1 Real-time luminescence assay for cytoplasmic cargo delivery of extracellular

2 vesicles

3

- 4 Masaharu Somiya^{*} and Shun'ichi Kuroda
- 5 The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047,
- 6 *Japan*
- 7
- 8 *Corresponding author: Prof. Masaharu Somiya, Ph.D.
- 9 Department of Biomolecular Science and Reaction, The Institute of Scientific and
- 10 Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
- 11 E-mail: msomiya@sanken.osaka-u.ac.jp
- 12 Phone: 81-6-6879-8462

13

15 Abstract

16	Extracellular vesicles (EVs) have been considered to deliver biological cargos between
17	cells and mediate intercellular communication. However, the mechanisms that underlie
18	the biological process of EV uptake and cytoplasmic cargo release in recipient cells are
19	largely unknown. Quantitative and real-time assays for assessment of the cargo delivery
20	efficiency inside recipient cells have not been feasible. In this study, we developed an
21	EV cargo delivery (EVCD) assay using a split luciferase called the NanoBiT system.
22	Recipient cells expressing LgBiT, a large subunit of luciferase, emit luminescence when
23	the EV cargo proteins fused with a small luminescence tag (HiBiT tag) that can
24	complement LgBiT are delivered to the cytoplasm of recipient cells. Using the EVCD
25	assay, the cargo delivery efficiency of EVs could be quantitatively measured in real
26	time. This assay was highly sensitive in detecting a single event of cargo delivery per
27	cell. We found that modification of EVs with a virus-derived fusogenic protein
28	significantly enhanced the cytoplasmic cargo delivery; however, in the absence of a
29	fusogenic protein, the cargo delivery efficiency of EVs was below the threshold of the
30	assay. The EVCD assay could assess the effect of entry inhibitors on EV cargo delivery.
31	Furthermore, using a luminescence microscope, the cytoplasmic cargo delivery of EVs

- 32 was directly visualized in living cells. This assay could reveal the biological mechanism
- 33 of the cargo delivery processes of EVs.
- 34
- 35 Keywords: cargo transfer; extracellular vesicles; membrane fusion; NanoBiT; VSV-G

37 Introduction

38	Extracellular vesicles (EVs), membranous nanoparticles secreted by living cells,
39	are thought to be involved in intercellular communication in various species from
40	microorganisms to vertebrate ^{1,2} . Since EVs contain cargo molecules such as RNAs and
41	proteins in their luminal space, they may deliver the cargo molecules into recipient cells
42	and regulate biological functions in the recipient cells. Numerous studies have shown
43	that the treatment of recipient cells with EVs containing specific cargos (especially
44	microRNAs or proteins) results in phenotypic changes in the recipient cells. Owing to
45	the delivery capability of biomolecules, EVs have been studied as a promising drug
46	delivery system for therapeutic proteins or RNAs ^{3,4} .
47	However, the cargo delivery mechanism of EVs, especially the process of
48	cytoplasmic cargo release, remains largely unknown ⁵ . Mechanistically, EVs are mainly
49	endocytosed by recipient cells, fuse with the endosomal/lysosomal membrane, and
50	release their cargo into the cytoplasm ^{5,6} . Although few studies have shown that EVs are
51	capable of fusing with the cellular membrane of recipient cells ^{7,8} , direct evidence
52	indicating the cytoplasmic cargo delivery of EVs has not been demonstrated.
53	We discussed the possibility of "EV cargo transfer hypothesis" in our previous
54	review and concluded that cargo delivery by EVs might not be a frequent event as

55	generally accepted ⁹ . Several studies have suggested that EV-mediated cargo delivery is
56	a rare event. When the recipient cells are treated with EVs in vitro, only 0.1% to 5.0%
57	of the cell population exhibit the functional readout of cargo delivery, although the
58	efficacy depends on the experimental system $^{10-12}$.
59	To decipher the mechanism and physiological relevance of EV cargo delivery,
60	a feasible and reliable assay to measure cargo delivery in real time is necessary.
61	Conventionally, cargo delivery of EVs is evaluated by the phenotypic change in the
62	recipient cells, although these methods are often interfered with the experimental
63	artifacts that can be induced by contaminants in the EV fraction ¹³ . Another approach
64	for the assessment of EV cargo delivery involves use of reporter assays for measuring
65	functional miRNA activity in recipient cells ¹⁴ . This assay is based on the assumption
66	that EV-mediated delivery of miRNA leads to a change in reporter gene expression in
67	recipient cells. However, this assay could not demonstrate direct evidence of cargo
68	transfer by EVs because of several confounding factors ⁹ .
69	In this study, we developed a quantitative and real-time luminescence assay to
70	measure cargo protein delivery by EVs in recipient cells. The key feature of this EV
71	cargo delivery (EVCD) assay is the luciferase complementation assay using Oplophorus
72	gracilirostris-derived highly bright luciferase (NanoLuc) ^{15,16} . A small fragment of

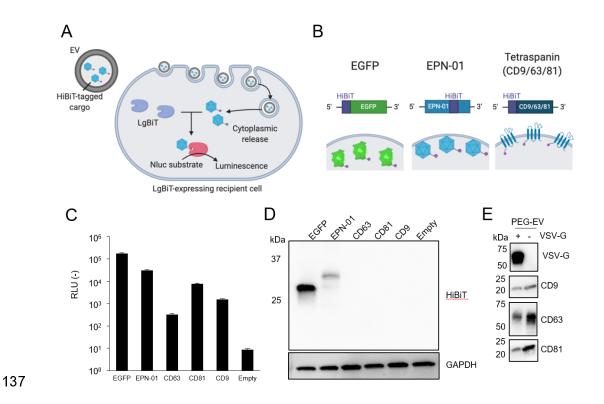
73	NanoLuc (HiBiT tag) was fused to EV cargo proteins, while the large subunit of
74	NanoLuc (LgBiT) was expressed in recipient cells. When the HiBiT-tagged cargo
75	proteins are delivered to the cytoplasm of recipient cells, luciferase fragments
76	complement and emit luminescence signals (Fig. 1A). Since the complemented
77	NanoLuc is much brighter than conventional luciferases such as firefly or Renilla
78	luciferases, NanoLuc-based assays are sensitive enough to detect the rare event of EV
79	cargo delivery. Furthermore, this assay enabled us to measure the kinetics of cargo
80	protein delivery by EVs and to visualize the cytoplasmic cargo delivery by EVs in real
81	time.
82	

83 **Results and Discussion**

- 84 Characterization of HiBiT-tagged EV cargo proteins
- 85 The EVCD assay (Fig. 1A) is based on the complementation of HiBiT and LgBiT in the
- 86 cytoplasm. When the EVs containing HiBiT-tagged cargo are delivered to the
- 87 cytoplasm of LgBiT-expressing recipient cells, emitted luminescence can be detected.
- 88 To establish the EVCD assay, we first attempted to tag the EV cargos with HiBiT (Fig.
- 89 1B). Three types of protein EV cargos including EGFP, a self-assembling protein
- 90 EPN-01¹⁷, and tetraspanins were used. The first cargo EGFP was tagged at the
- 91 N-terminal with HiBiT and overexpressed in the donor cells. Cytoplasmic EGFPs may
- 92 be passively loaded into EVs. The second cargo EPN-01 was a nanocage-forming
- 93 protein that was designed *de novo* and secreted from cells via the ESCRT pathway with
- 94 EVs¹⁷. The original Myc-tag of this cargo was replaced with an HiBiT tag.
- 95 Tetraspanins, typical EV marker proteins embedded in the EV membrane, were also
- 96 tagged with HiBiT at their N-termini.
- 97 All HiBiT-tagged proteins were expressed in HEK293T cells, and expression
- 98 levels were measured by mixing cell lysates with LgBiT and NanoLuc substrates (Fig.
- 99 1C). EGFP and EPN-01showed high and moderate expression levels, respectively.
- 100 HiBiT-tagged tetraspanins demonstrated low expression, suggesting that these proteins

101	did not have ease of utility in subsequent experiments. Expression of HiBiT-tagged
102	EGFP and EPN-01 was confirmed by western blotting using LgBiT as a probe protein,
103	whereas HiBiT-tagged tetraspanins could not be detected (Fig. 1D). These results
104	confirmed that EGFP and EPN-01 had feasibility in the EVCD assay.
105	We assessed whether HiBiT-tagged cargo proteins were encapsulated in EVs by
106	immunoprecipitation (Fig. S1). EVs in the culture supernatant were immunoprecipitated
107	using antibodies targeting CD81, a typical EV marker (Fig. S1A), and vesicular
108	stomatitis virus glycoprotein (VSV-G), a fusogenic viral membrane protein that was
109	incorporated into EVs (Fig. S1B). When the supernatant of the cargo protein-expressing
110	cells was immunoprecipitated using anti-CD81 antibodies, cargo proteins were
111	precipitated, indicating that cargo proteins were encapsulated inside EVs (Fig. S1C and
112	S1D). Furthermore, anti-VSV-G antibody could enrich HiBiT-tagged proteins
113	co-expressed with VSV-G, suggesting the incorporation of VSV-G in the EV membrane
114	¹⁷ and encapsulation of HiBiT-tagged cargo proteins (Fig. S1C and S1E).
115	Immunoprecipitation was strongly abrogated by detergent treatment (Fig. S1F),
116	indicating that the HiBiT-tagged cargo protein was encapsulated in VSV- G^+ and/or
117	CD81 ⁺ membrane vesicles.

118	Generally, the amount of EVs in the supernatant is low; therefore, a
119	concentration process is necessary to acquire a sufficient amount of EVs for the assay.
120	In this study, EVs containing HiBiT-tagged proteins were concentrated by
121	poly(ethylene glycol) (PEG) precipitation, which is a feasible concentration method for
122	small-scale purification ¹⁸ . As shown in Table 1, HiBiT-tagged EPN-01 was enriched
123	more than 10-fold by PEG precipitation, whereas HiBiT-tagged EGFP was not enriched.
124	This result indicated that a large fraction of EPN-01 in the supernatant was encapsulated
125	within EVs, while the majority of EGFPs were not encapsulated in EVs. Concentrated
126	EV fraction contained VSV-G and EV marker proteins (CD9, CD63, and CD81),
127	suggested that PEG precipitation successfully concentrated the VSV-G-displaying EVs
128	(Fig. 1E).
129	
130	


Table 1 PEG precipitation of EVs encapsulating HiBiT-tagged protein cargo (N = 3,

133 mean \pm SD)

Trans	fection	HiBiT enrichment (-) ¹	HiBiT yield (%)
EPN-01	-	12.4 ± 3.4	27.6 ± 7.6
	+ VSV-G	12.4 ± 1.4	27.5 ± 3.1
EGFP	-	0.3 ± 0.1	3.3 ± 2.5
	+ VSV-G	0.5 ± 0.3	6.0 ± 5.4

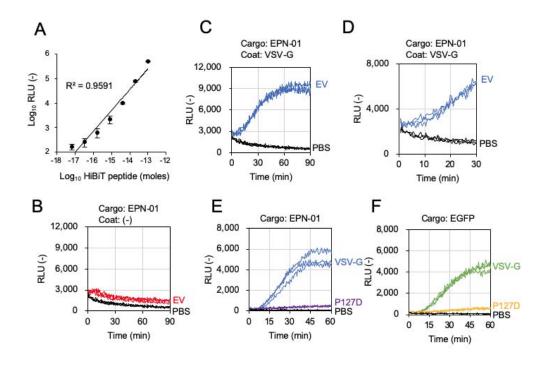
134 ¹ HiBiT enrichment factor was calculated using the amounts of HiBiT before and after

the PEG precipitation.

138 Fig. 1 Summary of the EVCD assay and characterization of HiBiT-tagged EV cargo

```
139 proteins
```

140	(A) Schematic representation of the EVCD assay. EV containing HiBiT-tagged cargo is
141	internalized by LgBiT-expressing recipient cells, followed by cytoplasmic release of the
142	cargo. Spontaneous complementation of HiBiT-tagged protein cargo with LgBiT leads
143	to the elicitation of luminescence. (B) Schematic representation of HiBiT-tagged
144	proteins. Upper panels show the structure of expression plasmids. Lower panels show
145	the protein localization inside EVs. (C) Expression levels of HiBiT-tagged EV cargo
146	proteins in donor HEK293T cells. N=3, mean \pm SD. (D) Detection of HiBiT-tagged

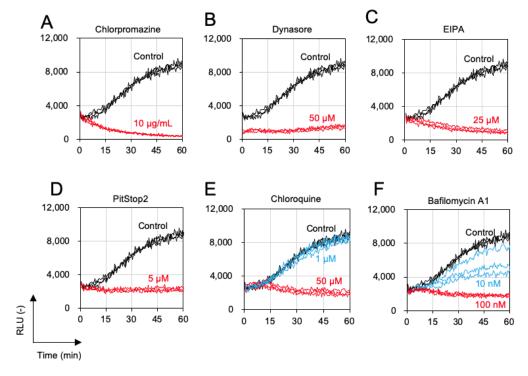

147	proteins in cell lysate of transfected HEK293T cells using LgBiT as a probe. GAPDH
148	was used as a loading control. (E) Detection of VSV-G and EV marker proteins in
149	purified EV fraction. Culture supernatant was concentrated by PEG precipitation and
150	subjected to western blotting
151	
152	Notably, substantial amounts of non-encapsulated HiBiT-tagged proteins (both
153	EPN-01 and EGFP) were present in the resultant EV fraction that could interfere with
154	the EVCD assay. Therefore, in the subsequent EVCD assay, it is mandatory to use a
155	DrkBiT peptide that complements and inactivates the luciferase activity of LgBiT to
156	competitively block the non-encapsulated HiBiT-tagged proteins (see below).
157	
158	Real-time EVCD assay
159	We first estimated the sensitivity of the EVCD assay using a synthetic HiBiT peptide.
160	After lysis of approximately 1.0×10^5 LgBiT-expressing HEK293T cells, an HiBiT
161	peptide and a NanoLuc substrate were added to the lysate and luminescence signal was
162	measured (Fig. 2A). Approximately 0.1 fmol of the HiBiT peptide was detected,

163 suggesting that the assay was capable of measuring remarkably less amounts of

164 cytoplasmic cargo in the recir	mont colle
164 cytoplasmic cargo in the recip	JEHLUEHS.

- 165 Next, we measured the cargo delivery kinetics of EVs containing either
- 166 HiBiT-tagged EGFP or EPN-01. The first observation of EPN-01-containing EVs in the
- 167 EVCD assay demonstrated no luminescence signal within 90 min (Fig. 2B). For
- 168 controls, we used the EVs displaying VSV-G proteins, which confer EVs with
- 169 fusogenic activity that facilitates the cargo delivery of EVs by membrane fusion
- 170 between the EV and cellular membranes ^{17,19}. Evidently, VSV-G-displaying EVs
- 171 induced a gradual increase in the luminescence signal (Fig. 2C), suggesting that the
- 172 HiBiT-tagged EPN-01 was delivered to the cytoplasm and the presence of membrane
- 173 fusion proteins such as VSV-G was indispensable for achieving substantial cargo
- delivery. The luminescence signal was observed as soon as 20 min after the addition of
- 175 EVs (Fig. 2D), suggesting that VSV-G could induce prompt fusion and release of
- 176 EPN-01 cargo into the cytoplasm. This result was consistent with that of previous
- 177 studies showing that the internalization and fusion of VSV was a rapid process, within 3
- 178 min in HeLa cells 20 and 20 min in BHK cells 21 .
- As described above, the concentrated EV fraction contains a substantial amount
 of HiBiT-tagged proteins outside of EVs. Moreover, LgBiT may be leaked from the
 - 13

181	recipient cells into the medium ²² . These components significantly affect the sensitivity
182	and accuracy of the EVCD assay. As shown in Fig. S2, in the absence of DrkBiT, a
183	sudden increase in the luminescence signal was observed immediately after the addition
184	of EVs (Fig. S2A). However, in the presence of 1 μ M DrkBiT in the buffer,
185	luminescence signal emitted by EV-mediated cargo delivery was distinguishable from
186	non-specific luminescence signal (Fig. S2B), indicating that nonspecific
187	complementation of LgBiT and HiBiT outside the recipient cells interfered with the
188	assay. Therefore, it is mandatory to use a DrkBiT peptide in the EVCD assay to avoid
189	non-specific background signals.
190	To validate the EVCD assay and exclude an experimental artifact, we used
191	mutant VSV-G(P127D) that is incapable of fusing with the host cell membrane 23 .
192	Using both EGFP and EPN-01 as cargos, VSV-G(P127D) decreased the cargo delivery
193	efficacy of EVs compared to the parental VSV-G (Fig. 2D and 2E), which was
194	consistent with the findings of a previous report demonstrating that the fusogenic
195	activity of VSV-G was indispensable for cytoplasmic delivery of the EV cargo ^{17,24} .
196	These results support that the EVCD assay can elucidate the fusion and cytoplasmic
197	cargo release of EVs in recipient cells.



199 Fig. 2 EV cargo delivery (EVCD) assay

- 200 (A) Quantitative curve of the HiBiT peptide in cell lysate of LgBiT-expressing
- 201 HEK293T. N=3, mean ± SD. (B) EVCD assay using EPN-01-containing EVs without
- 202 fusogenic protein. (C) EVCD assay using EPN-01-containing EVs with fusogenic
- 203 protein VSV-G. (D) Enlargement of (C) from 0 to 30 min. (E) EVCD assay using
- 204 EPN-01-containing EVs with either VSV-G or VSV-G(P127D). (F) EVCD assay using
- 205 EGFP-containing EVs with either VSV-G or VSV-G(P127D). PBS was used as a
- 206 negative control. All kinetics data represent information obtained from experiments
- 207 conducted in triplicate.

- 209 Evaluation of EV entry inhibitors using the EVCD assay
- 210 We evaluated the effect of compounds that are known to inhibit endocytosis and
- 211 membrane fusion by using the EVCD assay with EPN-01-containing EVs modified with
- 212 VSV-G. Chlorpromazine ²⁵, Dynasore ²⁶, EIPA ²⁷, and Pitstop 2 ²⁸ have been known to
- 213 inhibit the endocytosis of EVs, and all these compounds could significantly decrease the
- 214 cargo delivery of EVs (Fig. 3A-3D). Furthermore, chloroquine 29 and bafilomycin A1 30 ,
- both known to inhibit low pH-dependent fusion activity of VSV-G, abolished the cargo
- 216 delivery of EVs in a dose-dependent manner (Fig. 3E and 3F). These results confirmed
- that the EVCD assay could evaluate the cargo delivery efficiency of EVs and the effect
- of inhibitors.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

220 Fig. 3 The inhibitory effect of compounds on cargo delivery by EVs

```
221 Endocytosis inhibitors (chlorpromazine [A], Dynasore [B], EIPA [C], and Pitstop 2 [D])
```

```
and membrane fusion inhibitors (chloroquine [E] and bafilomycin A1[F]) were analyzed
```

in the EVCD assay using EPN-01-containing EVs modified with VSV-G. All kinetics

- 224 data represent information obtained from experiments conducted in triplicate.
- 225

219

226 The use of the EVCD assay to decipher the endosomal escape efficiency of EVs

- 227 It has been reported that endosome-destabilizing reagents such as chloroquine and
- 228 UNC10217832A can enhance the cargo delivery of EVs ³¹. To confirm the effect of the

endosomolytic reagent on the cargo delivery	y efficiency of EVs without VSV-G
---	-----------------------------------

- 230 modification, we evaluated whether chloroquine could enhance the cargo delivery of
- 231 EVs using the EVCD assay. Unexpectedly, chloroquine did not enhance the cargo
- 232 EPN-01 delivery by EVs (Fig. 4A) for 90 min. Conversely, cargo delivery of
- 233 VSV-G-modified EVs was significantly reduced by chloroquine (Fig. 3E and 4B),
- suggesting that chloroquine increased the pH within endosomes/lysosomes in recipient
- cells and inhibited membrane fusion by VSV-G.

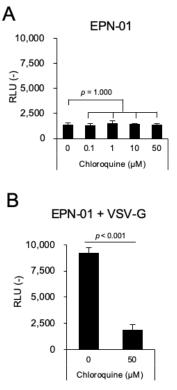


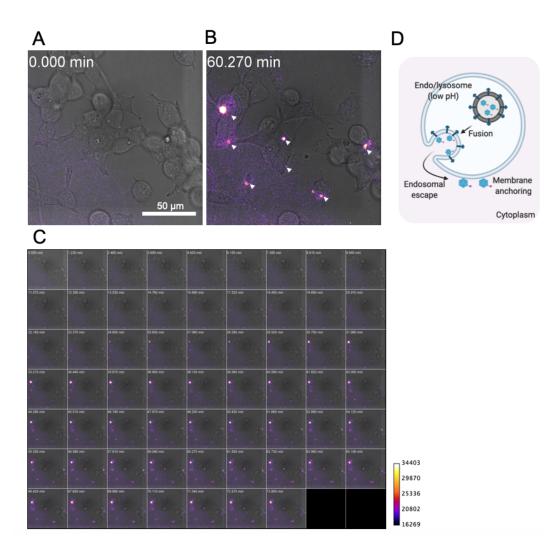
Fig. 4 Cargo delivery efficiency of
EPN-01-containing EVs in the presence of
chloroquine
(A) EVs without VSV-G and (B) EVs with VSV-G.
Luminescence signal after 90 min of EV treatment
was represented. N=3, mean ± SD. Statistical analysis
was performed using one-way ANOVA followed by
post hoc Dunnett's test (A) and the Student's *t*-test

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

246 (B).

247

248


249 Real-time imaging of cytoplasmic cargo delivery by EVs

250	Imaging of the real-time cytoplasmic delivery of cargo molecules in recipient cells is of
251	prime importance, as the localization and timing of cargo delivery of EVs is largely
252	unknown. The EVCD assay described above can analyze a considerable segment of the
253	event of cargo delivery in a cell population with high sensitivity. Therefore, we
254	attempted to observe the luminescence signal emitted by cargo delivery at the
255	single-cell level using a luminescence microscope. We succeeded in capturing the
256	cytoplasmic cargo release of VSV-G-containing EVs in LgBiT-expressing HEK293T
257	cells (Fig. 5A to 5C and Supplementary Video). As shown in Fig. 5B and 5C,
258	luminescence dots were observed within recipient cells over time, suggesting that
259	EPN-01 nanocages were anchored to the cytoplasmic leaflet of the endo/lysosomal
260	membrane as an intact nanocage (Fig. 5D) because of the N-terminal myristoyl group of
261	EPN-01 that could anchor the membrane organelle 17 .

262

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

264

265 Fig. 5 Live cell imaging of cargo delivery of EVs with VSV-G

266 Luminescence images of recipient HEK293T cells before (A) and after 60 min (B) of

treatment with EPN-01-containing EVs modified with VSV-G. Arrowheads indicate

- 268 complemented NanoLuc-derived luminescence signals within cells. (C) Series of
- 269 luminescence images of cells treated with EPN-01-containing EVs modified with
- 270 VSV-G from 0 to 73.8 min (see Supplementary Video). EVs were added at 0 min. (D)

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

271 Expected intracellular localization of EPN-01 after the fusion of EVs and cytoplasmic

272 release.

274 Conclusions

275	In this study, we developed a novel assay to measure the real-time cargo delivery
276	efficiency of EVs in living recipient cells. Previously, the NanoBiT technology has been
277	used to evaluate viral entry ^{22,32,33} and cytoplasmic drug delivery by polymeric
278	nanomaterials ³⁴ . Toribio et al. demonstrated that split EGFP-luciferase fusion proteins
279	could be used to measure the cellular uptake of EVs 35 . However, their assay could not
280	distinguish the cellular uptake of EVs from functional cargo delivery. To our knowledge,
281	this is the first study demonstrating a feasible real-time assay for cytoplasmic cargo
282	delivery by EVs.
283	Compared to the previously reported assays, the EVCD assay is currently the
284	only method to directly measure the cargo delivery by EVs in living cells. Moreover,
285	the EVCD assay reflected the membrane fusion activity of VSV-G (Fig. 2) and the
286	effect of entry inhibitors (Fig. 3). These results proved the accuracy and feasibility of
287	the assay for quantitative assessment of EV cargo delivery. However, other EV cargo
288	delivery assays may have advantages over the EVCD assay in terms of sensitivity and
289	resolution. For example, RNA (guide RNA or gRNA) delivery by EVs can be measured
290	by a reporter assay utilizing CRISPR/Cas9, the so-called CROSS-FIRE system 10 . The
291	CROSS-FIRE system can measure the delivery of functional cargo gRNA by EVs at the

292	single-cell level using flow cytometry. This assay is highly sensitive to functional cargo
293	delivery since only a single gRNA delivered to the cytoplasm can lead to the functional
294	readout from recipient cells. However, the CROSS-FIRE system requires multiple
295	additions of EVs to recipient cells and several days are required to obtain the functional
296	readout. Another example of the cargo delivery assay is the use of a BlaM protein as a
297	cargo ^{17,24} . Cre recombinase-mediated reporter assay has also been reported in several
298	studies ^{11,12,31} . Each assay has its own pros and cons; therefore, comprehensive analysis
299	of EV cargo delivery may expedite the understanding of the mechanism and
300	physiological relevance of EV-mediated cargo delivery.
301	We estimated that approximately 0.1 fmol of HiBiT per 10^5 cells, equivalent to
301 302	We estimated that approximately 0.1 fmol of HiBiT per 10 ⁵ cells, equivalent to approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay
302	approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay
302 303	approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay (Fig 2A). EPN-01 proteins spontaneously form a 60-subunit nanocage ¹⁷ ; hence, a
302 303 304	approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay (Fig 2A). EPN-01 proteins spontaneously form a 60-subunit nanocage ¹⁷ ; hence, a single nanocage has 60-HiBiT molecules. As described previously, one EV contains 14
302 303 304 305	approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay (Fig 2A). EPN-01 proteins spontaneously form a 60-subunit nanocage ¹⁷ ; hence, a single nanocage has 60-HiBiT molecules. As described previously, one EV contains 14 EPN-01 nanocages on average ¹⁷ . This indicates that a single EV potentially contains
302 303 304 305 306	approximately 600 molecules of HiBiT per cell, can be detected by the EVCD assay (Fig 2A). EPN-01 proteins spontaneously form a 60-subunit nanocage ¹⁷ ; hence, a single nanocage has 60-HiBiT molecules. As described previously, one EV contains 14 EPN-01 nanocages on average ¹⁷ . This indicates that a single EV potentially contains 840 HiBiT molecules ($14 \times 60 = 840$) on average. Together with the estimated

310	delivery of EVs without co-expressing VSV-G (Fig. 2B). This result suggests that the
311	authentic EVs that do not possess known fusion proteins is not capable of delivering the
312	cargo, at least for the combination of HEK293T-derived EVs in recipient HEK293T. It
313	is debatable whether EV-mediated cargo delivery is more efficient in other
314	combinations of EVs and recipient cells.
315	Fluorescence imaging is usually used to investigate intracellular trafficking of
316	EVs. However, conventional fluorescence imaging of intracellular EVs labeled with
317	fluorescence dyes or fluorescence proteins cannot be used to evaluate cytoplasmic cargo
318	delivery. To overcome the current limitation of fluorescence imaging of EVs, Joshi et al.
319	succeeded in tracing cargo release using fluorescence imaging of the recruitment of
320	fluorescence-labeled galectin or cargo-specific nanobody ⁷ . Although their
321	comprehensive analysis is informative to decipher the cargo release process of EVs in
322	recipient cells, it is difficult to distinguish the bona fide cargo release from artifacts of
323	galectin recruitment on endosome/lysosomes. Moreover, fluorescence imaging is not
324	feasible for a high-throughput and real-time analysis. Luminescence imaging is more
325	compatible with live cell imaging by avoiding phototoxicity and photobleaching, which
326	are typical issues in live cell imaging. In this study, we succeeded in live cell imaging of
327	an EV cargo delivery (Fig. 5). As discussed above, EPN-01 could form a 60-subunit

	U ·	e	C	L L	C	
329	imaging, as demo	onstrated by GFP	clustering in a sin	nilar protein na	nocage ³⁶ .	
330	Taken to	gether, we develo	oped a quantitativ	e cargo delivery	y assay of EV	Vs,

nanocage, and clustering of HiBiT in nanocage resulted in superior brightness in the

- anamed the EVCD assay. This assay enabled us to assess the cargo delivery of EVs in
- recipient cells in real-time. Since EVs are thought to be involved in many biological
- 333 processes, such as intercellular communication between cells, a feasible EVCD assay
- may provide insight into the physiological relevance of EVs.
- 335

328

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

337 Methods

338 Materials

- 339 Drugs and antibodies used in this study are summarized in Supplementary Table 1.
- 340 NanoLuc substrates were purchased from Promega. The HiBiT peptide (amino acid
- 341 sequence: VSGWRLFKKIS) and the DrkBiT peptide (amino acid sequence:
- 342 VSGWALFKKIS)²² were synthesized by GL Biochem.
- 343 Additionally, the plasmids used are listed in Supplementary Table 2 and will
- 344 soon be deposited to Addgene. Plasmids were constructed using PCR-based methods
- 345 (Gibson Assembly ³⁷) and were confirmed by Sanger sequencing.
- 346
- 347 *Cell culture and transfection*
- 348 Human embryonic kidney-derived HEK293T (RIKEN Cell Bank) cells were maintained
- in DMEM supplemented with 10% (v/v) fetal bovine serum (FBS) and $10 \,\mu$ g/mL
- 350 penicillin-streptomycin. Cells were cultured at 37°C under 5% CO₂ in a humidified
- 351 incubator.
- 352 One day before the transfection, approximately 2.0×10^5 cells/mL of
- 353 HEK293T cells were seeded in cell culture dishes or multi-well plates. The following
- day, HEK293T cells were transfected with plasmid DNA using transfection reagent

355	polyethyleneimine, Transporter 5 Transfection Reagent (Polyscience, Inc.), or branched
356	25-kDa polyethyleneimine (PEI, Sigma). The ratio of transfection reagent to plasmid
357	DNA was 4:1 (weight). After incubation for 20 to 72 h, cells were subjected to the
358	following experiments.
359	
360	Characterization of HiBiT-fused proteins
361	The expression of HiBiT-fused proteins was analyzed using the HiBiT quantification
362	assay and western blotting. For the quantification of HiBiT-tagged proteins, HEK293T
363	cells transfected with the HiBiT protein expression plasmid were lysed, and the amount
364	of the HiBiT protein was measured using the Nano Glo HiBiT Lytic Detection System
365	(Promega). As a quantification standard for HiBiT proteins, HiBiT peptides was used.
366	For western blotting, HEK293T cells expressing HiBiT-fused proteins were lysed with
367	RIPA buffer containing protease inhibitor cocktail (Nacalai Tesque) and separated by
368	SDS-PAGE. After the blotting of proteins on nitrocellulose membranes, HiBiT-fused
369	proteins were visualized using the Nano-Glo HiBiT Blotting System (Promega). As an
370	internal control of HiBiT proteins, GAPDH in the cell lysate was detected using a
371	conventional western blotting protocol using the same membrane as that used for HiBiT
372	detection.

374	PEG	preci	vitation	of EVs	containing	e the	HiBiT-tagged	protein	cargo
011	1 20	preci	priction	0 1 1 3	containing	Sinc	mbn mggcu	protetti	curgo

- 375 After 48 to 96 h of transfection, the supernatant from HEK293T expressing cargo
- 376 HiBiT proteins was collected, centrifuged at $1,500 \times g$ for 5 min, mixed with one-third
- 377 volume of 4 \times polyethylene glycol solution (40 w/v%-PEG6000, 1.2 M-NaCl, 1 \times PBS
- 378 [pH 7.4]), and incubated at 4°C overnight. The following day, the supernatant was
- 379 centrifuged at $1,600 \times g$ for 60 min, and the residual pellet was resuspended in PBS.
- 380 Typically, approximately 5 to 10 mL of the supernatant was concentrated to 100 to 200
- 381 µL of PBS (approximately 50-fold concentration). The amount of HiBiT proteins in the
- 382 concentrated EV fraction was measured using the Nano Glo HiBiT Lytic Detection
- 383 System (Promega). EV marker proteins in the concentrated EV fraction were detected
- 384 by western blotting as described above.
- 385

386 Live cell extracellular vesicle cargo delivery (EVCD) assay

- **387** Before 24 to 48 h of performing the assay, HEK293T cells (1.0 to 2.0×10^4 cells/well)
- 388 seeded in a PEI-coated 96-well white plate were transfected with the LgBiT-expressing
- 389 plasmid. For the EVCD assay, the culture medium of LgBiT-expressing HEK293T cells
- 390 was replaced with HBSS (+) buffer containing 1 μ M DrkBiT, a peptide that

392	signal ²² . After the addition of the NanoLuc substrate Nano-Glo Live Cell Assay System
393	(Promega) to the cells, a PEG-concentrated EV fraction (approximately 20 to 100
394	fmol-total HiBiT/well) was added to the cells and monitored for up to 90 min. For the
395	evaluation of inhibitors in the EVCD assay, recipient cells were pretreated with the
396	compounds 1 h before the assay and treatment with the drugs was continued throughout
397	the assay. Microplate of recipient cells was incubated at 37°C and luminescence signal
398	from cells was continually measured by using the Synergy 2 (BioTek) plate reader.
399	
400	Live cell luminescence imaging of HiBiT cargo delivery by EVs
401	For luminescence imaging, HEK293T cells (approximately 1.0×10^4 cells/well) were
402	seeded in a poly-L-lysine (PLL)-coated 35-mm multi-well dish (Matsunami Glass Ind.,
403	Ltd.). The following day, cells were transfected with the LgBiT-expressing plasmid and
404	cultured for 24 to 48 h. For live cell imaging, transfected HEK293T cells were washed
405	with HBSS(+) twice and stored in HBSS (+) buffer containing 1 μ M DrkBiT and the
406	NanoLuc substrate, followed by the addition of PEG-concentrated EVs (approximately
407	35 fmol-total HiBiT/well). Continuous live cell imaging was carried out using the
408	software MetaMorph and luminescence microscope LV200 (Olympus) equipped with a
404	cultured for 24 to 48 h. For live cell imaging, transfected HEK293T cells we

409	100× objective (Olympus,	UPlanSApo, NA =	1.4), a $0.5 \times$ relay lens,	and an EM-CCD
-----	--------------------------	-----------------	----------------------------------	---------------

- 410 camera, at 37°C. The exposure time for each capture was set at 60 s.
- 411
- 412 *Statistical analysis*
- 413 The data in this work were analyzed using one-way ANOVA and post hoc Dunnett's
- 414 test or the Student's *t*-test. All statistical analyses were performed using the Real
- 415 Statistics Resource Pack software developed by Charles Zaiontz.

417 Supplementary Files

- **418** Supplementary Data: Supplementary Methods, Fig. S1, and S2
- 419 Supplementary Methods
- 420 Fig. S1: Immunoprecipitation of EVs containing HiBiT-tagged proteins
- 421 Fig. S2: Requirement of DrkBiT peptide in EVCD assay
- **422** Supplementary Tables: Table S1 and S2
- 423 Table S1: Materials used in this study
- 424 Table S2: Plasmids used in this study

425 • Supplementary Video

426	Time-lapse luminescence imaging of recipient HEK293T cells treated with EVs
427	incorporating VSV-G and HiBiT-tagged EPN-01
428	
429	Acknowledgements
430	We extend our gratitude to Yumi Yukawa for technical assistance in plasmid
431	construction. Experiments using LV200 were supported by Profs. Takeharu Nagai and
432	Mitsuru Hattori at ISIR, Osaka University. All illustrations in this work were created
433	using BioRender.com.
434	This work was supported in part by JSPS KAKENHI (Grant-in-Aid for
435	Early-Career Scientists 18K18386 and 20K15790 to MS), Research Grant from
436	JGC-Scholarship (to MS), and the "Dynamic Alliance for Open Innovation Bridging
437	Human, Environment and Materials" (MEXT).
438	

440 **References**

- 441 (1) Kalluri, R.; LeBleu, V. S. The Biology, Function, and Biomedical Applications
- 442 of Exosomes. *Science* **2020**, *367* (6478), eaau6977.
- 443 https://doi.org/10.1126/science.aau6977.
- 444 (2) Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J. J.; Lötvall, J. O.
- 445 Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of
- 446 Genetic Exchange between Cells. *Nat. Cell Biol.* 2007, 9 (6), 654–659.
- 447 https://doi.org/10.1038/ncb1596.
- 448 (3) Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; A Wood, M. J.;
- 449 Wood, M. J. a; A Wood, M. J.; Wood, M. J. a; A Wood, M. J. Delivery of SiRNA to the
- 450 Mouse Brain by Systemic Injection of Targeted Exosomes. *Nat. Biotechnol.* 2011, 29
- 451 (4), 341–345. https://doi.org/10.1038/nbt.1807.
- 452 (4) Bliss, C. M.; Parsons, A. J.; Nachbagauer, R.; Hamilton, J. R.; Cappuccini, F.;
- 453 Ulaszewska, M.; Webber, J. P.; Clayton, A.; Hill, A. V. S.; Coughlan, L. Targeting
- 454 Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and
- 455 Non-Human Adenoviral Vaccines in Mice. Mol. Ther. Methods Clin. Dev. 2020, 16,
- 456 108–125. https://doi.org/10.1016/j.omtm.2019.12.003.

- 457 (5) Russell, A. E.; Sneider, A.; Witwer, K. W.; Bergese, P.; Bhattacharyya, S. N.;
- 458 Cocks, A.; Cocucci, E.; Erdbrügger, U.; Falcon-Perez, J. M.; Freeman, D. W.;
- 459 Gallagher, T. M.; Hu, S.; Huang, Y.; Jay, S. M.; Kano, S.; Lavieu, G.; Leszczynska, A.;
- 460 Llorente, A. M.; Lu, Q.; Mahairaki, V.; Muth, D. C.; Noren Hooten, N.; Ostrowski, M.;
- 461 Prada, I.; Sahoo, S.; Schøyen, T. H.; Sheng, L.; Tesch, D.; Van Niel, G.;
- 462 Vandenbroucke, R. E.; Verweij, F. J.; Villar, A. V.; Wauben, M.; Wehman, A. M.; Yin,
- 463 H.; Carter, D. R. F.; Vader, P. Biological Membranes in EV Biogenesis, Stability,
- 464 Uptake, and Cargo Transfer: An ISEV Position Paper Arising from the ISEV
- 465 Membranes and EVs Workshop. J. Extracell. Vesicles 2019, 8 (1), 1684862.
- 466 https://doi.org/10.1080/20013078.2019.1684862.
- 467 (6) Mulcahy, L. A.; Pink, R. C.; Carter, D. R. F. Routes and Mechanisms of
- 468 Extracellular Vesicle Uptake. J. Extracell. Vesicles 2014, 3 (1), 1–14.
- 469 https://doi.org/10.3402/jev.v3.24641.
- 470 (7) Joshi, B. S.; de Beer, M. A.; Giepmans, B. N. G.; Zuhorn, I. S. Endocytosis of
- 471 Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano 2020,
- 472 acsnano.9b10033. https://doi.org/10.1021/acsnano.9b10033.
- 473 (8) Montecalvo, A.; Larregina, A. T.; Shufesky, W. J.; Stolz, D. B.; Sullivan, M. L.
- 474 G.; Karlsson, J. M.; Baty, C. J.; Gibson, G. A.; Erdos, G.; Wang, Z.; Milosevic, J.;

- 475 Tkacheva, O. A.; Divito, S. J.; Jordan, R.; Lyons-Weiler, J.; Watkins, S. C.; Morelli, A.
- 476 E. Mechanism of Transfer of Functional MicroRNAs between Mouse Dendritic Cells
- 477 via Exosomes. *Blood* **2012**, *119* (3), 756–766.
- 478 https://doi.org/10.1182/blood-2011-02-338004.
- 479 (9) Somiya, M. Where Does the Cargo Go?: Solutions to Provide Experimental
- 480 Support for the "Extracellular Vesicle Cargo Transfer Hypothesis." J. Cell Commun.
- 481 *Signal.* **2020**. https://doi.org/10.1007/s12079-020-00552-9.
- 482 (10) de Jong, O. G.; Murphy, D. E.; Mäger, I.; Willms, E.; Garcia-Guerra, A.;
- 483 Gitz-Francois, J. J.; Lefferts, J.; Gupta, D.; Steenbeek, S. C.; van Rheenen, J.; El
- 484 Andaloussi, S.; Schiffelers, R. M.; Wood, M. J. A.; Vader, P. A CRISPR-Cas9-Based
- 485 Reporter System for Single-Cell Detection of Extracellular Vesicle-Mediated
- 486 Functional Transfer of RNA. *Nat. Commun.* **2020**, *11* (1).
- 487 https://doi.org/10.1038/s41467-020-14977-8.
- 488 (11) Zomer, A.; Maynard, C.; Verweij, F. J.; Kamermans, A.; Schäfer, R.; Beerling,
- 489 E.; Schiffelers, R. M.; De Wit, E.; Berenguer, J.; Ellenbroek, S. I. J.; Wurdinger, T.;
- 490 Pegtel, D. M.; Van Rheenen, J.; Sch??fer, R.; Beerling, E.; Schiffelers, R. M.; De Wit,
- 491 E.; Berenguer, J.; Ellenbroek, S. I. J.; Wurdinger, T.; Pegtel, D. M.; Van Rheenen, J.;
- 492 Schäfer, R.; Beerling, E.; Schiffelers, R. M.; De Wit, E.; Berenguer, J.; Ellenbroek, S. I.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.341974; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 493 J.; Wurdinger, T.; Pegtel, D. M.; Van Rheenen, J.; Sch??fer, R.; Beerling, E.;
- 494 Schiffelers, R. M.; De Wit, E.; Berenguer, J.; Ellenbroek, S. I. J.; Wurdinger, T.; Pegtel,
- 495 D. M.; Van Rheenen, J.; Schäfer, R.; Beerling, E.; Schiffelers, R. M.; De Wit, E.;
- 496 Berenguer, J.; Ellenbroek, S. I. J.; Wurdinger, T.; Pegtel, D. M.; Van Rheenen, J. In
- 497 Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic
- 498 Behavior. *Cell* 2015, *161* (5), 1046–1057. https://doi.org/10.1016/j.cell.2015.04.042.
- 499 (12) Sterzenbach, U.; Putz, Uu.; Low, L.-H.; Silke, J.; Tan, S.-S.; Howitt, J.
- 500 Engineered Exosomes as Vehicles for Biologically Active Proteins. Mol. Ther. 2017, 25
- 501 (6), 1–10. https://doi.org/10.1016/j.ymthe.2017.03.030.
- 502 (13) Whittaker, T. E.; Nagelkerke, A.; Nele, V.; Kauscher, U.; Stevens, M. M.
- 503 Experimental Artefacts Can Lead to Misattribution of Bioactivity from Soluble
- 504 Mesenchymal Stem Cell Paracrine Factors to Extracellular Vesicles. J. Extracell.
- 505 *Vesicles* **2020**, *9* (1), 1807674. https://doi.org/10.1080/20013078.2020.1807674.
- 506 (14) Jin, Y.; Chen, Z.; Liu, X.; Zhou, X. Evaluating the MicroRNA Targeting Sites
- 507 by Luciferase Reporter Gene Assay. In MicroRNA Protocols; Ying, S.-Y., Ed.; Methods
- in Molecular Biology; Humana Press: Totowa, NJ, 2013; Vol. 936, pp 117–127.
- 509 https://doi.org/10.1007/978-1-62703-083-0_10.

- 510 (15) Dixon, A. S.; Schwinn, M. K.; Hall, M. P.; Zimmerman, K.; Otto, P.; Lubben,
- 511 T. H.; Butler, B. L.; Binkowski, B. F.; Machleidt, T.; Kirkland, T. A.; Wood, M. G.;
- 512 Eggers, C. T.; Encell, L. P.; Wood, K. V. NanoLuc Complementation Reporter
- 513 Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol.
- **2016**, *11* (2), 400–408. https://doi.org/10.1021/acschembio.5b00753.
- 515 (16) Hall, M. P.; Unch, J.; Binkowski, B. F.; Valley, M. P.; Butler, B. L.; Wood, M.
- 516 G.; Otto, P.; Zimmerman, K.; Vidugiris, G.; MacHleidt, T.; Robers, M. B.; Benink, H.
- 517 A.; Eggers, C. T.; Slater, M. R.; Meisenheimer, P. L.; Klaubert, D. H.; Fan, F.; Encell, L.
- 518 P.; Wood, K. V. Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a
- 519 Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 2012.
- 520 https://doi.org/10.1021/cb3002478.
- 521 (17) Votteler, J.; Ogohara, C.; Yi, S.; Hsia, Y.; Nattermann, U.; Belnap, D. M.;
- 522 King, N. P.; Sundquist, W. I. Designed Proteins Induce the Formation of
- 523 Nanocage-Containing Extracellular Vesicles. *Nature* **2016**, *540* (7632), 292–295.
- 524 https://doi.org/10.1038/nature20607.
- 525 (18) Rider, M. A.; Hurwitz, S. N.; Meckes, D. G. ExtraPEG: A Polyethylene
- 526 Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci. Rep. 2016, 6 (1).
- 527 https://doi.org/10.1038/srep23978.

- 528 (19) Meyer, C.; Losacco, J.; Stickney, Z.; Li, L.; Marriott, G.; Lu, B. Pseudotyping
- 529 Exosomes for Enhanced Protein Delivery in Mammalian Cells. Int. J. Nanomedicine
- **2017**, *12*, 3153–3170. https://doi.org/10.2147/IJN.S133430.
- 531 (20) Johannsdottir, H. K.; Mancini, R.; Kartenbeck, J.; Amato, L.; Helenius, A.
- 532 Host Cell Factors and Functions Involved in Vesicular Stomatitis Virus Entry. J. Virol.
- **533 2009**, *83* (1), 440–453. https://doi.org/10.1128/JVI.01864-08.
- 534 (21) Le Blanc, I.; Luyet, P.-P.; Pons, V.; Ferguson, C.; Emans, N.; Petiot, A.;
- 535 Mayran, N.; Demaurex, N.; Fauré, J.; Sadoul, R.; Parton, R. G.; Gruenberg, J.
- 536 Endosome-to-Cytosol Transport of Viral Nucleocapsids. Nat. Cell Biol. 2005, 7 (7),
- 537 653–664. https://doi.org/10.1038/ncb1269.
- 538 (22) Yamamoto, M.; Du, Q.; Song, J.; Wang, H.; Watanabe, A.; Tanaka, Y.;
- 539 Kawaguchi, Y.; Inoue, J.; Matsuda, Z. Cell–Cell and Virus–Cell Fusion Assay–Based
- 540 Analyses of Alanine Insertion Mutants in the Distal A9 Portion of the JRFL Gp41
- 541 Subunit from HIV-1. J. Biol. Chem. 2019, 294 (14), 5677–5687.
- 542 https://doi.org/10.1074/jbc.RA118.004579.
- 543 (23) Fredericksen, B. L.; Whitt, M. A. Vesicular Stomatitis Virus Glycoprotein
- 544 Mutations That Affect Membrane Fusion Activity and Abolish Virus Infectivity. J.
- 545 *Virol.* **1995**, *69* (3), 1435–1443. https://doi.org/10.1128/JVI.69.3.1435-1443.1995.

- 546 (24) Albanese, M.; Chen, Y.-F. A.; Huels, C.; Gaertner, K.; Tagawa, T.; Keppler, O.
- 547 T.; Goebel, C.; Zeidler, R.; Hammerschmidt, W. Micro RNAs Are Minor Constituents of
- 548 *Extracellular Vesicles and Are Hardly Delivered to Target Cells*; bioRxiv; preprint;
- 549 Cell Biology, 2020. https://doi.org/10.1101/2020.05.20.106393.
- 550 (25) Le Saux, S.; Aarrass, H.; Lai-Kee-Him, J.; Bron, P.; Armengaud, J.; Miotello,
- 551 G.; Bertrand-Michel, J.; Dubois, E.; George, S.; Faklaris, O.; Devoisselle, J.-M.;
- 552 Legrand, P.; Chopineau, J.; Morille, M. Post-Production Modifications of Murine
- 553 Mesenchymal Stem Cell (MMSC) Derived Extracellular Vesicles (EVs) and Impact on
- 554 Their Cellular Interaction. *Biomaterials* **2020**, *231*, 119675.
- 555 https://doi.org/10.1016/j.biomaterials.2019.119675.
- 556 (26) Pastuzyn, E. D.; Day, C. E.; Kearns, R. B.; Kyrke-Smith, M.; Taibi, A. V.;
- 557 McCormick, J.; Yoder, N.; Belnap, D. M.; Erlendsson, S.; Morado, D. R.; Briggs, J. A.
- 558 G.; Feschotte, C.; Shepherd, J. D. The Neuronal Gene Arc Encodes a Repurposed
- 559 Retrotransposon Gag Protein That Mediates Intercellular RNA Transfer. Cell 2018, 172
- 560 (1–2), 275-288.e18. https://doi.org/10.1016/j.cell.2017.12.024.
- 561 (27) Yao, Z.; Qiao, Y.; Li, X.; Chen, J.; Ding, J.; Bai, L.; Shen, F.; Shi, B.; Liu, J.;
- 562 Peng, L.; Li, J.; Yuan, Z. Exosomes Exploit the Virus Entry Machinery and Pathway To

- 563 Transmit Alpha Interferon-Induced Antiviral Activity. J. Virol. 2018, 92 (24),
- 564 e01578-18, /jvi/92/24/e01578-18.atom. https://doi.org/10.1128/JVI.01578-18.
- 565 (28) Horibe, S.; Tanahashi, T.; Kawauchi, S.; Murakami, Y.; Rikitake, Y.
- 566 Mechanism of Recipient Cell-Dependent Differences in Exosome Uptake. BMC Cancer
- **2018**, *18* (1), 47. https://doi.org/10.1186/s12885-017-3958-1.
- 568 (29) Colpitts, T. M.; Moore, A. C.; Kolokoltsov, A. A.; Davey, R. A. Venezuelan
- 569 Equine Encephalitis Virus Infection of Mosquito Cells Requires Acidification as Well
- as Mosquito Homologs of the Endocytic Proteins Rab5 and Rab7. Virology 2007, 369
- 571 (1), 78–91. https://doi.org/10.1016/j.virol.2007.07.012.
- 572 (30) Yonezawa, A.; Cavrois, M.; Greene, W. C. Studies of Ebola Virus
- 573 Glycoprotein-Mediated Entry and Fusion by Using Pseudotyped Human
- 574 Immunodeficiency Virus Type 1 Virions: Involvement of Cytoskeletal Proteins and
- 575 Enhancement by Tumor Necrosis Factor Alpha. J. Virol. 2005, 79 (2), 918–926.
- 576 https://doi.org/10.1128/JVI.79.2.918-926.2005.
- 577 (31) Heath, N.; Osteikoetxea, X.; de Oliveria, T. M.; Lázaro-Ibáñez, E.; Shatnyeva,
- 578 O.; Schindler, C.; Tigue, N.; Mayr, L. M.; Dekker, N.; Overman, R.; Davies, R.
- 579 Endosomal Escape Enhancing Compounds Facilitate Functional Delivery of

- 580 Extracellular Vesicle Cargo. *Nanomed.* **2019**, *14* (21), 2799–2814.
- 581 https://doi.org/10.2217/nnm-2019-0061.
- 582 (32) Sasaki, M.; Anindita, P. D.; Phongphaew, W.; Carr, M.; Kobayashi, S.; Orba,
- 583 Y.; Sawa, H. Development of a Rapid and Quantitative Method for the Analysis of
- 584 Viral Entry and Release Using a NanoLuc Luciferase Complementation Assay. Virus
- 585 *Res.* 2018, 243, 69–74. https://doi.org/10.1016/j.virusres.2017.10.015.
- 586 (33) Miyakawa, K.; Jeremiah, S. S.; Ohtake, N.; Matsunaga, S.; Yamaoka, Y.; Nishi,
- 587 M.; Morita, T.; Saji, R.; Nishii, M.; Kimura, H.; Hasegawa, H.; Takeuchi, I.; Ryo, A.
- 588 Rapid Quantitative Screening Assay for SARS-CoV-2 Neutralizing Antibodies Using
- 589 HiBiT-Tagged Virus-like Particles; preprint; Infectious Diseases (except HIV/AIDS),
- 590 2020. https://doi.org/10.1101/2020.07.20.20158410.
- 591 (34) Evans, B. C.; Fletcher, R. B.; Kilchrist, K. V.; Dailing, E. A.; Mukalel, A. J.;
- 592 Colazo, J. M.; Oliver, M.; Cheung-Flynn, J.; Brophy, C. M.; Tierney, J. W.; Isenberg, J.
- 593 S.; Hankenson, K. D.; Ghimire, K.; Lander, C.; Gersbach, C. A.; Duvall, C. L. An
- 594 Anionic, Endosome-Escaping Polymer to Potentiate Intracellular Delivery of Cationic
- 595 Peptides, Biomacromolecules, and Nanoparticles. *Nat. Commun.* 2019, *10* (1), 5012.
- 596 https://doi.org/10.1038/s41467-019-12906-y.

- 597 (35) Toribio, V.; Morales, S.; López-Martín, S.; Cardeñes, B.; Cabañas, C.;
- 598 Yáñez-Mó, M. Development of a Quantitative Method to Measure EV Uptake. Sci. Rep.
- **2019**, 9 (1), 10522. https://doi.org/10.1038/s41598-019-47023-9.
- 600 (36) Hsia, Y.; Bale, J. B.; Gonen, S.; Shi, D.; Sheffler, W.; Fong, K. K.; Nattermann,
- U.; Xu, C.; Huang, P.-S.; Ravichandran, R.; Yi, S.; Davis, T. N.; Gonen, T.; King, N.
- 602 P.; Baker, D. Design of a Hyperstable 60-Subunit Protein Icosahedron. *Nature* 2016,
- 603 535 (7610), 136–139. https://doi.org/10.1038/nature18010.
- 604 (37) Gibson, D. G.; Young, L.; Chuang, R.-Y.; Venter, J. C.; Hutchison, C. A.;
- 605 Smith, H. O. Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases.
- 606 *Nat. Methods* **2009**, *6* (5), 343–345. https://doi.org/10.1038/nmeth.1318.