
Chapter 3

Hebbian learning with elasticity

explains how a musician’s

spontaneous motor tempo a↵ects

periodic synchronization

3.1 Abstract

Music has a tempo (or frequency of the underlying beat) that musicians maintain throughout a

performance. Musicians maintain this musical tempo on their own or paced by a metronome.

Behavioral studies have found that each musician shows a spontaneous rate of movement, called

spontaneous motor tempo (SMT), which can be measured when a musician spontaneously plays

a simple melody. Data shows that a musician’s SMT systematically influences how actions align

with the musical tempo. In this study we present a model that captures this phenomenon. To

develop our model, we review the results from three musical performance settings that have been

previously published: (1) solo musical performance with a pacing metronome tempo that is di↵erent

from the SMT, (2) solo musical performance without a metronome at a spontaneous tempo that

is faster or slower than the SMT, and (3) duet musical performance between musician pairs with

matching and mismatching SMTs. In the first setting, the asynchrony between the pacing metronome

and the musician’s tempo grew as a function of the di↵erence between the metronome tempo and

the musician’s SMT. In the second setting, musicians drifted away from the initial spontaneous

tempo toward the SMT. And in the third setting, the absolute asynchronies between performing

musicians were smaller if their SMTs matched compared to when they did not. Based on these
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previous observations, we hypothesize that, while musicians can perform musical actions at a tempo

di↵erent from their SMT, the SMT constantly acts as a pulling force. We developed a model

to test our hypothesis. The model is an oscillatory dynamical system with Hebbian and elastic

tempo learning that simulates music performance. We simulate an individual’s SMT with the

dynamical system’s natural frequency. Hebbian learning lets the system’s frequency adapt to match

the stimulus frequency. The pulling force is simulated with an elasticity term that pulls the learned

frequency toward the system’s natural frequency. We used this model to simulate the three music

performance settings, replicating behavioral results. Our model also lets us make predictions of

musician’s performance not yet tested. The present study o↵ers a dynamical explanation of how an

individual’s SMT a↵ects adaptive synchronization in realistic musical performance.

3.2 Introduction

Humans can seamlessly sing a song in the shower or walk on an empty street. In such a solo

setting, individuals show a spontaneous singing tempo or walking pace. In everyday life, however,

humans often have to synchronize with external signals. For example, singing with a pre-recorded

song or marching in a parade with other individuals. In the specific case of musical performances,

musicians change the tempo of their actions to match a musical tempo that is kept by the group of

performing musicians. When musicians synchronize with each other they carry out perception-action

coordination (PAC), which involves the coordinated communication between the brain’s sensory

areas that perceive stimuli and the motor system that executes actions [95]. However, most musical

performances do not match a musician’s spontaneous tempo. How a musician’s spontaneous tempo

a↵ects a musical performance is still an open question [5]. To tackle this question, one must first

study an individual’s spontaneous tempo of periodic action, like finger tapping. The spontaneous

motor period (SMP) can be obtained by calculating the average inter-onset interval (IOI) between

consecutive periodic actions [96].

Before diving deep into our overview of previous research, we must clarify some important termi-

nology. “Periodic” phenomena get this name because a consistent ‘period’ of time (i.e., milliseconds,

seconds, minutes, hours, days, etc.) explains the organization of sequential events. In general, to

measure the sate of periodic phenomena one can use ‘frequency’ in units of hertz (cycles or events per

second). All frequencies have a ‘period’ of time between cycles or periodic events. Consider for exam-

ple a metronome, which is the simplest example of periodic phenomena. To measure the rate of the

metronome, we can use a frequency in hertz. Similarly, to measure the ‘period’ between metronome

clicks, we can use the IOI in units of (milli)seconds. In music, not all events are isochronous, and

consecutive events may not share an IOI. Nonetheless, most music has a “metronomic” tempo (or

frequency of the underlying beat) which is measured in units of beats per minute (BPM) in the field

of music theory. The units of BPM and hertz are similar in the sense that both consist of rates
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counting the number of events over a length of time. The ‘period’ between beats in music can also

be measured with the inter-beat interval (IBI) in units of (milli)seconds. The IOI and IBI share the

same units of (milli)seconds because they measure the length of time between isochronous events or

musical beats, respectively. We are explainign all of this because of this critical issue: when reading

the existing SMT literature, one should not confuse the term ‘musical tempo” and the SMT due to

the fact that both have the word ‘tempo’ in their name. The existing literature describes the SMT

in units of (milli)seconds, which is incorrect. The word ‘tempo’ in music implies a frequency, so

proper units for such a mesurement could be BMP or hertz, not (milli)seconds. The correct name

for the SMT should have been the ‘spontaneous motor period’ (SMP) because a ‘period’ does imply

units of (milli)seconds. Similar to the SMT, the term ‘spontaneous performance rate’ (SPR), also

measured in (milli)seconds, has been used to describe the IBI shown by individuals when asked to

spontaneously perform a simple melody [97]. The existing usage of the term SPR is also incorrect,

just like the SMT. The SPR should have been called the ‘spontaneous performance period’ (SPP)

because it is measured in units of (milli)seconds. Here we have acknowledge these unfortunate mis-

nomers because here we will use the correct terminology when describing our experiments. However,

when describing results from previous studies, we will still use the SMT term in the original context,

clearly stating that its original use was incorrect.

SMTs vary within individuals, tending to be faster in early childhood compared to adulthood

[96], and between individuals, tending to be slower in adult musicians (SMP of ⇠ 400ms IOI on

average) compared to non-musicians (SMP of ⇠ 300ms IOI on average) [98, 99]. After studying the

SMT, one can study how individuals synchronize a simple movement, like finger-tapping, with a

metronome. The asynchrony between the individual’s taps and metronome clicks can be measured,

and the mean asynchrony (MA) can be calculated [6, 37]. For both musicians and non-musicians the

MA tends to be negative (taps precede the metronome click) when synchronizing with a metronome

with an IOI between 300ms and 2000ms [21]. However, the MA becomes smaller as the metronome

IOI approaches 300ms and for an IOI smaller than 300ms the MA is absent or even slightly positive

[100, 24]. Interestingly, the 300ms IOI, around where the negative MA disappears, coincides with the

mean SMP observed in humans (⇠ 350ms), indicating a possible connection between SMP and MA

dynamics. Additionally, the MA is also positive (taps lag the metronome clicks) when synchronizing

with a very slow metronome with IOIs greater than 5000ms [23]. Synchronization with a slow

metronome is a di�cult task, so the positive MA in this case is the result of musician actions reacting

to the metronome clicks, rather than a direct relationship between the MA and the SMP [3]. When

synchronizing with a metronome with an IOI between 2000ms and 5000ms, the human actions form

a bimodal distribution (i.e., some taps precede and some lag the metronome clicks) [22]. However,

musical expertise does a↵ect the MA, with musicians showing overall smaller MAs compared to non-

musicians [3]. Together, the SMT/SMP and the MA are behavioral correlates of PAC. While the

SMT/SMP is a measurement of spontaneous, non-paced action, the MA is a measurement of paced
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action. Studying both the SMT/SMP and the MA lets us better understand how the spontaneous

tempo of periodic action a↵ects an individual’s synchronization with an external periodic stimulus.

Previous studies have looked at musical performance in solo and group settings to investigate how

the SMT/SMP and the MA are related to each other. In one study, musicians performed a melody in

a solo setting synchronizing with a metronome tempo that was faster or slower than the musician’s

SMT. Results showed that the MA grew as a function of the di↵erence between the metronome tempo

and the musician’s SMT. When the metronome was faster than the SMT, the MA had a tendency to

be positive (the musician’s beat lagged the metronome clicks), and when the metronome was slower

than the SMT, the MA had a tendency to be negative (the musician’s beat preceded the metronome

clicks). The smallest MA was observed when the metronome tempo matched the individual’s SMT

[4]. In another study, musician performed a melody in a solo setting without a metronome, starting

at spontaneous tempo that was slower or faster than the SMT. Results showed that the musician’s

tempo had a tendency to drift back to the SMT [5]. This tendency to drift back to the SMT has also

been observed in other similar studies [96, 101]. One study has also investigated the relationship

between the SMT and the MA in duet musical performances. Musicians were split into two groups:

one group consisted of musician pairs with matching SMT (SMP di↵erence smaller than 10ms) and

the other group consisted of musician pairs with mismatching SMT (SMP di↵erence greater than

110ms). Next, pairs of musicians were asked to perform a melody with each other. Musician duets

with matching SMTs showed a smaller mean absolute asynchrony compared to synchronizing pairs

with mismatching SMTs. Additionally, after the duet performance each musician’s SMT/SMP was

remeasured, and results showed that each musician’s SMT/SMP did not change compared to the

SMT/SMP measured before the duet performance [97]. This study analyzing musical performance

in a duet setting revealed that the SMT/SMP a↵ects the MA in social tasks requiring periodic

synchronization (i.e., rowing or playing music), but the task did not a↵ect each musician’s SMT/SMP

[97]. The evidence from all these studies in both solo and duet settings highlights the e↵ect that the

SMT/SMP has on both the MA and the musical tempo.

Theoretical models have previously described the mechanisms that give rise to the SMT/SMP

and the MA, but independently. Potential mechanisms of the SMT/SMP include motor resonance

governed by body weight and limb length [1] and central pattern generators in the brain that are

essential for motor control [2, 102]. Mechanisms that give rise to the MA include delayed recurrent

feedback in central-peripheral communication between the auditory and motor systems [7, 103, 12]

and under- or over-estimation of IOI lengths [34]. Currently, a complete explanation of how the

SMT/SMP and the MA relate to each other is missing, but the synchronization dynamics of non-

linear oscillators can capture some of these relationships. Non-linear oscillator models capture an

individual’s SMT using an oscillator’s natural frequency [104, 105, 96]. Additionally, non-linear

oscillators can synchronize in-phase with a periodic stimulus with a frequency that is di↵erent but

close to the natural frequency. In such a scenario, a MA is observed between the oscillator and the
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stimulus. Similar to observations made in humans [4], the MA shrinks as the di↵erence between

the stimulus frequency and the oscillator natural frequency is reduced [19, 106]. As a result, a

non-linear oscillator can capture how a musician’s MA grows as a function of the di↵erence between

the stimulus tempo and the musician’s SMT. Moreover, after a non-linear oscillator is phase-locked

to the stimulus frequency, if the stimulus disappears the oscillator will continue oscillating but will

spontaneously return to its natural frequency [19, 106], just like musicians show a tendency to

return to their SMT in the absence of a pacing stimulus [5] or after a musical performance [97].

However, these observations in non-linear oscillators require the natural frequency and the stimulus

frequency to be relatively close to each other, and if the di↵erence exceeds a certain threshold, in-

phase synchronization will not be possible and unsynchronized behavior may be observed [19, 106].

This is di↵erent than the synchronization abilities of humans, who can synchronize with stimuli

tempi that are relatively far away from their SMT. Hence, a model consisting purely of non-linear

oscillators has a limited potential to fully capture the relationship between the SMT and the MA in

humans.

Righetti and colleagues described oscillators equipped with a frequency learning rule allowing

them to adaptively change their frequency to match an external periodic stimulus frequency, regard-

less of the oscillator’s original natural frequency [107]. A limitation of the model by Rigetti and

colleagues is that, unlike humans, the oscillators with frequency learning capabilities do not return

to their original natural frequency after stimulation ceases. In contrast, an individual’s SMT is re-

covered after synchronizing with a periodic stimulus with an arbitrary tempo [4]. This phenomenon

could be explained by the SMT having an elastic force. This hypothesis proposes that the SMT is an

attractor state pulling the system’s tempo towards optimal energy usage [96, 4], like a flexible piece

of rubber that returns to its original state when no external energy is applied to it [108]. Lambert

and colleagues added a linear elasticity force governed by Hooke’s law to the frequency learning

rule described by Righetti and colleagues [109]. This elasticity term pulls the oscillator’s frequency

to its natural frequency. Hence, the oscillator can match its frequency with an external stimulus

frequency using Hebbian learning, but a force is constantly pulling the oscillator’s frequency to its

natural frequency. Additionally, if the stimulus ceases, the oscillators frequency will return to the

natural frequency.

Behavioral studies have proposed an elastic and adaptive tempo learning hypothesis to explain

the relationship between the SMT/SMP and the MA in humans [4]. However, no study so far

has quantified how well a dynamical systems model with elastic frequency learning could capture

dynamics observed in human data. In this study we test this hypothesis using an oscillatory dynam-

ical systems model equipped with Hebbian learning for frequency adaptation and an elastic force

constantly pulling to the natural frequency. More specifically, we use the oscillators described by

Large and colleagues [46] and we equip them with elastic frequency learning [107, 109]. The goal

is to validate the model using real human data from previous studies of musical performance that
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analyzed the relationships between the SMT/AMP and the MA. If we can achieve our goal, we will

mechanistically show how an individual’s SMT/SMP a↵ects the MA during PAC with a stimulus

that is either a metronome or another synchronizing individual. Our modeling approach is appro-

priate because oscillators have a fixed natural frequency observed spontaneously in the absence of

an external stimulus. This natural frequency simulates an individual’s SMT. Because our model

has an elastic frequency learning rule, it can adapt its frequency to synchronize with a periodic

stimulus of any frequency, but always showing an MA due to the elastic force constantly pulling

the oscillator’s frequency to its natural frequency. This elastic frequency learning rule simulates two

human features. First, the ability to synchronize with a broad range of periodic stimulus tempi.

And second, the constant SMT displayed by humans, even after synchronizing with a stimulus of a

di↵erent tempo.

Given all of its features, we refer to our model as the Adaptive Synchronization with Hebbian

Learning and Elasticity (ASHLE). Table 3.1 presents an overview of the most important ASHLE

parameters and their function. The ASHLE model is inspired by neuroscientific hypotheses about

the mechanisms of PAC. The methods section gives the complete definition of ASHLE, but here we

briefly describe its main properties. ASHLE consists of two oscillators. Both oscillators share the

parameters ↵ and �, which determine ASHLE’s oscillatory activity spontaneously showing a constant

magnitude of one. The first oscillator is stimulated by an external stimulus, and simulates perception

and auditory-motor neural entrainment with the stimulus frequency [26, 110, 111, 53, 112]. This

first oscillator is equipped with the Hebbian rule to learn the frequency of the external stimulus. The

second oscillator receives the activity of the first oscillator as input, and simulates the motor system

planning that controls the actions of peripheral e↵ectors (i.e., a finger playing a piano). We use the

activity of the second oscillator to simulate the actions of humans performing a musical task. This

second oscillator is equipped with the elastic Hebbian rule to learn the stimulus frequency (filtered by

the first oscillator), while constantly being pulled to its natural frequency. In ASHLE, the timescales

of the Hebbian frequency learning rule and the elasticity rule are relatively fast (see the parameter

analysis in the methods section). The parameters �1 and �2 are the stimulus frequency learning

rate and the elastic force pulling to the natural frequency, respectively, and act as opposing forces.

Additionally, the first oscillator is weakly connected (with strength �) to the elastic Hebbian rule of

the second oscillator, forcing the first oscillator to return to the natural frequency, but at a very slow

timescale and only in the absence of a stimulus. � is very small, and has a negligible e↵ect when a

stimulus drives ASHLE. However, in the absence of a stimulus, � makes ASHLE slowly return to its

natural frequency.

ASHLE only simulates the musical beat in a musical performance and not any other spectral

features like pitch, harmony or melody content. However, because our goal is to simulate the

dynamics of the MA and the SMT/SMP at the level of the musical beat, ASHLE is an adequate

model. Below we describe three experiments (see Fig. 3.2) we carried out with ASHLE to simulate
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Table 3.1: ASHLE parameters and function
Parameter Value Function

↵ 1 ASHLE activity control
� -1 ASHLE activity control
�1 4 Hebbian frequency learning
�2 2 Elastic pull to the natural frequency
� 0.02 Weak pull to the natural frequency

musician data from three previously published behavioral studies of musical performance.

In our first experiment, we optimized ASHLE to simulate solo musician performance of a simple

melody paced by a metronome. This task and data were published by Scheurich and colleagues

[4]. In this task solo musicians performed a melody with a metronome IOI that was 15% or 30%

shorter or longer than their SMP (Fig. 3.2A). Their data showed that the MA grew as a function

of the di↵erence between a musician’s SMP and the metronome IOI. We simulated this task using

ASHLE. We hypothesized that ASHLE’s elastic frequency learning will allow for synchronization

with stimuli at any arbitrary frequency. Additionally, we hypothesized that the elastic force pulling

towards ASHLE’s natural frequency will cause the MA between ASHLE and the stimulus to grow

as the di↵erence between the stimulus frequency and ASHLE’s natural frequency.

In our second experiment, we tested whether the same ASHLE model from experiment 1 can

simulate solo musician performance of a simple melody without a metronome (unpaced). This

task and data were published by Zamm and colleagues [5]. In this task solo musicians played a

melody, without a metronome, starting at five di↵erent spontaneous tempi (Fig. 3.2B). First, at

each musician’s SMT, then at spontaneous tempi faster and slower than the SMT, and finally at

spontaneous tempi that were even faster and even slower than the SMT. Their data showed that

when musicians have a tendency to return to their SMT after starting a performance at a tempo

faster or slower than their SMT. We hypothesize that our model can simulate the same progressive

return to the SMT because of the elastic force constantly pulling ASHLE to its natural frequency.

In our third experiment, we tested whether the same model from experiments 1 and 2 can

simulate duet performance of a simple melody. This task and data were published in another study

by Zamm and colleagues [97]. In this task, pairs of musicians played a melody in synchrony after

listening to a metronome that established the tempo and stopped. Musician duets were assigned to

either of two experimental groups: duets with matching or mismatching SMTs. The data by Zamm

and colleagues [97] showed that the mean absolute asynchrony was larger between musicians with

mismatching SMTs than musicians with matching SMTs. We hypothesize that ASHLE’s elastic

frequency learning will allow two of our models to synchronize with each other independent of

whether their natural frequencies are close to each other, but that the asynchrony between two

di↵erent ASHLE models will grow as a function of the di↵erence between their natural frequencies.
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Figure 3.1: Illustration of the musical tasks and corresponding simulation experiments.

(A) The task simulated in experiment 1, in which a musician plays a simple melody with a metronome
(top). In the musician experiment, the metronome tempo was di↵erent from the musician’s SMT,
and we simulate the same experimental conditions. Illustration of our simulation, in which ASHLE
synchronizes with a sinusoidal stimulus (bottom). (B) The task simulated in experiment 2, in which a
musician plays a simple melody, without a metronome (top). In the musician experiment, musicians
started at a tempo that was di↵erent from their SMT. This specific example shows a performance
that started with a tempo that was faster than the SMT, and the tempo periodically became slower
due to the musician’s tendency to return to the SMT. Illustration of our simulation, in which ASHLE
oscillates, without a sinusoidal stimulus and returns to its natural frequency (bottom). (C) The task
stimulated in experiment 3, in which pairs of musicians played a simple melody together after hearing
four pacing metronome clicks (top). In the musician experiment, pairs of musicians had matching or
mismatching SMTs. Illustration of our simulation, in which two ASHLE models synchronize with
four cycles of a pacing sinusoidal stimulus (greyed-out blue and red lines), and then stimulate each
other without the sinusoidal stimulus (solid blue and red lines) (bottom).

These three musical tasks and results capture relationships between the SMT/SMP and the MA.

Our goal is to test whether ASHLE’s elastic frequency learning can capture these relationships by

simulating real musician data. If we are successful, we will shed light on potential the mechanisms

that give rise to the SMT/SMP and the MA. Our model is the first attempt at hypothesizing a

mechanistic relationship between the SMT/SMP and the MA that is validated by human data,

while also making musician data predictions that can be tested empirically in future experiments.

Moreover, due to its dynamical systems nature, ASHLE hypothesizes that the SMT/SMP and the

MA are related to each other through homeostatic mechanisms at play during PAC.

3.3 Results

3.3.1 Experiment 1: Solo music performance with a metronome tempo

di↵erent than the SMT

We used ASHLE to simulate the solo task by Scheurich and colleagues [4] consisting of music perfor-

mance of a simple melody paced by a metronome (Fig. 3.2A). Their experiment had four di↵erent

experimental conditions: metronome period 30% shorter, 15% shorter, 15% longer, and 30% longer

than the musician’s SMP. Fig. 3.2A shows the data with the mean adjusted asynchrony between the

musician beats and the metronome beats across the four di↵erent experimental conditions. Scheurich

and colleagues [4] reported the mean adjusted asynchrony in their results. The mean adjusted asyn-

chrony is equal to the mean asynchrony during performance with a metronome period di↵erent from

the SMP, minus the mean synchrony during performance with a metronome period matching the

SMP. The musician data shows that the mean adjusted asynchrony was positive (negative) when the

metronome period was shorter (longer) than the musician’s SMP, and that the asynchrony grows as
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a function of the di↵erence between SMP and metronome period (see Fig. 3.2A). While ASHLE does

not produce pitch, we can use it to simulate the beat during this music performance task. We hypoth-

esized that ASHLE’s frequency learning features will allow it to synchronize with a stimulus period

shorter or longer than the period associated with its natural frequency, but an asynchrony between

ASHLE and the stimulus will be observed due to the elastic force constantly pulling ASHLE’s to its

natural frequency. While this first experiment uses a sinusoid to stimulate ASHLE, this contrasts

with experiments 2 and 3 described in the next sections, where a sinusoidal stimulus is completely

absent and only present during a brief period at the beginning of the simulation, respectively.

We simulated this task using 20 di↵erent ASHLE models that di↵ered by their natural frequency

and associated period, which matched each of the 20 musician SMPs measured by Scheurich and

colleagues [4] (250ms, 260ms, 300ms, 310ms, 325ms, 340ms, 345ms, 350ms, 380ms, 400ms, 410ms,

430ms, 440ms, 450ms, 460ms, 465ms, 475ms, 480ms, 600ms, and 650ms; in their original study

Scheurich and colleagues incorrectly call these measurements as the ‘spontaneous performance rate’,

when in reality these measurements are the ‘spontaneous performance period’). For each ASHLE

model we simulated the task in four experimental conditions where the stimulus period was 15%

or 30% shorter or longer than the period of the natural frequency. We measured the asynchrony

between ASHLE and the stimulus (see the methods section for details about our simulation setup,

procedure, and measurements). We optimized ASHLE’s parameters to approximate the musician

data shown in Fig. 3.2A (see model optimization in the methods section). Fig. 3.2B shows the mean

adjusted asynchrony that we observed in our simulations for the experimental conditions tested by

Scheurich and colleagues [4]. Our simulations show similar results to the human data observed

in Fig. 3.2A. Additionally, the shaded bars in Fig. 3.2B show ASHLE’s prediction for what the

mean adjusted asynchrony would look like if the same group of musicians were to perform with

metronome periods 45% shorter or longer than their individual SMP. Our model predicts that the

mean adjusted asynchrony in this condition will be even larger compared to when performing with a

metronome period 15% or 30% shorter or longer than the musician SMP. Fig. 3.2C shows musician

data predictions by simulating di↵erent ASHLE models (di↵erentiated by a specific period of natural

frequency value) carrying out the same melody performance task with a metronome period that is

45%, 30%, and 15% shorter or longer than the period of the natural frequency. Individual ASHLE

models in Fig. 3.2C predict that the mean adjusted asynchrony grows as a function of the di↵erence

between the period of the natural frequency and the stimulus period. Additionally, a longer period

of natural frequency predicts larger asynchronies across conditions compared to a shorter one. The

shaded bars in Fig. 3.2B and the results in Fig. 3.2C are predictions that ASHLE makes for musician

data that has not been collected yet.

Across all 20 ASHLE models simulated in this first experiment, the stimulus was a complex

sinusoid x = exp(i2⇡fst), where fs is a constant dictating the stimulus frequency in hertz, and was

di↵erent across all simulations. Each ASHLE model had a natural frequency with an associated
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Figure 3.2: Simulation of the MA between a musician’s beat and a metronome beat with

a period shorter or longer than the musician’s SMP during solo musical performance.

(A) The mean adjusted asynchrony (and standard error; N=20) between the musician beat and
metronome beat during performance of a simple melody in four conditions: metronome period 30%
shorter (F30), 15% shorter (F15), 15% longer (S15), and 30% longer (S30) compared to the musician
SMP. The F30, F15, S15, and S30 names for the x axis were used by Scheurich and colleagues [4]
to describe the “faster” and “slower” tempo compared to the SMT. Their use is incorrect, however,
as a ratio (or percent) of the SMP determines the experimental metronome period), and not a ratio
of the speed or rate (implied by the use of ‘F’ and ‘S’ for “faster” and “slower”, respectively). Here
we have pointed out their mistake to clarify the error, but we use their same original labels for
the x axis in order to compare our simulation results with their original data. (B) Our simulation
results showing the mean adjusted asynchrony (and standard error; N=20) between ASHLE and a
sinusoidal stimulus in six conditions: stimulus period 45% shorter (F45), 30% shorter (F30), 15%
shorter (F15), 15% longer (S15), 30% longer (S30), and 45% longer (S45) than the period of ASHLE’s
natural frequency. The shaded bars represent predicted measurements for data that has not been
collected yet from musicians. (C) Mean adjusted asynchrony predictions when di↵erent ASHLE
models (with di↵erent periods of natural frequency) synchronize with a stimulus period that is 45%
shorter (F45), 30% shorter (F30), 15% shorter (F15), 15% longer (S15), 30% longer (S30), or 45%
longer (S45) than the period of their natural frequecy. The values in (C) are predictions for musician
data that has not been collected yet.
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period that matched the musician SMP values measured by Scheurich and colleagues [4]. At the

beginning of each simulation, ASHLE’s frequency term was set to be its natural frequency. The

sinusoidal stimulus force was F = 1. Even though �1 is greater in magnitude than �2, they are

relatively close, resulting in learning of the stimulus tempo (due to �1) but with an asynchrony

between ASHLE and the stimulus (due to �2). In this experiment the parameter � has a negligible

e↵ect because of its small value compared to �1, which dominates ASHLE’s frequency learning

from an external stimulus (see parameter analysis in the methods section for an examination of

how di↵erent ASHLE parameters values a↵ect its synchronization behavior). Our results show that

we have identified the optimal set of parameters that allow ASHLE to capture the mean adjusted

asynchrony values observed in the behavioral data by Scheurich and colleagues [4].

3.3.2 Experiment 2: Unpaced solo music performance with a

starting tempo di↵erent than the SMT

Experiment 1 showed that our model can capture the MA that Scheurich and colleagues [4] observed

when musicians individually performed a simple melody paced by a metronome faster or slower than

their SMT. In this second experiment, we used ASHLE to simulate the data by Zamm and colleagues

[5] showing how musicians perform a simple melody spontaneously starting at a tempo di↵erent than

the SMT (Fig. 3.2B). Their experiment had four experimental conditions: starting performance

tempo fast, faster, slow, and slower than the SMT. Fig. 3.3A shows their results, which consisted of

the adjusted slope across musicians in the four di↵erent experimental conditions. The adjusted slope

is equal to the slope that best fit the length of consecutive IBIs during a melody performance that

starts at a tempo di↵erent than the SMT, minus the slope that best fit the length of consecutive IBIs

during a melody performance that starts at the SMT. The data shows that when musicians started

at a tempo faster than the SMT the mean adjusted slope was positive (consecutive IBIs became

longer), and that when musicians started at a tempo slower than the SMT the mean adjusted slope

was negative (consecutive IBIs became smaller; see Fig. 3.3A). Their results show that musicians

had a tendency to return to their SMT during a simple melody performance that started at a tempo

di↵erent than their SMT [5]. ASHLE does not produce pitch, but we can use it to simulate the

beats during this music performance task. We hypothesized that ASHLE’s pulling force will make it

return to the natural frequency, but at a very slow rate due to the small � parameter and the weak

pull to the natural frequency (see the methods section for a complete mathematical description of

ASHLE and parameter analysis). In contrast with experiment 1, in this second experiment ASHLE

was never stimulated by a sinusoid.

We simulated this task using 23 ASHLE models that di↵ered by their natural frequency and as-

sociated period, which matched the 23 musician SMP values measured by Zamm and colleagues [5]

(320ms, 350ms, 355ms, 359ms, 382ms, 390ms, 390ms, 415ms, 418ms, 430ms, 435ms, 438ms, 439ms,

439ms, 443ms, 445ms, 455ms, 457ms, 462ms, 470ms, 475ms, 525ms, and 572ms; we excluded the
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Figure 3.3: Simulation of the slope between consecutive IBIs when an unpaced musician

performs a melody starting at a tempo that is di↵erent than the SMT. (A) The mean
adjusted slope of consecutive IBIs (and standard error; N=24) when solo musicians perform a simple
melody starting a tempo that is fast, faster, slow, or slower compared to the musicians SMTs. (B)
Our simulation results showing the mean adjusted slope of consecutive IBIs (and standard error;
N=23) when ASHLE oscillates, without a stimulus, starting at a frequency that is fast, faster,
slow, or slower compared to the natural frequency. (C) Adjusted slope predictions when di↵erent
ASHLE models (with di↵erent periods of natural frequency) oscillate without stimulation, starting
with a period that is 45% shorter (F45), 30% shorter (F30), 15% shorter (F15), 15% longer (S15),
30% longer (S30), or 45% longer (S45) compared to the period of ASHLE’s natural frequency. For
consistency with experiment 1 results, here we also use the F30, F15, S15, and S30 names for the
x axis that Scheurich and colleagues [4] use to describe the “faster” and “slower” tempo conditions.
The values in C are predictions for musician data that has not been collected yet.
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data from the participant with the SMP of 665ms due to the big di↵erence between this participant’s

spontaneous rates and the rest of the group; see the methods section for a detailed description of

our rationale to exclude this participant). For each ASHLE model we simulated the task in four

experimental conditions where ASHLE’s initial frequency was fast, faster, slow, or slower compared

to the natural frequency (see the methods section for details about our simulation setup and proce-

dure). These four initial frequency values matched the measurements that Zamm and colleagues [5]

made for each musician performing at a tempo that was spontaneously fast, faster, slow, or slower

than the SMT. Fig. 3.3B shows the adjusted slope that we observed in our simulations for the

four di↵erent experimental conditions tested by Zamm and colleagues [5]. Our simulations show

similar results to the human data observed in Fig. 3.3A. Additionally, Fig. 3.3C shows musician

data predictions by simulating di↵erent ASHLE models (with di↵erent periods of natural frequency)

that perform the same melody task with an initial period that is 45%, 30%, and 15% shorter or

longer than the period of the natural frequency. Individual ASHLE models in Fig. 3.3C predict that

the slope grows as a function of the di↵erence between initial period and the period of the natural

frequency. Additionally, a slower natural frequency predicts larger slope values compared to a faster

one. The results in Fig. 3.3C are predictions that ASHLE makes for musician data that has not

been collected yet.

In this second experiment we used the same set of parameter values used in experiment 1. The

only values that were di↵erent in this experiment were F = 0 (due to the lack of stimulus), and

the natural frequency and initial frequency values, which were dictated by human data. In this

experiment �1 is not important to learn the stimulus tempo because there is no stimulus. lambda2

and � = 0.02 act as additive forces that control the size of consecutive period lengths in ASHLE’s

behavior when a stimulus is not present. However, while �2 dictates how strongly ASHLE pulls its

frequency toward its natural frequency, � dictates how quickly ASHLE forgets its frequency in favor

of the natural frequency. Here, � is a small value, keeping ASHLE close to its frequency and only

letting ASHLE slowly return to its natural frequency. That explains why the resulting slope values

in Fig. 3.3B and 3.3C are relatively small (see parameter analysis in the methods section for an

examination of how di↵erent ASHLE parameters values a↵ect its behavior).

3.3.3 Experiment 3: Duet musical performance between musicians

with matching or mismatching SMTs

Experiments 1 and 2 showed that the exact same ASHLE model can simulate two di↵erent behav-

ioral measurements: the MA in paced musical performance and the slope of consecutive IBIs in

unpaced musical performance. In this third experiment, we used ASHLE to simulate another task

by Zamm and colleagues [97] showing how musician duets perform a simple melody four consecutive

times (Fig. 3.2C). Musician duets were separated into two experimental groups: pairs with matching
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Figure 3.4: Simulation of the mean absolute asynchrony between two musicians with

matching or mismatching SMTs during duet musical performance. (A) The mean absolute
asynchrony (and standard error; in each experimental group N=10) between two musicians with
matching or mismatching SMTs during performance of a simple melody four consecutive times. (B)
Our simulation results showing the mean absolute asynchrony between two synchronizing ASHLE
models with natural frequency values that are close or far from each other. (C) Mean absolute
asynchrony predictions when di↵erent ASHLE models (with di↵erent periods of natural frequency)
synchronize with another ASHLE model with a period of natural frequency that is 220ms shorter,
110ms shorter, 10ms shorter, 10ms longer, 110ms longer, and 220ms longer. The values in C are
predictions for data that has not been collected yet from musicians.

or mismatching SMTs. Fig. 3.4A shows their results, which consisted of the mean absolute asyn-

chrony between the beats of the two performing musicians in each of the two experimental groups,

separately for each of the four melody repetitions (see the methods section for a detailed description

of the task by Zamm and colleagues [97]). This data shows that the mean absolute asynchrony was

smaller between musician duets with matching SMTs compared musician duets with mismatching

SMTs. ASHLE does not produce pitch, but we can use it to simulate the beats during this musical

performance task. We hypothesized that two ASHLE models will be able to synchronize with each

other due to their frequency learning mechanism. However, the elasticity pulling to their respec-

tive natural frequency will result in asynchrony between them, and the asynchrony will be smaller

between two synchronizing ASHLE models with similar natural frequency values compared to two

ASHLE models with dissimilar natural frequency values. In this third experiment pairs of ASHLE

models are stimulated first by a sinusoid that establishes a common frequency and then the two

ASHLE models stimulate each other. As a result, stimulation in this third experiment is overall

more complex than the constant sinusoidal stimulation in experiment 1 and the lack of stimulation

in experiment 2.

We simulated this task using 20 pairs of ASHLE models that di↵ered by their natural frequencies

and associated periods, which matched each of the 40 musician SMP values measured by Zamm and

colleagues [97]. We paired ASHLE models replicating Zamm and colleagues’ [97] pairing of musicians
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with matching or mismatching SMPs. For each pair we simulated the duet melody performance

task, where musician duets performed the same simple melody four consecutive times (see the

methods section for details about our simulation setup and procedure). We used the same ASHLE

parameters that we used in experiments 1, except for Fz = 0.01, which is the coupling strength

between ASHLE models stimulating each other, and the addition of gaussian noise to ASHLE’s

e↵ector (second oscillator) to better approximate the absolute asynchrony magnitudes observed in

the behavioral data (see model optimization in the methods section). Fig. 3.4B shows the mean

absolute asynchrony that we observed in our simulations for the experimental groups and melody

repetitions tested by Zamm and colleagues [97]. Our simulations show similar results to the human

data observed in Fig. 3.4A. Additionally, Fig. 3.4C shows musician data predictions by simulating

di↵erent ASHLE models performing the same duet melody task with another ASHLE model that

has an period of natural frequency 220ms shorter, 110ms shorter, 10ms shorter, 10ms longer, 110ms

longer, and 220ms longer than the other ASHLE model in the duet. The results in Fig. 3.4C predict

that the mean absolute asynchrony between musician pairs grows as a function of the di↵erence

between their natural frequency values.

In this third experiment we used the same set of parameter values used in experiments 1 and 2,

except for the natural frequency values, which were dictated by human data. However, stimulation

of and between ASHLE models in this experiment was di↵erent and more complex compared to the

experiments 1 and 2. Pairs of ASHLE models were stimulated by a sinousoid (four cycles with a

period of 400ms and F = 1) to establish a common tempo and then were allowed to synchronize

with each other with a coupling strength of Fz = 0.01. The coupling strength between synchronizing

ASHLE models is considerably smaller than F = 1 in order to control the stability of synchronization

(see model optimization in the methods section). Additionally, we added gaussian noise N (µ =

0,�2 = 100) to ASHLE’s e↵ector (the second oscillator) to better approximate the musician duet

performance data. Without the gaussian noise, ASHLE showed the same relative di↵erence in the

mean absolute asynchrony between experimental groups (match or mismatch SMT), but the values

were considerably smaller (see model optimization in the methods section).

3.4 Discussion

3.4.1 The interaction of Hebbian learning and elasticity mechanisms

during beat tracking can capture various PAC dynamics

In experiments 1 and 3, the asynchrony between ASHLE and a periodic stimulus was a↵ected by

the elastic Hebbian frequency learning rule. Similarly, experiment 2 showed that, in the absence of a

stimulus, the elastic Hebbian frequency learning also a↵ected the frequency of ASHLE’s spontaneous

activity, especially if ASHLE’s frequency was di↵erent than its natural frequency. The rate of

ASHLE’s oscillatory behavior is the result of elastic frequency learning, whith the frequency learning
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part and the elasticity part acting in opposite directions. While Hebbian frequency learning lets

ASHLE change its frequency to perfectly match any stimulus frequency, the elastic force pulls ASHLE

to its natural frequency. ASHLE’s behavior is consistent with theoretical accounts highlighting that

a dynamical system’s natural frequency is the optimal state for synchronization, even if the system

can synchronize at other frequencies [113, 56, 114, 4]. An interesting question is where in the

musician brain these mechanisms of frequency learning and frequency elasticity occur. As far as

frequency learning, previous research shows that cortical and subcortical networks in motor brain

areas synchronize neural activity that reflects the rhythms of a periodic stimulus [26, 115, 53, 78].

The origins of the SMT in humans (simuated by ASHLE’s natural frequency) involve both the

central and the peripheral nervous system. Central pattern generators in the central nervous system

give rise to spontaneous rhythms that could directly control the SMT [2]. Additionally, production

of SMTs involves the actions of e↵ectors (i.e., foot or fingers), so anatomical and biomechanical

factors could also directly contribute to defining a system’s SMT [1]. Currently no consensus exists

about the origins of the SMT and its influence during PAC. ASHLE is the first model validated by

real human data that captures how the brain’s motor system entrains to the tempo of a periodic

stimulus and is influenced by the dynamic principles of elastic Hebbian frequency learning. By using

a dynamical system’s model, we have shed light upon possible biomechanical mechanisms that could

underlie the origins of the SMT.

3.4.2 Experiment 1: Solo music performance with a metronome tempo

di↵erent than the SMT

Our model was able to reproduce the mean adjusted asynchrony between musician beats and

metronome beats when the metronome tempo is faster or slower than the musician’s SMT, in a

simple musical performance task (Figs 3.2A and 3.2B). Taking a closer look at the behavioral data

in Fig. 3.2A we see that the magnitude of the mean adjusted asynchrony values is slightly asym-

metric between faster and slower stimuli with respect to the SMT. Faster metronomes resulted in

slightly larger mean adjusted asynchrony magnitudes than slower ones. To achieve this behavior in

ASHLE we had to frequency-scale the elastic Hebbian learning rule in Eqs (3.5b) and (3.5d) (see

[19, 46] for more theory about frequency-scaled dynamical systems similar to ASHLE). Addition-

ally, ASHLE’s elasticity term ��2

⇣
exp

⇣
fm�f0

f0

⌘
� 1

⌘
in Eq (3.5d) is an exponential function so

that a stimulus faster than ASHLE’s natural frequency (causing exp
⇣

fm�f0
f0

⌘
� 1 > 0) would result

in an exponentially larger force toward the natural frequency compared to a stimulus slower than

ASHLE’s natural frequency (causing exp
⇣

fm�f0
f0

⌘
� 1 < 0). Due to frequency scaling, higher values

of fe and fm amplify the learning rate (�1) and the elastic force (�2), while lower values of fe and

fm shrink them. In ASHLE fe and fm are always very close (if not identical) in value to each other.

ASHLE’s mechanisms and behavior are validated by its ability to simulate the data by Scheurich

and colleagues [4] (Fig. 3.2A and 3.2B).
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ASHLE’s mechanisms of frequency learning and elastic force pulling to the natural frequency

can also be neuroscientifically explained. ASHLE’s frequency learning rate parameter, �1, simulates

the brain’s ability to entrain cortical and subcortical motor networks when processing a periodic

stimulus like a musical beat or a metronome tempo [26]. In contrast, ASHLE’s elasticity parameter,

�2, simulates the sti↵ness of the human body’s anatomical and biomechanical properties that could

give rise to the SMT [1]

While ASHLE was able to simulate the musician data by Scheurich and colleagues [4], it does

not show variability in its dynamics. Once ASHLE phase-locks with the sinusoidal stimulus, the

asynchrony between ASHLE and the stimulus reaches a steady state with zero variability. This is

a limitation of ASHLE’s ability to simulate musician’s beat tracking behavior, reflected by a degree

of variability across musician IBIs. In experiment 1, this lack of variability was a limitation to

perfectly simulate the results by Scheurich and colleagues [4]. Using ASHLE models with di↵erent

natural frequency values allowed us to simulate the variability between musicians (hence the standard

error in Fig. 3.2B). However, our standard errors were overall smaller compared to the musician

standard errors that Scheurich and colleagues [4] reported. The standard error in musicians has two

sources: (1) variability within each musician’s beat tracking behavior and (2) variability between the

behavior of di↵erent musicians. While we were able to simulate the variability between musicians

using ASHLE models with di↵erent natural frequency values, the lack of noise in ASHLE’s activity

is the likely cause of the di↵erence between our simulation results and the musician results. Adding

gaussian noise to ASHLE’s activity could better approximate the musician results. However, we

considered the addition of noise to be beyond the scope of this first experiment because our goal

was to optimize ASHLE to simulate the magnitude of the mean adjusted asynchrony (see model

optimization in the methods section).

ASHLE also made testable predictions of paced musician performance in a solo setting (Figs 3.2B

and 3.2C). First, it predicted mean adjusted asynchrony values that we could expect if the same

group of musicians were to carry out the task synchronizing with a metronome period 45% shorter

or longer than the SMP (Fig. 3.2B shaded bars). Additionally, Fig. 3.2C made predictions at the

individual musician level, simulating the mean adjusted asynchronies that musicians with di↵erent

SMP would produce when performing a melody with various metronome tempi faster or slower than

the SMT. These simulations sho that ASHLE can be used to make predictions about a musician’s

behavior with any SMT, and such predictions can be empirically tested to further validate ASHLE’s

behavior or better tune its parameters.

3.4.3 Experiment 2: Unpaced solo music performance with a

starting tempo di↵erent than the SMT

Our model was also able to simulate the mean adjusted slope between consecutive IBIs that Zamm

and colleagues [5] observed when musicians performed a melody without a metronome, starting at
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a tempo faster or slower than the SMT (Figs 3.3A and 3.3B). ASHLE’s approximation of the data

is not perfect, but it is close. This is because the parameters �1 and �2 were optimized to simulate

the data in experiment 1 and the same values were used in experiment 2. Hence, our results in

this second experiment show that the values for �1 and �2 can generalize to simulate data across

di↵erent musician datasets. There was only one ASHLE parameter that we optimized based on the

musician data from experiment 2. This was the � parameter (see model optimization of experiment

2, in the methods section). In experiment 2 there is no sinusoidal stimulus (F = 0) and � in Eq

(3.5a) controls how quickly ASHLE’s frequency returns to the natural frequency. � = 0.02 was the

value that resulted in the best fit between ASHLE’s simulation results and the musician data results.

The small � = 0.02 value can be explained by looking at the musician data in Fig. 3.3A. Musician’s

mean adjusted slope values are relatively small for all experimental conditions. These small values

result from musicians showing a tendency to very slowly return to their SMT throughout the musical

performance. That is why the value of � is very small compared to �1 = 4 and �2 = 2. Hence,

� is the ASHLE parameter that represents a musician’s tendency to return to their SMT in the

absence of stimulation. It is relatively small because part of musical training consists in being able

to maintain an arbitrary tempo throughout a musical performance [116, 117].

Theoretical models of musical tempo suggest entrainment of periodic neural activity with periodic

actions [118], but the mean adjusted slope results by Zamm and colleagues [5] also suggests that

the motor system, while maintaining the musical tempo, is constantly influenced by biomechanical

properties that could give rise to the SMT [1]. Evidence from synchronization-continuation tasks

suggest the existence of a physical and likely anatomical force pulling human periodic actions to

the SMT in the absence of an external stimulus [101, 96]. Our simulations reflect that the same

mechanisms to maintain a tempo are at play in experiment 1 and 2. However, the presence of a

stimulus in experiment 1 resulted in maintaining the tempo and the observation of an MA between

the musician and the metronome. In contrast, the lack of stimulus in experiment 2 results in the

musician slowly returning to the SMT.

Like in experiment 1, in experiment 2 ASHLE lacks variability in its activity. The standard

errors in our simulation results (Fig. 3.3B) are di↵erent to the standard errors in the musician

results (Fig. 3.3A). As we discussed in experiment 1, the musician results have two sources of

activity: variability in each individual musician’s actions and variability between musicians. Our

simulations only capture the variability between musicians by using di↵erent natural frequency values

to simulate di↵erent musician’s SMTs. ASHLE’s lack of variability in its activity suggest that the

variability in each individual musician’s actions also contributes to the standard error observed in

Fig. 3.3. Our simulations of experiment 2 show that ASHLE is a good model to approximate the

slope between consecurive IBIs, but not the variability observed when musicians try to maintain the

tempo in a solo setting without a pacing metronome.

ASHLE also made testable predictions of unpaced musician performance in a solo setting. Fig.
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3.3C shows predictions at the individual musician level simulating the mean adjusted slope that

musicians with di↵erent SMT would produce when performing a melody starting at various tempi

that are faster or slower than the SMT. ASHLE can be used to make predictions about a musician

with any SMT, and such predictions can be empirically tested to further validate ASHLE’s behavior.

3.4.4 Experiment 3: Duet musical performance between musicians

with matching or mismatching SMTs

ASHLE was able to simulate the mean absolute asynchrony between the beat of musician duets (with

matching or mismatching SMTs) that performed a simple melody (Fig. 3.4A and 3.4B). With the

exception of the type of stimulation (which was di↵erent between all three experiments) we used the

same ASHLE model parameters in experiments 1, 2, and 3. By carrying out experiment 3, our goal

was to show that ASHLE can capture musical performance behavior not just in solo settings, but

also in a duet setting. To optimize ASHLE for experiment 3, we added noise to ASHLE’s e↵ector

(see model optimization in the methods section). Without the gaussian noise, ASHLE showed

the same qualitative pattern of results, but with a noticeable di↵erence in magnitude between the

musician mean absolute asynchrony and ASHLE’s (see Fig. 3.5). Adding noise to ASHLE’s e↵ector

significantly improved ASHLE’s approximation of the human data (Figs 3.4A and 3.4B). More

specifically, the added noise results in ASHLE a better approximation of the magnitude of the

mean absolute asynchrony in the musician duets. Across all simulations, the standard error in

ASHLE’s results is very similar to the standard error displayed by the human data. While we could

have changed parameter values to achieve a perfect match between ASHLE’s simulations and the

musician activity for all experimental conditions, our goal was to identify the best set of parameter

values that could capture the activity across di↵erent musician experiments.

ASHLE was able to simulate the solo performance results in experiments 1 and 2 without the

need of noise. However, noise was necessary to simulate the duet performance results in experiment

3. This makes sense as the musical performance task in experiment 3 involves more sources of

variability than the tasks in experiments 1 and 2. While only one musician performs in experiments

1 and 2, in experiment 3 there are two performing musicians receiving feedback from each other.

The variability in musician behavior noticeably influences the absolute asynchrony between two

musicians performing as a duet. ASHLE’s need for noise in its e↵ector (the second oscillator)

reveals that the variability in musician behavior at the individual level is a significant contributor to

the mean absolute asynchrony in experiment 3. Without noise, ASHLE simulated a mean absolute

asynchrony around 2ms and 18ms for the duets with matching and mismatching SMTs, respectively.

When noise was added, ASHLE showed a mean absolute asynchrony around 10ms and 20ms for the

duets with matching and mismatching SMTs, respectively. Hence, the presence of noise is needed

to capture musical duet behavior, especially when the two musicians have matching SMTs.

To simulate this musical duet task, we also needed a significantly smaller connection strength (see
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Figure 3.5: Simulation without noise of the mean absolute asynchrony between two

musicians with matching or mismatching SMTs during duet musical performance. Our
simulation results showing the mean absolute asynchrony between two synchronizing ASHLE models
with matching or mismatching natural frequency, but no noise added to Eq (3.5c). The resulting
mean absolute asynchronies in this simulation without noise are much smaller compared to the
musician data results in Fig. 3.4A. The added noise in Eq (3.6) improves the model’s results, which
are shown in Fig. 3.4B.
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model optimization in the methods section) between the two ASHLE models stimulating each other.

This di↵erence in stimulus strength between experiment 1 and experiment 3 is due to the nature of

the stimulus. When the stimulus lacks intrinsic dynamical properties, like the sinusoidal stimulus

in experiment 1, a large forcing strength helps achieving phase-locked synchronization between a

dynamical system and the sinusoid [19]. This is very di↵erent when two or more dynamical systems

stimulate each other, like the two ASHLE models stimulating each other in experiment 3. Previous

studies of stability between dynamical systems have revealed that small forcing strengths between

dynamical systems ensure the stability of their periodic behavior [19].

ASHLE also made testable predictions about how musician duets would perform in new exper-

imental manipulations. Fig. 3.4C shows predictions for the mean absolute asynchrony that one

would observe between two musicians, one with a specific SMT, and the other with an SMT that

di↵ers by a specific value from the other musician’s SMT. These predictions show that the mean

absolute asynchrony between the two musicians will generally vary as a function of the di↵erence

between the musician’s SMTs, and also as a function of the specific SMT value in either of the two

musicians. ASHLE can be used to make predictions about musician duets with any SMTs, and such

predictions can be empirically tested to further validate ASHLE’s behavior.

3.4.5 General discussion

We have presented the ASHLE model, which captures how the musical tempo is maintained during

various simple performance tasks. In experiment 1, ASHLE captured the MA between a musician’s

beats and metronome beats during a simple melody performance task (Fig. 3.2). In experiment 2,

ASHLE captured the rate of beat change when a solo musician performed a simple melody without

a metronome (Fig. 3.3). And in experiment 3, ASHLE captured the mean absolute asynchrony

between the beat of two musicians performing a simple melody as a duet (Fig. 3.4). ASHLE was

able to capture these three di↵erent tasks using the same set of parameters for its intrinsic dynamics

(see parameter analysis and model optimization in the methods section). Our simulations validate

ASHLE’s ability to simulate real musician data. Hence, ASHLE is a model with a mechanisms of

elastic Hebbian frequency learning that generalizes across di↵erent tasks and di↵erent datasets. We

also used ASHLE to make testable predictions of musician performance data not yet collected (Figs

3.2B, 3.2C, 3.3C, and 3.4C). Future behavioral studies can collect this data to validate ASHLE as a

model able to capture musician performance. More data collected could also help to better fine tune

ASHLE’s parameters in case ASHLE, in its current sate, cannot su�ciently predict new musician

data.

ASHLE is the first MA model with the interacting forces of Hebbian frequency learning and

elasticity pulling toward a systems natural frequency. Previous models have focused on explaining

the origin of the negative mean asynchrony (NMA), which is a specific type of MA when the syn-

chronizing agent’s actions anticipate the pacing signal (i.e., a metronome). The first kind of these
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models propose that the NMA is the result of adaptive synchronization by means of phase and period

correction rules at phenomenological [73] and neuromechanistic levels [74]. Another kind of models,

called strong anticipation models, propose that the NMA is the result of delayed feedback [7] and,

in the case of humans, the NMA has been theorized to emerge from delayed neural communication

in the sensorimotor system [103]. ASHLE can capture both the NMA and the positive MA using

the same fundamental principles of adaptive frequency learning and elastic force. In humans, the

NMA is observed when synchronizing with a metronome tempo with an IOI larger than 350ms [21].

Interestingly, the average human SMP is around 400ms. As a result, the human NMA in ASHLE

emerges from a force pulling the human tempo to the SMT during adaptive synchronization with a

slower stimulus. However, there are similarities between ASHLE and models of strong anticipation

to explain the NMA as resulting from delayed feedback [7, 103]. Both ASHLE and strong anticipa-

tion models are based on physical principles. Future work should try to combine ASHLE and the

strong anticipation model of human anticipation to achieve a comprehensive model of adaptive and

anticipatory activity in human behavior.

We have presented a versatile, neuroscientifically-inspired, and ecologically valid model of adap-

tive musical beat performance for solo and duet settings. ASHLE is a model that can capture

adaptive human synchronization based on dynamical principles. ASHLE could be used not just to

simulate human data and predict human behavior, but also as a tool with which humans can interact

in experimental, musical, and therapy settings. ASHLE is the first model of its kind, and provides

us with a better understanding about how Hebbian frequency learning in the motor cortex interacts

with the elastic and dynamical constraints that give rise to the SMT.

3.5 Methods

3.5.1 Model definition

Theoretical background

A non-linear oscillator with a natural frequency f1 can synchronize in a phase-locking fashion with

another oscillator or an arbitrary periodic signal of frequency f2 if |f1f2| < ✏, where ✏ is much smaller

compared to f1 and f2. Synchronization also requires the synchronizing oscillator (or oscillators) to

have properly defined parameter values because if any of these parameters is outside the oscillator’s

phase-locking regime, synchronization will fail [119]. To overcome the limitation of fixed parameters,

studies have shown that oscillator parameters can be defined dynamically by a di↵erential equation

[120, 121, 122, 123, 124, 119]. Because the natural frequency is critical to determine an oscillator’s

phase-locking regime, Righetti and colleagues [119] defined an equation that allows a limit-cycle

oscillator to dynamically adapt its frequency to match the rate of periodic activity of an arbitrary

stimulus and phase-lock.
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ḟ = ��x(t) sin(�) (3.1)

In Eq (3.1), f is an oscillator’s natural frequency in hertz, � is the learning rate (or the adaptation

timescale for f), x(t) is an arbitrary stimulus, and � is the oscillator’s phase [119]. Because f is

a real-valued term, the stimulus x(t) is assumed to be a real signal, but if it were complex-valued,

only the real part of x(t) would be needed to observe the adaptive frequency behavior. Hence, to

process a complex-valued stimulus, Eq (3.1) would have the following form:

ḟ = ��<{x(t) sin(�)} (3.2)

Eq (3.2) allows a non-linear oscillator to dynamically adapt its frequency to phase-lock with

a periodic stimulus (real- or complex-valued) of an arbitrary frequency [119]. However, Eq (3.2)

does not have memory of its initial conditions for the frequency term, so after stimulation the

oscillator’s frequency f will remain in its learned state and will not return to the oscillator’s original

natural frequency. Lambert and colleagues [109] envisioned an oscillator able to adapt its frequency

elastically so that the oscillator would return to its natural frequency in the absence of stimulation.

Eq (3.3) describes this elastic frequency learning rule:

ḟ = ��1<{x(t) sin(�)}� �2
f � f0
f0

(3.3)

In Eq (3.3), �1 is the frequency learning rate from Eq (3.2) and �2 is the elastic force pulling the

oscillator’s f back to f0, which is a fixed value representing the oscillator’s natural frequency. �2

multiplies the di↵erence between f and f0. Thus, the new term �2
f�f0
f0

is equivalent to Hooke’s law,

which states that the force needed to extend a spring is linearly scaled by the distance resulting from

such extension [109]. As f and f0 di↵er in value due to a stimulus x(t) that changes the adaptive

frequency term ��1<{x(t) sin(�)}, the system’s elastic energy demand increases. Only the stimulus

x(t) can supply this energy demand, and in the absence of a stimulus, the system will make f = f0,

which is the state with the lowest elastic energy demand. Lambert and colleagues [109] used Eq (3.3)

to create networks of oscillators with di↵erent f0 values. This network allowed them to dynamically

find pulse and meter in musical signals [109].

To use Eq (3.3) we need to combine it with an oscillatory dynamical system. Because we want

to simulate periodic synchronization, we use the canonical Hopf oscillator described by Large and

colleagues that can synchronize with an external periodic stimulus [46, 19]. The oscillator that we

will use has the following general form:

1

f
ż = z

✓
↵+ i2⇡ + �1|z|2 +

✏�2|z|4

1� ✏|z|2

◆
+ x(t) (3.4)

In Eq (3.4) z is the state of the oscillator, and ↵, �1 and �2 are fixed parameters that control the
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dynamics of the oscillator. f determines the rate of oscillation and ✏ is a parameter that controls the

degree of higher-order nonlinear activity in the oscillator. x(t) is an arbitrary stimulus. This oscil-

lator is derived from a biological model of neural oscillation and can explain neural synchronization

observed in real neurons and sensory processing [125, 76]. Moreover, a single oscillator can show

stable oscillatory activity, even after it is no longer being stimulated, hence showing “memory” [19].

We want to simulate a musician’s SMT, so we only need one oscillator with a fixed f0 value. This

contrasts with the models described by Large and colleagues [46], who used a network of oscillators

with di↵erent natural frequency values.

The ASHLE model

Eqs (3.5a), (3.5b), (3.5c), and (3.5d) show the ASHLE model:

1

fp
żp = zp

�
↵+ i2⇡ + �|zp|2

�
+ Fx(t) (3.5a)

ḟp = fp

✓
��1< (iFx(t) exp(�i 6 zp))� �

✓
exp

✓
fp � fa

fa

◆
� 1

◆◆
(3.5b)

1

fa
ża = za

�
↵+ i2⇡ + �|za|2

�
+ exp(i 6 zp) (3.5c)

ḟa = fa

✓
��1< (i exp(i 6 zp) exp(�i 6 za))� �2

✓
exp

✓
fa � f0

f0

◆
� 1

◆◆
(3.5d)

Eqs (3.5a) and (3.5c) are oscillators like the one in Eq (3.4), but with �1 = �, �2 = 0, ✏ = 0.

In all of our simulations ↵ = 1 and � = �1 so that the intrinsic dynamics of Eqs (3.5a) and (3.5c)

are those of limit-cycle oscillators. In the absence of stimulus (i.e., when F = 0), Eqs (3.5a) and

(3.5c) will show spontaneous and perpetual oscillation [19]. Eqs (3.5b) and (3.5d) are the frequency

learning equations for Eq (3.5a) and Eq (3.5c), respectively. Eq (3.5b) has a frequency learning

terms ��1< (iFx(t) exp(�i 6 zp)) and a slow term ��
⇣
exp

⇣
fp�fa

fa

⌘
� 1

⌘
. The first one learns the

frequency of the external stimulus Fx(t), while the second one allows for a slow return to the

natural frequency because the parameter � always has a value several orders of magnitude smaller

than �1 and �2. So the slow timescale in (3.5b) is negligible in the presence of a stimulus Fx(t).

This slow term is only important when F = 0. The two frequency learning terms in Eq (3.5b)

control learning of the stimulus frequency and forgetting of an entrained frequency, respectively (see

parameter analysis in the next subsection). Eq (3.5d) is similar to the one described by Eq (3.3),

which contained a frequency learning and an elasticity term. However, in contrast with Eq (3.3), Eq

(3.5d) has an exponential elasticity term to better cope with the exponential nature of the hertz scale

of terms fa and f0. The first term in Eq (3.5d) carries out entrained frequency tracking while the

second one is the pulling force moving ASHLE’s frequency toward the natural frequency. Eqs (3.5b)

and (3.5d) share the �1 parameter. While the value of f0 may change between di↵erent simulations
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that we carried out, the values of �1 and �2 are always fixed across all our simulation experiments

(see parameter analysis and model optimization in the upcoming sections to understand how we

picked the values for these two parameters).

This model is inspired by neuroscientific hypotheses about processes involved during PAC. Eqs

(3.5a) and (3.5b) simulate entrainment in cortico-subcortical motor brain areas when processing a

periodic stimulus of an arbitrary frequency [111, 53, 112]. That is why Eq (3.5a) shows sustained

oscillatory activity even after a stimulus is no longer present, simulating neural entrainment to the

musical beat [26]. Eqs (3.5c) and (3.5d) simulate the motor cortex processing the entrained beat in-

formation to control peripheral e↵ectors (i.e., a finger playing a piano) during a musical performance

task. Eqs (3.5b) and (3.5d) simulate the frequency learning rules of central and peripheral motor

function. Because of how ASHLE processes a stimulus, Eqs (3.5a) and (3.5b) simulate how the

neurons entrain to a periodic stimulus, while Eqs (3.5c) and (3.5d) captures how the motor cortex

converts this encoded information into a motor command to e↵ectors. As a result, Eqs (3.5a) and

(3.5b) have a subscript p that stands for “perception”, while Eqs (3.5c) and (3.5d) have a subscript

a that stands for “action”.

While Eq (3.5a) is driven by an external stimulus Fx(t), Eq (3.5c) is driven by a unit-magnitude

complex sinusoid with the angle of Eq (3.5a). The input x(t) to ASHLE in Eq (3.5a) will be a complex

sinusoid to simulate musical performance paced by a metronome, zero to simulate spontaneous

musical performance, or the state of another ASHLE’s za term to simulate duet musical performance

using two synchronizing ASHLE models.

3.5.2 Parameter analysis

Eqs (3.5a), (3.5b), (3.5c), and (3.5d) describe the ASHLE model. Eqs (3.5a) and (3.5c) are the

Hopf oscillator described by Large and colleagues [46]. Previous studies have investigated how such

an oscillator synchronizes with a periodic external stimulus in a phase-locked fashion [19]. For that

reason, we focus on analyzing how the parameters �1, �2 and � in Eqs (3.5b) and (3.5d) a↵ect

synchronization with a periodic stimulus. Throughout this chapter, we fixed parameters ↵ = 1

and � = �1. This choice of parameter values causes Eqs (3.5a) and (3.5c) to show spontaneous

unit-magnitude limit-cycle behavior [19]. In our first and second analysis we use values of F = 1

(like in Experiment 1) and in our third analysis F = 0 (like in Experiment 2). The specific value of

Fz = 0.01 that we used in Experiment 3 is described in the model optimization section specific to the

Experiment 3 methods section. In the first and second analysis, the external stimulus x(t) was always

a unit magnitude complex sinusoid, so x(t) = exp(i2⇡fst), where fs is the stimulus frequency in

hertz and t is time. For all simulations in this analysis, ASHLE’s natural frequency f0 = 2.5 because

the average musician SMP is around 400ms in previous behavioral studies (f0 = 1000ms
400ms = 2.5Hz)

[4, 5, 97].

We first analyzed how �1 and �2 a↵ect the phase-locked asynchrony between the stimulus x(t) and
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ASHLE’s za (which simulates control of peripheral e↵ectors) when the stimulus period is 45% shorter

(fs =
1000ms

0.55⇥400ms ) and 45% longer (fs =
1000ms

1.45⇥400ms ) than ASHLE’s period of natural frequency. We

ran di↵erent simulations, each with a unique value for �1 and �2. In all simulations, ASHLE and

x(t) interacted for 50 seconds with initial conditions zp(0) = za(0) = 0.001 + i0. In Eq (3.5b),

the parameter � = 0 because we do not want to study the e↵ect of this small parameter in this

first analysis (see our third parameter analysis below to understand how gamma a↵ects ASHLE’s

behavior). After each simulation finished, we found the location (in milliseconds) of local maxima

(i.e., peaks) in the real part of the oscillatory activity of x(t) and za (Fig. 3.6A). Then, we subtracted

the location of the peaks of x(t) from the location of the peaks of za and averaged the result to

obtain the mean asynchrony in milliseconds. If x(t) and za showed a di↵erent number of peaks,

that indicated that phase-locked synchronization did not occur between the two. Figs 3.6B and

3.6C show the result of this analysis as a function of �1 and �2 when fs (the frequency of the

stimulus) has a period 45% shorter (fs = 4.5; Fig. 3.6B) and 45% longer (fs = 1.72; Fig. 3.6 than

ASHLE’s period of natural frequency. This analysis revealed that phase-locked synchronization

does not occur for certain combinations of �1 and �2 values (black cells in Figs 3.6B and 3.6C).

Interestingly, when �1 = 0, phase-locked synchronization is never possible. This makes sense, since

�1 is the frequency learning rate that allows ASHLE to change its frequency to match the frequency

of x(t). When �1 = 0, phase-locked synchronization can only occur between ASHLE and a stimulus

with a frequency that is close to ASHLE’s natural frequncy (see the study by Kim and Large [19] for

a detailed analysis of this kind of synchronization in the absence of a frequency learning rule). This

analysis also revealed that as the value of �2 becomes larger, phase-locked synchronization may not

be observed (depending on the value of �1) because ASHLE’s frequency terms fp and fa are pulled

strongly to the natural frequency f0. The values of �1 and �2 modulate the size of the asynchrony.

As �1 becomes larger, the magnitude of the asynchrony between za and x(t) tends to decrease and is

sometimes close to zero when �2 = 0. The opposite occurs when �2 grows. This observation reveals

that �1 and �2 work in opposing directions. While �1 changes the model’s frequency to match the

stimulus frequency, �2 pulls ASHLE’s to f0. Moreover, as ASHLE’s frequency deviates from f0, �2

acts with more strength, while the strength of �1 is not directly a↵ected by the di↵erence between

f0 and ASHLE’s frequency. Additionally, when synchronization is observed between ASHLE and

the stimulus x(t), the sign of the asynchrony between za and x(t) is a↵ected by whether x(t) is

faster or slower than ASHLE’s natural frequency, with a tendency be positive (lagging behavior)

and negative (anticipatory behavior), respectively.

Our second analysis focused on narrowing down our search for parameter values for �1 and �2

that result in asynchronies in the range observed in human data. In the experiment by Scheurich and

colleagues [4], musicians synchronized with a stimulus period that is 15% or 30% shorter or longer

than their SMP to measure the mean adjusted asynchrony (which is equal to the MA observed

during performance with a metronome tempo di↵erent from the musician SMT, minus the MA
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Figure 3.6: The asynchrony between ASHLE and a sinusoid with period 45% shorter

or longer than ASHLE’s period of natural frequency, as a function of frequency learn-

ing and elasticity parameters. (A) Illustration of the asynchrony between ASHLE’s za and the
external sinusoidal stimulus, and how it is measured. (B) The asynchrony in milliseconds between
ASHLE and a sinusoidal stimulus with a period 45% shorter than ASHLE’s period of natural fre-
quency, and its change as a function of �1 and �2, which are ASHLE’s parameters for frequency
learning and elasticity, respectively. (C) The asynchrony in milliseconds between ASHLE and a
sinusoidal stimulus with a period 45% shorter than ASHLE’s period of natural frequency, and its
change as a function of �1 and �2 values. Black cells indicate �1 and �2 value pairs for simulations
where ASHLE and the sinusoidal stimulus could not synchronize.

measured during performance with an metronome matching the musician SMT). Musicians showed

mean adjusted asynchrony values in the range of -10ms and 10ms (see Fig. 3.2A). In this analysis

we ran simulations where ASHLE was stimulated by a di↵erent stimulus frequency to measure the

MA between an ASHLE model with an f0 = 2.5 (same as our first analysis) and a sinusoidal

stimulus x(t) = exp(i2⇡fst) with six potential period lengths: 45% shorter (fs = 1000ms
0.55⇥400ms ), 30%

shorter (fs =
1000ms

0.70⇥400ms ), 15% shorter (fs =
1000ms

0.85⇥400ms ), 15% longer (fs =
1000ms

1.15⇥400ms ), 30% longer

(fs = 1000ms
1.30⇥400ms ), and 45% longer (fs = 1000ms

1.45⇥400ms ) than ASHLE’s period of natural frequency. In

our first parameter analysis, we noticed that values for �1 between 3 and 5, and �2 between 1 and 3

could result in MA values in the range of the mean adjusted asynchrony observed in humans (Fig.

3.6B and 3.6C). In this analysis we refine our search for �1 and �2 in this range of values. We ran

simulations in a similar fashion to our first analysis. ASHLE and the sinusoidal stimulus interacted

for 50 seconds. ASHLE had initial conditions zp(0) = za(0) = 0.001+ i0 and fp(0) = fa(0) = f0. In

Eq (3.5b) the parameter � = 0 because we want this term to be negligible when a stimulus is present.

For each simulation, we found the location (in milliseconds) of the local maxima in the real part of

the oscillatory activity of ASHLE’s za and x(t). Then, we subtracted the location of the peaks of

x(t) from the location of the peaks of za and averaged the result to obtain the MA in milliseconds.

If za and x(t) showed a di↵erent number of peaks, that indicated that phase-locked synchronization

did not occur between the two. Fig. 3.7 shows the result of this analysis. Each subplot shows the
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asynchrony between za and x(t) for a di↵erent stimulus frequency and a pair of parameter values

of �1 and �2. This analysis revealed that the values of �1 = 4 and �2 = 2 result in the range of

MA values observed in humans. This analysis, however, focused on finding parameter values so that

ASHLE can capture paced musician synchronization. We also want ASHLE to be able to capture

musician behavior during unpaced musical performance, so carried out a third parameter analysis

to understand ASHLE’s behavior in the absence of a stimulus.

In our third parameter analysis we observed how, in the absence of an external stimulus (i.e.,

F = 0), the parameter � a↵ects the return of ASHLE to f0 when the initial values of fp and fa

are di↵erent than f0. This situation would occur in simulations where ASHLE learned a frequency

di↵erent than its f0 from a stimulus and then stimulus stops, or if fp(0) and fa(0) are set to

initial conditions di↵erent than f0 in the absence of a stimulus. In the experiment by Zamm and

colleagues [5], musicians spontaneously started performing at a tempo faster or slower than their

SMTs. A linear regression of the consecutive IBI lengths resulted in a slope that revealed that

musicians progressively shrank or widened consecutive IBIs, indicating a tendency to return to their

SMP. In this experiment musicians showed mean adjusted slope values in the range of -0.2 and 0.1

(see Fig. 3.3). To simulate this behavior, we need to identify the value of � that will result in

similar slope values between consecutive IBIs. In this analysis ASHLE has an natural frequency

f0 = 2.5 (same as in the previous two analyses) and in di↵erent simulations the initial conditions

for fp(0) and fa(0) were set to one of four di↵erent values: periof 45% shorter (fp(0) = fa(0) =
1000ms

0.55⇥400ms ), 30% shorter (fp(0) = fa(0) = 1000ms
0.70⇥400ms ), 15% shorter (fp(0) = fa(0) = 1000ms

0.85⇥400ms ),

15% longer (fp(0) = fa(0) = 1000ms
1.15⇥400ms ), 30% longer (fp(0) = fa(0) = 1000ms

1.30⇥400ms ), and 45%

longer (fp(0) = fa(0) =
1000ms

1.45⇥400ms ) than ASHLE’s period of natural frequency. In all simulations

there was no external stimulus (i.e., F = 0). We analyzed the behavior of ASHLE for � values of

0.01, 0.02, 0.04, 0.08. In each simulation, ASHLE oscillated for 50 seconds with initial conditions

zp(0) = za(0) = 0.001 + i0. After each simulation, we found the location (in milliseconds) of the

local maxima in the real-part of the oscillatory activity of za. Then we found the di↵erence between

consecutive local maxima to obtain a sequence of IBIs. Finally, we calculated the linear regression

between consecutive IBIs to obtain the resulting slope. Fig. 3.8 shows the results of this analysis.

Each subplot shows the slopes obtained with di↵erent � values and di↵erent initial conditions for

fp(0) and fa(0). This analysis revealed that a value around � = 0.02 will match the range of slope

values observed in human data.
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Figure 3.7: The asynchrony between ASHLE and a sinusoid faster or slower than

ASHLE’s natural frequency as a function of a narrower range of values for the fre-

quency learning and elasticity parameters. Each cell shows the MA between ASHLE and a
sinusoidal stimulus with a period 45% shorter, 30% shorter, 15% shorter, 15% longer, 30% longer,
and 45% longer than ASHLE’s period of natural frequency, for a pair of values for �1 and �2, which
are ASHLE parameters for frequency learning and elasticity, respectively. The pair of �1 = 4 and
�2 = 2 yield MA values similar to the ones that Scheurich and colleagues [4] observed in musicians
synchronizing with a metronome period 30% shorter, 15% shorter, 15% longer, and 30% longer than
the musician’s SMP.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.341610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341610
http://creativecommons.org/licenses/by/4.0/


CHAPTER 3. HEBBIAN LEARNING EXPLAINS MUSICIAN SYNCHRONIZATION 70

Figure 3.8: ASHLE slope values as a function of � and initial frequency in the absence of

a stimulus. The e↵ect of the � parameter on the slope values between consecutive period lengths
when ASHLE oscillates without a pacing stimulus, starting at a frequency that has a period 45%
shorter (fs =

1000ms
0.55⇥400ms ), 30% shorter (fs =

1000ms
0.70⇥400ms ), 15% shorter (fs =

1000ms
0.85⇥400ms ), 15% longer

(fs = 1000ms
1.15⇥400ms ), 30% longer (fs = 1000ms

1.30⇥400ms ), and 45% longer (fs = 1000ms
1.45⇥400ms ) than ASHLE’s

period of natural frequency.
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3.5.3 Experiment 1: Solo music performance with a metronome tempo

di↵erent than the SMT

Behavioral data for simulation

In the task by Scheurich and colleagues [4], 20 musicians individually performed a simple melody

while synchronizing with a metronome in four experimental conditions: metronome period 30%

shorter, 15% shorter, 15% longer, and 30% longer than their SMP. For each metronome rate, par-

ticipants performed the melody (”Mary had a little lamb”) four consecutive times (32 beats per

repetition, 128 beats total). Experimenters measured the mean adjusted asynchrony between the

participant beats and the metronome clicks during the middle two melody repetitions (64 beats

total). The mean adjusted asynchrony is the MA observed when the musician performs with a

metronome tempo di↵erent than the musician’s SMT, minus the MA observed when the musician

performs with a metronome that matches the SMT. Scheurich and colleagues [4] used the mean

adjusted asynchrony instead of the MA to assume in their analysis that no MA exists between the

musician and the metronome that matches the SMT. Fig. 3.2A shows the behavioral data with the

mean adjusted asynchrony (average and standard error) observed across all 20 musicians for each

experimental metronome tempo condition. Their results showed that the mean adjusted asynchrony

had a tendency to be positive when synchronizing with a metronome faster than the SMT (musician

actions lagging the metronome), and negative when synchronizing with a metronome slower than the

SMT (musicians actions anticipating the metronome). Additionally, the mean adjusted asynchrony

grew as a function of the di↵erence between musician SMT and experimental metronome tempo.

Setup, procedures and measurements

To obtain the musicians SMPs, we overlaid a grid over Figure 4 from the paper by Scheurich and

colleagues [4], which showed each musician’s measured SMP (in their original paper, the authors

mistakenly call the SMP as the ‘SPR’). Using this grid over the original figure allowed us to precisely

digitize each musician’s SMP from the original publication. Using the musician SMP values, we

simulated 20 di↵erent ASHLE models, all with the same parameter values (see model optimization

below) except for the natural frequency, which has a periof that matched the SMP of a di↵erent

musician. ASHLE does not generate pitch, so it only simulates the beats of the melody that musicians

performed, not the melody or harmony content. This is not a problem, however, since Scheurich

and colleagues only analyzed each musician’s beat performance. In all simulations, initial conditions

were zp(0) = za(0) = 0.001 + i0 (indicating that ASHLE’s two oscillators start with zero phase),

fp(0) = fa(0) = f0 (where f0 is ASHLE’s natural frequencyin hertz: f0 = 1000ms
SMPms . Following

the procedure in the musician experiment, each ASHLE synchronized during 128 cycles with a

pacing complex-valued sinusoidal stimulus x(t) = exp(i2⇡fst) where fs had a period either 30%

shorter (fs = 1000ms
0.7⇥SMPms ), 15% shorter (fs = 1000ms

0.85⇥SMPms ), 15% longer (fs = 1000ms
1.15⇥SMPms ), or
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30% longer (fs = 1000ms
1.3⇥SMPms ) than the ASHLE’s period of natural frequency. We also simulated

how ASHLE would synchronize with a stimulus period 45% shorter (fs = 1000ms
0.55⇥SMPms ) or 45%

longer (fs =
1000ms

1.45⇥SMPms ) in order to make predictions about how musicians would perform in those

additional experimental conditions. After each simulation, we identified the location (in milliseconds)

of local maxima in the real part of ASHLE’s e↵ector za and the sinusoidal stimulus. Then, in each

simulation we identified the middle 64 peaks for ASHLE and the stimulus and subtracted the location

of stimulus peaks from ASHLE peaks to obtain the asynchrony. Averaging these asynchronies in each

simulation resulted in the MA for a specific simulation. To obtain the mean adjusted asynchrony

that Scheurich and colleagues used in their analysis, from each MA obtained in the experimental

conditions, we subtracted the MA observed when ASHLE synchronized with a sinusoid with a

frequency that matched ASHLE’s natural frequency (fs = f0). We averaged the mean adjusted

asynchronies observed across the 20 ASHLE models that me simulated (only di↵erent by their natural

frequency value) for each stimulus period (15%, 30%, or 45% shorter or longer than ASHLE’s period

of natural frequency) to obtain the plot in Fig. 3.2B. We also simulated how di↵erent ASHLE models

with specific periods of natural frequency (linearly spaced between 350ms and 650ms) would carry

out this task when synchronizing with a stimulus period that is 45% shorter (fs = 1000ms
0.55⇥SMPms ),

30% shorter (fs = 1000ms
0.7⇥SMPms ), 15% shorter (fs = 1000ms

0.85⇥SMPms ), 15% longer (fs = 1000ms
1.15⇥SMPms ),

30% longer (fs = 1000ms
1.3⇥SMPms ), or 45% longer (fs = 1000ms

1.45⇥SMPms ) than ASHLE’s period of natural

frequency. Fig. 3.2C shows the results of these simulations, which are predictions of musician data

that could be collected to test the accuracy of predictions made by ASHLE.

Model optimization

Our goal was to use ASHLE to simulate the results in the musician data by Scheurich and colleagues

[4]. In all our simulations in this experiment, some ASHLE parameters were always the same: ↵ = 1,

� = �1, and � = 0.02 (see model optimization for experiment 2 to understand how we came to this

exact value for �). The other two parameters that were always the same across simulations were

�1 = 4 and �2 = 2, which we found in our parameter analysis to result in a good approximation of

the musician data results by Scheurich and colleagues [4]. When we carried out the simulations in

this experiment, we confirmed that the values of �1 = 4 and �2 = 2 resulted in a good fit between

our simulations and the musician data by Scheurich et al. [4].

3.5.4 Experiment 2: Unpaced solo music performance with a

starting tempo di↵erent than the SMT

Behavioral data for simulation

In the task by Zamm et al. [5], 24 musicians individually performed a simple melody without

listening to a metronome. In one control condition they performed the melody at their SMT, and
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in four other experimental conditions they performed starting at four other spontaneous tempi:

fast and slow with respect to SMT, and even faster and slower with respect to the SMT. For each

spontaneous initial tempo, musicians performed the melody (”Frere Jaques”) four consecutive times

(32 beats per repetition, 128 beats total). For each tempo, experimenters measured the IBI across

each musician’s entire performance and carried out a linear regression to obtain a slope, which

indicates the rate of change across IOIs over the entire performance. Fig. 3.3A shows the behavioral

data with the average slope across participants in each initial tempo condition. Results showed that

the slope had a tendency to be positive when performances started a spontaneous tempo faster than

the SMT (IBIs becoming longer as the performances progressed), and negative when performances

started at a spontaneous tempo slower than the SMT (IBIs becoming shorter as the performance

progressed).

Setup, procedures and measurements

To obtain the musicians’ SMP, we overlaid a grid over Figure 1 from the paper by Zamm and

colleagues [5], which showed each musician’s measured SMP (in their original paper, the authors

mistakenly call the SMP as the ‘SPR’). We also overlaid a grid over Figure 2 (right top panel) from the

same paper by Zamm and colleagues to obtain each musician’s initial rates of performance that were

fast, slow, faster, and slower with respect to their SMT. Using these grids over original musician data

figures allowed us to precisely recover each musician’s rates of performances reported in the original

study. Because our model does not generate pitch, it only simulates the beats of the melody that

musicians performed, not the individual notes. Using the musicians’ SMT and initial performance

tempo values, we simulated 23 di↵erent ASHLE models, each oscillating with 5 di↵erent initial

conditions for fp(0) = fa(0) (matching the frequency, fast or slow compared to the SMT, and faster

and slower than the SMT) (115 total simulations). We did not simulate the participant with the SMP

of 665ms because its fast spontaneous tempo was signficantly faster than the rest of the particpant

fast tempi, and ASHLE was not able to show stable activity as a result of this tempo di↵erence.

In all simulations in this experiment there was no stimulus (F = 0). All simulations shared the

same parameter values (see model optimization below) except for the natural frequency (which had

a period matching the SMP of a di↵erent musician) and each simulation started with the ASHLE

model having di↵erent initial conditions for fp(0) = fa(0). After each simulation, we identified the

location (in milliseconds) of local maxima in the real part of ASHLE’s e↵ector za. Then, we measured

the di↵erence between consecutive peaks to analyze how IBIs change over the course of a simulation.

For each simulation we carried out a linear regression over the IBIs to obtain a slope value. Consistent

with the methods in the human experiment to obtain the adjusted slope, the slope of each simulation

in the control condition where fp(0) = fa(0) = f0 was subtracted from the slope obtained in the

experimental conditions (fp(0) = fa(0) 6= f0). We averaged adjusted slopes across ASHLE models

for each experimental initial frequency to obtain the plot in Fig. 3.3B. We also simulated how
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di↵erent ASHLE models with specific natural frequency values (with period lengths linearly spaced

between 350ms and 650ms) would carry out this task when the initial conditions for fp(0) = fa(0)

were a period 45% shorter (fp(0) = fa(0) =
1000ms

0.55⇥SMPms ), 30% shorter (fp(0) = fa(0) =
1000ms

0.70⇥SMPms ),

15% shorter (fp(0) = fa(0) =
1000ms

0.85⇥SMPms ), 15% longer (fp(0) = fa(0) =
1000ms

1.15⇥SMPms ), 30% longer

(fp(0) = fa(0) =
1000ms

1.3⇥SMPms ), and 45% longer (fp(0) = fa(0) =
1000ms

1.45⇥SMPms ) than ASHLE’s period

of natural frequency. Fig. 3.3C shows the results of these simulations, which are predictions of

musician data that could be collected to test the accuracy of predictions made by ASHLE.

Model optimization

Our goal was to use the ASHLE model to simulate the results in the musician data by Zamm and

colleagues [5]. With the exception of F = 0 (due to the lack of stimulus), in this second experiment

we used the same parameters used in experiment 1. We wanted to use the same parameter values

in order to validate our model’s behavior across two di↵erent sets of behavioral results. Hence, in

all simulations in this second experiment ↵ = 1, � = 1, and � = 0.02. Similarly, initial conditions

for Eqs (3.5a) and (3.5c) were the same between experiment 1 and experiment 2. The only set of

parameters that varied between simulations were the initial conditions for fp(0) = fa(0) and the

oscillators natural frequency (f0).

3.5.5 Experiment 3: Duet musical performance between musicians

with matching or mismatching SMTs

Behavioral data for simulation

In another experiment, Zamm and colleagues [97] measured the SMP of 40 musicians and formed

duets of musicians in two experimental groups: duets with matching SMPs (¡10ms IBI di↵erence),

and duets with mismatching SMPs (¿110ms IBI di↵erence). There were 10 unique musician duets

in each experimental group. Musician pairs were instructed to perform a simple unfamiliar melody

together (16 beats in length), repeating the melody four consecutive times (64 beats total). When

pairs of musicians performed the task, they first heard four metronome beats (400ms IOI) that

established the common tempo. Experimenters measured the absolute asynchrony between each

pair of synchronizing musicians throughout the entire performance. Because the same melody was

repeated four times, they obtained a mean absolute asynchrony for each of the melody repetitions.

Fig. 3.4A shows the behavioral data reported by Zamm and colleagues (2016) with the average

mean absolute asynchrony across musicians for each melody repetition and for each experimental

group. Results showed that the mean absolute asynchrony between duets of musicians was larger

when their SMPs did not match compared to when they matched.
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Setup, procedures and measurements

To obtain the musicians’ SMPs, we overlaid a grid over Figure 1 from the paper by Zamm and

colleagues [97], which showed each musician’s measured SMP (in their original paper, the authors

mistakenly call the SMP as the ‘SPR’). Using the grid over the original figure allowed us to precisely

recover each musician’s SMP as reported in the original study. Because our model does not generate

pitch, it only simulates the beats of the melody that musicians performed, not the individual notes.

Using the musicians’ SMP values, we simulated 20 pairs of ASHLE models (10 pairs with similar

natural frequencies and 10 pairs with dissimilar natural frequencies) synchronizing during 64 cycles.

All simulations shared the same parameter values and initial conditions used in experiment 1, except

for the coupling strength between synchronizing ASHLE models (see model optimization in the next

paragraph) and the natural frequency, which had a period that matched the SMP of a musician in

the data by Zamm and colleagues [97]. At the beginning of the simulation, two ASHLE models were

stimulated by a complex-valued sinusoid x(t) = exp(i2⇡fst) with an period of 400ms (fs = 2.5).

After these four cycles of sinusoidal stimulation, the stimulus stopped and the two ASHLE models

stimulated each other with their respective za. That is, in each duet simulation, after four cycles

of sinusoidal stimulation, the input to the ASHLE No.1 was Fzza2 and the input to ASHLE No.2

was Fzza1 , where Fz is the forcing strength between ASHLE models. After each simulation, we

identified the location (in milliseconds) of local maxima in the real part of each ASHLE’s e↵ector

za. Then, we measured the absolute asynchrony between the two synchronizing ASHLE model’s za,

obtaining 64 absolute asynchronies for each simulation. We divided these 64 absolute asynchronies

in four subsections of equal parts (16 absolute asynchronies per section) to simulate the four melody

repetitions that pairs of musicians carried out in the experiment by Zamm et al. [97], and we

averaged the mean absolute asynchrony in each of these four subsections. We averaged the mean

absolute asynchronies across pairs of ASHLE models for each melody repetition to obtain the plot in

Fig. 3.4B. We also simulated how di↵erent ASHLE models (with natural frequency periods linearly

spaced between 350ms and 650ms) would carry out this task when synchronizing for 16 cycles with

another ASHLE model with an natural frequency period di↵erence of -220ms, -110ms, -10ms, 10ms,

110ms, and 220ms. Fig. 3.4C shows the results of these simulations, which are predictions of data

that could be collected to test the accuracy of predictions made by ASHLE.

Model optimization

Our goal was to use the ASHLE model to simulate the results in the study by Zamm and colleagues

[97]. With the exception of the stimulus forcing F and Fz, in this second experiment we used

the same parameters used in experiment 1 and 2. Hence, in all simulations in this experiment

↵ = 1, � = 1, and � = 0.02. Similarly, initial conditions for Eqs (3.5a) and (3.5c) were always

zp(0) = za(0) = 0.001+ i0 and fp(0) = fa(0) = f0 (matching the SMT by each musician in the duet

study by Zamm and colleagues [97]). In contrast with the previous two experiments, there were two
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kinds of stimulation in this third experiment. During the first four cycles of each simulation, similar

to experiment 1, ASHLE was simulated by a sinusoid x(t) = exp(i2⇡fst) with a force F = 1 and

fs = 2.5. However, during the next 64 cycles, two ASHLE models synchronized with each other,

so the input to the first ASHLE model is the second ASHLE model’s e↵ector Fzza2 and the input

to the second ASHLE model was the first ASHLE model’s e↵ector Fzza1 . We found that using

an Fz = 1 resulted in a lack of phase-locked synchronization between the two ASHLE, suggesting

that Fz = 1 is too large and causes unstable dynamics between the two interacting ASHLE models.

To improve stability, we reduced the value of Fz until we observed stable synchronization between

all pairs of ASHLE models that we want to simulate. We found that Fz = 0.01 resulted in stable

synchronization, and mean absolute asynchronies matching the range of values in the behavioral

data. However, we also noted that the mean absolute asynchrony was considerably smaller between

pairs of ASHLE models with similari natural frequencies compared to the human results for musician

duets with matching SMTs. We believe that this di↵erence was due to the lack of noise in our model.

To improve our simulation results, in each simulation we added gaussian noise to ASHLE’s e↵ector

za turning Eq (3.5c) into:

1

fa
ża = za

�
↵+ i2⇡ + �|za|2

�
+ exp(i 6 zp) +N (µ,�2) (3.6)

where µ = 0 is the mean and � = 10 is the standard deviation of a normal distribution. Fig.

3.4B shows the results obtained after we added the noise, which better approximate the behavioral

data.
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