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 46 
Abstract: 47 
 48 
Distributed population codes are ubiquitous in the brain and pose a challenge to 49 
downstream neurons that must learn an appropriate readout. Here we explore 50 
the possibility that this learning problem is simplified through inductive biases 51 
implemented by stimulus-independent noise correlations that constrain learning 52 
to task-relevant dimensions. We test this idea in a set of neural networks that 53 
learn to perform a perceptual discrimination task. Correlations among similarly 54 
tuned units were manipulated independently of overall population signal-to-noise 55 
ratio in order to test how the format of stored information affects learning. Higher 56 
noise correlations among similarly tuned units led to faster and more robust 57 
learning, favoring homogenous weights assigned to neurons within a functionally 58 
similar pool, and could emerge through Hebbian learning. When multiple 59 
discriminations were learned simultaneously, noise correlations across relevant 60 
feature dimensions sped learning whereas those across irrelevant feature 61 
dimensions slowed it. Our results complement existing theory on noise 62 
correlations by demonstrating that when such correlations are produced without 63 
degradation of signal-to-noise ratio, they can improve readout learning by 64 
constraining it to appropriate dimensions.   65 
 66 
 67 
Introduction: 68 
 69 
The brain represents information using distributed population codes in which 70 
particular feature values are encoded by large numbers of neurons. One 71 
advantage of such codes is that a pooled readout across many neurons can 72 
effectively reduce the impact of stimulus-independent variability (noise) in the 73 
firing of individual neurons (Pouget et al., 2000). However, the extent to which 74 
this benefit can be employed in practice is constrained by noise correlations, or 75 
the degree to which stimulus-independent variability is shared across neurons in 76 
the population (Averbeck et al., 2006). In particular, positive noise correlations 77 
between neurons that share the same stimulus tuning can reduce the amount of 78 
decodable information in the neural population (Averbeck et al, 2006; Moreno-79 
Bote et al., 2014; Hu et al., 2014). Despite their detrimental effect on encoding, 80 
noise correlations of this type are reliably observed, even after years of training 81 
on perceptual tasks (Cohen and Kohn, 2011). Furthermore, noise correlations 82 
between neurons are dynamically enhanced under conditions where two neurons 83 
provide evidence for the same response in a perceptual categorization task 84 
(Cohen and Newsome, 2008), raising questions about whether they might serve 85 
a function rather than simply reflecting a suboptimal encoding strategy.  86 
 87 
At the same time, learning to effectively read out a distributed code also poses a 88 
significant challenge. Learning the appropriate weights for potentially tens of 89 
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thousands of neurons in a low signal-to-noise regime is a difficult, high-90 
dimensional problem, requiring a very large number of learning trials and 91 
entailing considerable risk of “over fitting” to specific patterns of noise across the 92 
neural populations encountered during learning trials. Nonetheless, people and 93 
animals can rapidly learn to perform perceptual discrimination tasks, albeit with 94 
performance that does not approach theoretically achievable levels (Hawkey et 95 
al., 2004; Stringer et al., 2019). In comparison, deep neural networks capable of 96 
achieving human level performance typically require a far greater number of 97 
learning trials than would be required by humans and other animals (Tsividis et 98 
al., 2017). This raises the question of how brains might implement inductive 99 
biases to enable efficient learning in high dimensional spaces. 100 
 101 
Here we address open questions about noise correlations and learning by 102 
considering the possibility that noise correlations facilitate faster learning. 103 
Specifically, we propose that noise correlations aligned to task relevant 104 
dimensions could reduce the effective dimensionality of learning problems, 105 
thereby making them easier to solve. For example, perceptual stimuli often 106 
contain a large number of features that may be irrelevant to a given 107 
categorization. At the level of a neural population, individual neurons may differ in 108 
the degree to which they encode task irrelevant information, thus making the 109 
learning problem more difficult. In principle, noise correlations in the relevant 110 
dimension could reduce the effects of this variability on learned readout. Such an 111 
explanation would be consistent with computational analyses of Hebbian learning 112 
rules (Oja, 1982), which can both facilitate faster and more robust learning 113 
(Krotov and Hopfield, 2019), and in turn may induce noise correlations. We 114 
propose that faster learning of an approximate readout is made possible through 115 
low dimensional representations that share both signal and noise across a large 116 
neural population. In particular, we hypothesize that representations 117 
characterized by enhanced noise correlations among similarly tuned neurons can 118 
improve learning by focusing adjustments of the readout onto task relevant 119 
dimensions.  120 
 121 
We explore this possibility using neural network models of a two-alternative 122 
forced choice perceptual discrimination task in which the correlation among 123 
similarly tuned neurons can be manipulated independently of the overall 124 
population signal-to-noise ratio. Within this framework, noise correlations, which 125 
can be learned through Hebbian mechanisms, speed learning by forcing learned 126 
weights to be similar across pools of similarly tuned neurons, thereby ensuring 127 
learning occurs over the most task relevant dimension. We extend our framework 128 
to a cued multidimensional discrimination task and show that dynamic noise 129 
correlations similar to those observed in vivo (Cohen and Newsome, 2008), 130 
speed learning by constraining weight updates to the relevant feature space. Our 131 
results demonstrate that when information is extrinsically limited, noise 132 
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correlations can make learning faster and more robust by controlling the 133 
dimensions over which learning occurs.  134 
 135 
 136 
Methods: 137 

Our goal was to understand the computational principles through which 138 
correlations in the activity of similarly tuned neurons affect the speed with which 139 
downstream neurons could learn an effective readout. Previous work has 140 
demonstrated that manipulating noise correlations while maintaining a fixed 141 
variance in the firing rates of individual neurons leads to changes in the 142 
theoretical encoding capacity of a neural population (Averbeck et al., 2006; 143 
Moreno-Bote et al., 2014). To minimize the potential impact of such encoding 144 
differences, we took a different approach; rather than setting the variance of 145 
individual neurons in our population to a fixed value, we set the signal-to-noise 146 
ratio of our population to a fixed value. Thus, our approach does not ask how 147 
maximum information can be packed into a given neural population’s activity, but 148 
rather how the strategy for packing a fixed amount of information in a population 149 
affects the speed with which an appropriate readout of that information can be 150 
learned. We implement this approach in three neural networks described in more 151 
detail below.  152 

Learning readout in perceptual learning task 153 

Simulations and analyses for a simple perceptual discrimination task were 154 
performed with a simplified and statistically tractable two-layer feed-forward 155 
neural network (figure 3A). The input layer consisted of two pools of 100 units 156 
that were each “tuned” to one of two motion directions (left, right). On each trial 157 
normalized firing rates for the neural population were drawn from a multivariate 158 
normal distribution that was specified by a vector of stimulus-dependent mean 159 
firing rates (signal: +1 for preferred stimulus, -1 for non-preferred stimulus) and a 160 
covariance matrix. All elements of the covariance matrix corresponding to 161 
covariance between units that were “tuned” to different stimuli were set to zero. 162 
The key manipulation was to systematically vary the magnitude of diagonal 163 
covariance components (eg. noise in the firing of individual units) and the “same 164 
pool” covariance elements (eg. shared noise across identically tuned neurons) 165 
while maintaining a fixed level of variance in the summed population response for 166 
each pool: 167 

𝜎!""#! =  𝑛𝜎!"#$! + 𝑛 𝑛 − 1 𝐶𝑜𝑣 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙      𝐸𝑞. 1 

Where 𝜎!""#!  is the variance on the sum of normalized firing rates from neurons 168 
within a given pool, n is the number of units in the pool and the within pool 169 
covariance ( 𝐶𝑜𝑣(𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙))  specifies the covariance of pairs of units 170 
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belonging to the same pool. The signal-to-noise ratio (signal/𝜎!""#! ) for each pool 171 
was fixed to one. Given this constraint, the fraction of noise that was shared 172 
across neurons within the same pool was manipulated as follows: 173 

 174 

 𝜎!"#$!  =             
𝜎!""#!  

𝑛 +  𝑛(𝑛 − 1)𝜙       𝐸𝑞. 2 

 175 

 176 

𝐶𝑜𝑣(𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙)  =     𝜙𝜎!"#$!      𝐸𝑞. 3 

  

 177 
Where 𝜙 reflects the fraction of noise that is correlated across units, which we 178 
refer to in the text as noise correlations. Noise correlations (𝜙) were manipulated 179 
across values ranging from 0 to 0.2 for simulations. Note that, since 𝜙 appears in 180 
the denominator of equation 2, adding noise correlations while sustaining a fixed 181 
population signal-to-noise ratio leads to lower variance in the firing rates of single 182 
neurons, differing from previous theoretical assumptions (compare figure 2a&b).    183 
 184 
The input layer of the neural network was fully connected to an output layer 185 
composed of two output units representing left and right responses. Output units 186 
were activated on a given trial according to a weighted function of their inputs: 187 
 188 
 189 

𝑭𝒐𝒖𝒕𝒑𝒖𝒕  =  𝒘𝑭𝒊𝒏𝒑𝒖𝒕   𝐸𝑞. 4 
 190 
Where 𝐹!"#$"# is a vector of firing rates of output units, 𝐹!"#$% is a vector of firing 191 
rates of the input units, and w is the weight matrix. Firing of an individual output 192 
unit can also be written as a weighted sum over input unit activity: 193 
 194 

𝐹!  =  𝑤!,!

!""

!!!

𝐹!        𝐸𝑞. 5 

where 𝐹! reflects the firing of the jth output unit, 𝐹! reflects the firing of the ith input 195 
unit, and 𝑤!,! reflects the weight of the connection between the ith input unit and 196 
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the jth output unit. Actions were selected as a softmax function of output firing 197 
rates: 198 
 199 

𝑝(𝐴!)  =     
𝑒!"!

𝑒!"!!
      𝐸𝑞. 6 

where 𝛽 is an inverse temperature, which was set to a relatively deterministic 200 
value (10000). Learning was implemented through reinforcement learning of 201 
weights to the selected output neuron (subscripted j below): 202 
 203 

Δ𝑤!,! =     𝛼𝛿𝐹!     𝐸𝑞. 7 

Where 𝐹! is the normalized firing rate of the ith input neuron, 𝛿 is the reward 204 
prediction error experienced on a given trial [+0.5 for correct trials and -0.5 for 205 
error trials], and 𝛼 is a learning rate (set to 0.0001 for simulations in figure 2). The 206 
network was trained to correctly identify two stimuli (each of which was preferred 207 
by a single pool of input neurons) over 100 trials (the last 20 trials of which were 208 
considered testing). Simulations were repeated 1000 times for each level of 𝜙 209 
and performance measures were averaged across all repetitions. Mean accuracy 210 
per trial across all simulations was convolved with a Gaussian kernel (standard 211 
deviation = 0.5 trials) for plotting in figure 2b. Mean accuracy across the final 20 212 
trials was used as a measure of final accuracy (figure 2e). Statistics on model 213 
performance were computed as Pearson correlations between noise correlations 214 
𝜙 and performance measures across all simulations and repetitions.  215 
 216 

Hebbian learning of noise correlations in three layer network 217 

 218 
We extended the two-layer feed-forward architecture described above to include 219 
a third hidden layer in order to test whether Hebbian learning could facilitate 220 
production of noise correlations among similarly tuned neurons (figure 4A). The 221 
input layer was fully connected to the hidden layer, and each layer contained 200 222 
neurons. In the input layer, neurons were tuned (100 leftward, 100 rightward) as 223 
described above, with 𝜙 set to zero (eg. no noise correlations). Weights to the 224 
hidden layer were initialized to favor one-to-one connections between input layer 225 
units and hidden layer units by adding a small normal random weight perturbation 226 
(mean=0, standard deviation = 0.01) to an identity matrix. During learning, 227 
weights between the input and hidden layer were adjusted according to a 228 
normalized Hebbian learning rule: 229 
 230 

𝛥𝑊 = 𝛼!!""𝑭𝟏! 𝑭𝟐    𝐸𝑞. 8 
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  231 
Where 𝑭𝟏!  is a normalized vector of firing rates corresponding to the input layer 232 
and 𝑭𝟐 is a normalized vector of firing rates corresponding to the hidden layer 233 
units. The learning rate for Hebbian plasticity (𝛼!!"") was set to 0.00005 for 234 
simulations in figure 4. The model was “trained” over 100 trials in the same 235 
perceptual discrimination task described above and an additional 100 trials of the 236 
task were completed to measure emergent noise correlations in the hidden layer. 237 
Noise correlations were measured by regressing out variance attributable to the 238 
stimulus on each trial, and then computing the Pearson correlation of residual 239 
firing rate across each pair of neurons for the 100 testing trials (figure 4B&C).  240 
 241 

Learning readout in multiple discrimination task  242 

In order to test the impact of contextual noise correlations on learning (Cohen 243 
and Newsome, 2008), the perceptual discrimination task was extended to include 244 
two dimensions and two interleaved trial types: one in which an up/down 245 
discrimination was performed (vertical), and one in which a right/left 246 
discrimination was performed (horizontal). Each trial contained motion on the 247 
vertical axis (up or down) and on the horizontal axis (left or right), but only one of 248 
these motion axes was relevant on each trial as indicated by a cue.   249 
 250 
In order to model this task we extended our two-layer feed-forward network to 251 
include 4 populations of input units, 4 output units, and 2 task units (figure 5A). 252 
Each population of 100 input units encoded a conjunction of the movement 253 
directions (up-right, up-left, down-right, down-left). On each trial, the mean firing 254 
rate of each input unit population was determined according to their tuning 255 
preferences:  256 
 257 
 258 

𝜇 = 𝑉 + 𝐻     𝐸𝑞. 9 
 259 
Where V was +1/-1 for trials with the preferred/anti-preferred vertical motion 260 
direction H was +1/-1 for trials with the preferred/anti-preferred horizontal motion 261 
direction. Firing rates for individual neurons were sampled from a multivariate 262 
Gaussian distribution with mean 𝜇 and a covariance matrix that depended on trial 263 
type (vertical versus horizontal) and the level of same pool, relevant pool, and 264 
irrelevant pool correlations.  265 
 266 
In order to create a covariance matrix, we stipulated a desired standard error of 267 
the mean for summed population activity (SEM=20 for simulations in figure 5) 268 
and determined the summed population variance that would correspond to that 269 
value (𝜎!""#! ). We then determined the variance on individual neurons that would 270 
yield this population response under a given noise correlation profile as follows: 271 
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 272 

𝜎!"#$!  =             
𝜎!""#!  

𝑛 +  𝑛 𝑛 − 1 𝜙!"#$ +  𝑛!𝜙!"#"$%&' − 𝑛!𝜙!""#$#%&'(
    𝐸𝑞. 10 

 273 
Where 𝜙!"#$ is the level of same pool correlations (range: 0-0.2 in our 274 
simulations), 𝜙!"#"$%&' is the level of relevant pool correlations (range: 0-0.2 in our 275 
simulations), 𝜙!""#$#%&'( is the level of irrelevant pool correlations (range: 0-0.2 in 276 
our simulations. Note that increasing the same pool or in pool correlations 277 
reduces the overall variance in order to preserve the same level of variance on 278 
the task relevant dimension in the population response, but that increasing 279 
irrelevant pool correlations has the opposite effect. Covariance elements of the 280 
covariance matrix were determined as follows: 281 
 282 

𝐶𝑜𝑣 𝑠𝑎𝑚𝑒 𝑝𝑜𝑜𝑙 =     𝜙!"#$𝜎!"#$!     𝐸𝑞. 11  

𝐶𝑜𝑣(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝𝑜𝑜𝑙)  =     𝜙!"#"$%&'𝜎!"#$!        𝐸𝑞. 12 

𝐶𝑜𝑣(𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝𝑜𝑜𝑙)  =     𝜙!""#$#%&'(𝜎!"#$!       𝐸𝑞. 13  

Variance and covariance values above were used to construct a covariance 283 
matrix for each trial type (vertical/horizontal) as depicted in figure 1.  284 
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 285 
Figure 1: Schematic of covariance matrix for two-dimensional motion discrimination task.  286 
Same pool correlations are controlled by covariance elements between neurons with identical 287 
tuning (orange boxes). Relevant pool correlations are controlled by covariance elements between 288 
neurons that are similarly tuned to the task-relevant feature. Task irrelevant correlations are 289 
controlled by covariance elements between neurons that are similarly tuned to the task-irrelevant 290 
feature. The covariance matrix shown here is for a vertical trial – on a horizontal trial the irrelevant 291 
pool and relevant pool locations would be reversed. Covariance elements for pairs of neurons 292 
that differed in tuning on both dimensions were set to zero. Each input population has been 293 
depicted as two units here for presentation purposes. Background color reflects the case where 294 
same pool correlations = 0.2 and relevant pool correlations = 0.1.  295 
 296 
 297 
Output units corresponded to the four possible task responses (up, down, left, 298 
right) and were activated according to a weighted sum of their inputs as 299 
described previously. Task units were modeled as containing perfect information 300 
about the task cue (vertical versus horizontal) and were modeled to completely 301 
inhibit the responses of the irrelevant output units. Decisions were made on each 302 
trial by selecting the output unit with the highest activity level. Weights to chosen 303 
output unit were updated using the same reinforcement learning procedure 304 
described in the two alternative perceptual learning task.   305 
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 306 
 307 
Results: 308 
 309 
We examine how noise correlations affect learning in a simplified neural network 310 
where the appropriate readout of hundreds of weakly tuned units is learned over 311 
time through reinforcement. In order to isolate the effects of noise correlations on 312 
learning, rather than their effects on other factors such as representational 313 
capacity, we consider population encoding schemes at the input layer that can be 314 
constrained to a fixed signal-to-noise ratio. This assumption differs from previous 315 
work on noise correlations where the variance of the neural population is 316 
assumed to be fixed and covariance is changed to produce noise correlations, 317 
thereby affecting the representational capacity of the population (figure 2A; 318 
(Averbeck et al., 2006; Moreno-Bote et al., 2014)). Under our assumptions, a 319 
fixed signal-to-noise ratio can be achieved for any level of by scaling the variance 320 
(figure 2B; equations 1-3), or, alternately scaling the magnitude of the signal (not 321 
shown). While we do not discount the degree to which noise correlations affect 322 
the encoding potential of neural populations, we believe that in many cases the 323 
relevant information is limited by extrinsic factors (eg. the stimulus itself, or 324 
upstream neural populations providing input (Beck et al., 2012; Kanitscheider et 325 
al., 2015)). Under such conditions, reducing noise correlations can increase 326 
information only until it saturates because all of the available incoming 327 
information is encoded. Beyond that, increasing encoding potential is not 328 
possible as it would be tantamount to the population “creating new information” 329 
that was not communicated by inputs to the population. Therefore, our framework 330 
can be thought of as testing how best to format limited available information in a 331 
neural population in order to ensure that an acceptable readout can be rapidly 332 
and robustly learned.  333 
 334 
We propose that within this framework, noise correlations of the form that have 335 
previously been shown to limit encoding are beneficial because they constrain 336 
learning to occur over the most relevant dimensions. In general, a linear readout 337 
can be thought of as hyperplane serving as a classification boundary in an N 338 
dimensional space, where N reflects the number of neurons in a population. 339 
Learning in such a framework involves adjustments of the hyperplane to minimize 340 
classification errors. The most useful adjustments are in the dimension that best 341 
discriminates signal from noise (central arrows in figure 2C&D), but adjustments 342 
may also occur in dimensions orthogonal to the relevant one (such as “twisting” 343 
of the hyperplane depicted by curved arrows in figure 2C&D) that could 344 
potentially impair performance, or slow down learning. Our motivating hypothesis 345 
is that by focusing population activity into the task relevant dimension, noise 346 
correlations can increase the fraction of hyperplane adjustments that occur in the 347 
task relevant dimension (figure 2D), thus reducing the effective dimensionality of 348 
readout learning.  349 
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 350 
 351 
 352 
 353 

 354 
 355 
Figure 2: Modeling noise correlations in under extrinsic constraint on signal-to-noise 356 
ratio. A) Previous work has modeled noise correlations by assuming that population variance is 357 
fixed and that covariance is manipulated to produce noise correlations. Under such assumptions, 358 
the firing rate of two similarly tuned neurons is plotted in the absence (solid) or presence (dotted) 359 
of information-limiting noise correlations. B) Here we assume that the signal-to-noise ratio of the 360 
neural population is limited to a fixed value such that noise correlations between similarly tuned 361 
neurons do not affect theoretical performance. Thus, the percent overlap of blue (target) and red 362 
(non-target) activity profiles does not differ in the presence (dotted) or absence (solid) of noise 363 
correlations. C&D) Under this assumption, noise correlations among similarly tuned neurons 364 
could compress the population activity to a plane orthogonal to the optimal decision boundary, 365 
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thereby minimizing boundary adjustments in irrelevant dimensions (C) and maximizing boundary 366 
adjustments on relevant ones (D).    367 
 368 
  369 
In order to test this hypothesis, we constructed a fully connected two-layer feed-370 
forward neural network in which input layer units responded to one of two 371 
stimulus categories (pool 1 & pool 2) and each output unit produced a response 372 
consistent with a category perception (left/right units in figure 3A). On each trial, 373 
the network was presented with one stimulus at random, and input firing for each 374 
pool was drawn from a multivariate Gaussian with a covariance that was 375 
manipulated while preserving the population signal-to-noise ratio. Output units 376 
were activated according to a weighted average of inputs and a response was 377 
selected according to output unit activations. On each trial, weights to the 378 
selected action were adjusted according to a reinforcement learning rule that 379 
strengthened connections that facilitated a rewarded action and weakened 380 
connections that facilitated an unrewarded action (Law and Gold, 2009). 381 
 382 
Noise correlations led to faster and more robust learning of the appropriate 383 
stimulus-response mapping. All neural networks learned to perform the requisite 384 
discrimination, but neural networks that employed correlations among similarly 385 
tuned neurons learned more rapidly (figure 3B). After learning, networks that 386 
employed such noise correlations assigned more homogenous weights to input 387 
units of a given pool than did networks that lacked noise correlations (compare 388 
figure 3C&D). This led to better trained-task performance (figure 3E; Pearson 389 
correlation between noise correlations and test performance: R = 0.29, p < 10e-390 
50) and greater robustness to adversarial noise profiles (figure 3F; R = 0.81, p < 391 
10e-50) in the networks that employed noise correlations. Critically, these 392 
learning advantages emerged despite the fact that optimal readout of all 393 
networks achieved similar levels of performance and robustness (figure 3E&F, 394 
compare optimal readout across conditions).  395 
 396 
 397 
 398 
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 399 
 400 
 401 
Figure 3: Correlated noise within similarly tuned populations leads to faster and more 402 
robust learning of a perceptual discrimination. A) A two-layer feed-forward neural network 403 
was designed to solve a two alternative forced choice motion discrimination task at or near 404 
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perceptual threshold. Input layer contains two pools of neurons that provide evidence for alternate 405 
percepts (eg. leftward motion versus rightward motion) and output neurons encode alternate 406 
courses of actions (eg. saccade left versus saccade right). Layers are fully connected with 407 
weights randomized to small values and adjusted after each trial according to rewards (see 408 
methods). B) Average learning curves for neural network models in which population signal-to-409 
noise ratio in pools 1 and 2 were fixed, but noise correlations (grayscale) were allowed to vary 410 
from small (dark) to large (light) values. C&D) Weight differences (left output – right output) for 411 
each input unit (color coded according to pool) after 100 timesteps of learning for low (C) and high 412 
(D) noise correlations. E) Accuracy in the last 20 training trials is plotted as a function of noise 413 
correlations for learned readouts (orange) and optimal readout (red). Lines/shading reflect 414 
Mean/SEM. F) The shortest distance, in terms of neural activation, required to take the mean 415 
input for a given category (eg. left or right) to the boundary that would result in misclassification is 416 
plotted for the final learned (orange) and optimal (red) weights for each noise correlation condition 417 
(abscissa). Lines/shading reflect Mean/SEM. 418 
 419 
 420 
 421 
Given that noise correlations implemented in our previous simulation, like those 422 
observed in the brain, depended on the tuning of individual units, we tested 423 
whether such noise correlations might be produced via Hebbian plasticity. 424 
Specifically, we considered an extension of our neural network in which an 425 
additional intermediate layer is included between input and output neurons (figure 426 
4a). Input units were again divided into two pools that differed in their encoding, 427 
but variability was uncorrelated across neurons within a given pool. Connections 428 
between the input layer and intermediate layer were initialized such that each 429 
input unit strongly activated one intermediate layer unit, and shaped over time 430 
using a Hebbian learning rule that strengthened connections between co-431 
activated neuron pairs. Despite the lack of noise correlations in the input layer of 432 
this network (figure 4b; mean[std] in pool residual correlation = 0.0015[0.10]), 433 
neurons in the intermediate layer developed tuning-specific noise correlations of 434 
the form that were beneficial for learning in the previous simulations (figure 4c; 435 
mean[std] in pool residual correlation = 0.55[0.07]; t-test on difference from input 436 
layer correlations t = 443, dof = 19800, p < 10e-50).  437 
 438 
 439 
 440 
 441 
 442 
 443 
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 444 
 445 
 446 
 447 
Figure 4: Hebbian learning produces correlations within similarly tuned populations in a 448 
perceptual discrimination task. A) Three-layer neural network architecture. Input layer feeds 449 
forward to hidden layer, which is fully connected to an output layer. Input layer provides 450 
uncorrelated inputs to hidden layer through projection weights that are adjusted according to a 451 
Hebbian learning rule. B&C) Noise correlations observed in hidden layer units at the beginning 452 
(B) and end (C) of training.  453 
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 458 
In order to understand how noise correlations might impact learning in mixed 459 
encoding populations, we extended our perceptual discrimination task to include 460 
two directions of motion discrimination (eg. up/down and left/right). On each trial,  461 
a cue indicated which of two possible motion discriminations should be 462 
performed (figure 5A, left; (Cohen and Newsome, 2008)). We extended our 463 
neural network to include four populations of one hundred input units, each 464 
population encoding a conjunction of motion directions (up-right, up-left, down-465 
right, down-left; figure 5A; input layer). Two additional inputs provided a perfectly 466 
reliable “cue” regarding the relevant feature for the trial (figure 5A; task units). 467 
Four output neurons encoded the four possible responses (up, left, down, right) 468 
and were fully connected to the input layer (figure 5A; output layer). Task units 469 
were hard wired to eliminate irrelevant task responses, but weights of input units 470 
were learned over time as in our previous simulations.  471 
 472 
Learning performance in the two-feature discrimination task depended not only 473 
on the level of noise correlations, but also on the type. As in the previous 474 
simulation, adding noise correlations to each individual population of identically 475 
tuned units led to faster learning of the appropriate readout (Figure 5B&C, 476 
compare blue and yellow; Figure 5D&E, vertical axis; mean[std] accuracy across 477 
training: 0.53[0.05] and 0.614[0.08] for minimum (0) and maximum (0.2) in pool 478 
correlations, t-test for difference in accuracy: t = 95, dof = 19998, p <10e-50).  479 
 480 
However, the more complex task design also allowed us to test whether dynamic 481 
trial-to-trial correlations might further facilitate learning. Specifically, correlations 482 
that increase shared variability among units that contribute evidence to the same 483 
response have been observed previously (Cohen and Newsome, 2008), and 484 
could in principle focus learning on relevant dimensions (figure 2C&D) even when 485 
those dimensions change from trial to trial. Indeed, adding correlations among 486 
separate pools that share the same encoding of the relevant feature (eg. UP on a 487 
vertical trial) led to faster learning (figure 5B; mean[std] training accuracy for 488 
model with relevant pool correlations: 0.64[0.09], t-test for difference from in pool 489 
correlation only model: t = 22, dof =19998, p <10e-50) and weights that more 490 
closely approached the optimal readout (figure 5E, horizontal axis). In contrast, 491 
when positive noise correlations were introduced across separate encoding pools 492 
that shared the same tuning for the irrelevant dimension on each trial (eg. UP on 493 
a horizontal trial) learning was impaired dramatically (figure 5C; mean[std] 494 
training accuracy for model with irrelevant pool correlations: 0.51[0.05], t-test for 495 
difference from in pool correlation only model: t = -112, dof =19998, p <10e-50) 496 
and learned weights diverged from the optimal readout (figure 5F, horizontal 497 
axis). Model performance differences were completely attributable to learning the 498 
readout, as all models performed similarly when using the optimal readout (figure 499 
S1). 500 
 501 
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In order to test the idea that noise correlations might focus learning onto relevant 502 
dimensions, we extracted weight updates from each trial and projected these 503 
updates into a two-dimensional space where the first dimension captured the 504 
relative sensitivity to leftward versus rightward motion and the second dimension 505 
captured relative sensitivity to upward versus downward motion. In the model 506 
where input units were only correlated within their identically tuned pool, weight 507 
updates projected in all directions more or less uniformly (figure 5G), and did not 508 
differ systematically across trial types (vertical versus horizontal). However, 509 
dynamic noise correlations that shared variability across the relevant dimension 510 
tended to push weight updates onto the appropriate dimension for a given trial 511 
(figure 4F; t-test for difference in the magnitude of updating in up/down and 512 
left/right dimensions across conditions [up/down – left/right]: t = 3.4, dof=98, p = 513 
0.001). In contrast, dynamic noise correlations that shared variability across the 514 
irrelevant dimension tended to push weight updates onto the wrong dimension 515 
(figure 4H; t-test for difference in the magnitude of updating in up/down and 516 
left/right dimensions across conditions [up/down – left/right]: t = -9.5, dof=98, p = 517 
10e-14). Both of these trends were consistent across simulations, providing an 518 
explanation for the performance improvements achieved by relevant noise 519 
correlations (projection of learning onto an appropriate dimension) and 520 
performance impairments produced by irrelevant noise correlations (projection of 521 
learning onto an inappropriate dimension).  522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
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 531 
 532 
 533 
Figure 5: Task dependent noise correlations affect learning speed by projecting learning 534 
onto specific feature dimensions.  A) A neural network was trained to perform two interleaved 535 
motion discrimination tasks (left; (Cohen and Newsome, 2008)). Network schematic (right) 536 
depicts two-layer feed-forward network in which each population of input units represents two 537 
dimensions of motion (up versus down, and left versus right), and output units produce responses 538 
in favor of alternative actions (up, down, left, right). Two additional input units provide cue 539 
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information that biases output units to produce an output corresponding to the discrimination 540 
appropriate on this trial (eg. horizontal or vertical). Noise correlations were manipulated among 1) 541 
identically tuned neurons (blue rectangle; same pool), 2) neurons that have similar encoding of 542 
the task relevant feature (green rectangle pair in vertical trials; relevant pool), and 3) neurons that 543 
have similar encoding of the task irrelevant feature (green rectangle pair in horizontal trials; 544 
irrelevant pool). B&C) Learning curves showing accuracy (ordinate) over trials (abscissa) for 545 
models 1) lacking noise correlations (orange), 2) containing noise correlations that are limited to 546 
neurons that have same tuning for both features (same pool; blue), 3) containing same pool noise 547 
correlations along with correlations between neurons in different pools that have the same tuning 548 
for the task-relevant feature (in pool+rel pool; green in B), and 4) containing in-pool noise 549 
correlations along with correlations between neurons in different pools that have the same tuning 550 
for the task irrelevant feature (in pool+irrel pool; green in C). D&E) Distance between learned 551 
weights and the optimal readout (color) for models that differ in their level of “in pool” correlations 552 
(ordinate, both plots), “relevant pool” correlations (abscissa, D), and “irrelevant pool” correlations 553 
(abscissa, E). F,G,H) Weight updates for example learning sessions were projected into a two 554 
dimensional space in which net updates to the relative contribution of vertical motion information 555 
(eg. up versus down) is represented on the abscissa and updates to the relative contribution of 556 
horizontal motion information (eg. left versus right) is represented on the ordinate. Arrows reflect 557 
single trial weight updates and are colored according to the trial type (red = horizontal 558 
discrimination, blue = vertical discrimination). Weight updates for a model with only “in pool” 559 
correlations look similar across trial types (G), but weight updates for a model with “relevant pool” 560 
correlations indicate more weight updating on the relevant feature (F), whereas the opposite was 561 
observed in the case of “irrelevant pool” correlations (H).  562 
 563 
 564 
Discussion: 565 
 566 
Taken together, our results suggest that in settings where the population signal-567 
to-noise ratio is limited by external factors (eg. inputs) and relevant task 568 
representations are low dimensional, noise correlations can make learning faster 569 
and more robust by focusing learning on the most relevant dimensions. We 570 
demonstrate this basic principle in a simple perceptual learning task (figure 3), 571 
where beneficial noise correlations between similarly tuned units could be 572 
produced through a simple Hebbian learning rule (figure 4). We extended our 573 
framework to a contextual learning task to demonstrate that dynamic noise 574 
correlations that bind task relevant feature representations facilitate faster 575 
learning (figure 5b&d) by pushing learning onto task-relevant dimensions (figure 576 
5f). Given the pervasiveness of noise correlations among similarly tuned sensory 577 
neurons (Zohary et al., 1994; Maynard et al., 1999; Bair et al., 2001; Averbeck 578 
and Lee, 2003; Cohen and Maunsell, 2009; Huang and Lisberger, 2009; Ecker et 579 
al., 2010; Gu et al., 2011; Adibi et al., 2013), and that the noise correlations 580 
dynamics beneficial for learning in our simulations are similar to those that have 581 
been observed in vivo (Cohen and Newsome, 2008), we interpret our results as 582 
suggesting that noise correlations between similarly tuned neurons are a feature 583 
of neural coding architectures that ensures efficient readout learning, rather than 584 
a bug that limits encoding potential.  585 
 586 
 587 
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This interpretation rests on several assumptions in our model. Of particular 588 
importance is the assumption that signal-to-noise ratio of our populations is fixed, 589 
meaning that our manipulation of noise correlations can focus variance on 590 
specific dimensions without gaining or losing information. This assumption 591 
reflects conditions in which information is limited at the level of the inputs to the 592 
population, for instance due to noisy peripheral sensors (Beck et al., 2012; 593 
Kanitscheider et al., 2015). In such conditions, even with optimal encoding, 594 
population information saturates at an upper bound determined by the 595 
information available in the inputs to the population. Therefore, fixing the signal-596 
to-noise ratio enabled us to examine the effect of noise correlations on 597 
downstream processes that learn to read-out the population code in the absence 598 
of any influence of noise correlations on the quantity of information contained 599 
within that population code.  600 
 601 
Previous theoretical work exploring the role of noise correlations in encoding has 602 
typically assumed that single neurons have a fixed variance, such that tilting the 603 
covariance of neural populations towards or away from the dimension of signal 604 
encoding would have a large impact on the amount of information that can be 605 
encoded by a population (figure 1a; (Averbeck et al., 2006; Moreno-Bote et al., 606 
2014)). Such assumptions lead to the idea that positive noise correlations among 607 
similarly tuned neurons limit encoding potential, raising the question of why they 608 
are so common in the brain (Cohen and Kohn, 2011). In considering the 609 
implications of this framework, one important question is: if information encoded 610 
by the population can be increased by changing the correlation structure among 611 
neurons, where does this additional information come from? In some cases, the 612 
neural population in question may indeed receive sufficient task relevant 613 
information from upstream brain regions to reorganize its encoding in this way, 614 
but in other cases it is likely that information is limited by the inputs to a neural 615 
population (Kanitscheider et al., 2015; Kohn et al., 2016). In cases where 616 
incoming information is limited, further increasing representational capacity is not 617 
possible, and formatting information for efficient readout is essentially the best 618 
that the population code could do. Here we show that the noise correlations that 619 
have previously been described as “information limiting” are exactly the type of 620 
correlations that format information most efficiently for readout learning under 621 
such conditions.  622 
 623 
Jointly considering these antagonistic perspectives on noise correlations provides 624 
a more nuanced view of how neural representations are likely optimized for 625 
learning. In order to optimize an objective function, a neural population can 626 
reduce correlated noise in task relevant dimensions to increase its 627 
representational capacity up to some level constrained by its inputs (Figure 6, 628 
left). But once the population is fully representing all task relevant information that 629 
has been provided to it, it can additionally optimize representations by pushing as 630 
much variance onto task relevant dimensions as possible, thereby affording 631 
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efficient learning in downstream neural populations (Figure 6, right). In short, 632 
optimization of a neural population code does not occur in a vacuum, and instead 633 
depends critically on both upstream (eg. input constraints) and downstream (eg. 634 
readout) neural populations (Figure 6). In this view, if a neural population is not 635 
fully representing the decision relevant information made available to it, then 636 
learning could improve the efficiency of representations by reducing rate limiting 637 
noise correlations as has been observed in some paradigms (Figure 6, left; Gu et 638 
al., 2011; Ni et al., 2018). In contrast, once available information is fully 639 
represented, readout learning could be further optimized by reformatting 640 
population codes such that variability is shared across neurons with similar 641 
tuning for the relevant task feature, producing the sorts of dynamic noise 642 
correlations that have been observed in well trained animals (Figure 6, right; 643 
Cohen and Newsome, 2008).  644 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.10.15.341768doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341768
http://creativecommons.org/licenses/by-nc/4.0/


 22 

 645 
Figure 6: Information maximization and dimensionality reduction can be useful for 646 
learning under different situations and have opposite effects on noise correlations among 647 
similarly tuned units. A) A schematic representation of a three layer neural network in which 648 
units provide evidence for one of two categorizations (blue/orange). In the left network, the hidden 649 
layer initially has access to information from only one of two independent units in each pool, but 650 
weights are subsequently adjusted to increase task-relevant information represented in the 651 
hidden layer (pink). In the right network, the hidden layer initially has access to all task-relevant 652 
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information, but weights are subsequently adjusted to share signal and noise across similarly 653 
tuned units to afford dimensionality reduction (purple). Note that the information maximizing 654 
weight adjustments (left, pink) increase signal-to-noise ratio in the hidden layer but preserve the 655 
variance in firing rate of individual neurons, whereas the dimensionality reducing weight 656 
adjustments (right, purple) maintain a fixed signal-to-noise ratio in hidden units, but decrease the 657 
variance of individual units by averaging across multiple similarly tuned inputs. Dashed lines to 658 
output units reflect weights that need to be learned based on feedback. B) Task relevant 659 
information (mutual information between unit activations and stimulus category; abscissa) is 660 
depicted for each layer (ordinate). Weight adjustments affording information maximization (left) 661 
increase task relevant information in the hidden layer (pink), whereas weight adjustments that 662 
afford dimensionality reduction (right) do not affect task-relevant information in the hidden layer 663 
itself but instead increase the rate of learning in the output layer, thereby leading to more task-664 
relevant information in the output layer (purple). C) Weight adjustments for information 665 
maximization (pink in panel A) decrease correlations among hidden units A&B by removing 666 
shared input from a single input unit and instead providing independent sources of input to each 667 
unit (pink arrows). In contrast, weight adjustments for dimensionality reduction increase noise 668 
correlations among hidden units A&B by providing them with the same mixture of information from 669 
the two identically tuned input units. We propose that both of these processes play a critical role 670 
in learning and that changes in noise correlations across learning will depend critically on which 671 
process dominates. As shown in panel B, this will depend critically on whether the neural 672 
population in question has already fully represented information available from its inputs. In 673 
principle, these processes could occur serially, with early learning maximizing information 674 
available in intermediate layers (left) and later learning compressing that information into a format 675 
allowing rapid readout learning (right).  676 
 677 
 678 
In addition to key assumptions about an external limitation on signal-to-noise, our 679 
modeling included a number of simplifying assumptions that are unlikely to hold 680 
up in real neural populations. For example, we consider discrete pools of 681 
identically tuned neurons, rather than the heterogeneous populations observed in 682 
sensory cortical regions of the brain. A primary goal of our work was to identify 683 
the computational principles that control the speed at which readout can be 684 
learned, and our simplified populations are considerably more tractable and 685 
transparent than realistic neural populations. The principles that we identify here 686 
are certainly at play in real neural populations, albeit with implications that are far 687 
less transparent. We hope that our simplified results pave the way for future work 688 
to assess nuances that can emerge in mixed heterogeneous populations, or in 689 
more realistic architectures that go beyond the simple feed forward flow of 690 
information considered here.   691 
 692 
Model predictions 693 
 694 
Our work shows that noise correlations can focus the gradient of learning onto 695 
the most appropriate dimensions. Thus, our model predicts that the degree to 696 
which similarly tuned neurons are correlated during a perceptual discrimination 697 
should be positively related to performance improvements experienced on 698 
subsequent discriminations. In contrast, our model predicts that the degree of 699 
correlation between neurons that are similarly tuned to a task irrelevant feature 700 
should control the degree of learning on irrelevant dimensions, and thus 701 
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negatively relate to performance improvements on subsequent discriminations. 702 
These predictions are strongest for the earliest stages of learning where weight 703 
adjustments are critical for subsequent performance, but they may also hold for 704 
later stages of learning, when correlations on irrelevant dimensions, including 705 
independent noise channels, could potentially lead to systematic deviations from 706 
optimal readout (figure 2f, 4d&e). These predictions could be tested by recording 707 
neural responses to a stimulus set that differs across multiple features to 708 
characterize both signal-to-noise and correlated variability for each feature 709 
discrimination. A strong prediction of our model is that correlated variability within 710 
neurons tuned to a given feature should be a predictor of subsequent learning of 711 
responses to that feature – above and beyond feature value discriminability.  712 
 713 
One interesting special case involves tasks where the relevant dimension 714 
changes in an unsignaled manner (Birrell and Brown, 2000). In such tasks, noise 715 
correlations on the previously relevant dimension would, after such an 716 
“extradimensional shift”, force gradients into a task-irrelevant dimension and thus 717 
impair learning performance. Interestingly, learning after extra-dimensional shifts 718 
can be selectively improved by enhancing noradrenergic signaling (Devauges 719 
and Sara, 1990; Lapiz and Morilak, 2006), which leads to increased arousal 720 
(Joshi et al., 2016; Reimer et al., 2016) and decreased cortical pairwise noise 721 
correlations in sensory and higher order cortex (Vinck et al., 2015; Joshi and 722 
Gold, n.d.). While these observations have been made in different paradigms, our 723 
model suggests that the reduction of noise correlations resulting from increased 724 
sustained levels of norepinephrine after an extradimensional shift (Bouret and 725 
Sara, 2005) could mediate faster learning by expanding the dimensionality of the 726 
learning gradients (compare figure 5G to 5F) to consider features that have not 727 
been task-relevant in the past.   728 
 729 
Relation to attentional effects on noise correlations 730 
 731 
In broad strokes, our finding that manipulation of noise correlations can focus 732 
variance on specific dimensions is in line with specific models of attention. In 733 
particular, noise reduction in task irrelevant dimensions might be considered in 734 
the same light that is often cast on suppression of task irrelevant dimensions by 735 
attentional mechanisms (Zanto and Gazzaley, 2009), in particular for purposes of 736 
accurate credit assignment (Akaishi et al., 2016; Leong et al., 2017). One 737 
possibility is that compressed low-dimensional task representations in higher-738 
order decision regions (Mack et al., 2019) may pass accumulated decision 739 
related information back to sensory regions in order to approximate Bayesian 740 
inference (Haefner et al., 2016; Bondy et al., 2018; Lange et al., 2018). As task 741 
relevant features are learned, such a process would promote noise correlations 742 
between neurons coding those relevant features. In other words, noise 743 
correlations may reflect a chosen hypothesis about which feature is relevant for 744 
predicting outcomes. Such a signal would be beneficial if it could persist (and 745 
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thus preserve correlations between neurons tuned to the same task relevant 746 
feature value) until the time of feedback or reinforcement. Recent work showing 747 
strengthened noise correlations between similarly tuned neurons during working 748 
memory maintenance suggests that this might very well be the case (Merrikhi et 749 
al., 2018).  750 
 751 
One observation that seems at odds with this interpretation is that manipulations 752 
of attention that cue a particular location or feature tend to decrease noise 753 
correlations among neurons that encode that location or feature (Cohen and 754 
Maunsell, 2009; Mitchell et al., 2009; Cohen and Maunsell, 2011; Herrero et al., 755 
2013; Doiron et al., 2016). The effects of attentional cuing on noise correlations 756 
are dynamic in that cues change from one trial to the next, and contextual, in that 757 
noise correlations are reduced most dramatically among neurons that contribute 758 
evidence toward the same response in a manner consistent with increasing the 759 
amount of task relevant information in the population code (Ruff and Cohen, 760 
2014; Downer et al., 2015). Our model does not account for these attentional 761 
effects, as we intentionally constrained the signal-to-noise ratio of our neural 762 
populations, thereby eliminating any potential changes in information encoding 763 
potential. However, we hope that our work motivates future studies to jointly 764 
consider the impacts of noise correlations on both learning and immediate 765 
performance in order to better understand the potentially competing imperatives 766 
that the brain faces in dynamically controlling the correlation structure of its own 767 
representations (see (Haimerl et al., 2019) for one attempt to do so).     768 
 769 
 770 
Origins of useful noise correlations  771 
 772 
One important question stemming from our work is how noise correlations 773 
emerge in the brain. This question has been one of longstanding debate, largely 774 
because there are so many potential mechanisms through which correlations 775 
could emerge (Kanitscheider et al., 2015; Kohn et al., 2016). Noise correlations 776 
could emerge from convergent and divergent feed forward wiring (Shadlen and 777 
Newsome, 1998), local connectivity patterns within a neural population (Hansen 778 
et al., 2012; Smith et al., 2013), or top down inputs provided separately to 779 
different neural populations (Haefner et al., 2016). Here we show that static noise 780 
correlations that are useful for perceptual learning emerge naturally from Hebbian 781 
learning in a feed-forward network. While this certainly suggests that useful noise 782 
correlations could emerge through feed forward wiring, it is also possible to 783 
consider our Hebbian learning as occurring in a one-step recurrence of the input 784 
units, and thus the same data support the possibility of noise correlations through 785 
local recurrence. The context dependent noise correlations that speed learning 786 
(figure 4), however, would not arise through simple Hebbian learning. Such 787 
correlations could potentially be produced through selective top-down signals 788 
from the choice neurons, as has been previously proposed (Wimmer et al., 2015; 789 
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Haefner et al., 2016; Bondy et al., 2018; Lange et al., 2018). Moreover, top-down 790 
input may selectively target neuronal ensembles produced through Hebbian 791 
learning (Collins and Frank, 2013). While previous work has suggested that such 792 
a mechanism could be adaptive for accumulating information over the course of a 793 
decision (Haefner et al., 2016), our work demonstrates that the same mechanism 794 
could effectively be used to tag relevant neurons for weight updating between 795 
trials, making efficient use of top-down circuitry. Haimerl et al. recently made a 796 
similar point, showing that stochastic modulatory signals shared across task-797 
informative neurons can serve to tag them for a decoder (Haimerl et al., 2019).   798 
 799 
Noise correlations as inductive biases 800 
 801 
Artificial intelligence has undergone a revolution over the past decade leading to 802 
human level performance in a wide range of tasks (Mnih et al., 2015). However, a 803 
major issue for modern artificial intelligence systems, which build heavily on 804 
neural network architectures, is that they require far more training examples than 805 
a biological system would (Hassabis et al., 2017). This biological advantage 806 
occurs despite the fact that the total number of synapses in the human brain, 807 
which could be thought of as the free parameters in our learning architecture, is 808 
much greater than the number of weights in even the most parameter-heavy 809 
deep learning architectures. Our work provides some insight into why this occurs; 810 
correlated variability across neurons in the brain constrain learning to specific 811 
dimensions, thereby limiting the effective complexity of the learning problem 812 
(figure 5F-G). We show that, for simple tasks, this can be achieved using 813 
Hebbian learning rules (figure 4), but that contextual noise correlations, of the 814 
form that might be produced through top-down signals (Haefner et al., 2016), are 815 
critical for appropriately focusing learning in more complex circumstances. In 816 
principle, algorithms that effectively learn and implement noise correlations might 817 
reduce the amount of data needed to train AI systems by limiting degrees of 818 
freedom to those dimensions that are most relevant. Furthermore, our work 819 
suggests that large scale neural recordings in early stages of learning complex 820 
tasks might serve as indicators of the inductive biases that constrain learning in 821 
biological systems.  822 
 823 
In summary, we show that under external constraints of task-relevant information, 824 
noise correlations that have previously been called “rate limiting” can serve an 825 
important role in constraining learning to task-relevant dimensions. In the context 826 
of previous theory focusing on representation, our work suggests that neural 827 
populations are subject to competing forces when optimizing covariance 828 
structures; on one hand reducing correlations between pairs of similarly tuned 829 
neurons can be helpful to fully represent available information, but increasing 830 
correlations among similarly tuned neurons can be helpful for assigning credit to 831 
task relevant features. We believe that this view of the learning process not only 832 
provides insight to understanding the role of noise correlations in the brain, but 833 
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opens up the door to better understand the inductive biases that guide learning in 834 
biological systems.     835 
 836 
 837 
Supplementary figures: 838 
 839 
 840 
 841 

 842 
 843 
 844 
Figure S1: Noise correlations affect speed of learning, but not performance using optimal 845 
readout in multiple discrimination task. A) Mean test accuracy (color) of all models spanning 846 
the range of in pool correlations (abscissa) and relevant pool correlations (ordinate). B) Mean 847 
accuracy of same models using optimal readout, rather than the learned readout.  C) Mean test 848 
accuracy (color) of all models spanning the range of in pool correlations (abscissa) and irrelevant 849 
pool correlations (ordinate). D) Mean accuracy of same models using optimal readout, rather than 850 
the learned readout. Note that performance of all models is identical when readout is optimal, 851 
rather than learned.  852 
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