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Understanding the impact of environmental conditions on virus viability and15

transmission potential is crucial to anticipating epidemic dynamics and de-16

signing mitigation strategies. Ambient temperature and humidity are known17

to have strong e�ects on the environmental stability of viruses, but a general18

quantitative understanding of how temperature and humidity a�ect virus sta-19

bility has remained elusive. We characterize the stability of SARS-CoV-2 on an20

inert surface at a variety of temperature and humidity conditions, and intro-21

duce a mechanistic model that enables accurate prediction of virus stability in22

unobserved conditions. We find that SARS-CoV-2 survives better at low tem-23

peratures and extreme relative humidities; median estimated virus half-life24

was more than 24 hours at 10 �C and 40 % RH, but approximately an hour and25

a half at 27 �C and 65 % RH. Moreover, our model predicts observations from26

other human coronaviruses and other studies of SARS-CoV-2, suggesting the27

existence of shared mechanisms that determine environmental stability across28
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a number of enveloped viruses. Our results highlight scenarios of particular29

transmission risk and point to broad strategies for pandemic mitigation, while30

opening new frontiers for the mechanistic study of viral transmission.31

Introduction32

Since emerging in late 2019, the SARS-CoV-2 virus has caused a global pandemic (COVID-33

19), and is poised to become an endemic human pathogen. As the northern hemisphere winter34

approaches, epidemiologists anticipate a seasonal increase in transmission (1, 2) like those seen35

in other enveloped respiratory viruses such as human coronaviruses (3) and influenza viruses36

(4). Like the related SARS-CoV-1 virus (5), SARS-CoV-2 displays epidemic dynamics that37

are strongly shaped by superspreading events, in which one person transmits to many others38

(6, 7). While transmission is governed by many factors, including host and viral properties,39

anticipating seasonal changes in transmission and preventing superspreading events both require40

an understanding of virus persistence in the environment, as ambient conditions can facilitate41

or impede virus spread.42

In order for viruses to transmit from one host to the next, virions must remain viable (infectious)43

in the period between release from the transmitting host and uptake by the recipient host.44

Virus environmental stability thus determines the potential for surface (fomite) transmission45

and for mid-to-long range transmission through the air. Empirical evidence suggests that virus46

environmental stability strongly depends on ambient temperature and humidity; examples among47

viruses that infect humans include influenza viruses (8), norovirus (9), human coronaviruses48

(10), and the zoonotic coronaviruses SARS-CoV-1 (11) and MERS-CoV (12).49

Emerging evidence suggests that the zoonotic coronavirus SARS-CoV-2 also varies in its envi-50

ronmental stability as a function of temperature and humidity (13, 14), but the joint e�ect of51

these two factors remains unclear. Moreover, despite years of research on virus environmental52

stability, there do not exist mechanistically motivated quantitative models for virus inactivation53

as a function of both temperature and humidity. This makes it di�cult to generalize from54

any given experiment to unobserved conditions, or to real-world settings. Existing predictive55

models for the environmental stability of SARS-CoV-2 (13, 15) and other viruses (16) are phe-56

nomenological regression models that do not model the underlying biochemical mechanisms of57

inactivation. This limits both our insight into the underlying process of virus inactivation and58
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our ability to extrapolate reliably to unobserved conditions.59

We measured the environmental stability of SARS-CoV-2 virions suspended in cell culture60

medium deposited onto a polypropylene plastic surface at nine environmental conditions: three61

relative humidities (RH; 40 %, 65 %, and 85 %) at each of three temperatures (10 �C, 22 �C,62

and 27 �C). We quantified infectious virus titer over time and estimated virus decay rates63

and corresponding half-lives in each condition using a simple Bayesian regression model (see64

Methods). We quantified the evaporation of the suspension medium and compared virus stability65

during the sample evaporation phase—while substantial water loss was ongoing—to virus66

stability after a quasi-equilibrium phase was reached—when further evaporation was not evident67

over the timescale of the experiment.68

We then created a mechanistic biochemical model of virus decay kinetics, drawing upon existing69

hypotheses for how temperature and humidity a�ect the inactivation chemistry of virus particles70

in microdroplets (8, 17). We fit this mechanistic model to our SARS-CoV-2 data, and used it71

to predict observations from other human coronaviruses and other studies of SARS-CoV-2, in72

addition to unobserved temperature and humidity conditions.73

Empirical patterns of virus decay74

Our data suggest that SARS-CoV-2 environmental persistence could vary meaningfully across75

the range of temperatures and humidities encountered in daily life, with posterior median [95 %76

credible interval] half-lives as long as 27 h [20, 39] (10 �C, 40 % RH) and as short as 1.5 h [1.1,77

2.1] (27 �C, 65 % RH), once droplets reach quasi-equilibrium with the ambient air conditions78

(Fig. 1b, SM Table S1).79

Minimal virus decay occurred during the evaporation phase (Fig. 1a, SM Fig. S2), when excess80

water was present. Estimated half-lives were long but exact values were highly uncertain, as the81

small amount of absolute virus inactivation during the brief evaporation phases, combined with82

the noise involved in sampling and titration, limits our inferential capacity. Posterior median83

evaporation phase half-lives were 42 h [11, 330] at 10 �C, 12 h [4.5, 160] at 22 �C, and 5.8 h84

[2.1, 130] at 27 �C (SM Table S1).85

Overall, virus decay became markedly faster as temperature increased for all humidities, with86

decay at 27 �C roughly five to ten times faster than decay at 10 �C. Across temperatures, virus87
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decay was relatively rapid at 65 % RH and tended to be slower either at lower (40 %) or higher88

(85 %) humidities or when excess water was present during the evaporation phase (Fig. 1b).89
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Fig. 1: Inactivation kinetics and estimated half-life of SARS-CoV-2 on an inert surface as a function of temperature and relative
humidity (RH). (a) Example of medium evaporation and virus inactivation as a function of time since deposition; experiments at 22 �C and
65 % RH shown. Inactivation proceeds in two phases: an evaporation phase during which water mass is lost from the sample to evaporation
and a quasi-equilibrium phase once the sample mass has plateaued. Light blue vertical line shows posterior median estimated time that
quasi-equilibrium was reached. Top plot: medium evaporation. Dots show measured masses. Square shows measured final (quasi-equilibrium)
mass; plotted at 24 h for readability. Lines are 10 random draws from the posterior for the evaporation rate; horizontal section of line reflects
the reaching of quasi-equilibrium (measured final mass). Bottom plot: virus inactivation. Points show posterior median estimated titers in
log10TCID50/mL for each sample; lines show 95 % credible intervals. Black dotted line shows the approximate single-replicate limit of detection
(LOD) of the assay: 100.5 TCID50/mL media. Three samples collected at each time-point. Lines are 10 random draws per measurement from
the posterior distribution for the inactivation rates estimated by the simple regression model (see Methods). (c) Measured virus half-lives. Violin
plots show posterior distribution of estimated half-lives, plotted on a logarithmic scale. Dots show posterior median value. Color indicates
temperature. Measurements at 40 %, 65 %, and 85 % RH reflect decay kinetics once the deposited solution has reached quasi-equilibrium with
the ambient air. Estimated half-lives for the evaporation phase that occurs prior to quasi-equilibrium are plotted to the right, since conditions
during this phase are mainly dilute, and thus analogous to high RH quasi-equilibrium conditions. (b) Schematic of hypothesized e�ects of
temperature and relative humidity on duration of virus viability. Virus half-lives are longer at lower temperatures, regardless of humidity,
because inactivation reaction kinetics proceed more slowly. Relative humidity a�ects virus half-life by determining quasi-equilibrium solute
concentration in the droplet containing the virus. Above the e�orescence relative humidity (ERH), solutes are concentrated by evaporation. The
lower the ambient humidity, the more water evaporates, the more concentration occurs, and the faster inactivation reactions proceed. Below the
ERH, solutes e�oresce, forming crystals. Half-lives are thus not particularly sensitive to changes in sub-ERH relative humidity, and half-lives
even slightly below the ERH may be substantially longer than half-lives slightly above it.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.10.16.341883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.341883


Mechanistic model for temperature and humidity e�ects90

Many viruses, including SARS-CoV-2, exhibit exponential decay on surfaces and in aerosols91

(8, 13, 18). We drew upon known principles of droplet chemistry and its potential e�ects on92

virus inactivation chemistry (Fig. 1c) to create a minimal mechanistic model incorporating the93

e�ects of both temperature and relative humidity on exponential decay rates.94

We model temperature dependence with the Arrhenius equation, which describes a reaction rate95

: as a function of an activation energy ⇢0, an asymptotic high-temperature reaction rate �, the96

universal gas constant ', and the absolute temperature ) :97

: = � exp
✓
� ⇢0

')

◆
(1)

Prior work has found Arrhenius-like temperature dependence for virus inactivation on surfaces98

and in aerosols for many viruses (19), including human coronaviruses (20).99

Mechanistic principles of virus inactivation as a function of humidity have been more elusive,100

but recent work has suggested that relative humidity a�ects virus inactivation by controlling101

evaporation and thus governing the solute concentrations in a droplet containing virions (8,102

17). In more humid environments, evaporation is slower and more water remains when quasi-103

equilibrium is reached. In less humid environments, evaporation is faster and little or no water104

remains (Fig. 1c).105

When released from infected hosts, virions are found in host bodily fluids, whereas viral inacti-106

vation experiments are typically conducted in cell culture medium containing amino-acids and107

electrolytes, in particular sodium chloride (NaCl) (21, 22). Prior work has found that higher108

quasi-equilibrium solute concentrations are associated with faster virus inactivation rates (23,109

24). The simplest explanation for this is that the measured solute concentration is a direct110

proxy for the concentration of the reactants governing the inactivation reaction. Thus ambient111

humidity a�ects the reaction rate by setting the quasi-equilibrium concentrations of the reactants112

that induce inactivation of the virus.113

The exact quasi-equilibrium state reached will depend on the solutes present, since di�erent114

solutes depress vapor pressure to di�erent degrees. In electrolyte solutions like bodily fluids or115

cell culture media, e�orescence is also important. Below a threshold ambient humidity—the116
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e�orescence relative humidity (ERH)—electrolytes e�oresce out of solution, forming a crystal117

(Fig. 1c). Below the ERH, the reaction no longer occurs in solution, and so inactivation may be118

slower. The notable U-shape of virus inactivation as a function of relative humidity, observed in119

our data (Fig. 1a) and elsewhere in the literature (24–27), including for coronaviruses (28, 29),120

could be explained by this regime shift around the ERH (Fig. 1c).121

To quantify these e�ects, we model virus inactivation at quasi-equilibrium on inert surfaces as122

a chemical reaction with first-order reaction kinetics; that is, the quantity of virus is the limiting123

reactant of the rate-determining step, and the concentrations of other reactants are assumed to be124

approximately constant over time. At constant temperature and humidity, the quantity of virus125

should then exhibit exponential decay. During the evaporation phase prior to quasi-equilibrium,126

reactants are less concentrated and decay is expected to be slower, as observed from our data127

(Fig. 1a,b). If small initial droplet sizes are used—as in real-world depositions (predominantly <128

10 µL (30–32)) and in some experiments—evaporative quasi-equilibration should be near instant,129

and so inactivation should follow the kinetics at quasi-equilibrium. Larger droplets, such as130

those used in our experiments, will take more time to equilibrate (depending on temperature and131

humidity), allowing us to distinguish the quasi-equilibrium phase from the evaporation phase.132

We partition inactivation at quasi-equilibrium into two humidity regimes, e�oresced and solu-133

tion, according to whether the ambient RH is below the ERH (e�oresced) or above (solution).134

In either case, we approximate virus inactivation as a first-order reaction with rate :e� or :sol,135

respectively. Based on observations of NaCl solutions at room temperature and atmospheric136

pressure (33), we use an ERH of 45 %. This means that 40 % RH experiments are in the137

e�oresced regime and 65 % and 85 % RH experiments are in the solution regime.138

We model the e�oresced and solution inactivation rates :e� and :sol using two Arrhenius139

equations with a shared activation energy ⇢0 but distinct asymptotic high-temperature reaction140

rates �e� and �sol. In solution conditions, we further modulate :sol by a quasi-equilibrium141

“concentration factor” [(eq]
[(0] : how concentrated the solution has become at quasi-equilibrium142

[(eq] relative to its initial state [(0]. Given our assumption of first-order kinetics, an n-fold143

increase in the non-virion reactant concentrations should translate directly into an n-fold increase144

in the inactivation rate.145

:e� = �e� exp
✓
� ⇢0

')

◆
(2)
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:sol =
[(eq]
[(0]

�sol exp
✓
� ⇢0

')

◆
(3)

We estimated ⇢0, �e� , and �sol from our data, constraining all to be positive. We treated146

evaporation phase data as governed by :sol, with a dynamic value of the concentration factor147

[((C)]
[(0] (SM section 4.4). We computed the quasi-equilibrium concentration factor [(eq]

[(0] in two148

ways: using measurements from our evaporation experiments (measured concentration fit) and149

with a theoretically motivated curve fit to our virological data (modeled concentration fit, SM150

Fig. S9). See SM section 5.5.3 for details.151

We also considered a 4-parameter variant of the model with distinct activation energies below152

the ERH (⇢e�
0

) and above (⇢sol
0

), placing the same prior on each. This accounts for the153

possibility that the rate-determining step of the inactivation reaction might be distinct in the154

two regimes. The estimated activation energies were near-identical below and above the ERH155

(Fig. S8): the posterior median percentage di�erence between two ⇢0 values was less than 2 %156

(�1.2 %, 95 % cred. int. [�24 %, 17 %]) for the measured concentration fit. This suggests157

that the rate-determining reaction step—and thus the activation energy—is the same in both158

regimes. Accordingly, we report estimates from the 3-parameter model with a shared ⇢0. We159

provide additional details and interpretation of our mechanistic inactivation modeling in the160

Supplementary Material (SM), sections 3, 5.5.161
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Fig. 2: Estimated titers and mechanistic model fit for SARS-CoV-2 stability on polypropylene at quasi-equilibrium. Points show
posterior median estimated titers in log10TCID50/mL for each sample; lines show 95 % credible intervals. Time-points with no positive wells
for any replicate are plotted as triangles at the approximate single-replicate limit of detection (LOD) of the assay—denoted by a black dotted
line at 100.5 TCID50/mL media—to indicate that a range of sub-LOD values are plausible. Three samples collected at each time-point. x-axis
shows time since quasi-equilibrium was reached, as measured in evaporation experiments. Lines are random draws (10 per sample) from the
joint posterior distribution of the initial sample virus concentration and the mechanistic model predicted decay rate; the distribution of lines
gives an estimate of the uncertainty in the decay rate and the variability of the initial titer for each experiment. Density plots above each box
show posterior distribution of virus half-life according to the model for the given condition; point under the density shows the posterior median
half-life and line shows a 95 % credible interval. Parameters from the measured concentration model fit.
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Model fitting and prediction of unobserved conditions162

Our dataset comprises 9 experimental conditions, each with 7 time-points that span the evapora-163

tion and quasi-equilibrium phases. We sought to explain the virus inactivation rates across this164

entire dataset using our mechanistic model with just 3 free parameters: the activation energy ⇢0165

and the asymptotic high-temperature reaction rates under e�oresced and solution conditions,166

�e� and �sol. The mechanistic function used and the constraint on the parameters to be positive167

means that inactivation rate must increase with temperature and with increasing solute concen-168

tration. Remarkably, the fit of the mechanistic model (Fig. 2, SM Figs. S3, S4, S6) is virtually169

indistinguishable from the fit of the simple regression, which estimates independent exponential170

decay rates for each condition (SM Figs. S2, S5, see SM section 5.4.1). Parameter estimates are171

given in the SM (Fig. S10, Tables S3, S4).172

We used the mechanistic model to predict SARS-CoV-2 half-life for unobserved temperature and173

humidity conditions from 0 to 40 �C, and from 0 to 100 % RH. We chose these ranges to reflect174

environments encountered by human beings in daily life. We did not extrapolate to temperatures175

below 0 �C since inactivation kinetics may be di�erent when fluid containing the virus freezes.176

The exact freezing points of suspension medium and human fluids at sea level will depend on177

solute concentration, but will typically be below the 0 �C freezing point of pure water.178

Median predicted SARS-CoV-2 half-life varies by more than three orders of magnitude, from179

less than half an hour at 40 �C just above the modeled approximate ERH, to more than a180

month at 0 �C and 100 % RH (Fig. 3a and c). We find good qualitative agreement between181

model predictions and model-free estimates from our data, including long half-lives prior to182

quasi-equilibrium. The U-shaped e�ect of humidity on virus half-life is readily explained by183

the regime-shift at the ERH (Fig. 3a). In particular, half-lives become extremely long at cold184

temperatures and in very dilute solutions, which are expected at high RH (Fig. 3a,b). Of note,185

the worst agreement between predictions and model-free estimates is found at 10 �C and 85 %186

RH (Fig. 3b). This is partially explained by the fact that the quasi-equilibrium concentration187

reached under those conditions was higher than our model prediction of concentration from RH188

(SM Fig. S9). Accordingly, the half-life prediction for 10 �C and 85 % RH based on measured189

concentration (Fig. 3b) is superior to the prediction based on modeled concentration (Fig. 3a).190

As a stronger test of our model’s validity, we used our estimated ⇢0 and � values to make out-191

of-sample predictions of the half-lives of five human coronaviruses reported from independent192
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studies: four betacoronaviruses (SARS-CoV-2, SARS-CoV-1, MERS-CoV and HCoV-OC43)193

and one alphacoronavirus (HCoV-229E). We compiled data on the environmental stability of194

those viruses under conditions ranging from 4 to 95 �C, from 30 to 80 % RH, and on a range195

of surfaces or bulk media, and computed empirical—model-free—estimates of virus half-lives196

(SM Tables S5– S2).197

Where both temperature and RH were available, we compared these model-free estimates to198

predictions based on the mechanistic model parameterized with our SARS-CoV-2 data (Fig. 3c,199

SM Fig. S7). We found striking agreement for half-life estimates both above and below the200

ERH, and for temperatures ranging from 4 to 37 �C.201

To include a broader range of conditions in our out-of-sample model testing, we used our model202

to predict half-lives observed in all comparable studies by extrapolating from a reference half-life203

in each study. Predicted half-lives matched observations well across five orders of magnitude204

(Fig. 3d), despite spanning five virus species and despite important heterogeneities in the data205

collection process (SM section 6). The two conspicuous outliers, where SARS-CoV-2 half-lives206

were measured to be substantially shorter than our prediction, correspond to samples exposed207

to high heat in closed vials (34, 35) which is known to accelerate virus inactivation (36).208
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Fig. 3: Extrapolation of human coronavirus half-life from the mechanistic model to unobserved temperatures and humidities and
prediction of data from the literature. (a) Predicted half-life as a function of relative humidity, according to the modeled concentration
fit. Points show posterior median for measured half-lives, estimated without the mechanistic model (i.e. independent estimation of a fixed
exponential decay rate for each temperature/humidity combination), lines show a 68 % (thick) and 95 % (thin) credible interval. Dashed line
shows the ERH. Estimated evaporation phase half-lives plotted at the right. Colored lines show predicted half-lives as a function of humidity
at five temperatures: 0 �C, 10 �C, 22 �C, 27 �C, and 40 �C. 100 random draws from the posterior distribution are shown at each temperature
to visualize uncertainty. Line and point colors indicate temperature. (b) Predicted half-life above the ERH as a function of quasi-equilibrium
concentration factor, according to the measured concentration fit. Points and lines as in a, but only solution (above ERH) conditions shown. (c)
Heatmap showing posterior median predicted half-lives from the modeled concentration fit as a function of temperature and relative humidity.
Posterior median estimated half-lives for human coronaviruses from our study and from the literature plotted on top (see also SM Table S2 and
Fig. S7). Shape indicates virus; measurements from our own group are shown slightly larger with a slightly thicker outline. (d) Comparison
of model-free estimates (x-axis) to model predictions (y-axis) for human coronavirus half-lives. Points show posterior median for measured
(horizontal) or predicted (vertical) half-lives and lines show a 68 % (thick) and 95 % (thin) credible interval. Shape indicates virus; only data
from the literature are shown.
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Discussion209

Combining novel data, mathematical modeling, and a meta-analysis of existing literature, we210

have developed a unified, mechanistic framework to quantify the joint e�ects of temperature and211

humidity on virus stability. In particular, our model provides a mechanism for the non-linear and212

non-monotonic relationship between relative humidity and virus stability previously observed213

for numerous enveloped viruses (23, 28, 29), but not previously reported for SARS-CoV-2. Our214

work documents and explains the strong dependence of SARS-CoV-2 stability on environmental215

temperature and relative humidity, and accurately predicts half-lives for five coronavirus species216

in conditions from 4 to 95 �C, and from 30 to 80 % RH and in bulk solution.217

Our findings have direct implications for the epidemiology and control of SARS-CoV-2 and218

other enveloped viruses. The majority of SARS-CoV-2 clusters have been linked to indoor219

settings (37), suggesting that virus stability in indoor environmental conditions may be an220

important determinant of superspreading risk. Our results provide a mechanistic explanation221

for the many observed SARS-CoV-2 superspreading events in cool indoor environments such as222

food processing plants (38, 39) and hockey rinks (40, 41), where the typical air temperature is223

around 10 �C, or in dry indoor environments such as long-distance flights (42, 43). Conversely,224

our results imply that the relative rarity of outdoor SARS-CoV-2 transmission clusters is not225

readily explained by temperature and humidity e�ects, since these conditions outdoors during226

temperate winters should be favorable for the virus. Instead, increased ventilation (44) and227

UV light inactivation (45) may be more important than the e�ects of temperature and humidity228

outdoors. In contrast, typical climate-controlled conditions indoors (moderate temperature and229

low humidity) are favorable for virus stability, and specialized conditions such as those found in230

food processing plants even more so. Our results highlight the importance of proper personal231

protective equipment and improved ventilation for protecting workers, particularly in cold indoor232

settings, and the general transmission risks associated with indoor gatherings.233

The e�ects of temperature and humidity we observe in our data and model are relevant both234

to fomite and to airborne transmission. Prior work has shown that virus decay as a function235

of RH is similar in droplets on surfaces and suspended aerosols (17, 46). Numerous studies236

of smaller deposited droplets (26) or aerosols (10, 24, 25) have reported similar qualitative237

patterns to those we report, with increased decay rates at high temperatures and a U-shaped238

e�ect of RH. Furthermore, surface stability can matter for aerosol transmission risk, since small239

particles containing infectious virions can be re-suspended from surfaces and inhaled (47). Re-240
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suspension is further enhanced by procedures such as high-pressure washing, which is common241

in food processing plants. While the relative contributions of aerosol and fomite transmission242

to the epidemiology of SARS-CoV-2 continue to be investigated (48, 49), our results indicate243

that cold situations present elevated transmission risks for either mode, especially if air is either244

dry or very humid. It has been speculated, for instance, that chilled or frozen foods might245

allow for rare but impactful long-range fomite transmission (50). Our results show that this is246

conceivable, as there is good empirical and mechanistic support for prolonged virus viability at247

very low temperatures.248

Environmental stability is not the only mechanism by which temperature and humidity a�ect res-249

piratory virus transmission. Very hot or cold conditions outdoors can lead people to spend more250

time indoors, where transmission risks are heightened due to poor ventilation. Low-humidity251

environments can dry out human airways and thus impair defenses against respiratory viruses252

(51). Ambient humidity also determines the size distribution of aerosols in the environment,253

again by a�ecting evaporation rates. Smaller aerosols settle to the ground more slowly (8),254

which could facilitate transmission.255

At low RH, humidity e�ects on inactivation, immunity, and settling may compound each other:256

all increase transmission risk. At high RH, reduced inactivation could promote transmission, but257

improved immune defenses and faster settling could hinder it, so the net e�ect on transmission258

is less clear.259

Still, temperate winters increase transmission of many respiratory viruses (4). Individuals260

spend increased time indoors in heated buildings. Ventilation is often poor, as windows are kept261

closed to make heating e�cient. Air in heated buildings is typically very dry; this improves262

virus stability and weakens immune defenses. Policymakers should consider ventilating and263

humidifying essential indoor spaces when designing mitigation strategies. Mitigation measures264

such as indoor masking may likewise be even more crucial during winter. Indoor spaces in265

which individuals cannot be masked, such as bars and restaurants, remain particular cause for266

concern.267

Several analyses have projected that SARS-CoV-2 transmission will be faster in temperate win-268

ters (1, 2, 52), as occurs with other respiratory viruses (4). Major seasonal or climate-mediated269

e�ects on SARS-CoV-2 epidemiology were not evident during the northern hemisphere’s spring270

and summer (53, 54); this was expected, since population susceptibility and epidemic control271
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measures can be more important than seasonality in an early pandemic context (52). Thus the272

fact that temperate summers did not eliminate transmission should not lead to false confidence273

that temperate winters will not promote it.274

Our work has implications for the study of virus environmental stability and seasonality more275

broadly. Whether absolute or relative humidity is more important for influenza stability has been276

a matter of debate (8, 55). The answer has proved elusive because it is di�cult to disentangle the277

e�ects of humidity from those of temperature. Our mechanistic model permits principled dis-278

aggregation of those e�ects, and reveals a strong e�ect of relative humidity even after accounting279

for the e�ects of temperature.280

There may thus exist general principles that govern virus inactivation across enveloped viruses,281

and perhaps even more broadly. Similar empirical patterns of temperature and humidity de-282

pendence to what we measured, and modeled, for SARS-CoV-2 have been observed for other283

important viruses. In particular, the U-shaped dependence of inactivation on RH has been284

reported for animal coronaviruses (28, 29), as well as for influenza viruses, paramyxoviruses,285

rhabdoviruses and retroviruses (24–27), suggesting the existence of a shared mechanism for286

the e�ect of humidity across enveloped RNA viruses. Some enveloped DNA viruses such287

as herpesviruses and poxviruses (27, 29) and some encapsulated viruses such as polioviruses288

(29, 56) also show similar empirical behavior. Experiments have found that heat treatment of289

viruses reduces infectivity principally by degrading surface proteins (57), lending further sup-290

port to a chemical model of environmental virus inactivation. We discuss additional practical291

implications for the empirical study of virus environmental stability in the SM (section 7).292

Despite years of research on virus stability as a function of temperature and humidity and293

plausible hypotheses about the underlying chemistry, proposed mechanisms have lacked ex-294

plicit quantitative support. By encoding the underlying chemistry into a mathematical model295

and estimating parameters using modern computational techniques, we provide such support,296

with critical insights for the control of an ongoing pandemic. Our empirical results provide297

mechanistic insight into transmission risks associated with cold and climate controlled indoor298

settings, while our modeling work allows for explicit quantitative comparison of the aerosol and299

fomite risks in di�erent environments, and suggests that simple, general mechanisms govern the300

viability of enveloped viruses: hotter, more concentrated solutions are favorable to chemical301

reactions—and therefore unfavorable to viruses.302
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Methods303

Laboratory experiments304

Viruses and titration305

We used SARS-CoV-2 strain HCoV-19 nCoV-WA1-2020 (MN985325.1) (58) for this study.306

We quantified viable virus by end-point titration on Vero E6 cells as described previously (18,307

59), and inferred posterior distributions for titers and exponential decay rates directly from308

raw titration data using Bayesian statistical models (see Statistical analyses and mathematical309

modeling below).310

Virus stability experiment311

We measured virus stability on polypropylene (ePlastics, reference PRONAT.030X24X47S/M)312

as previously described (18). We prepared a solution of Dulbecco’s Modified Eagle Medium313

(DMEM, a common cell culture medium) supplemented with 2 mM L-glutamine, 2 % fetal314

bovine serum and 100 units/mL penicillin/streptomycin, and containing 105 TCID50/mL SARS-315

CoV-2. Polypropylene disks were autoclaved for decontamination prior to the experiment. We316

then placed 50 µL aliquots of this SARS-CoV-2 suspension onto the polypropylene disks under317

nine environmental conditions: three RH (40 %, 65 %, and 85 %) at each of three temperatures318

(10 �C, 22 �C, and 27 �C).These controlled environmental conditions were produced in incubators319

(MMM Group CLIMACELL and Caron model 6040) with protection from UV-B or UV-C320

exposure. We prepared 216 disks corresponding to three replicates per eight post-deposition321

time-points (0, 1, 4, 8, and 24 hours, then daily for 4 days) for the nine conditions. At each322

time-point, samples were collected by rinsing the disks with 1 mL of DMEM and stored at323

�80 �C until titration.324

Evaporation experiment325

We measured the evaporation kinetics of suspension medium under the same temperature and hu-326

midity conditions as the virus stability experiments. We placed 50 µL aliquots of supplemented327

DMEM onto polypropylene disks in a Electro-Tech Systems 5518 environmental chamber. The328

polypropylene disks were rinsed three times 1M sulfuric acid, ethanol and DI H2O respec-329

tively before use. We measured medium mass < (C) every 5 min for up to 20 h or until a330
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quasi-equilibrium was reached using a micro-balance (Sartorius MSE3.6P-000-DM, readability331

0.0010 mg). The chamber of the micro-balance was half-opened to keep air circulating with the332

environmental chamber. The flow entering the balance chamber decreased the balance accuracy333

to around 0.010 mg. We measured initial droplet mass (< (0)) and final droplet mass (< (1))334

under closed-chamber conditions to increase accuracy.335

Statistical analyses and mathematical modeling336

We quantified the stability of SARS-CoV-2 under di�erent conditions by estimating the decay337

rates of viable virus titers. We inferred individual titers using a Bayesian model we have338

previously described (36). Briefly, the model treats titration well infection as a Poisson single-339

hit process. We inferred raw exponential decay rates by modifying a previously-described simple340

regression model (36) to account for the evaporation phase. See the SM (section 5.4) for model341

description.342

We estimated parameters of our mechanistic models by predicting titers based on those models343

and then applying the same Poisson single-hit observation process to estimate parameters from344

the data. See the SM (section 5.5) for a complete description, including model priors.345

We estimated evaporation rates and corresponding drying times by modeling mass loss for each346

environmental condition 8 as linear in time at a rate V8 until the final mass < (1) was reached,347

See the SM (sections 4.2, 5.3) for a full description including model priors.348

We drew posterior samples using Stan (60), which implements a No-U-Turn Sampler (a form of349

Markov Chain Monte Carlo), via its R interface RStan (61).350

Meta-analysis351

To test the validity of our model beyond the measured environmental conditions (i.e., beyond 10–352

27 �C and 40–85 % RH), we compiled data from 11 published studies on human coronaviruses,353

including SARS-CoV-2, SARS-CoV-1, MERS-CoV, HCoV-OC43 and HCoV-299E, under 17354

temperature-RH conditions. We generated estimates of half-life and uncertainties (SM Table S2)355

and compared those estimates to the half-lives predicted by the mechanistic model parametrized356

from our SARS-CoV-2 data. As data on evaporation kinetics were not available, we estimated357

a unique half-life for each experimental condition, covering both the evaporation and quasi-358

equilibrium phases. As virus decay during the evaporation phase is expected to be minimal, and359
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the evaporation phase to be short, the estimated half-life can be used as a proxy for the quasi-360

equilibrium half-life. The complete data selection, extraction and analysis process is detailed in361

the SM (section 6).362

We also included data from SARS-CoV-1 and MERS-CoV collected by our group during363

previous studies (18). Those data were collected at 22 �C and 40 % RH on polypropylene using364

the protocol described previously (18) and similar to the one used to collect the SARS-CoV-2365

data. SARS-CoV-1 strain Tor2 (AY274119.3) (62) and MERS-CoV strain HCoV-EMC/2012366

(63) were used for these experiments. We calculated half-lives for evaporation and quasi-367

equilibrium phases using the same analysis pipeline used for SARS-CoV-2 (SM section 5.4).368

These data were used only for out-of-sample prediction testing. We used the obtained evaporation369

phase half-lives as proxies for the half-life at 100 % RH, as with SARS-CoV-2. See SM section370

6.3 for a figure showing model fits (Fig. S32) and a table of estimated half-lives (Table S5).371

Visualization372

We created plots in R version using ggplot2 (64), ggdist (65), and tidybayes (66), and373

created original schematics using BioRender.com.374
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