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A paired liver biopsy and plasma proteomics study reveals circulating 

biomarkers for alcohol-related liver disease   
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Abstract 

Existing tests for detecting liver fibrosis, inflammation and steatosis, three stages of liver disease that are 
still reversible are severely hampered by limited accuracy or invasive nature. Here, we present a paired 
liver-plasma proteomics approach to infer molecular pathophysiology and to identify biomarkers in a 
cross-sectional alcohol-related liver disease cohort of nearly 600 individuals. Metabolic functions were 
downregulated whereas fibrosis-associated signaling and novel immune responses were upregulated, but 
only half of tissue proteome changes were transmitted to the circulation. Machine learning models based 
on our biomarker panels outperformed existing tests, laying the foundation for a generic proteomic liver 
health assessment. 

iver disease has become one of the top causes 

of mortality worldwide, with non-alcoholic fatty 

liver disease (NAFLD) and alcohol-related liver 

disease (ALD) driving a rapid increase in incidence 

(Estes et al., 2018; Sheka et al., 2020; Tapper and 

Parikh, 2018). ALD is one of the most prevalent types 

of chronic liver disease worldwide, overtaking 

Hepatitis C virus infection in the United States 

(Cholankeril and Ahmed, 2018), and is the cause of 

more than half of all liver-related deaths; at least 

500,000 fatalities every year (Pimpin et al., 2018; 

Sheron, 2016). ALD progresses through a range of 

histological lesions starting with alcohol-related fatty 

liver, to subclinical steatohepatitis (ASH) featuring 

hepatic inflammation, which drives fibrosis, and 

ultimately cirrhosis. These types of liver lesions can 

occur individually and concomitantly in the same 

patient to varying degrees, and often occur together 

with obesity, which further complicates the 

phenotypic spectrum of the disease (Harris et al., 
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2019). Nearly all individuals with chronic heavy 

alcohol consumption (>40 g of alcohol per day) 

develop fatty liver, 10 to 35% of these progress to 

ASH and 8-20% to cirrhosis (Seitz et al., 2018). 

However, the slow and generally asymptomatic 

nature of disease progression renders diagnosis at an 

early stage challenging. Moreover, accurate 

diagnosis of liver disease requires biopsy, a 

procedure that causes major complications in 1% of 

cases (Takyar et al., 2017). Ultrasound- and blood-

based approaches are minimally invasive and focus 

on individual histological aspects of the disease, but 

has limited accuracy especially at early stages, thus 

severely reducing treatment options (Li et al., 2018). 

Therefore, there is a pressing need for minimally 

invasive diagnostic strategies for screening patients 

in at risk populations.   

Biomarker discovery efforts have typically focused on 

individual biomolecules and have had a low 
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acceptance rate in the clinic. Systems-wide studies, in 

contrast, have not connected changes in circulating 

levels and dysregulation in the diseased organ (Niu et 

al., 2019a). Given the high frequency of comorbid 

conditions in liver disease, such as chronic 

pancreatitis, cardiovascular disease, and cirrhotic 

cardiomyopathy (Jepsen, 2014; Keeffe, 1997), a 

connection in protein changes between liver and 

plasma would greatly help in evaluating their organ 

specificity and role in the disease (Veyel et al., 2020).   

Recent advances in mass spectrometry (MS)-based 

proteomics have greatly extended its reach in 

biomedical and clinical research (Aebersold and 

Mann, 2016; Altelaar et al., 2013; Budayeva and 

Kirkpatrick, 2020). It is an increasingly powerful 

platform for specifically identifying and quantifying 

hundreds to thousands of proteins present in 

biological or clinical samples, making it highly 

suitable for identifying disease biomarkers. This is 

especially evident in the context of complex diseases, 

where focus on a single, or a handful of proteins is 

unlikely to provide accurate and reliable diagnosis. 

However, to be effective as a clinical biomarker 

discovery platform, MS-based proteomics has to be 

performed in a robust and accurate manner and 

applied to large patient cohorts. Recently our group 

has developed a plasma proteome profiling workflow 

and identified circulating proteins associated with 

NAFLD (Geyer et al., 2016; Niu et al., 2019b). 

 

Fig. 1 | A framework for biomarker discovery in liver disease. In this framework, we applied high-throughput MS-based proteomics 

technology to profile paired liver and plasma samples from patients in a large clinically well-characterized cohort of ALD and matched 

healthy controls. Proteome regulation in the liver and plasma revealed changes at pathway and biological processes levels. Integrated 
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liver and plasma proteomics helps to capture disease stage-relevant protein signatures in the bloodstream which are concordant with the 

liver. Lastly, we built a machine learning model to identify early stages of liver fibrosis, inflammation and steatosis.  

Here, we used MS-based proteomics to analyze 

paired liver tissue and plasma samples from a large 

cohort of patients and age- and gender-matched 

healthy volunteers with the goal of identifying 

circulating biomarkers for different pathological 

features of ALD. We demonstrated that liquid 

biopsies could be an effective replacement for more 

invasive liver ones. We observed that both liver and 

plasma proteomes undergo extensive remodeling 

during ALD, with fibrosis having the largest effect, 

followed by hepatic inflammation and steatosis. Our 

integrative analysis, cross-referencing liver and 

plasma proteomes, enabled us to use machine-

learning to define plasma-based proteomics 

biomarker panels which outperformed existing liver 

tests in identifying early stages of liver fibrosis, 

inflammation and steatosis, as well as to predict 

future liver-related events. Finally, we will provide an 

interactive data visualization app built within the 

open-source Dash framework for data exploration 

(Supplementary Fig. 1).  

Results 

Framework for integrated tissue and plasma 

biomarker discovery in a large scale ALD cohort 

We reasoned that pairwise correlations in protein 

levels between liver biopsy and plasma of the same 

individual would generate the data necessary to 

systematically correlate liver histology with 

pathophysiology-dependent changes in the plasma 

proteome (Fig. 1). We measured the liver and plasma 

proteomes using a data independent acquisition (DIA) 

strategy and a state of the art single-run workflow 

(Guo et al., 2015; Meier et al., 2018). We applied this 

framework to a cohort of 361 ALD patients (high risk 

group), making it the largest biopsy-verified ALD 

study (for baseline characteristics see (Thiele et al., 

2016; Thiele et al., 2018)). Another cohort of 98 

individuals with a history of excessive drinking but 

benign liver (according to FibroScan results) was also 

included (at risk group, no biopsy taken), as well as a 

healthy cohort of 137 individuals. In total, we 

performed MS-based proteomics on nearly 600 

plasma samples and 79 liver biopsies spanning the 

full range of fibrosis grades (F0 to F4). 

Comprehensive clinical data was acquired from all 

participants, including the currently best performing 

non-invasive fibrosis tests: the ELF blood test 

(Enhanced Liver Fibrosis, (Guha et al., 2008)) for 380 

of them, and 576 test results from transient 

elastography — an ultrasound-based technique for 

liver stiffness measurement. We also analyzed 

plasma proteome data using machine learning to 

construct plasma-derived ALD disease progression 

classifiers, and compared their performance to ELF, 

FibroScan and 11 other biomarkers.   

Impact of hepatic lesions on the liver tissue 

proteome  

To maximize proteome depth and coverage from 

needle biopsies, we acquired liver proteomes of 79 

patients in 100 min single-runs with an optimized DIA 

method (Supplementary Fig. 2). This was enabled by 

MaxQuant.Live (Wichmann et al., 2019) with a novel 

signal processing algorithm for fast LC-MS/MS cycle 

times (Grinfeld et al., 2017). Matching to a liver tissue 

library of more than 10,000 proteins yielded 5,515 

total quantified proteins (Methods, Supplementary 

Fig. 3). Further filtering for proteins with less than 40% 

missing values across all samples resulted in a final 

set of 4,765 proteins with 95% data completeness. 

Differential protein expression analysis, controlled 

for common covariates, resulted in identification of 

764 proteins significantly dysregulated in different 

stages of liver disease (fibrosis (701 proteins), 

inflammation (153 proteins) and steatosis (73 

proteins)). Collectively, this accounts for 14% of the 

total quantified proteome (Fig. 2a, Supplementary 

Table 1). Fibrosis has by far the most dramatic effect 

on the liver proteome, followed by inflammation, 

with a large overlap between the two (86% of all 

proteins dysregulated in inflammation are also found 

to be dysregulated in fibrosis).  

The majority of dysregulated proteins across the 

fibrosis stages were found to be upregulated (65% 

(497 proteins) vs. 35% (267 proteins) downregulated; 

Figure 2b). We also grouped the dysregulated 

proteins based on the Human Protein Atlas 
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annotation (Kampf et al., 2014), and found that 88% 

of the proteins annotated as ‘liver specific’ (Methods) 

were downregulated in liver tissue along increasing 

stages of fibrosis, while the effect on proteins 

annotated as ‘secreted’ was the opposite, with 77% 

of those being upregulated (Fig. 2c). This is similar to 

what we previously reported in plasma of non-

alcoholic fatty liver disease (NAFLD), a related liver 

disease that exhibits pathophysiological similarities 

with ALD (Niu et al., 2019b). 

 

Fig. 2 | Liver proteome remodeling due to hepatic lesions. a. Venn diagram of the number of proteins in liver tissue significantly differentially 

abundant across stages of fibrosis, inflammation and steatosis, assessed by ANCOVA on 79 liver tissues followed by Benjamini-Hochberg 

correction for multiple hypothesis testing with a false discovery rate (FDR) of 0.05. b. Hierarchical clustering of all 764 dysregulated proteins 

that are significant in the ANCOVA. Row clustering was based on median log2-intensity after Z-score normalization across fibrosis stages 

F0-F4. Proteins significant across stages of fibrosis, inflammation and steatosis are color-coded as well as proteins categorized as ‘liver-

specific’ and ‘secreted’ according to the Human Protein Atlas. Two major clusters of proteins that were down- and upregulated as degrees 

of fibrosis increased were color-coded in blue and red in the dendrogram, respectively. c. Fraction (%) of up- and downregulated ‘liver-

specific’ and ‘secreted’ proteins. d. Top 20 proteins that correlate with the Kleiner score, NAS inflammation score, and NAS steatosis score, 

respectively. Proteins colored in blue are secreted according to the Protein Atlas. e. The distribution of log2‐intensity values of top four 

correlating proteins to each histologic score. Number of replicates is in (Supplementary Fig. 4). The black line in the middle of the box is 

the median, the top and the bottom of the box represent the upper and lower quartile values of the data and the whiskers represent the 

upper and lower limits for considering outliers (Q3+1.5*IQR, Q1‐1.5*IQR). IQR is the interquartile range (Q3–Q1).  
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Functional pathway annotation and enrichment 

analysis of the dysregulated liver proteome revealed 

that approximately 25% of the upregulated proteins 

belong to the immune system, specifically proteins 

involved in neutrophil degranulation (including the 

cell surface markers CD44 and CD63) and interleukin 

signaling pathways (Supplementary Table 2). Our 

results reflect the involvement of both innate and 

adaptive immunity in the pathogenesis of ALD at the 

molecular level. Signal transduction pathways were 

the second most highly over-represented category of 

proteins as fibrosis progresses (21% of total 

upregulated proteins), most notably receptor 

tyrosine kinase (RTK) signaling mediated by TGF-β, 

PDGF, MET, SCF-KIT and the insulin receptor, in 

agreement with existing literature that both TGF-β 

and PDGF play a role in fibrogenesis (Tsuchida and 

Friedman, 2017). Specifically, MAPK1, MAPK3, 

ROCK2 and AKT2, phosphatases PTPN6 and PTPN11, 

transcription factors STAT1, YAP2, and the small 

GTPases RAC1 and RAP1B were upregulated between 

fibrosis stage F0 to F4 (Supplementary Table 1). 

Signaling by Rho GTPase (40 proteins) and GPCR (23 

proteins) were also significantly enriched in the 

upregulated proteins. Additionally, as expected 

based on their role in fibrosis, extracellular matrix 

(ECM) structural proteins and those involved in their 

biosynthesis, degradation, and post-translational 

modification were found to be significantly 

upregulated (46 proteins, including collagens type I, 

III, IV, V, VI, XII, XIV, fibronectin, laminin, lumican, 

perlecan, fibulins FBLN1, FBLN2, FBLN5, and the 

latent-transforming growth factor beta-binding 

proteins LTBP1, LTBP4; Supplementary Table 1). The 

proteins observed to be downregulated are largely 

comprised of metabolism-associated proteins (153 

proteins, 57%), involved in metabolism of lipids, 

amino acids, xenobiotics, carbohydrates, steroids, 

cholesterol, vitamins and cofactors, as well as bile 

acids (Supplementary Table 3).  

We also assessed correlation between measured 

proteomic changes and the widely used histological 

scores of liver pathology: the Kleiner fibrosis score 

(F0-4), the sum of NAS lobular inflammation and 

ballooning scores reflecting activity grade (I0-5), and 

the NAS steatosis score (S0-3) (Kleiner et al., 2005). 

We observed that 1,288 proteins significantly 

correlated with fibrosis stage, 951 proteins to the 

inflammatory activity, and 237 proteins to steatosis 

(Supplementary Table 4-6). Among the top 20 

fibrosis-associated proteins ranked by correlation 

coefficient were prominent liver secreted proteins 

(Fig. 2d), with roles in cell-ECM interactions (TGFBI 

and EMILIN1, (Karsdal et al., 2015)), as well as 

proteins previously associated with hepatic fibrosis 

(Transgelin-2, (Molleken et al., 2009) and tenascin-X, 

(Kasprzycka et al., 2015)). Approximately 50% of the 

top 20 inflammation-correlated proteins are 

cytoskeletal proteins, indicating cellular structural 

changes in inflamed liver (Fig. 2d), while the top 20 

hepatic steatosis-associated proteins include 

extracellular vesicle proteins reflecting changes in 

lipid transport. The four most significantly regulated 

proteins for each histological score are shown in Fig. 

2e, with fibulins (FBLN1 and FBLN2) best correlated 

with the fibrosis score; glutathione metabolizing 

enzymes (GSTP1 and GPX3) and SEPT7, a protein with 

a known role in hepatocellular carcinoma (SEPT7) 

exhibited best correlation with the inflammation 

score. The lipid-droplet binding protein perilipin-2 

and fatty acid-binding protein 4 (FABP4), an 

adipokine previously identified as a predictive 

marker for the progression from simple steatosis to 

NASH in patients with NAFLD (Coilly et al., 2019), 

exhibited some of the strongest correlation with the 

steatosis score (Fig. 2e). Taken together, proteomic 

analysis of the liver tissues representing different 

types of hepatic lesions shows that each has a unique 

proteomic signature, distinct from each other. 

Insights from functional annotation, pathway 

analysis and histological score correlation give 

confidence that the changes in protein abundance 

we measured in our proteomic experiments report 

on the status of ALD.  

Impact of hepatic lesions on the plasma proteome  

Next we quantified and analyzed plasma proteomes 

from 360 biopsy-verified ALD patients, 137 healthy 

controls and 99 individuals who have a history of 

excess drinking but benign liver (Fig. 1; see Methods 

section for technical details, four samples were 
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excluded from downstream analysis as they failed 

proteomics data quality criteria). Plasma proteomics 

is challenging because of the very high dynamic range, 

which we had previously addressed by multiple 

injections and the ‘BoxCar’ acquisition method 

(Meier et al., 2018; Niu et al., 2019b). To scale up to 

our cohort of 596 participants, we took advantage of 

the Evosep One, a novel LC system designed for 

clinical studies with faster analysis time, improved 

robustness and throughput (Bache et al., 2018). 

Furthermore, we applied a hybrid BoxCar (Meier et 

al., 2018) and DIA acquisition method (Ludwig et al., 

2018), and a deconvolution method that doubles MS 

resolution (Grinfeld et al., 2017) (Methods).

 

Fig. 3 | Remodeled plasma proteome due to hepatic lesions. a. Proteins in plasma significantly differentially abundant across stages of 

fibrosis, inflammation and steatosis as assessed by ANCOVA analysis on 494 plasma samples from the healthy controls (N=136) and the 

disease cohort with biopsy-verified histologic scores (N=358). ANCOVA significance level was corrected for multiple hypothesis testing by 

Benjamin-Hochberg at a false discovery rate of 0.05. b. Hierarchical clustering of the 215 significantly dysregulated plasma proteins from 

ANCOVA. Row clustering was based on median log2-intensity after Z-score normalization across fibrosis stages HP-F0-F4. Significant 

proteins across stages of fibrosis, inflammation and steatosis as well as ‘liver-specific’ and ‘secreted’ proteins according to the Human 

Protein Atlas were color-coded. Down- and upregulated as degrees of fibrosis increase were color-coded in blue and red in the dendrogram. 

c. Ratios of up- and down-regulating proteins of ‘liver-specific’ and ‘secreted’ proteins. d. Top 20 plasma proteins that correlate with the 

Kleiner score, NAS inflammation score, and NAS steatosis score. Proteins colored in blue are secreted proteins according to the Human 

Protein Atlas and the hatched boxes according to our plasma proteomics. e. Distribution of log2‐intensity values of top four correlating 

proteins in plasma for each histologic score. Number of replicates is in (Supplementary Fig. 4).  
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Differential expression analysis revealed a total of 

215 proteins significantly dysregulated in at least one 

comparison across histologic stages of fibrosis (88%), 

inflammation (62%) and steatosis (25%), underlying 

dramatic remodeling of the plasma proteome as a 

function of liver pathology (Fig. 3a, and 

Supplementary Table 7). Among these, 127 proteins 

were up- and 88 downregulated across fibrosis 

stages (Fig. 3b). The majority of dysregulated 

proteins overlapped between fibrosis and 

inflammation (Fig. 3a). Of the dysregulated proteins 

annotated as ‘liver specific’ or ‘secreted’, 81% and 56% 

were found to be downregulated, respectively (Fig. 

3c). The downregulated cluster was mainly 

comprised of the complement and coagulation 

cascade and lipoprotein particles (Supplementary 

Table 8, Supplementary Fig. 5). Complement 

components C4A, C4B, C6, C8A, C8G as well as C4-

binding protein, decreased in abundance by 15% to 

42% between F0 and F4 (Supplementary Table 9), 

whereas C7 increased 3.5-fold, consistent with the 

literature (Niu et al., 2019b). Additionally, we 

observed downregulation of: (i) coagulation 

(co)factors and fibrinolytic proteins (prothrombin 

(F2), coagulation factor X, XI, XII, carboxypeptidase2 

(CPB2), Protein C (PROC), Protein S (PROS1), 

antithrombin-III (SERPINC1) and alpha-2-antiplasmin 

(SERPINF2)); (ii) apolipoproteins (APOM, APOF, APOE, 

APOC4 and APOL1); and (iii) carrier proteins (albumin, 

retinol-binding protein, vitamin D-binding protein 

and hemopexin). Many of these changes are 

consistent with a dynamic interplay between fibrosis 

and steatosis that accompanies fibrosis progression. 

Interestingly, our mass spectrometric results of 

above mentioned clotting factors significantly 

correlated with values of the international 

normalized ratio (INR) opening up the possible 

substitution of the INR assay by plasma proteomics 

(Supplementary Fig. 6). 

Insulin-like growth factor-binding proteins (IGFBPs) 

IGFBP3, IGFALS, and IGFBP7, significantly and 

dramatically changed already at F3 stage (IGFBP3 and 

IGFALS decreased by 32% and 45% respectively, 

while IGFBP7 increased 2.1-fold). ECM-related 

proteins comprised a large group of upregulated 

plasma proteins, including both proteins with a 

known role in liver fibrosis (type VI collagen (COL6A3), 

lumican, VWF and fibulin-1 (FBLN1)), and less 

established ones (ADAMTS like 4 protein (ADAMTSL4) 

and extracellular matrix protein 1 (ECM1)), as well as 

enzymes with roles in regulating extracellular 

environment (sulfhydryl oxidase 1 (QSOX1) and 

metalloproteases MMP2 and ANPEP) 

(Supplementary Table 9). Moreover, we confirmed 

that two proteins previously reported as upregulated 

in NAFLD (TGFBI and galectin 3-binding protein 

(LGALS3BP)) (Niu et al., 2019b), were upregulated in 

ALD plasma. We also observed upregulation in: (i) cell 

adhesion molecules (ICAM1, VCAM1, integrin alpha-

1 (ITGA1) and cadherin-5); and (ii) plasma 

immunoglobulins (IgA1-2, IgG1-4 and IgMs), as well 

as PIGR, a protein involved in transporting dimeric 

IgAs and polymeric IgMs (Mostov, 1994), which we 

previously identified as a promising marker for 

NAFLD (Niu et al., 2019b). PIGR was 2.6-fold 

upregulated in this cohort, together with J-chain (3-

fold), a protein component responsible for PIGR 

binding to its ligand. Remarkably, PIGR was 

concordantly upregulated in the paired liver biopsies 

with an even larger increase (6.5-fold, 

Supplementary Table 1) further supporting its 

diagnostic value in liver disease.  

Circulating levels of 79 proteins significantly 

correlated to fibrosis stage, 31 to inflammatory 

activity grade and five to the steatosis score (Fig. 3d; 

Supplementary Table 11-13). Complement 

component C7 (Spearman r = 0.68), VCAM1 (r = 0.58), 

LGALS3BP (r = 0.54) and QSOX1 (r = 0.5) had the 

highest correlation to fibrosis. Along with PIGR (5th 

highest correlation coefficient), these are promising 

fibrosis marker candidates due to their roles in ECM 

remodeling and stage-dependent increase in the 

circulation. Fructose bisphosphate aldolase B 

(ALDOB), a key enzyme in aldolase metabolism, 

which we previously reported as a potential 

biomarker for NAFLD, had the highest correlation to 

steatosis (r = 0.4) (Fig. 3e). Collectively, this large-

scale analysis demonstrates that liver status impacts 

the plasma proteome, resulting in specific, 

measurable changes in levels of subset of proteins 
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with an interpretable role. Overall, this suggests that 

integrative analysis of liver and plasma proteomes of 

the ALD cohort may yield actionable circulating 

biomarker panels for each pathological lesion of ALD. 

 

Fig. 4 | Liver-plasma proteome integration. a. Overlapping proteins between the liver- and plasma proteomes. Number of proteins that are 

significantly correlated between liver and plasma across patients is denoted (5% FDR and 0.3 minimum absolute Pearson correlation 

coefficient). b. Liver-plasma proteome abundance map showing median protein intensity (assessed by MS-intensity) in the liver as a 

function of that in the plasma. Proteins fall into a ‘diagonal cluster’ and a ‘vertical cluster’, characterized by dependence or independence 

of abundance rank in tissue vs. circulation, respectively. c. same as b) but color coding enzymes (blue), clotting factors (yellow) and known, 

functional plasma proteins related to the liver (darkred). d-f. Represented proteins significantly correlated in paired liver and plasma 

samples (C7, IGHA1 and CPR; Person correlation coefficient r indicated). Data points represent individual patients and are color-coded 

according to fibrosis score (Kleiner) or NAS inflammation score. Higher plasma and tissue abundances compared to other patients coincide 

with higher disease scores. g. Proteins co-regulated in the liver and plasma during disease progression. The dendogram shows the 52 

significantly co-regulated proteins across histologic stages of liver fibrosis, inflammation and steatosis and their functional categorization 

as indicated in the bottom panel. The heat maps display their Z-scored median intensities across fibrosis stages within plasma (left) and 

liver (right). Clusters having ‘late’ (2) and ‘synced’ abundance patterns (1) in plasma compared to tissue are highlighted.   
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Integration of liver and plasma proteomics  

We analyzed liver and plasma proteomes further and 

identified overlapping proteins present in both 

datasets. Our analysis revealed a bi-modal pattern 

when matching protein levels in a 2-dimensional 

space (Fig. 4a-b). For one group of proteins, levels 

were largely correlated (‘diagonal cluster’), whereas 

for the other group relative abundance rank in liver 

was independent of that in the circulation (‘vertical 

cluster’, where each dot represents a protein, Fig. 4b). 

For example, liver enzymes ALDOB and 

carboxypeptidase D (CPD) exhibited about 1,000-fold 

difference in abundance in the liver, whereas their 

levels in plasma were very similar and low (Fig. 4c). In 

general, intracellular liver enzymes were part of the 

vertical cluster, including the well-known liver 

damage markers ALT (GPT), AST (GOT1), and gamma-

glutamyl transferase (GGT, GGT1). Likewise, alcohol 

dehydrogenase 4 (ADH4), carboxylesterase 1 (CES1) 

and carbonyl reductase II (DCXR), all highly abundant 

in tissue (top 200, Supplementary Table 14) were 

detected in the plasma at very low levels - a million 

fold less than albumin, presumably reflecting tissue 

leakage. 

The diagonal cluster represents proteins that are 

secreted by the liver and act in the bloodstream,  

including abundant proteins like albumin, 

apolipoprotein A1, A2, C3, hepatoglobin (HP), 

SERPINA1 and fibrinogen subunits (FGA, FGB, FGG), 

as well as low abundant ones such as the coagulation 

factors F2, F9, F10, F11, F12 and F13A1 (Fig. 4c). 

Among commonly detected proteins, 91 had 

significant correlations between paired liver and 

plasma samples across the disease cohort (Pearson R 

up to 0.9 for C7 and IgA1, Supplementary Table 15). 

CRP levels in liver tissue and circulation also 

correlated highly (r = 0.69), which is of interest given 

the widespread use of this protein as a systemic risk 

marker for cardiovascular disease (Fig. 4d-f). PIGR’s 

value of 0.5 helps explain why both tissue and plasma 

levels correlated with disease severity.  

Integrating the ANCOVA results of the liver and 

plasma proteomes resulted in 52 co-regulated 

proteins (Fig. 4g). These represent immune and 

inflammatory responses, extracellular matrix, cell 

adhesion molecules as well as intracellular enzymes 

and display distinct temporal patterns in the liver and 

plasma across fibrosis stages. The majority of them 

increased in abundance from fibrosis stage F0 to F4 

in both liver and the plasma, with a few exceptions 

such as clusterin (CLU), vitronectin (VTN) and APCS. 

Apart from these monotonic patterns, ALDOB and 

fumarylacetoacetase (FAH) increased from F0 to F3 

followed by a decrease in F4 in the plasma, but 

continuously decreased from F0 to F4 in the liver. 

Based on temporal profiles, we defined two clusters, 

both of which increased from F0 to F4 in tissue and 

circulation (Fig. 4g). Importantly, proteins of cluster 2 

had a dramatic increase from F2 to F3 in the liver, but 

the signal was ‘delayed’ in the plasma – only 

dramatically increasing in F4 thus potentially 

representing late indicators of tissue damage. 

Conversely, proteins of cluster 1 had almost 

synchronized changes in the liver and the plasma. 

They included TGFBI, IGFBP7 and C7, all promising 

fibrosis markers that have been previously reported 

by us and others (Martínez-Castillo et al., 2020; Niu 

et al., 2019b).  

Machine learning models to detect early-stage 

fibrosis, inflammation and steatosis  

To investigate whether plasma proteomics can 

identify early stage fibrosis (200 controls in F0-1, 160 

cases in F2-4), we built a logistic regression model 

using a selected panel of a total of 14 proteins 

(Methods, Supplementary Table 16). Among these 

proteins, nine (64%) were co-regulated in plasma and 

liver, including IGHA2, HPR, PIGR, APCS, C7, 

LGALS3BP, TGFBI, IGFBP7 and LYVE1, of which four 

belong to the ‘synced’ signal pattern including IGHA1, 

IGFBP7, C7 and TGFBI (Fig. 4g). We compared the 

proteomic model against eight best-in-class clinical 

tests: transient elastography (TE), 2D-shear wave 

elastography (SWE), the ELF blood test, the FIB-4 

Index, the FibroTest (FT), the APRI (AST to platelet 

ratio index), the P3NP and the Forns index (Thiele et 

al., 2016; Thiele et al., 2018).  We used both clinically 

established  cut-offs and logistic regression 

determined cut-offs to perform cross-validation (see 

Methods for details), and present  the mean model 

performance to account for various missing values
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Fig. 5 | Prediction models based on the plasma proteome for biopsy-verified fibrosis, inflammation and steatosis. a, d, g. Receiver-

operating characteristic (ROC) curve and corresponding area under the curve (AUC) statistics in 5-fold cross-validation repeated for 10 

times of a protein panel-based logistic regression model for detecting significant liver fibrosis (F2-4) (a), hepatic inflammation (NAS I2-I5) 

(d) and steatosis (NAS S1-S3) (g). b-c, e-f, h-i. Averaged AUROC, F1 score and balanced accuracy in cross-validation of the above-

mentioned logistic regression models in comparison to best-in-class existing markers for fibrosis (b-c), inflammation (e-f) and steatosis (h-

i). Performance of existing markers were calculated based on either their established clinical cut-offs and machine learning cut-offs.  

across clinical tests and the lack of an external 

validation dataset (Fig. 5). The 14-protein panel for 

predicting significant fibrosis (≥F2) resulted in a mean 

area under the receiver operator curve (AUROC) of 

0.88 (95% CI: 0.82-0.94), F1 score of 0.82 (95% CI: 

0.74-0.90), and a balanced accuracy of 0.81 (95% CI: 

0.72-0.90) (Fig. 5a-d, Supplementary Table 17). 

Overall the proteomics model obtains the best 

combination of precision and recall as can be seen by 

the F1-score and balanced accuracy. The clinically 

defined ELF and FT markers obtain substantially 

higher precision or recall, but fail to balance both, 
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leading to an inferior performance in the two other 

metrics. A final prediction model on a new random 

split demonstrated that the proteomic model was 

significantly superior to logistic regression models 

using either the APRI or the FIB-4 Index (p < 0.05), and 

equally as good as the others as shown by pair-wise 

DeLong’s tests between models (Supplementary 

Table 18). We similarly derived a nine-protein panel 

(Supplementary Table 16) for predicting early stage 

hepatic inflammation (sum of NAS lobular 

inflammation and NAS ballooning ≥ 2) (153 controls, 

189 cases), which had an AUROC of 0.83 (95% CI: 

0.74-0.92), F1 score of 0.77 (95% CI: 0.66-0.89) and 

balanced accuracy of 0.76 (95% CI: 0.65-0.87) (Fig. e-

h, Supplementary Table 19). The F1 and balanced 

accuracy mean scores were higher than any of the 

other clinical comparators including the AST/ALT 

ratio (AAR), and the serum cytokeratin 18 epitopes 

M30 and M65 (Methods). The AAR test had the 

highest precision, but failed to capture many cases. 

DeLong’s test on the final model indicated that the 

proteomicFthi model was significantly superior to all 

other comparators (p < 0.05) (Supplementary Table 

20). It selected LGALS3BP, C7, PIGR, IGFBP7, QSOX1, 

CLU, FBLN1, ICAM1 and SEPIND1 as features for the 

inflammation panel, six of which were co-regulated 

in plasma and liver (Fig. 4g).  

Finally, a 28-protein panel-based model for 

predicting presence of any steatosis (NAS steatosis 

score ≥ 1) performed equally well as the controlled 

attenuation parameter (CAP), an ultrasonic 

measurement based on FibroScan for the detection 

of hepatic steatosis (Supplementary Table 21-22). 

Remarkably, the feature selection algorithm also 

picked ALDOB, a protein we previously identified as 

candidate marker for NAFLD, as well as lipid 

transport proteins APOC3 and apolipoprotein(a) 

(LPA), the latter being the main constituent of 

lipoprotein(a), a known risk factor for developing 

vascular disease. Taken together, these data strongly 

support the potential clinical value of plasma 

proteomics derived panels of proteins for detection 

of fibrosis, inflammation and steatosis 

simultaneously and for connecting them to their 

cellular and for tissue origins in ALD, and potentially 

NAFLD.  

ALD plasma biomarker model accuracy for excluding 

liver injury in healthy and at risk populations   

Predicting risk scores for individuals in the healthy 

and at risk cohort with the final proteomic models, 

excluded significant fibrosis, advanced fibrosis and 

mild inflammation in the healthy, matched control 

population with accuracies of 95%, 100% and 96%, 

respectively (Supplementary Table 23). Thus, 

proteomics combined with machine learning appears 

to be able to rule out these conditions in healthy 

populations. Around 18% of the healthy individuals 

were classified as steatosis positive. However, since 

they were matched for BMI with the ALD population, 

and simple steatosis was not an exclusion criterion, 

clinical missassignment is possible. Supporting this, 

60% of those who were classed as steatosis positive 

from the proteomics score had a CAP value above 

290, the cut-off for fatty liver. This implies an even 

higher accuracy of the proteomics score for excluding 

steatosis. In the at risk population of patients with 

excess use of alcohol, but a benign liver assessed by 

FibroScan, 90% and 86% of individuals were 

predicted not to have significant fibrosis and 

inflammation, respectively. Individuals in this cohort 

did not meet the criteria of taking a liver biopsy based 

on the FibroScan results. This likely led to some 

under-diagnosis at the time of inclusion, explaining 

some of the remaining false-positives in our model.  

To investigate if our proteomic marker panels predict 

future liver-related events, we followed 348 patients 

with a valid liver biopsy for a median of 43 months 

(IQR 21-60) after their study inclusion, using 

electronic patient files and Danish national registries 

to evaluate time to first liver related event. Seventy 

of them experienced a liver-related event during the 

follow-up period. To investigate the prognostic 

power of our proteomic marker panels, we 

computed their Harrell’s C-index and compared them 

with existing non-invasive markers and the liver 

histological lesions as reference (Methods). For 

significant fibrosis and moderate hepatic 

inflammation the C-index was 0.895 and 0.885,
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Fig. 6 | Additional validation of model performance and distribution of risk scores predicted by proteomics models. a. Percentage accuracy 

of the proteomics models for excluding significant fibrosis, advanced fibrosis, moderate inflammation and steatosis in the healthy cohort. 

b. Accuracy of the proteomics models for excluding significant fibrosis, advanced fibrosis and moderate inflammation in the at risk 

population. c. Harrell’s C-index of proteomics models and clinical tests in predicting patient outcome, ranked from the highest to lowest. 

d-f. Kernel density estimate plots showing the distribution of risk scores for significant fibrosis (c), moderate inflammation (d), and steatosis 

(e) predicted by respective proteomics models in the healthy, at risk- and high risk populations.

demonstrating that our proteomics marker panels 

for fibrosis and inflammation are highly accurate 

measures for predicting disease progression (Fig. 6c). 

Among existing tests, the score for TE was nearly as 

good, whereas the best serum markers (ELF) had a 

Harrell’s C inferior to three of our proteomic marker 

panels. Collectively, we demonstrate that the plasma 

biomarker panels that we constructed based on deep 

quantitative proteomic analysis offer a reliable, 

minimally invasive strategy for diagnosing, staging 

and predicting progression ALD. 

Discussion 

This work represents the largest and most detailed 

characterization of proteome changes in liver disease. 

Our analysis revealed that ALD progression is 

accompanied by dramatic proteome remodeling in 

both liver and the plasma, with fibrosis affecting the 

largest number of dysregulated proteins, followed by 

hepatic inflammation and steatosis. By integrating 

liver and plasma proteomics, together with clinical 

data on patients and healthy controls in our cohort 

we were able to define plasma biomarker panels for 

different hepatic lesions of ALD. When combined 

with machine learning, the plasma biomarker panels 

yielded predictive models that either performed as 

well as existing diagnostic strategies, or 

outperformed them, including in the context of 

predicting risk of future adverse liver events. Our 

study indicates that screening high risk individuals by 

proteomics could predict disease progression from 

an asymptomatic stage to symptomatic, therefore 

informing treatment options and intervention 
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opportunities. Moreover, given the minimally 

invasive nature of plasma sample collection, 

proteomic screens could be performed with 

frequency not currently feasible, hence significantly 

aide the clinical decision-making process. Overall, our 

results suggest feasibility of developing liquid 

biopsies for a combined diagnosis of fibrosis, 

inflammation and steatosis, in addition to monitoring 

and prognostication. Confirmatory trials are needed 

to independently validate the approach.  

Importantly, ALD and NAFLD share common 

histological presentations, therefore discovery of 

commonly regulated proteins could help develop a 

generic blood test for the detection of hepatic lesions 

irrespective of the initial cause. Notably, comparing 

our results to our previous, smaller NAFLD cohort 

(Niu et al., 2019b), we found PIGR, ALDOB, and 

LGALS3BP to be commonly upregulated with 

corresponding, disease-stage dependent changes in 

the paired liver tissue. Remarkably, PIGR, which 

emerged as a potential biomarker in the NAFLD study, 

was among the top 20 highest upregulated proteins 

in plasma between fibrosis stages F0 and F4 (2.6-fold), 

and the fifth highest in liver (6.5-fold). Taking the two 

studies together, PIGR emerges as a promising 

indicator for the presence and severity of fibrosis and 

inflammation, whereas LGALS3BP and ALDOB appear 

to indicate fibrosis and steatosis, respectively. 

Concordantly, these three proteins were selected by 

our machine learning algorithms in an unbiased way 

for predicting these lesions. We expect that 

proteomics study of larger NAFLD cohorts, enriched 

with additional clinical data conducted in the manner 

similar to the one described here will likely result in 

discovery of additional common biomarkers for 

NAFLD and ALD. More generally, a comprehensive 

study encompassing the major liver diseases could 

provide a set of common and distinguishing 

biomarkers in the future.  

In addition to diagnostic power, our results also have 

major implications for the development of potential 

ALD and NAFLD treatment options. For example, an 

astonishing 20% of upregulated tissue proteins were 

associated with signal transduction pathways such as 

the receptor tyrosine kinase (RTK), including many 

kinases with available inhibitors in different stages of 

pre-clinical and clinical development. This may 

suggest a potential for targeting RTK signaling in the 

context of ALD. TGF-β signaling pathway represents 

a similar opportunity, given its function as the most 

potent driver of fibrogenesis and extensive existing 

drug development efforts (Beyer and Distler, 2013; 

Fabregat et al., 2016). Furthermore, proteomics 

implicated some less studied signaling pathways in 

ALD, including G-protein coupled receptors (GPCRs), 

widely considered to be druggable. Thus our results 

suggest additional targeting opportunities for 

developing pharmacological agents for ALD 

treatment. 

Overall, here we outline a generally applicable 

framework for discovery and validation of plasma-

based biomarker panels for diagnosing complex 

diseases, such as ALD. We highlight that availability 

of clinical samples and health record data from a 

large patient cohort, including paired tissue histology 

and plasma samples, as well access to paired samples 

from healthy individuals are critical for discovery of 

robust, predictive biomarker panels. We expect that 

combining quantitative MS-based proteomics of 

tissue of origin and paired patient plasma in other 

systems may lead to circulating biomarkers’ 

discovery in other diseases, where accurate diagnosis 

is currently based on biopsies requiring invasive 

procedures, resulting in a more widespread 

availability and application of less invasive liquid 

biopsies. With ongoing improvements in technology, 

we expect an increase in model performance. We 

envision that targeted or ‘global targeted’ 

(Wichmann et al., 2019) MS-based assays could be 

developed that retain the full specificity of this 

technology. An additional benefit of plasma 

proteomic profiling is its generic nature, meaning 

that it provides additional information apart from the 

targeted panel. For instance, bleeding and clotting 

abnormalities could be assessed in patients with liver 

disease as demonstrated by the correlation of the 

clotting factors to INR values in this study. A further 

advantage is that only a single technology needs to 

be applied.  
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Materials and methods 

Ethical approval  

The study protocol was approved by ethics 

committee for the Region of Southern Denmark 

(ethical IDs: S-20160006G, S-20120071, S-20160021, 

S-20170087) and registered with the Danish Data 

Protection Agency (13/8204, 16/3492), also with 

Odense Patient Data Exploratory Network under 

study identification number OP_040 

(open.rsyd.dk/OpenProjects/da/openProjectList.jsp

). The study was conducted according to the 

principles of the Declaration of Helsinki, and oral and 

written informed consent was obtained from all 

participants. 

Participant recruitment and clinical data collection 

For the healthy and ALD cohorts, participant 

recruitment protocol including inclusion and 

exclusion criteria, setting and locations where data 

were collected can be found in the original report 

(Thiele et al., 2016; Thiele et al., 2018; Trošt et al., 

2020). The same applies for sample- and clinical data 

collection procedure, detailed description of the 

cohort characteristics and anything related to the 

original clinical study design. The study population in 

the ALD cohort has been previously published for the 

evaluation of the studied fibrosis tests. Cut-offs for 

these clinical tests when compared with proteomics 

models can be found in Supplementary Table 27.  

Plasma proteome sample preparation 

Plasma samples were prepared with a modified 

protocol based on previously published Plasma 

Profiling pipeline on an automated liquid handling 

system (Agilent Bravo) in a 96-well plate 

format(Geyer et al., 2016). In brief, proteins were 

denatured, reduced, alkylated and enzymatically 

cleaved into peptides. Resulting digestion mixture 

were loaded on Evotips (Bache et al., 2018).  

In detail:  

1. Transfer 5 µl of blood plasma sample into an 

Eppendorf 96-well plate on an Agilent Bravo 

liquid handling system (Plasma plate). 

2. Make a 1:10 dilution by adding 45 µl of lysis 

buffer (10mM TCEP, 40mM CAA, 100mM Tris, 

pH8.5) into each well of the Plasma plate, mix 

thoroughly by pipetting 50 times up and down 

for a volume of 40 µl, and centrifuge the plate up 

to 300 x g.  

3. Pipet 20 µl of 10-fold diluted plasma into a new 

96-well plate (Digestion plate). 

4. Heat the plate at 95°C for 10 min.  

5. Move the Digestion plate to room temperature 

and cool it down for 5 min. Meanwhile prepare 

fresh trypsin/LysC mix in 0.05 (µg/µl) (total 

volume calculated by 20 µl per sample, 1:100 

micrograms of enzyme to micrograms of 

protein). 

6. Add 20 µl of trypsin/LysC mix into each well to a 

final volume of 40 µl. 

7. Heat the Digestion plate at 37°C for 2h 

(enzymatic digestion). 

8. Quench the reaction by adding 64 µl of 0.2% TFA, 

mix thoroughly by pipetting 20 times up and 

down. The digestion mixture can be frozen and 

stored at this stage.  

9. Load 1µg digestion mixture onto a disposable 

Evotip C18 trap column (Evosep Biosystems, 

Denmark) according to the manufacturer’s 

instructions. Briefly, Evotips were wetted with 2-

propanol, equilibrated with 0.1% formic acid, 

and then loaded using centrifugal force at 1500 

g with a 3D-printed centrifugal block. Evotips 

were washed with 0.1% formic acid and then 

added 200 µl of 0.1% formic acid to prevent 

drying.  

Liver proteome sample preparation 

Snap-frozen liver biopsies were cryo-pulverized in a 

Covaris cryoPREP Dry Pulverizer and collected in a 

glass tube. Approximately 1mg (in some cases less 

than 1mg) of tissue powder was transferred to an 

Eppendorf tube, adding 150 μl of SDC reduction and 

alkylation buffer (PreOmics GmbH). The 

homogenate were then heated at 95°C for 10 min, 

vortexed at 1200 rpm on a thermos mixer 

(Eppendorf) to denature proteins, subsequently 

sonicated using a water bath sonicator (Diagenode 

Bioruptor®, Liège, Belgium) at full power for 30 

cycles with 30s intervals and a second round 

sonication using the Covaris Adaptive Focused 

Acoustics (AFA) sonication system (Covaris, USA). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.337592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.337592


Research article  A protein biomarker panel for ALD 

15 
 

Protein content was determined by Tryptophan 

assay and a volume containing 50 μg of protein was 

digested overnight with trypsin and LysC (1:50, μg of 

enzyme: μg of protein) at 37°C, 1200rpm on a 

thermos mixer. Digestion mixture was acidified to a 

final concentration of 0.1% trifluoroacetic acid (TFA) 

to quench the digestion reaction. Peptide 

concentration was estimated using Nanodrop and 20 

μg of peptide  mixture was purified by solid phase 

extraction in a Stage-Tip format (SDB-RPS material, 

two 14-gauge plugs), washed with isopropanol/1% 

TFA and 0.2% TFA (200 μl each, centrifuge at 1500 x 

g with 3D-printed centrifuge block). Peptides were 

eluted with 60 μl of 80% acetonitrile/1% ammonia 

and dried at 60°C using a SpeedVac centrifuge 

(Eppendorf, Concentrator plus). Dried peptides were 

dissolved and sonicated in 5% acetonitrile/0.1% TFA. 

Peptide concentration was measured using 

Nanodrop, and 500 ng of purified peptides were 

injected for LC-MS-MS analysis.  

Liquid chromatography and mass spectrometry 

(LC-MS) 

The acquisition of samples was randomized to avoid 

bias. In single-shot plasma proteome analysis, 

peptide mixture was partially eluted from Evotips 

with less than 35% acetonitrile and analyzed with an 

Evosep One liquid chromatography (LC) system 

(Evosep Biosystems, Denmark (Bache et al., 2018)) 

coupled online to a hybrid quadrupole Oribitrap 

mass spectrometer (Q Exactive HF-X). Eluted 

peptides were separated at 60 °C on a 15 cm long 

column (150 µm inner diameter packed with 3 μm 

Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch, 

Germany)) in a standard preset gradient method 

(44min, 30 samples per day), and electrosprayed 

from a laser-pulled silica emitter tip at 2.4 kV. Data 

was acquired in BoxCar/DIA mode (BoxCar/DIA 

window setting see Supplenmentary Table 26), 

enabled by MaxQuant.Live (Wichmann et al., 2019) 

in which the scan protocol was defined. Each 

acquisition cycle was consisted of a survey scan 

(automatic gain control target (AGC) of 3e6 or 100ms 

injection time), two BoxCar scans (12 windows each 

at 300 - 1,650 m/z, AGC of 1e6/120ms) both at a 

resolution of 60, 000 at m/z 200, followed by 29 DIA 

cycles (AGC of 3e6/54ms at range 300-1650 m/z). 

HCD fragmentation was set to normalized collision 

energy of 27%. In all scans, PhiSDM (Grinfeld et al., 

2017) was enabled with 100 iterations, spectra type 

was set to centroid.  

In single-shot liver proteome analysis, purified 

peptides were measured using LC-MS 

instrumentation consisting of an EASY-nLC 1200 

system (Thermo Fisher Scientific, San Jose, CA) 

interfaced on-line with a Q Exactive HF-X Orbitrap 

(Thermo Fisher Scientific, Bremen, Germany). 

Peptides were separated on 42.5 cm HPLC-columns 

(ID: 75 µm; in-house packed into the tip with 

ReproSil-Pur C18-AQ 1.9 µm resin (Dr. Maisch 

GmbH)). For each LC-MS/MS analysis, around 0.5 µg 

peptides were injected for the 100 min gradients. 

Peptides were loaded in buffer A (0.1% formic acid) 

and eluted with a linear 82 min gradient of 3-23% of 

buffer B (0.1% formic acid, 80% (v/v) acetonitrile), 

followed by a 8 min increase to 40% of buffer B. The 

gradients then increased to 98% of buffer B within 6 

min, which was kept for 4 min. Flow rates were kept 

at 350 nl/min. Re-equilibration was done for 4 μl of 

0.1% buffer A at a pressure of 980 bar. Column 

temperature was kept at 60 °C using an integrated 

column oven (PRSO-V2, Sonation, Biberach, 

Germany). Data were acquired using an optimized 

DIA method, enabled by MaxQuant.Live (Wichmann 

et al., 2019) in which the scan protocol was defined. 

Each acquisition cycle was consisted of a survey scan 

at resolution of 60,000 with an automatic gain 

control target (AGC) of 3e6/100ms injection time (IT), 

followed by 66 DIA cycles (Supplementary Table 26) 

at resolution of 15,000 with an AGC of 3e6/22ms IT 

at range 300-1650 m/z). HCD fragmentation was set 

to normalized collision energy of 27%. In all scans, 

PhiSDM (Grinfeld et al., 2017) was enabled with 100 

iterations, spectra type was set to centroid. 

Mass spectrometric data analysis  

BoxCar/DIA hybrid spectra in the plasma dataset and 

DIA spectra in the liver biopsy dataset were analyzed 

with Spectronaut v13. The default settings were 

used unless else noted. Data filtering was set to 

‘Qvalue’. ‘Cross run normalization’ was enabled with 

strategy of ‘local normalization’ based on rows with 
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‘Qvalue complete’. The false discovery rate (FDR) 

was set to 1% at peptide precursor level and 1% at 

protein level. A previously generated deep 

fractionated plasma DDA library (Geyer et al., 2016; 

Niu et al., 2019b) and liver DDA library were used in 

the targeted analysis of DIA data for plasma and liver 

datasets against the human UniProt fasta database 

(January 2018, 21,007 canonical and 72,792 

additional sequences).  

Pre-processing of liver and plasma proteomics 

datasets 

Proteome datasets of the liver and plasma were 

filtered for 60% valid values across all samples 

(proteins with >40% missing values were excluded 

from downstream statistical analysis), with the 

remaining missing values imputed by drawing 

random samples from a normal distribution with 

downshifted mean by 1.8 standard deviation (SD) 

and scaled SD (0.3) relative to that of abundance 

distribution of the corresponding protein across all 

samples. Specifically in total, 524 proteins were 

quantified in the plasma proteomes, filtering for 60% 

valid values across all samples resulted in a dataset 

of 304 proteins with a data completeness of 95%. 

Assessed on seven quality control samples median 

workflow coefficient of variation (CV) was 23% 

across a one-month period (Supplementary Fig. 3). 

Liver proteome was pre-processed in the same way 

and more details were provided under the Results 

section (Supplementary Fig. 3).  

Differential expression analysis  

Differentially expressed proteins were determined 

by analysis of covariance (ANCOVA) controlling for 

the common covariates age, BMI, sex, and 

abstinence status at inclusion. We also controlled for 

the effects of steatosis when assessing the effect of 

fibrosis and inflammation on the liver proteome, and 

vice versa. Histological stages include a five-grade 

fibrosis score (F0-F4, denoted as Kleiner), a six-grade 

inflammation score (NAFLD Activity Score, NAS_I0-I5) 

combining lobular inflammation and ballooning, and 

a four-grade steatosis score (NAS_S0-S3). A Python 

script based on an open source statistical package 

pingouin.ancova was developed to handle ANCOVA 

in proteomics data and control for multiple 

hypothesis testing. A protein was considered 

significantly differentially expressed across a given 

condition if the ANCOVA-derived FDR-adjusted P-

value by Benjamini-Hochberg was below 0.05. 

Significant proteins and corresponding P-values are 

provided in Supplementary Table 1 and 7. 

Differential expression across disease stage is 

presented as a heatmap generated by the Perseus 

computational software (version 1.6.5.0) (Tyanova 

et al., 2016). 

Proteome correlation to histology scores  

Spearman partial correlation controlling for the 

same covariates as ANCOVA was performed to 

assess protein-histology score correlation. A 

correlation was considered significant if the FDR-

adjusted P-value by Benjamini-Hochberg was below 

0.05 and the absolute value of correlation coefficient 

r equals to or is larger than 0.3. A python script based 

on an open source statistical package 

pingouin.partial_corr was developed to handle 

partial correlation in proteomics data and control for 

multiple hypothesis testing. Significant proteins and 

corresponding P-values, Spearman correlation 

coefficients were provided in Supplementary Table 

4-6 and 11-13. Protein expression in dependence of 

disease stage was presented as bar plots generated 

in Jupyter notebook environment.  

Pairwise liver-plasma proteome correlation 

Pair-wise correlation was performed to assess the 

correlation between paired liver biopsy and plasma 

across the patient cohort. Significance level was 

controlled at an FDR-adjuster P-value by Benjamini-

Hochberg of below 0.05 and an absolute value of 

correlation coefficient r larger than 0.3. A python 

script based on an open source statistical package 

pingouin.pairwise_corr was developed to handle 

pairwise correlation in proteomics data and control 

for multiple hypothesis testing. Significant proteins 

and corresponding P-values, Pearson correlation 

coefficients and annotations for human protein atlas 

were provided in Supplementary Table 15. Selected 

significantly correlating proteins were presented as 

scatter plots with MS signal in liver biopsy as a 

function of that in plasma.  
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Functional Annotation and Enrichment Analysis  

Ontology Enrichment Analysis in the liver proteomics 

dataset was performed with ClueGo, a plug-in app in 

Cytoscape, with default settings. Customed 

reference set which contains 4,651 unique genes 

(quantified in this study) was used in Fisher’s exact 

test. Term significance was corrected by Benjamini-

Hochberg with a FDR of below 1%. Both GO term 

fusion and grouping were activated. The equivalent 

in the plasma proteomics dataset was performed in 

the Perseus software. Significantly enriched 

Reactome and GO terms and associated proteins 

were provided in Supplementary Table 2-3 and 8-10. 

Liver‐specific proteins were annotated according to 

the Human Protein Atlas (HPA), which defines ‘liver 

enriched’, ‘group enriched’, and ‘liver enhanced’ 

proteins with at least five-times higher mRNA levels 

in liver compared to all other tissues, at least five-

times higher mRNA levels in a group of two–seven 

tissues compared to the rest, and at least five-times 

higher mRNA levels in the liver compared to average 

levels in all tissues, respectively. 

Machine learning models 

The machine learning part of this manuscript is 

conducted with the intention to identify biomarker 

panels for identifying different types of hepatic 

lesions. A graphic representation of the overall 

machine learning workflow including classification 

targets, strategies for feature selection and model 

performance evaluation, assessment for prognostic 

power and validation in low-incidence populations 

can be found in supplementary Fig. 7.  

More specifically, 360 patients had liver biopsy-

verified stages of fibrosis (360), inflammation (352) 

and steatosis (352) as well as clinical data to varying 

degrees’ of missing values from best-in-class clinical 

tests, e.g. 331 SWE, 264 M65 or 199 CAP. Two of 

these patients were excluded due to insufficient 

proteome depth quantified.  

Classification targets were based on liver biopsy 

evaluation. Three hepatic lesions (fibrosis (F0-F4), 

inflammation (I0-I5) and steatosis (S0-S3)) were 

dichotomized into three roughly balanced binary 

targets for classification (proportion of positive class 

is 54-56% in ≥F2, ≥I2, ≥S1 and 26% in ≥F3). Feature 

selection was performed first by ranking the proteins 

based on mutual information, then by a step-wise 

forward feature selection among the top 50 most 

important proteins to determine the optimal panel 

of features for each endpoint based on maximum 

ROC-AUC.  

Data availability for the samples is unbalanced as not 

every endpoint neither every feature is available for 

each sample (patient). Therefore we split data to 

balance sets of patients by their pattern of 

availability for all considered variables. Each train 

and test split is based on this global missing pattern 

defined on the entire dataset allowing to compare 

subsets of patients with each other.  

The metrics are compared on a test set which results 

from an 80% training and 20% test set split on the 

global pattern over the maximum of 360 samples in 

the high risk group, i.e. patient from which liver 

biopsies were taken. Each test set for each endpoint 

and marker combination is a subset of the globally 

defined test set on the 360 samples due to the 

imbalanced data. 

The metrics for comparison are precision, recall, F1-

score and balanced accuracy (Supplementary Tables 

17-22). First, these are reported for fixed clinical 

cutoffs described in literature and used by clinicians. 

Fixed clinical cutoffs can be viewed as a threshold 

model, which is not fitted to specific data. Second, 

metrics on logistic regression models for markers 

based only on the marker itself as feature are 

reported.  

The endpoints metrics are compared both using a 

cross-validation procedure (5-fold 10 times cross-

validation) and a finally fitted model on which 

DeLong’s test was performed for the statistical 

comparison of AUCs. The cross-validation procedure 

is intended to give an overview on model 

performance variance from random data split. The 

final model is supposed to ease comparison with 

follow-up data on the patients in the high risk group 

and to have an explicit comparison based on one 

model. The final model was also used to perform 

rule-out validation in lower-incidence populations, 
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which were not used for training. These include a 

healthy cohort and an at risk cohort. Their 

proteomics samples were preprocessed together 

with the samples for model training. 

Harrell’s C-index was computed in the Stata software. 

In total 348 patients living in the Region of Southern 

Denmark were included in the computation. Follow-

up data was retrieved from the electronic patient 

records at hospitals in Region of Southern Denmark, 

combined with the Danish National Registry of 

central personal identification numbers. We defined 

liver-related events as the occurrence of any of the 

following: alcoholic hepatitis, varices needing 

treatment (VNT), variceal bleeding, ascites, 

spontaneous bacterial peritonitis (SBP), hepatic 

encephalopathy (HE), hepatocellular carcinoma 

(HCC), hepatorenal syndrome (HRS), upper 

gastrointestinal bleeding, or jaundice due to liver 

failure. 

Data availability  

All results from statistical and bioinformatics analysis 

were provided in the supplementary tables. All 

Python scripts can be reviewed and downloaded at 

the Github repository https://github.com/llniu/ALD-

study.  
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