophysiological recordings, and 56 

whole brain fMRI data. Importantly, our approach is applicable to many experimental fields with minimal 57 

modifications. 58 

Results 59 

The Noise2Noise6 study demonstrated that deep neural networks can be trained to perform image 60 

restoration without access to any clean ‘ground-truth’ data. At the heart of this approach is the insight that 61 

gradients derived from a loss function calculated on noisy samples are still partially aligned toward the 62 

correct solution. Provided enough noisy samples are available to train—and the noisy loss is an unbiased 63 

estimate of the true loss—the correct denoising filters are still learned6. However, unlike the data used in 64 

the Noise2Noise publication6, systems neuroscience data does not contain pairs of samples with identical 65 

signals but different noise.   66 
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To address this limitation, we followed a similar approach proposed recently in the Noise2Self7 and 67 

Noise2Void8 frameworks. In the absence of training pairs, we sought to solve an interpolation problem in 68 

order to learn the spatio-temporal relationships present in the data. That is, we do not seek to denoise an 69 

image but rather to learn the underlying relationship between an entire frame and spatio-temporally nearby 70 

samples by optimizing the reconstruction loss calculated on noisy instances of the center frame. Second, 71 

the noise present in the target (center) samples needs to be independent from the input (adjacent) samples; 72 

otherwise our relationship model would overfit the noise we seek to remove. We eliminated any chance of 73 

overfitting by (1) omitting the target center frame from the input, and (2) presenting training samples only 74 

once during training. While this noisy center frame is the most informative about its own value, it serves 75 

the key function of the target during training. During inference, the dataset is simply streamed through the 76 

trained network to reconstruct a noiseless version of the signal. The quality of the reconstruction depends 77 

on whether enough information about the center frame was present in spatio-temporally nearby samples 78 

and if it was appropriately learned by the training procedure. Given the extensive leverage of complex 79 

relationships present in the data, spanning multiple spatio-temporal dimensions, we will refer to this general 80 

framework as DeepInterpolation.  81 

Application of DeepInterpolation to in vivo two-photon Ca2+ imaging 82 

For two-photon imaging, we constructed our denoising network following simple principles: First, given 83 

the presence of neuropil signals distributed throughout the background, a single pixel can share information 84 

with other pixels throughout the entire field of view. Second, the decay dynamics of calcium-dependent 85 

fluorescent indicators (GCaMP6f τpeak = 80 +/- 35 ms; τ1/2 = 400 +/- 41 ms9) suggest frames as far as 1 86 

second away can carry meaningful information. Therefore, we chose to train a neuronal network to 87 

reconstruct a center frame from the data present in Npre prior frames and Npost subsequent frames. The center 88 

frame was omitted from the input so as to not provide any information about the independent pixel-wise 89 

noise due to shot noise (Fig. 1A). The  final value of the meta-parameter Npre and Npost were selected by 90 
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comparing the validation loss during training (Fig. 1B, see Methods and Appendix I for details on loss 91 

calculation). Our denoising network utilized a UNet inspired encoder-decoder architecture with 2D 92 

convolutional layers1011.  93 

The Allen Brain Observatory datasets (http://observatory.brain-map.org/visualcoding) offered a unique 94 

opportunity to train these denoising networks as we had collected more than 1,300 hours of highly 95 

standardized and curated datasets12. For each Gcamp6 reporter line (Ai93, Ai148), we had access to more 96 

than 100 million frames carefully curated with standard Quality Control (QC) metrics. We leveraged this 97 

database by presenting each training sample only once during the entire training process, completely 98 

eliminating any chance of noise overfitting.  99 

Within the limits of our computational infrastructure, we showed that using a larger number of both prior 100 

and subsequent frames as input yielded smaller final validation reconstruction losses (see Fig. 1B). Training 101 

required 225,000 samples pulled randomly from 1144 separate one hour long experiments to stop improving 102 

(see Fig. 1B). Since the loss is dominated by the independent noise present in the target image, the 103 

reconstruction loss could not converge to zero. This was supported by simulation of ideal reconstruction 104 

losses with known ground truth (Supp. Fig. 1). In fact, even small improvement in the loss related to visible 105 

improvements in the reconstruction quality of the signal (Fig. 1B).  106 

Applying this trained network to denoise held-out datasets (Supp. Video 1, 2) yielded remarkable 107 

improvements in imaging quality. The same trained network generalized well to many movie examples (see 108 

4 examples on Supp. Video 2). Shot noise was visibly eliminated from the reconstruction (see single frames 109 

in Fig. 1C and associated calcium trace) while calcium dynamics were preserved, yielding a 15 fold increase 110 

in SNR (mean raw pixel SNR = 2.4 +/- 0.01, mean pixel SNR after DeepInterpolation = 37.2 +/- 0.2, 111 

N=9966 pixels). While the movies we used during training were motion corrected, a small amount of 112 
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motion remained and close inspection of the reconstructions showed that the algorithm also corrected these 113 

remaining motion artifacts (Supp. Video 1, 2). 114 

We compared our denoising approach with a recent algorithm called Penalized Matrix Decomposition 115 

(PMD)13. While PMD properly reconstructed somatic activities, it rejected most of the variance present in 116 

background pixels, contrary to DeepInterpolation (see Supp. Video 3). A key underlying assumption of 117 

PMD is that motion artifacts are absent from the data. Contrary to DeepInterpolation movies, we observed 118 

clear artifacts in movies denoised with PMD due to small residual motion artifacts (see arrow in Supp. 119 

Video 3).  120 

To compare these two approaches given this limitation, we created entirely simulated datasets devoid of 121 

motion artifacts, for which we had knowledge of the underlying ground truth. For this, we used a recent 122 

approach called in silico Neural Anatomy and Optical Microscopy (NAOMi)14. NAOMi combines a 123 

detailed anatomical model of a volume of tissue with models of light propagation and laser scanning so as 124 

to generate realistic Ca2+ imaging datasets (see Methods). Both DeepInterpolation and PMD performed 125 

well with datasets generated by NAOMi (see Supp. Fig. 2 B,C and Supp. Video 4). Because 126 

DeepInterpolation used information from nearby frames, it provided visibly smoother calcium traces with 127 

reconstruction losses 1.2 to 2 times smaller than with PMD (see Supp. Fig. 2).  128 

Having established that DeepInterpolation compares favorably to the state of the art, we investigated how 129 

removing shot noise impacts our ability to analyze the activity of neuronal compartments.  130 

Segmentation of active compartments during Ca2+ imaging is transformed by DeepInterpolation.  131 

We first sought to evaluate the impact of DeepInterpolation on the segmentation process itself. Existing 132 

approaches to calcium imaging segmentation rely on the analysis of correlation between pixels to create 133 

ROIs15,16. After denoising, single pixel pairwise correlations greatly increased from near zero (averaged 134 

Pearson correlation = 9.0*10-4 +/- 2.3*10-6 s.e.m, n = 4*108 pairs of pixels across 4 experiments) to a 135 
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significant positive value (averaged Pearson correlation = 0.10 +/- 1.210-5 s.e.m, n = 4e8 pairs of pixels 136 

across 4 experiments, KS test comparing raw with DeepInterpolation: p = 9*10-71, n = 1,000 pixels 137 

randomly sub-selected, Supp. Fig 3). We expected that this increase in averaged correlation would improve 138 

the quality and the number of segmented regions. To that end, we leveraged the sparse mode algorithm 139 

available in Suite2p16.  140 

The improvement in correlation structure benefited this algorithm considerably. Suite2p extracted a large 141 

number of additional active compartments in the field of view, including small sets of pixels covered by 142 

axons or dendrites perpendicular to the imaging plane (Fig. 2A). In the absence of shot noise and single 143 

frame motion artifacts, cell filters were surprisingly well defined (Fig. 2B). Automatically extracted ROIs 144 

showed precise details of each compartment, sometimes encompassing dendrites or axons connected to a 145 

local soma. In some cases, active attached buttons were clearly visible in the extracted filter of an horizontal 146 

dendrite (Fig. 2B). In many movies, a large number of smaller, punctated compartments - likely a mixture 147 

of horizontal sections of apical dendrites or axons - were detected, each with clear calcium transients (Fig. 148 

2C).  149 

Although those numerous compartments were not detected in the original movie, we applied the weighted 150 

masks to both denoised and raw movies to quantify the improvement in SNR of the associated temporal 151 

trace. ROIs associated with somatic compartments typically yielded a mean SNR of 21.0 +/- 0.5 (s.e.m, n 152 

= 240 in 3 experiment) in the original movie (Fig. 2D); after denoising, the majority of those ROIs had an 153 

SNR above 40 (mean 73.8 +/- 0.5). Similarly, the mean SNR across all compartments, including the 154 

smallest apical dendrites, went from a mean of 13.2 +/- 0.1 (n = 3385 in 3 experiments) to 73.8 +/- 0.5.  155 

Assuming that a single spike causes a calcium rise of  about 10%9, an SNR above 20 is necessary for those 156 

events to be twice as large as the noise. Although this is a necessary but not sufficient condition, this 157 

suggests that removing shot noise will increase our capability to detect the presence of single spikes.  158 
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The average number of active detected ROIs with SNR above 20 went from 178 +/- 135 (s.e.m., in 3 159 

experiments) to 1122 +/- 371 in a 400x400 um2 field of view (Fig. 2D). That is, as much as six times more 160 

neuronal compartments are now available from a single movie for analysis following DeepInterpolation, 161 

thanks to a more reliable segmentation process.  162 

DeepInterpolation improves the analysis of correlated Ca2+ imaging activity 163 

To illustrate this new opportunity, we analyzed the response of all compartments to 10 repeats of a natural 164 

movie stimulation. We found clear examples of large and smaller responses to natural movies in both 165 

somatic and non-somatic compartments (Supp. Fig. 4A). The trial by trial response reliability (see 166 

Methods) increased substantially from raw traces to traces after DeepInterpolation (see, Fig. 2E), both for 167 

somatics ROIs (raw: mean 0.10 +/- 0.01, DeepInterpolation: mean 0.20 +/- 0.01; s.e.m, n = 240 ROIs in n 168 

= 3 experiments) and across all ROIs (raw: mean 0.029 +/- 0.001, DeepInterpolation: mean 0.113 +/- 0.002; 169 

s.e.m, n = 3385 ROIs in n = 3 experiments). When considering the distribution of these responses across a 170 

single field of view, both somatic and non-somatic compartments had a similar distribution for their 171 

preferred movie frame, the maximum DF/F response at this prefered stimulus, as well as the reliability of 172 

their response to natural movies (see Supp. Fig. 4B , C, D).  173 

Neuronal representations are inherently noisy even when sensory stimuli and the behavioral state are kept 174 

constant. This key property of neuronal networks has fueled a large number of studies on the relationship 175 

between the averaged signal representation in individual neurons and the trial by trial fluctuation of these 176 

responses17,18. Experimental noise directly impacts the measure of neuronal relationships as it modulates 177 

trial-by-trial responses.  178 

For each pair of ROIs in a single experiment, we extracted their shared signal and noise correlation (see 179 

Methods). As expected, we found that both signal as well as noise correlation increased after denoising 180 

(signal: from 0.06725 ± 0.00006 to 0.25 ± 0.0001; noise from 0.02240 ± 0.00002 to 0.12351 ± 0.00008; 181 
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both for 2,329,554 pairs of ROIs from three experiments; Fig. 2F). This result was not just due to the 182 

improved segmentation as it was preserved using ROIs only detected on raw noisy data (see Supp. Fig. 5).  183 

To further illustrate how these improved measures of neuronal fluctuations impacted the analysis of 184 

functional interactions, we compared the spatial distribution of pairwise correlations between neurons 185 

during natural movie stimulation. DeepInterpolation largely increased the number of strong pairwise 186 

interactions for both somatic and non somatic pairs (see Fig. 2G, all ROIs: 43 to 1721 pairs). These 187 

correlated pairs of units were almost invisible in the original data, illustrating the improved biological 188 

insight gained through denoising. 189 

Application of DeepInterpolation to in vivo electrophysiological recordings 190 

Electrophysiological recordings from high-density silicon probes have similar characteristics to two-photon 191 

imaging movies: information is shared across nearby pixels (electrodes), as well as across time. We 192 

therefore reasoned that a similar architecture should perform well for denoising electrophysiology data, in 193 

particular for removing strictly independent thermal and shot noise present in the recordings. For training 194 

data, we used Neuropixels data that were similarly standardized and curated as the two-photon recordings19. 195 

Because a single action potential lasts ~1 ms, we constructed our interpolating filter to predict the voltage 196 

profile at any given moment from 30 preceding and 30 following time steps acquired at 30 kHz. Contrary 197 

to two-photon imaging, we found that omitting one sample before and after the center sample better rejected 198 

the background noise while keeping the signal reconstruction of the highest quality. The architecture of the 199 

network was similar to the one used for two-photon imaging, except that the input layer was reshaped to 200 

match the approximate layout of the Neuropixels recording sites (Fig. 3A). Because electrophysiological 201 

recordings have a 1,000-fold higher sampling rate than two-photon imaging, we had access to essentially 3 202 

orders of magnitude more training data per experiment and could train the network using only 3 experiments 203 

in total.  204 
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After inference, a qualitative inspection of the recordings showcased excellent noise rejection (Fig. 3B). 205 

We compared spike profiles before and after denoising and found that the spike waveforms were more 206 

clearly visible in the denoised data, especially for units with lower amplitude spikes (Fig. 3B, inset; Fig. 207 

3C). The residual of our reconstruction showed weak spike structure but spectral analysis revealed a mostly 208 

flat frequency distribution (Supp. Fig. 6A). Importantly, the overall shape (amplitude and decay time) of 209 

individual action potentials was preserved, while the median channel RMS noise was decreased 1.7-fold 210 

(6.96 µV after denoising, see Fig. 3D). We ran a state-of-the-art spike sorting algorithm (Kilosort2, version 211 

downloaded April 8, 2019) and removed any detected units with waveforms not likely to be associated with 212 

action potentials. After denoising, we found 25.5 ± 14.5% more high-quality units per probe (ISI violations 213 

score < 0.5, amplitude cutoff < 0.1, presence ratio > 0.95; see Methods for details). The number of detected 214 

units was higher after DeepInterpolation regardless of the quality metric thresholds that were chosen (Supp. 215 

Fig. 6B). The majority of additional units had low-amplitude waveforms, with the number of units with 216 

waveform amplitudes above 75 µV remaining roughly the same (1532 before vs. 1511 after), while the 217 

number with amplitudes below 75 µV increased dramatically (381 before vs. 910 after) (Fig. 3E). For units 218 

that were clearly matched before and after denoising (at least 70% overlapping spikes), average SNR 219 

(defined as the ratio of the waveform amplitude to the RMS noise on the peak channel) increased from 11.2 220 

to 14.5 (Fig. 3F).  221 

By searching for spatiotemporally overlapping spikes, we determined that 6.2 ± 2.9% of units in the original 222 

recording were no longer detected after applying DeepInterpolation (<50% matching spikes). However, 223 

this was counterbalanced by the addition of 20.2 ± 4.8% units that had fewer than 50% matching spikes in 224 

the original data (example unit in Supp. Fig. 6C). This is less than the 25.5% increase cited above, because 225 

it accounts for a minority of units that were detected but merged together in the original data. To validate 226 

that these novel units were likely to correspond to actual neuronal compartments, we analyzed their 227 

responses to natural movie stimulation, using the same movie as in the two-photon imaging study. We 228 
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found approximately 9% more reliably visually modulated units in the visual cortex after denoising (Supp. 229 

Fig. 6D), and found clear examples of stimulus-modulated units that were previously undetected (Supp. 230 

Fig. 6E).  231 

Applying DeepInterpolation to extracellular electrophysiology data increased the unit yield across all brain 232 

regions tested, including visual cortex, hippocampus, and thalamus (Supp. Fig. 7A). Additional units 233 

tended to have firing rates in the middle of each region's average range and waveform amplitudes below 234 

100 µV (Supp. Fig. 7B). In all regions except for dentate gyrus, DeepInterpolation preserved the original 235 

waveform amplitude, while detecting more low-amplitude units. The downward shift in waveform 236 

amplitude observed in dentate gyrus suggests that it may be necessary to provide additional training data 237 

from this region in order to optimize performance of the denoising step. In the visual cortex, additional 238 

units were primarily "regular-spiking" (waveform peak-to-trough duration > 0.4 ms), rather than "fast-239 

spiking." This suggests that these may be previously undetectable regular-spiking interneurons with small 240 

cell bodies; however, applying DeepInterpolation to datasets with ground truth cell type labels obtained via 241 

optotagging20 will be required to confirm this hypothesis.  242 

Application of DeepInterpolation to functional Magnetic Resonance Imaging (fMRI) 243 

We sought to evaluate how DeepInterpolation could help the analysis of volumetric datasets like fMRI. 244 

fMRI is very noisy as the BOLD response is typically just a 1-2 % change of the total signal amplitude21. 245 

Thermal noise is present in the electrical circuit used for receiving the MR signal. A typical fMRI processing 246 

pipeline involves averaging nearby pixels and successive trials to increase the SNR22,23. We reasoned that 247 

our approach could replace smoothing kernels with more optimal local interpolation functions without 248 

sacrificing spatial or temporal resolution.  249 

Because of the low sampling rate (0.3 to 0.5 Hz), a single fMRI recording session could only provide several 250 

hundreds full brain volumes, while each volume typically contains up to 10 millions voxels. To augment 251 
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our training datasets, we decided to alter our approach: Instead of learning a full brain interpolation model, 252 

we sought to train a more local interpolation function.  253 

To reconstruct the value of a brain sub-volume, we fed a neural network with a consecutive temporal series 254 

of a local volume of 7 x 7 x 7 voxels. The entire target volume was omitted from the input (Fig. 4A). To 255 

allow our interpolation network to be robust to edge conditions, input volumes on the edge of the volume 256 

were fed with zeros for missing values.  For inference, we convolved the denoising network through all 257 

voxels of the volume, across both space and time, using only the center pixel of the output reconstructed 258 

volume to avoid any potential volume boundaries artifacts.  259 

We trained a single denoising network using 140 fMRI datasets acquired across 5 subjects or 1.2 billion 260 

samples. Each training sample was presented only once to avoid any chance of overfitting. After training, 261 

we applied the network to held-out test data, showing excellent denoising performance (Fig. 4C).  262 

We extracted the temporal traces from individual voxels and found that tSNR (see Methods) increased 263 

from 61.6 ± 20.6 to 100.40 ± 38.7 (n = 100,001 voxels). We noticed that the background noise around the 264 

head was clearly excluded and only present in the residual image (Fig. 4C and Supp. Video 5). Surrounding 265 

soft tissues became clearly visible after denoising (see Fig. 4C, Raw data: background voxel std = 7.59 ± 266 

0.01 s.e.m; brain voxels std = 15.95 ± 0.08 s.em., n = 10,000 voxels; DeepInterpolation data: background 267 

std = 2.24 ± 0.01 s.em., n = 10,000; brain voxels std = 9.72 ± 0.05 s.em., n = 10,000 voxels; Residual: 268 

background std = 7.91 ± 0.01; brain voxels std = 15.79 ± 0.08, n = 10,000 voxels). The residual movie 269 

showed no visible structure except for occasional blood vessels, corrected motion artifacts and head 270 

mounting hardware (Fig. 4C, Supp. Video 7). We compared movies extracted with DeepInterpolation to 271 

fully pre-processed movies that included a Gaussian denoising kernel (Supp. Video 6): the original 3D 272 

resolution was fully maintained in DeepInterpolation while the processed data with Gaussian kernel clearly 273 

diffused the voxel dynamic across all nearby voxels.  274 
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Discussion 275 

Here, we demonstrated a methodology, DeepInterpolation, related to the approach outlined in the 276 

Noise2Self7 and Noise2Void8 framework to reconstruct noiseless versions of dynamic datasets, without any 277 

requirement for ground truth. While we share the key separation of noise and signal with these techniques, 278 

we developed our framework independently. As a result, several key differences are notable. First, instead 279 

of working with single fluorescence frames with pixel-wise omissions, we adapted our approach to complex 280 

multi-dimensional biological datasets at the heart of systems neuroscience. Second, we trained our models 281 

on large databases, demonstrating the impact of richer denoising models on existing neuroscience scientific 282 

data and data workflows like cell segmentations or unit detection. Third, we contributed practical solutions: 283 

network topology, training regimen and a validation process to extract complex multi-dimensional models.  284 

When applied to two-photon Ca2+ imaging datasets, DeepInterpolation increased the SNR of single pixels 285 

15-fold. On electrophysiological data, with little architectural change, DeepInterpolation uncovered 25% 286 

more high quality neuronal units. Similarly, applying DeepInterpolation led to a 1.6-fold increase in the 287 

SNR of fMRI voxels, effectively removing thermal noise from the recordings. The successful application 288 

of DeepInterpolation to these three experimental data modalities supports the general relevance of our 289 

method.  290 

Given the increased leverage of the information present between samples, we anticipate DeepInterpolation 291 

to be instrumental for the development of large scale voltage-imaging of neuronal activity24,25 as well as 292 

facilitate high-speed fMRI where thermal noise dominates the BOLD signal. Importantly, the pixel-wise 293 

framework we used for fMRI increased our training dataset, offering the opportunity to apply the same 294 

methodology to many different modalities, regardless of whether or not vast quantities of training data are 295 

available.  Our approach should permit scientists in a variety of fields to re-analyze their existing datasets 296 

but now with independent noise removed.  297 
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Speeding up and/or parallelizing the inference step could facilitate real-time denoising of spatiotemporal 298 

signals. This could enable a process whereby a short dataset would be acquired at the onset of any one 299 

experiment, similar to a calibration routine. This dataset could then be used to fine-tune a pre-trained 300 

denoiser that removes independent noise. Whether such training needs to be specific for each instrument, 301 

each type of instrument, each brain area, each transgenic mouse line or even each subject remains a topic 302 

for future research. 303 

We here demonstrated a general purpose denoising methodology to reconstruct dynamic signals at the heart 304 

of systems neuroscience without the contamination of independent noise.  Applying DeepInterpolation to 305 

Ca2+ imaging, electrophysiological recordings and fMRI showed its wide impacts on SNR and its ability to 306 

uncover previous hidden neuronal dynamics. We anticipate that future work in all 3 modalities we presented 307 

here will revise key subsequent processing steps to better leverage clearer correlation structures now 308 

measured in the data. 309 
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 310 

Fig. 1 | Training DeepInterpolation networks for denoising two-photon Ca2+ imaging. (A) An encoder-311 

decoder deep network with  skip connections was trained to denoise two-photon imaging data. The training 312 

procedure minimized the L1 loss between the predicted frame and a raw frame contaminated with shot 313 

noise. The encoder-decoder network utilized Npre and Npost frames, acquired at 30 Hz, respectively, before 314 

and after the target frame (labelled in green) to predict the central, target frame. (which was omitted from 315 

the input). (B) To validate training performance, the validation loss was monitored for convergence as well 316 

as the quality of the image reconstruction throughout training (see inset). Y axis is the mean absolute 317 
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difference between a predicted frame and a noisy sample across 2500 samples. Individual data samples 318 

were z-scored using a single estimate of mean and standard deviation per movie (see Methods). Different 319 

combinations of (Npre, Npost) values were tested during training. Dashed vertical line indicates early 320 

stopping (due to the extreme computational demands during training) to evaluate the best set of parameters. 321 

We continued training the model with Npre=30 frames and Npost=30 frames and used this set of parameters 322 

for the rest of this study. Right panels illustrate the denoising performance of this model compared to a 323 

single raw frame (top). Notice the improved contrast between 25,000 and 450,000 samples training: the 324 

smallest neuronal compartments are more clearly visible in the latter. Scale bar is 100 μm. Each red inset 325 

is 100 μm. (C) Six example traces extracted from a held-out denoised movie before (black) and after (red) 326 

denoising with DeepInterpolation. The top three traces are extracted from a somatic ROI, while the bottom 327 

three traces are extracted from a single pixel. (D) Distribution of SNR (mean over standard deviation, see 328 

Methods) for 10,000 voxels (randomly selected across N=19 denoised held-out test movies) before and 329 

after DeepInterpolation.  330 

  331 
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 332 

Fig. 2 | Applying DeepInterpolation to Ca2+ imaging reveals many more ROIs and rich network 333 

physiology across small and large neuronal compartments. (A) Three examples showing overlaid 334 

colored segmentation masks on top of a maximum projection image of calcium imaging. Improved 335 

correlation structure (see Supp. Fig 4) allows the detection of a large number of ROIs using the “sparsity” 336 
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segmentation mode in Suite2p16. Red dashed boxes show zoomed-in view over smaller segmented 337 

compartments. Apical and proximal dendrites are cleanly segmented, regardless of whether they were 338 

imaged along their length or through a short vertical section. Scale bar is 100 μm. (B) Example individual 339 

weighted segmented filters showcasing dendrites, isolated somas, somas with attached dendrites, and axons 340 

and small sections of dendrites/axons. Scale bar is 50 μm (C) Manually sorted ROIs from one experiment 341 

showcasing the calcium traces extracted from each individual type of neuronal compartments (from top to 342 

bottom - cell body, horizontal processes, processes perpendicular to imaging plane). After 343 

DeepInterpolation, calcium events are recorded with high SNR in all three compartment types, regardless 344 

of their size. (D, left) Quantification of SNR for all detected ROIs (gray dots) and somatic ROIs (red dots) 345 

with and without DeepInterpolation. The majority of ROIs have an SNR above 20 after DeepInterpolation. 346 

Dashed line represents the identity line.   (D, right) Comparison of the number of ROIs with an SNR above 347 

20 with and without DeepInterpolation. DeepInterpolation allows to reliably record the activity of more 348 

than a thousand compartments in a small (400 μm)2 field of view (n = 3 experiments). (E) Quantification 349 

of the response reliability of individual ROIs  across 10 trials of a natural movie visual stimulus.  Both 350 

somatic and non-somatic ROIs see increased response reliability to a visual stimulus. Dashed line represents 351 

the identity line. (F, left) signal correlation (average correlation coefficient between the average temporal 352 

response of a pair of neurons) for all pairs of ROI in (D) for both raw and denoised traces. (F, right) noise 353 

correlation (average correlation coefficient at all time points of the mean-subtracted temporal response of 354 

a pair of neurons) for all pairs of ROIs in (D). (G) For an example experiment, pairs of ROIs with high 355 

noise correlation (>0.4) are connected with a straight line for both original two-photon data and after 356 

DeepInterpolation. Scale bar is 100 μm.  357 

  358 
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 359 

Fig. 3 | Applying DeepInterpolation to electrophysiological recordings decreases background noise 360 

and yields more neuronal units. (A) Structure of the DeepInterpolation encoder-decoder network for 361 

electrophysiological data recorded from a Neuropixels silicon probe, with two rows of 192 electrodes each, 362 

spaced 20 µm apart. Data is acquired at 30 kHz. (B) Side-by-side comparison of original (left) and denoised 363 

(right) data, plotted as a 2D heatmap with time on the horizontal axis and channels along the vertical axis. 364 

Insets show a close-up of a single action potential across 22 contiguous channels (the box is 3.6 ms wide). 365 

(C) Denoised time series (red) overlaid on the original time series (gray) for three channels from panel B. 366 

(D) Histogram of RMS noise for all channels from 10 experiments, before and after applying 367 

DeepInterpolation. (E) Histogram of waveform amplitudes for all high-quality units from 10 experiments. 368 

(F) Histogram of waveform SNRs for all units that were matched before and after denoising. 369 
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 370 

Fig. 4 | Applying DeepInterpolation to fMRI removes thermal noise. (A) Structure of the 371 

DeepInterpolation encoder-decoder network for fMRI data. Instead of predicting a whole brain volume at 372 

once, the network reconstructs a local 7x7x7 cube of voxels. (B)  tSNR (see Methods) for 10,000 voxels 373 

randomly distributed in the brain volume in raw data and after DeepInterpolation.  (C) Exemplar 374 

reconstruction of a single fMRI volume. First row is a coronal section while the second row is a sagittal 375 

section through a human brain. Scale bar is 5 cm. In the second column, the temporal mean of 3D scan was 376 

removed to better illustrate the presence of thermal noise in the raw data. The local denoising network was 377 

processed throughout the whole 3D scan for denoising. The impact of DeepInterpolation on thermal noise 378 

is illustrated in the 3rd column. The 4th column shows the residual of the denoising process. Notice how 379 

the residual captured independent noise without any signal structure. Occasional large blood vessels are 380 

visible in the residual (see bottom).  381 
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Supplementary Video Table 485 

 486 
Supp. Video 1 Link: 

https://www.dropbox.com/s/xrqn0x0o1z46c7d/Supplementary_video_1.mp4?dl=1 
Caption: 
Left: Example two-photon movie  before and after DeepInterpolation. Right: The average movie 
was subtracted to highlight uncovered fluorescence signals. 

Supp. Video 2 Link: 
https://www.dropbox.com/s/58rh63zhepjf7cb/Supplementary_video_2.mp4?dl=1 
Caption: 
4 examples of two-photon movies before and after DeepInterpolation. The same DeepInterpolation 
model was used for all 4 examples. 

Supp. Video 3 Link: 
https://www.dropbox.com/s/tx6me5gbf6trv23/Supplementary_video_3.mp4?dl=1 
Caption: 
Example two-photon movie processed with Penalized-Matrix Decomposition (PMD) and 
DeepInterpolation. White arrow highlights the impact of motion artifacts on PMD. 

Supp. Video 4 Link: 
https://www.dropbox.com/s/r0lh9si02dg7s9f/Supplementary_video_4.mp4?dl=1 
Caption: 
Simulated two-photon data without motion artifacts with NAOMi. 1st column is ground truth data, 
in the absence of shot noise. The 2nd column is the same movie with shot noise. The 3rd column 
is the output of PMD after processing the movie in the 2nd column. 4th column is the output of 
DeepInterpolation after processing the movie in the 2nd column. 

Supp. Video 5 Link: 
https://www.dropbox.com/s/o4v8tisrcy2ho7p/Supplementary_video_5.mp4?dl=1 
Caption: 
Example fMRI data with and without DeepInterpolation. The 3 columns on the right are horizontal, 
sagittal and coronal sections of the same movie in the first column. The mean was subtracted to 
better highlight small changes in signal.  

Supp. Video 6 Link: 
https://www.dropbox.com/s/m4uqr7vgfga8kgg/Supplementary_video_6.mp4?dl=1 
Caption: 
Example fMRI data. Left column is the original raw data. Middle column is the same data through 
the original processing pipeline, containing a gaussian kernel. The right column is the same data 
through DeepInterpolation. 

Supp. Video 7 Link: 
https://www.dropbox.com/s/7cttm3107xlxpp1/Supplementary_video_7.mp4?dl=1 
Caption: 
Example fMRI data with and without DeepInterpolation. The residual was calculated to illustrate 
the type of signal that was removed by DeepInterpolation.  
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 488 
Methods 489 

Description of experimental data collection of datasets used in this study 490 

 We trained 4 denoising neuronal networks in this study: one for two-photon imaging experiments using 491 

the Ai93(TITL-GCaMP6f) reporter line, one for the Ai148(TIT2L-GCaMP6f-ICL-tTA2) reporter line26,27, 492 

one for Neuropixels recordings using “Phase 3a” probes28, and one for fMRI imaging using datasets from 493 

a study published on OpenNeuro.org29. All raw datasets used for training are available at the time of 494 

publication through AWS S3 buckets (Amazon.com, Inc., see 495 

https://openneuro.org/datasets/ds001246/versions/1.2.1 and https://registry.opendata.aws/allen-brain-496 

observatory/). Importantly, each denoising network is tightly coupled to the inherent properties of the 497 

datasets they were trained on (acquisition parameters, sample characteristics,...).  498 

Calcium imaging in mice was performed with two different two-photon imaging instruments12 (either a 499 

Scientifica Vivoscope or a Nikon A1R MP+). Laser excitation was provided by a Ti:Sapphire laser 500 

(Chameleon Vision–Coherent) at 910 nm. 512x512 Movies were recorded at 30 Hz with resonant scanners 501 

over a 400-μm field of view .  502 

All extracellular electrophysiology recordings were carried out with Neuropixels probes28 acutely inserted 503 

into the brains of awake mice. Data at each recording site was acquired at 30 kHz (spike band) and 2.5 kHz 504 

(LFP band). The spike band (which was used for denoising) had a hardware gain settings of 500x and a 500 505 

Hz high pass filter. Each probe contained 960 recording sites, with the 374 sites closest to the tip configured 506 

for recording. Neural signals were routed to an integrated base containing filtering, amplification, 507 

multiplexing, and digitization circuitry, and were streamed via an Ethernet link to the Open Ephys GUI30 508 

for online visualization and disk writing. Training data consisted of 1-hour of segments extracted from 10 509 

different ~2.5 hour long recordings (see below for information on the specific sessions used).   510 
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All fMRI datasets were collected using 3.0-Tesla Siemens MAGNETOM Trio A Tim scanner located at 511 

the ATR Brain Activity Imaging Center. Methodology was previously described29. Briefly, the functional 512 

images covered the entire brain (TR, 3,000 ms; TE, 30 ms; flip angle, 80°; voxel size, 3 × 3 × 3 mm; FOV, 513 

192 × 192 mm; number of slices, 50, slice gap, 0 mm). The dataset contained fMRI data from five subjects 514 

with 3 types of scanning sessions: “ses-perceptionTraining”, “ses-perceptionTest” and “ses-imageryTest”.  515 

We trained our denoiser on “ses-perceptionTraining” sessions and measured the denoising performance on 516 

“ses-perceptionTest” sessions.  517 

Visual stimulation.  518 

Visual stimuli in mice were displayed on an ASUS PA248Q LCD monitor, with 1,920 × 1,200 pixels (see 519 

original data publication for more details12). Stimuli were presented monocularly, and the monitor was 520 

positioned 15 cm from the eye and spanned 120° × 95° of visual space. Each monitor was gamma corrected 521 

and had a mean luminance of 50 cd/m2. To account for the close viewing angle, spherical warping was 522 

applied to all stimuli to ensure that the apparent size, speed, and spatial frequency were constant across the 523 

monitor as seen from the mouse’s perspective. 524 

Pre-processing steps 525 

Two-photon imaging movies were motion-corrected similarly to our previous publication12. The motion 526 

correction algorithm relied on phase correlation and only corrected for rigid translational errors. We used 527 

these motion corrected movies for denoising.  528 

For Neuropixels recordings, the median across channels was subtracted to remove common-mode noise. 529 

The median was calculated across channels that were sampled  simultaneously, leaving out adjacent 530 

(even/odd) channels that are likely measuring the same  spike waveforms, as well as reference channels 531 

that contain no signal. For each sample, the median value of channels N:24:384, where N = [1,2,3,...,24], 532 

was calculated, and this value was  subtracted from the same set of channels. Importantly, this step removes 533 
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noise that is correlated across channels, without affecting the independent noise targeted by 534 

DeepInterpolation. We performed denoising on the spike band after the median subtraction and offline 535 

filtering steps (150 Hz highpass) were applied.  536 

For fMRI recordings, we used raw, unprocessed Nifti-1 volume data provided on OpenNeuro.org (see 537 

https://openneuro.org/datasets/ds001246/versions/1.2.1). 538 

Detection of ROIs in two-photon data  539 

We used two different segmentation algorithms in this study. The first one was described in a previous 540 

publication and leverages a succession of morphological filters to extract binary masks surrounding active 541 

pixels12. These masks are publicly available through the AllenSDK (see 542 

https://allensdk.readthedocs.io/en/latest/). In all analysis related to Supp. Fig. 5, we applied these binary 543 

masks to both raw and DeepInterpolation movies to extract matching calcium traces.  544 

In all analysis related to Fig. 2, we used the sparse mode in Suite2P16 to extract all individual filters. We 545 

used default parameter values of this mode except for threshold_scaling, which was set to 3. With the 546 

increased SNR achieved with DeepInterpolation, this single change limited the proportion of false positives 547 

in the final set of filters. Using Suite2p sorting GUI, we then manually sorted filters. We excluded filters 548 

present at the edge of the image, filters created by motion artifacts as well as features that did not cover any 549 

neuronal segment present in the max projection image. Somatic and non-somatic ROIs were also manually 550 

sorted based on the presence of a soma-excluded region in the filter. Filters that included a blurred out of 551 

plane soma were considered non-somatic. Once the final set of filters were extracted, we reapplied those 552 

weighted masks either to the original raw movie or the movie after DeepInterpolation to extract individual 553 

traces.  554 

Detection of neuronal units in electrophysiological data  555 

Kilosort2 was used to identify spike times and assign spikes to individual units31. Traditional spike sorting 556 

techniques extract snippets of the original signal and perform a clustering operation after projecting these 557 
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snippets into a lower-dimensional feature space. In contrast, Kilosort2 attempts to model the complete 558 

dataset as a sum of spike "templates." The shape and locations of each template is iteratively refined until 559 

the data can be accurately reconstructed from a set of N templates at M spike times, with each individual 560 

template scaled by an amplitude, a. 561 

Kilosort2 was applied to the original and denoised datasets using identical parameters (all default 562 

parameters, except for ops.Th, which was lowered from [10 4] to [7 3] to increase the probability of 563 

detecting low-amplitude units). Because the spike detection threshold is relative to the overall noise level 564 

per channel, the absolute value of the threshold was lower following DeepInterpolation.  565 

The Kilosort2 algorithm will occasionally fit a template to the residual left behind after another template 566 

has been subtracted from the original data, resulting in double-counted spikes. This can create the 567 

appearance of an artificially high number of ISI violations for one unit or artificially high zero-time-lag 568 

synchrony between nearby units. To eliminate the possibility that this artificial synchrony will contaminate 569 

data analysis, the outputs of Kilosort2 are post-processed to remove spikes with peak times within 5 samples 570 

(0.16 ms) and peak waveforms within 5 channels (~50 microns). 571 

Kilosort2 generates templates of a fixed length (2 ms) that matches the time course of an extracellularly 572 

detected spike waveform. However, there are no constraints on template shape, which means that the 573 

algorithm often fits templates to voltage fluctuations with characteristics that could not physically result 574 

from the current flow associated with an action potential. The units associated with these templates are 575 

considered “noise,” and are automatically filtered out based on 3 criteria: spread (single channel, or >25 576 

channels), shape (no peak and trough, based on wavelet decomposition), or multiple spatial peaks 577 

(waveforms are non-localized along the probe axis). A final manual inspection step was used to remove 578 

any additional noise units that were not captured by the automated algorithm. 579 

Quality control for electrophysiological units 580 

Units with action-potential-like waveforms detected by Kilosort2 are not necessarily high quality. To ensure 581 

that units met basic quality standards for further analysis, we filtered them using three different quality 582 
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metrics, computing with the ecephys_spike_sorting Python package 583 

(github.com/AllenInstitute/ecephys_spike_sorting): 584 

● ISI violations score < 0.5. This metric is based on refractory period violations that indicate a unit 585 

contains spikes from multiple neurons. The ISI violations metric represents the relative firing rate 586 

of contaminating spikes. It is calculated by counting the number of violations <1.5 ms, dividing by 587 

the amount of time for potential violations surrounding each spike, and normalizing by the overall 588 

spike rate. It is always positive (or 0), but has no upper bound. See32 for more details. 589 

● Amplitude cutoff < 0.1. This metric provides an approximation of a unit’s false negative rate. 590 

First, a histogram of spike amplitudes is created, and the height of the histogram at the minimum 591 

amplitude is extracted. The percentage of spikes above the equivalent amplitude on the opposite 592 

side of the histogram peak is then calculated. If the minimum amplitude is equivalent to the 593 

histogram peak, the amplitude cutoff is set to 0.5 (indicating a high likelihood that >50% of spikes 594 

are missing). This metric assumes a symmetrical distribution of amplitudes and no drift, so it will 595 

not necessarily reflect the true false negative rate. 596 

● Presence ratio > 0.95. The presence ratio is defined as the fraction of blocks within a session that 597 

include 1 or more spikes from a particular unit. Units with a low presence ratio are likely to have 598 

drifted out of the recording, or could not be tracked by Kilosort2 for the duration of the experiment. 599 

Applying these quality metrics removed 54% of detected units in the original data, and 60% of units after 600 

denoising. Spike sorting after DeepInterpolation found more units regardless of the threshold used for each 601 

QC metric (Supp. Fig. 6B). 602 

Procedure for finding matched vs. new units 603 

Following spike sorting steps, we searched for overlapping spikes between pairs of units detected before 604 

and after denoising. Spikes were considered to overlap if they had a peak occurring within ±5 channels and 605 

0.5 ms of one another. The number of overlapping spikes was used to compute three metrics, using the 606 

original spike trains as “ground truth”33. 607 
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● Precision. The fraction of denoised spikes that were also found in the original data. 608 

● Recall. The fraction of original spikes that were also found in the denoised data. 609 

● Accuracy. Nmatch / (Ndenoised + Noriginal – Nmatch) 610 

Units were considered matched if they had an accuracy exceeding 0.7. Units were considered novel after 611 

denoising if they had a total precision (summed over all original units) less than 0.5. Units were considered 612 

undetected after denoising if they had a total recall (summed over all denoised units) less than 0.5. 613 

Training of denoising networks 614 

We used 3 different sets of environments for training deep neural networks. Two-photon denoising 615 

networks were trained using TensorFlow 1.9.0, keras 2.2.4 and CUDA 9.0. Electrophysiology denoising 616 

networks were trained using TensorFlow 2.0 and CUDA 10.0 through their built-in Keras libraries.  fMRI 617 

denoising networks were trained using TensorFlow 2.2 and CUDA 10.1. 618 

We utilized NVIDIA Titan X, Geforce GTX 1080, and Tesla V100-SXD2 GPUs available on the Allen 619 

Institute internal computing clusters.  The fMRI denoising network was trained on Amazon AWS using the 620 

p2.8xlarge and p3.8xlarge instance type depending on availability. 621 

We used an L1 loss during training for both two-photon imaging and fMRI datasets. Electrophysiological 622 

datasets were trained with an L2 loss. All training was done with the RMSProp gradient descent algorithm 623 

implemented in keras. Two-photon denoiser was trained with a batch size of 5 so as to fit on available GPU 624 

memory. The learning rate was set to 5*10-4. The Neuropixels denoiser was trained with a batch size of 625 

100, with the learning rate was set to 10-4. The fMRI denoiser was trained with a batch size of 10,000. The 626 

larger batch size was allowed by the smaller input-output size. The fMRI denoiser was trained with a 627 

learning scheduler, initialized at 10-4, dropping by half every 45 millions samples. 628 

To facilitate training, all samples were mean-centered and normalized by a single shared value for each 629 

experiment during training. For two-photon movies, the mean and standard deviation was pre-calculated 630 

using the first 100 frames of the movie. For Neuropixels recordings,  the mean and standard deviation was 631 

pre-calculated using the 200,000 samples. For fMRI recordings, we extracted the centered volume of the 632 
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movie that was 1/4th of the total movie size and averaged all voxels. 633 

A detailed step by step pseudocode description of this process is available in Supp. Appendix 1.  634 

Inference of final datasets with trained networks 635 

Once a DeepInterpolation network was learned, inference was performed by streaming entire experiments 636 

through the same fixed network.  To match the conditions in training, each dataset was mean-centered and 637 

normalized following the same procedure used during training. Output denoised data were brought back to 638 

their original scale after going through the DeepInterpolation model.   639 

Quantification of SNR 640 

In the two-photon data, SNR was defined as the ratio of the mean fluorescence value divided by the standard 641 

deviation along the temporal dimension. In ideal photon shot-noise limited conditions, this SNR is 642 

proportional to the square root of N, where N is the photon flux detected per pixel.  643 

In the Neuropixels data, SNR for individual units was defined as the ratio of the maximum peak-to-peak 644 

waveform amplitude to the RMS noise on the peak channel. 645 

In the fMRI data, tSNR of individual voxels was defined  as the ratio of the mean BOLD signal value 646 

divided by standard deviation along the temporal dimension.  647 

Analysis of natural movie responses 648 

Noise and signal correlation analysis in two-photon data 649 

For each natural movie presentation, we extracted the corresponding ROI traces. The signal correlation was 650 

computed by averaging all 10 presentations of the movie and calculating the Pearson pairwise correlation 651 

of those averaged responses between pairs of ROIs.  652 

The noise correlation was calculated by calculating the Pearson correlation of individual trial responses 653 

between a pair of ROIs and then averaging all 10 presentations of the movie.  654 

Response reliability in two-photon data 655 

  656 

The response reliability was calculated by first calculating the pearson correlation matrix of an ROI 657 
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individual response to a single presentation of a natural movie with other trials. For each ROI, we then 658 

excluded auto-correlation values and averaged out all pairwise combinations. This process yielded a single 659 

reliability measure for each ROI.  660 

Significant responses in Neuropixels data 661 

When analyzing spike data, the trial-to-trial correlation of the natural movie response depends heavily on 662 

the bin size chosen. To determine responsiveness for Neuropixels data, we instead compared each unit’s 663 

natural movie PSTH (averaged across 25 trials) to a version in which all bins were temporally shuffled. A 664 

Kolmogorov–Smirnov test between the original and shuffled PSTHs was used to determine the probability 665 

that the response could have occurred by chance (p < 0.05 for significantly responsive units; see Supp. Fig. 666 

7B for an example). 667 

Synthetic data generation 668 

We created realistic synthetic calcium imaging datasets using a recent approach called in silico Neural 669 

Anatomy and Optical Microscopy (NAOMi)14. The code repository was kindly made available to us by 670 

Alex Song and Adam Charles. Given the computational load of the model, we generated a single dataset 671 

made of 15,000 frames simulating a 400x400 μm2 field of view. Except for the field of view size, all 672 

parameters were set to default values. We did not use a pre-trained network to denoise this dataset and 673 

trained our DeepInterpolation model directly on this simulated data.   674 

Comparison with Penalized Matrix Factorisation 675 

A PMD docker repository was kindly made available to us by the Paninski lab and we collaborated to run 676 

the PMD algorithm in the best conditions13. PMD was run on an AWS instance (m5.8xlarge) under a pre-677 

packaged jupyterhub environment (https://hub.docker.com/r/paninski/trefide). All movies were pre-678 

centered and normalized using code available in the trefide package (psd_noise_estimate). 679 

DeepInterpolation code availability 680 

Code for DeepInterpolation and all other steps in our algorithm are available online through a GitHub 681 

repository (https://github.com/AllenInstitute/deepinterpolation). Example training and inference tutorial 682 
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code are available on the repository. Several Docker inference containers are available on Docker Hub (see 683 

list below for more details). They allow inference using the TensorFlow ModelServer framework. 684 

Code and data to regenerate all figures presented in this manuscript is available online through a GitHub 685 

repository (https://github.com/AllenInstitute/deepinterpolation_paper).  686 

 687 

Two-photon Ai93 excitatory line DeepInterpolation network: 688 

Key recording parameters:  689 

● 30Hz sampling rate, 400x400 μm2 field of view, 512x512 pixels. 690 

● 0.8 NA objective. 691 

● 910 nm excitation wavelength. 692 

● Gcamp6f calcium indicator. 693 

● Ai93 reporter line expressed in excitatory neurons. 694 

Docker hub id : 245412653747/deep_interpolation:allen_400um_512pix_30hz_ai93 695 

 696 

Two-photon Ai148 excitatory line DeepInterpolation network: 697 

Key recording parameters:  698 

● 30 Hz sampling rate, 400x400 μm2 field of view, 512x512 pixels. 699 

● 0.8 NA objective. 700 

● 910 nm excitation wavelength. 701 

● Gcamp6f calcium indicator. 702 

● Ai93 reporter line expressed in excitatory neurons. 703 

Pre-processing: Individual movies were motion corrected. Each movie recording was mean-centered and 704 

normalized with a single pair of value for all pixels  705 

Docker hub id : 245412653747/deep_interpolation:allen_400um_512pix_30hz_ai148 706 

 707 
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Neuropixels DeepInterpolation network: 708 

Key recording parameters:  709 

● Neuropixels Phase 3a probes 710 

● 374 simultaneous recording sites across 3.84 mm, 10 reference channels 711 

● Four-column checkerboard site layout with 20 µm spacing between rows 712 

● 30 kHz sampling rate 713 

● 500x hardware gain setting 714 

● 500 Hz high pass filter in hardware, 150 Hz high-pass filter applied offline  715 

Pre-processing: Median subtraction was applied to individual probes to remove signals that were 716 

common across all recording sites. Each probe recording was mean-centered and normalized with a single 717 

pair of value for all nodes on the probe.  718 

Docker hub id : 245412653747/deep_interpolation:allen_neuropixel 719 

 720 

fMRI DeepInterpolation network: 721 

Key recording parameters:  722 

● TR, 3,000 ms; TE, 30 ms; flip angle, 80°; voxel size, 3 × 3 × 3 mm; FOV, 192 × 192 mm; 723 

number of slices, 50, slice gap, 0 mm 724 

Pre-processing: N/A 725 

Docker hub id : 245412653747/deep_interpolation:allen_3_3_3_tr_3000_fmri 726 

Data availability 727 

The two-photon imaging and Neuropixels raw data can be downloaded from the following S3 bucket: 728 

arn:aws:s3:::allen-brain-observatory 729 

 730 

Two-photon imaging files are accessed according to Experiment ID, using the following path: 731 
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visual-coding-2p/ophys_movies/ophys_experiment_<Experiment ID>.h5 732 

We used a random subset of 1144 experiments for training the denoising network for Ai93, and 397 733 

experiments for training the denoising network for Ai148. The list of used experiments IDs is available in 734 

json files (in deepinterpolation/examples/json_data/) on the DeepInterpolation GitHub repository. The 735 

majority of these experiment IDs are available on the S3 bucket. Some experimental data has not been 736 

released to S3 at the time of publication.  737 

Neuropixels raw data is accessed by Experiment ID and Probe ID, using the following paths: 738 

visual-coding-neuropixels/raw-data/<Experiment ID>/<Probe ID>/spike_band.dat 739 

The dat files have the median subtraction post-processing applied, but do not include an offline highpass 740 

filter. Prior to DeepInterpolation, we extracted 3600 seconds of data from each of the recordings listed in 741 

Table 1.  742 
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 743 

Experiment 

ID 

Probe ID Start time Brain Structures Used for training 

778998620 792626851 4665.8179 s VISl (LM), CA1, CA3 No 

787025148 792586842 4672.1967 s VISp (V1), SUB, LP No 

768515987 773549856 4672.2224 s VISrl (RL), CA1, DG, APN Yes 

794812542 810758787 4665.8332 s VISrl (RL), CA1, DG, APN No 

778998620 792626853 4665.8179 s VISal (AL), CA1, CA3, DG, 

LGv 

No 

767871931 773462997 4672.2352 s VISal (AL), CA1, CA3, DG, LT Yes 

 

779839471 792645501 4672.3841 s VIS, CA1, CA3, DG, LGd No 

771160300 773621948 4672.3791 s VISal (AL), CA1, CA3, DG, 

LGd 

Yes 

781842082 792586881 4672.1312 s VISp (V1), SUB, SGN No 

793224716 805124815 4675.2401 s VISrl (RL), CA1, DG, LP, APN No 

 744 

Table 1. Details of Neuropixels data used for DeepInterpolation training and inference. 745 

To train the fMRI denoiser, we used datasets that can be downloaded from an S3 bucket: 746 

arn:aws:s3:::openneuro.org/ds001246  747 
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 748 

We trained our denoiser on all “ses-perceptionTraining” sessions, across 5 subjects (3 perception training 749 

sessions, 10 runs each). 750 
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