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Short Title:  

Antibody basis for COVID-19 severity 

 
One Sentence Summary:  

Antibodies targeting a specific location within a SARS-CoV-2 structural protein are linked 

to poor COVID-19 disease outcomes. 
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Abstract: 

Characterization of antibody response to SARS-CoV-2 is urgently needed to 

predict COVID-19 disease trajectories. Ineffective antibodies or antibody-dependent 

enhancement (ADE) could derail patients’ immune responses, for example. ELISA and 

coronavirus antigen microarray (COVAM) analysis epitope-mapped plasma from 86 

COVID-19 patients. The experiments identified antibodies to a 21-residue epitope from 

nucleocapsid (termed Ep9) associated with severe disease, including ICU stay, 

requirement for ventilators, and death. Furthermore, anti-Ep9 antibodies correlate both 

with various comorbidities and ADE hallmarks, including increased IL-6 levels and early 

IgG response. Importantly, anti-Ep9 antibodies can be detected within five days post-

symptom onset and sometimes within one day. The results lay the groundwork for a new 

type of COVID-19 diagnostic for the early prediction of disease severity to guide more 

effective therapeutic interventions.   
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Main Text: 

The COVID-19 pandemic has triggered an ongoing global health crisis. More than 

37 million confirmed cases and 1 million deaths have been reported worldwide as of 

October 12, 2020 (1). The virus that causes COVID-19, severe acute respiratory 

syndrome coronavirus (SARS-CoV-2), belongs to the same family of viruses responsible 

for respiratory illness linked to recent epidemics – severe acute respiratory syndrome 

(SARS) in 2002-2003 and Middle East respiratory syndrome (MERS) in 2012 (2). The 

current and previous outbreaks suggest coronaviruses will remain viruses of concern for 

global health. 

Many risk factors and comorbidities, including, age, sex, and medical history, 

including  hypertension, diabetes, and obesity, influence COVID-19 patient prognosis (3). 

Analysis of patient immune parameters has linked disease severity to elevated levels of 

biomarkers for inflammation (c-reactive protein and cardiac troponin I), organ damage 

(aspartate aminotransferase, abbreviated AST, and hypoalbuminemia), immune 

hyperactivity (IL-6 and IL-10), and clotting (D-dimer) (4). Mortality in COVID-19 is often 

caused by multi-organ injury and severe pneumonia attributed to an overzealous immune 

response, called a cytokine storm (5). Given the rapid COVID-19 disease progression 

and no proven curative treatment, a better understanding of the antibody response is 

urgently needed to potentially predict disease trajectories and guide interventions.  

Vast differences in the severity of COVID-19 from asymptomatic to death remain 

an enduring puzzle. One hypothesis to explain these differences implicates weakly 

binding, non-neutralizing antibodies (Abs) to SARS-CoV-2 proteins. Such Abs could 

cause antibody-dependent enhancement (ADE) of COVID-19, through antibody-
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facilitated viral infection or enhanced immune activation (6). In addition to understanding 

and predicting disease trajectories, characterization of ADE could ensure patient safety 

during development of antibody-based vaccines and therapeutics. ADE has been 

observed for multiple viruses, including respiratory syncytial virus (RSV); poorly 

neutralizing Abs generated in response to RSV vaccination can enhance complement 

immune activation and disease severity in patients (7). Though in vitro and in vivo animal 

studies demonstrate enhanced immunopathology upon antibody challenge in SARS and 

MERS, ADE remains ill-defined in SARS-CoV-2 (6, 8). Furthermore, a recent overview of 

ADE in COVID-19 stated, “At present, there are no known clinical findings, immunological 

assays or biomarkers that can differentiate any severe infection from immune-enhanced 

disease, whether by measuring antibodies, T cells or intrinsic host responses (8)." This 

conclusion motivated our study. 

SARS-CoV-2 encodes four major structural proteins – spike (S), nucleocapsid (N), 

membrane (M), and envelope (E). The S, N, and M proteins from SARS elicit an Ab-based 

immune response (9, 10), whereas the Ab response against these structural proteins from 

SARS-CoV-2 remains under investigation (11). Bioinformatics has predicted >55 Ab 

binding epitopes from SARS-CoV-2 (12–17). However, the role antibodies against such 

epitopes play in disease progression remains ill-defined. Additionally, the epitopes for N, 

M or E proteins are less well-characterized than for S protein. Illustrating their potential 

importance, Abs to N protein in SARS patients elicit a highly immunogenic, long-lasting 

response (18). To characterize epitopes from SARS-CoV-2, ELISAs with phage-

displayed epitopes (phage ELISAs) and coronavirus antigen microarray (COVAM) 

analysis (19) examined plasma samples from COVID-19 patients (n = 86). As shown 
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here, correlation of Abs to an epitope from N protein with patient outcomes demonstrates 

the importance of fine epitope mapping. 

 

Results 

Design and production of candidate epitopes 

Twenty-two putative SARS-CoV-2 epitopes were predicted through bioinformatics 

(12–14) and structure-based analysis. The candidate epitopes span the S, N, M, or E 

proteins and are 15 to 211 amino acids in length (Fig. 1 and Table S1). The structure of 

S protein bound to a neutralizing antibody (20, 21) provided the starting point for 13 of 

these antibody epitopes. After display of each potential epitope on the surface of phage, 

the quality of the epitopes was evaluated by PCR, DNA sequencing, and QC ELISA (Fig. 

S1). A total of 18 phage-displayed, putative epitopes passed quality control, and were 

selected for further study. 

 
Fig. 1. Predicted SARS-CoV-2 epitopes examined by phage ELISA. Structural models 
(gray) of the SARS-CoV-2 A) S, B) N, C) M, or D) E proteins illustrate our epitope design 
(colored). These epitopes were phage-displayed, which could result in loss of their 3D 
structures. The depicted structural models were derived from an S protein X-ray structure 
(PDB: 6VXX) (20) or computation modeling of N, M, and E proteins (Protein Gene Bank: 
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QHD43423, QHD43419, and QHD43418, respectively) (22). Table S1 provides 
sequences and where applicable sources of each epitope. 
 

Mapping epitope binding to anti-SARS-CoV-2 Abs  

Plasma from COVID-19 patients was subjected to ELISAs with the phage-

displayed SARS-CoV-2 epitopes (Fig. 2A). Unless otherwise indicated, plasma refers to 

samples from PCR-verified, COVID-19 patients. In this initial assay, plasma was pooled, 

diluted 100-fold, and coated on a microtiter plate (3 pools of n = 5 patients per pool). 

Nonspecific interactions were blocked (ChonBlock), and phage-displayed epitopes were 

added for ELISA. The resultant data were normalized by signal from the corresponding 

negative control (phage without a displayed epitope). Seven promising epitopes from the 

pooled patients were further investigated with a larger number of individual patient 

samples (n = 28) (Fig. 2B). The strongest binding was observed for three epitopes from 

M (Ep6), N (Ep9), and S (Ep21) proteins. Additional COVID-19 plasma samples were 

profiled for binding to these three epitopes (n = 86 total) (Fig. 2B).  

The Ep9 epitope from N protein demonstrated robust antibody binding in 27% of 

the patient plasmas (n = 86). The other epitopes either failed to produce statistically 

sufficient numbers of responses, or, despite sufficient numbers, lacked clinical data 

demonstrating correlation with disease severity. Levels of anti-Ep9 Abs (αEp9 Abs) were 

mapped over 43 days. The highest levels of αEp9 Abs were observed at days 1 to 14 

post-symptom onset (n = 11) with peaks for most patients appearing within days 4 to 9 

(Fig. 2C).  
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Fig. 2. Mapping COVID-19 patient antibody responses with phage-displayed SARS-
CoV-2 epitopes. A) This phage ELISA with the indicated epitopes (x-axis) examined 
plasma pooled from patients (n = 3 pools of 5 patients each, 2 technical replicates). B) 
The epitopes with the highest signals were then further examined by ELISA with plasma 
from individual patients (n as indicated). C) With samples from individual patients 
(designated as P# and by color) collected at the indicated times, changing levels of Ep9 
were characterized. D) Ep9 orthologs from SARS, MERS, HKU-1, or NL63 (x-axis) 
examined the cross-reactivity of Abs to Ep9 (3 technical replicates). Error bars represent 
SEM (panels A, B, and D) or range of two measurements (panel C). 
 

Cross-reactivity of αEp9 Abs against orthologous epitopes from other 

coronaviruses 

Next, the cross-reactivity of αEp9 Abs was examined with Ep9-orthologs from four 

phylogenetically related coronaviruses known to infect humans (Fig. S2A). Specifically, 

plasma with αEp9 Abs (n = 3 patients) and pooled plasma from healthy individuals (n = 

5) were assayed. The Ep9 epitopes from SARS-CoV-2 and SARS have 90% amino acid 

sequence homology. Unsurprisingly, this high degree of similarity resulted in a cross-

reactive Ep9 epitope, and a strong antibody response was observed to Ep9 epitopes from 
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both viruses (Fig. 2D). In contrast, more distantly related orthologs exhibited no cross-

reactivity with the αEp9 Abs. The coronaviruses, MERS, HKU-1, and NL63 have 52%, 

43%, and 8% sequence homology to SARS-CoV-2 Ep9, respectively (Fig. S2B). 

Furthermore, no response was observed to the Ep9 epitopes in pooled plasma from 

healthy patients.  

COVAM analysis tests cross-reactivity with a panel of 61 antigens from 23 strains 

of 10 respiratory tract infection-causing viruses. In this assay, each antigen was printed 

onto microarrays, probed with human sera or plasma, and analyzed as previously 

described. COVAM distinguishes between IgG and IgM Abs binding to the full-length N 

protein (Fig. S3 and S4, respectively). The ELISA and COVAM data both demonstrate 

that αEp9 Abs are highly specific for lineage B betacoronaviruses, and unlikely to be 

found in patients before their infection with SARS-CoV-2.  

 

More severe disease and poorer outcomes for αEp9 patients  

Direct comparison of the data from COVAM and ELISA (n = 40 patients assayed 

with both techniques) reveals five unique categories of patients. The raw data from each 

assay was normalized as a percentage of the negative control (Fig. 3A). The first category 

consisted of patients without antibodies to the N protein. The next categories (2 and 3) 

included patients with IgM or IgG Abs, respectively, whose Abs bound to N protein, but 

not the Ep9 epitope; such Abs are termed non-Ep9 αN Abs. The final categories identify 

patients with either both IgM and IgG αEp9 Abs or exclusively IgG αEp9 Abs (4 and 5, 

respectively). The αEp9 Abs are only found in patients with IgM or IgGs against N protein 
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from the COVAM assay, which thus independently corroborates the ELISA results (Figs. 

2A-C). 

Interestingly, the patients with αEp9 Abs in our study suffer more prolonged illness 

and worse clinical outcomes compared to patients with non-Ep9 αN Abs or no αN Abs. 

Specifically, the fraction of severe COVID-19 cases (e.g., ICU, intubation, or death) was 

2.5 times higher in patients with αEp9 Abs than non-Ep9 αN Abs patients (Fig. 3B, yellow 

panel); the differences in proportions of severe and non-severe αN-positive patients 

having and lacking αEp9 are statically significant (p<0.0298, Fisher’s exact test). Patients 

without αN Abs had less severe symptoms. The αEp9 Abs patients also had longer 

durations of symptoms and hospital stays relative to non-Ep9 αN Abs and no αN Abs 

patients (Figs. 3C and D). A larger data set of patient plasma analyzed by phage ELISA 

confirmed this conclusion (p<0.0013, Fisher’s exact test) (Fig. 3B, blue panel). Our data 

further demonstrates that asymptomatic COVID-19 patients (n = 3) also tested negative 

for αEp9 Abs (Table S2). The COVAM/ELISA comparison also reveals early 

seroconversion in patients with αEp9 IgGs (Fig. 3E), but not αEp9 IgMs (Fig. 3F). 
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Fig. 3. Patients with αEp9 Abs have more severe disease. A) Normalized and 
categorized data from measurements by COVAM (IgMs in yellow, IgGs in green) and 
αEp9 phage ELISA (blue). ANOVA comparing COVAM to ELISA with Dunnett’s multiple 
comparisons yields p-values of **<0.01, ****<0.0001, or ns: not significant. B) Disease 
severity (color) binned by antibody response (COVAM in yellow, or ELISA in blue). 
Statistical analysis reveals significant differences between distributions of severe and 

non-severe disease comparing patient categories, p<0.01 () and p<0.001 (Fisher’s 
exact test) for COVAM and ELISA, respectively. Patients with αEp9 Abs are C) 
symptomatic for longer durations and D) spend more days in the hospital than those with 
other αN Abs or no αN Abs. ANOVA with Tukey’s multiple comparisons yields p-values 
of *<0.05 and **<0.01. One outlier (black) (ROUT = 0.1%) was omitted from statistical 
calculations for panels C and D. E) The αN IgG appear at high levels early in the course 
of disease only for αEp9-positive patients, but are lower in non-Ep9, αN-positive patients. 
After >15 days post symptom onset, αN IgG levels increase for both groups of patients. 
F) However, IgM levels do not change significantly. Error bars depict SEM with the 
indicated number of patients (n, numbers above columns). 
 
Strong correlation between disease severity and comorbidities in patients with 

αEp9 Abs  

We compared risk factors, clinical parameters, and disease outcomes among 

patients with αEp9 Abs (n = 22) (Figs. 4A and S5). A disease risk factor score (DRFS) 

was developed to evaluate the relationship between clinical preconditions and disease 
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severity in patients with αEp9 Abs. The DRFS quantifies a patient’s age, sex, and pre-

existing health conditions associated with COVID-19 disease severity and mortality, 

including hypertension, diabetes, obesity, cancer, chronic cardiac, kidney, and pulmonary 

disease (23–25). Using the age score from the Charlson Comorbidity Index (26) yields a 

patient’s DRFS as:  

DRFS = Σ (# of risk factors) + (age score) 

where risk factors are valued as 0 or 1 if absent or present, respectively. The DRFS of 

patients with αEp9 Abs strongly correlate with COVID-19 disease severity (Pearson’s r = 

0.7499, p-value <0.0001, and R2= 0.05623) (Fig. 4A). The correlation in patients without 

αEp9 Abs is very weak (r = 0.272, p-value = 0.0255, R2= 0.0755) (Fig. 4A).  

The presence of αEp9 Abs correlates with more severe disease in patients who 

have hypertension, diabetes, or age >50 years. Such correlation is not observed for 

patients lacking αEp9 Abs (Figs. 4B). Notably, such risk factors are prevalent at roughly 

the same percentages in both populations of patients (Table S2). Thus, these risk factors 

are particularly acute for patients with αEp9 Abs. 
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Fig. 4. Correlation between disease severity and risk factors in patients with αEp9 
Abs. A) The relationship between DRFS and disease severity of COVID-19 patients with 
αEp9 Abs (blue) or no αEp9 Abs (gray). Each data point represents one patient. The solid 
lines indicate linear regression fits with 95% confidence intervals (dotted lines), and 
Pearson’s r-value. B) The color-indicated risk factors (diabetes, hypertension, and age 
>50 years) are depicted on the x-axis as the fractions of patients in each disease severity 
category (y-axis). Numbers indicate total patients (n) with no αEp9 Abs (left) or αEp9 Abs 
(right). The prevalence of risk factors (colors) increases with disease severity in patients 
with αEp9 Abs, but not in patients lacking these Abs. 
 

High levels of inflammatory cytokine and tissue damage markers in patients with 

αEp9 Abs 

  COVID-19 patients can have elevated serum concentrations of >20 inflammatory 

cytokines and chemokines (27). However, information on the cytokine levels and the 

association with tissue damage and worse COVID-19 outcomes have been inconsistent 

(27–29). For patients with IL-6 concentrations measured in plasma, patients with (n = 8) 
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or without (n = 11) αEp9 Abs were compared. Interestingly, we uncovered a strong 

positive sigmoidal association between IL-6 and AST unique to patients with αEp9 Abs 

(R2= 0.9683, Spearman’s r = 1.0, p-value <0.0001, n=8) (Blue line, Fig. S6A); correlation 

of IL-6 and AST in patients with αEp9 Abs remains strong even after removal of the data 

point at the highest IL-6 concentration. No significant correlation is observed in patients 

lacking αEp9 Abs (Spearman’s r = -0.5748, p-value= 0.0612, n=13). Thus, the presence 

of αEp9 Abs can disambiguate the sometimes contradictory levels of IL-6 associated with 

disease severity.  

 

Discussion 

This report introduces αEp9 Abs as a marker for COVID-19 disease severity and 

its worst outcomes. Previously, anti-SARS-CoV-2 Abs, particularly IgGs against N and S 

proteins, have been associated with disease severity and poor outcomes (30–32). 

Several studies recognize the RNA binding domain of N protein, which includes Ep9, as 

a focal site for antibody response. For example, phage display-based VirScan identified 

three N Ab epitopes spanning residues 141-196 (33), 142-208 and 209-265 (34), and 

analysis by ReScan microarrays isolated four N Ab epitopes – residues 134-171 and 

153-190 (34). However, correlation between these epitopes and disease severity has not 

been found.  

Notably, we examine shorter peptide epitopes (e.g., 21 residues from 152-172 for 

Ep9) than previous studies (Table S1). Short peptides can more finely hone differences 

in antigen recognition and potentially antibody efficacy. The finer epitope mapping of the 

present study demonstrates that not all αN Abs link to disease severity. Additionally, a 
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wider range of disease conditions from asymptomatic to fatal can be examined from our 

patient population.  

 We hypothesize that the underlying mechanism relating αEp9 Abs to increased 

disease severity involves ADE of immune activation. Supporting this hypothesis, the 

hallmarks of ADE appear in patients with αEp9 Abs. These include early seroconversion 

and strong upregulation of IgGs (Fig. 3E), which have been correlated with low viral 

clearance in patients and increased COVID-19 severity (30, 35). The early upregulation 

of αEp9 IgGs could indicate their poor virus neutralization. Also ADE-associated (36, 37), 

high levels of IL-6 are observed for αEp9-positive patients with increased levels of the 

tissue damage marker AST; this correlation does not exist for patients lacking αEp9 Abs 

(Fig. S6A). The sensitivity to IL-6 concentration before AST-monitored organ damage 

suggests anti-IL-6 therapeutics could be an effective management for αEp9-positive 

patients (27, 38–40). Further investigation is required to examine the basis for ADE in 

αEp9 patients. 

Data presented here supports development of αEp9 as a diagnostic test to predict 

severe disease (Odds Ratio = 5.525, 95% CI =1.96, 15.59, Fig 3B). As shown here, αEp9 

Abs do not recognize orthologous sequences from closely related coronaviruses, 

providing good specificity for αEp9 as a diagnostic. Previous studies have shown that the 

high homology of N protein among related coronaviruses can lead to high false positive 

rates in serodiagnostics with full-length N antigen (41).  

 Our analysis (n = 86) reveals that patients that test positive for the αEp9 Abs are 

3.17 times (Likelihood Ratio) more likely to have severe COVID-19 disease symptoms 

than patients that test negative for αEp9 Abs. Since αEp9 Abs appear early in the course 
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of disease, such a diagnostic could outperform traditional markers for the cytokine storm 

such as IL-6, which appears 6-8 days after symptom onset (27, 40); all plasma collected 

from αEp9 positive patients (n = 7, Fig 2C) between 1 to 6 days post-symptoms onset 

demonstrate detectable levels of αEp9 IgG (> 2 fold over negative control). Early 

detection of αEp9 Abs in patients could be used to triage and treat COVID-19 prior to the 

onset of its most severe symptoms after which drugs can lose efficacy (27, 38–40) (Fig. 

S6B).  

This study demonstrates the usefulness of fine epitope mapping, but the following 

limitations should be noted. Post-translational modifications, such as glycosylation were 

omitted for the phage-displayed S protein epitopes; COVAM antigens, however, are 

produced in baculovirus or HEK-293 cells, which could include glycans. Our analysis is 

based upon a population of 86 COVID-19 patients and 5 healthy patients, with the majority 

of Hispanic descent. The conclusions could be further strengthened with follow-up 

investigations in a larger population. Additionally, the population examined here only 

included three asymptomatic individuals, and additional testing is required to verify 

absence of αEp9 Abs in such patients. The sample size of patients with multiple antibody 

targets was too limited to allow correlation analysis; future investigations could examine 

associations between αEp9 and other Abs.  

In summary, our investigation uncovers αEp9 Abs as a potential early marker and 

predictor of disease severity in COVID-19 patients. The results presented here should be 

considered during development of vaccines that include N protein. Additionally, an 

evaluation of a patient’s αEp9 Abs and DRFS can provide a diagnostic triage for COVID-
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19 disease monitoring and encourage preventative cytokine-related therapeutic 

interventions to mitigate disease severity.  

 

Materials and Methods:  

Detailed materials and methods for cloning, phage purification, patient sample collection, 

plasma phage-antibody ELISA, serum COVAM, and statistical analysis were described 

in the Supplementary Materials.  
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