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Abstract 22 

Nucleocytoplasmic DNA viruses (NCLDVs) are highly diverse and abundant in 23 

marine environments. However, knowledge of their hosts is limited because only a few 24 

NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine 25 

metagenomics census, in silico host prediction approaches are expected to fill the gap and 26 

further expand our knowledge of virus–host relationships for unknown NCLDVs. In this 27 

study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus–host 28 

interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess 29 

the performance of host prediction for NCLDVs, we benchmarked several co-occurrence 30 

approaches and demonstrated an increase in the odds ratio of predicting true positive 31 

relationships four-fold compared with random host predictions. To further refine host 32 

predictions from high-dimensional co-occurrence networks, we developed a phylogeny-33 

informed filtering method, Taxon Interaction Mapper, and showed it further improved the 34 
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prediction performance by twelve-fold. Finally, we inferred virophage – NCLDV networks to 35 

corroborate that co-occurrence approaches are effective for predicting interacting partners of 36 

NCLDVs in marine environments. 37 

 38 

Importance 39 

NCLDVs can infect a wide range of eukaryotes although their life cycle is less 40 

dependent on hosts compared with other viruses. However, our understanding of NCLDV–41 

host systems is highly limited because few of these viruses have been isolated so far. Co-42 

occurrence information has been assumed to be useful to predict virus–host interactions. In 43 

this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV 44 

host prediction. We also improve the prediction performance with a phylogeny-guided 45 

method, which leads to a concise list of candidate host lineages for three NCLDV families. 46 

Our results underpin the usage of co-occurrence approach for metagenomic exploration of the 47 

ecology of this diverse group of viruses. 48 

 49 

Introduction 50 

Nucleocytoplasmic large DNA viruses (NCLDVs) represent a group of double-51 

stranded DNA viruses that belong to the viral phylum Nucleocytoviricota (Virus Taxonomy: 52 

2019 Release), which was previously referred to as Megavirales (1, 2). NCLDVs usually 53 

possess diverse gene repertoires (74 to more than 2,000 proteins), large genomes (45 kb to 54 

2.5 Mb), and outsized virions (80 nm to 1.5 µm) (3–5). NCLDVs have high functional 55 

autonomy and encode components of replication, transcription, and translation systems (3). 56 

Recently, a virus that belongs to a new family of NCLDVs called “Medusaviridae” was 57 

found to encode five types of histones (6). The existence of metabolically active viral 58 

factories and infectious virophages also indicates that the life cycle of NCLDVs is less 59 

dependent on host cells than other viruses (7, 8). To further understand what makes these 60 

giant viruses more independent than other viruses, a first crucial step is to identify their hosts 61 

— “Who infects whom?”. 62 

NCLDVs are known to infect a broad range of eukaryotes, from unicellular 63 

eukaryotes and macroalgae to animals (9). Amoebae are frequently used hosts in co-culture 64 

to isolate large NCLDVs (10). However, there is growing evidence, especially in marine 65 

systems, that NCLDVs can infect many phytoplankton groups, such as Pelagophyceae, 66 

Mamiellophyceae, Dinophyceae, and Haptophyte (11–13). Several other non-photosynthetic 67 

eukaryotic lineages, such as Bicoecea and Choanoflagellatea, were also reported as 68 
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experimentally identified NCLDV hosts in marine environments (14, 15). Small to large 69 

marine organisms, including invertebrates and vertebrates, are infected by viruses that belong 70 

to the NCLDV family Iridoviridae (16, 17). Together these studies indicate ubiquitous 71 

infectious relationships between NCLDVs and a wide range of marine eukaryotes. However, 72 

our understanding of NCLDV–host systems is very limited because few viruses have been 73 

isolated so far. 74 

The number of viruses and hosts isolated in the laboratory represents a very small 75 

fraction of existing interactions in the ocean. Indeed, NCLDVs have been found to be highly 76 

diverse and abundant based on omics data (18, 19). In only a few liters of coastal seawater, 77 

more than 5,000 Mimiviridae species were detected; by comparison, only 20 Mimiviridae 78 

with known hosts have been well investigated (20). Global marine metagenomic data have 79 

revealed that the richness and phylogenetic diversity of NCLDVs are even higher than those 80 

of an entire prokaryotic domain (21). From biogeographical evidence, it is clear that these 81 

viruses are prevalent in the marine environment but have a heterogeneous community 82 

structure across sizes, depths, and biomes (22). Marine metatranscriptomic data have also 83 

shown that NCLDVs are active everywhere in sunlit oceans and may infect hosts from small 84 

piconanoplankton (0.8–5 µm) to large mesoplankton (180–2000 µm) (23).  85 

Previous studies also demonstrated that NCLDVs have the potential to infect a greater 86 

diversity of hosts than known to date through gene transfer analyses (24, 25). NCLDVs might 87 

have started coevolving with eukaryotes even before the last eukaryotic common ancestor 88 

(LECA) (26). A recent study supported this hypothesis by showing that some NCLDVs 89 

encode viractins (actin-related genes in viruses), which could have been acquired from proto-90 

eukaryotes and possibly reintroduced in the pre-LECA eukaryotic lineage (27). Together, 91 

these findings underline a lack of knowledge about NCLDV biology and host diversity. 92 

Therefore, more effort is needed to identify hosts to elucidate the poorly known virus–host 93 

relationships and the largely unknown NCLDV world. 94 

Substantial effort has been made to reveal interactions between NCLDVs and their 95 

putative hosts. Apart from the co-culture method, other alternative methods, including high-96 

throughput cell sorting, are also being used (10, 15). Metagenomics, which is particularly 97 

useful to assess a large fraction of ecosystem diversity, has been increasingly used to 98 

investigate NCLDVs host range. Comparative genomics analyses, such as identification of 99 

horizontal gene transfer (HGT) predictions, have also performed well for NCLDV host 100 

prediction (24, 25). 101 
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Abundance-based co-occurrence analyses have been used for host prediction and are 102 

supposed to be effective because viruses can only thrive in an environment where their hosts 103 

exist (18, 28). In addition to virus–host relationships, co-occurrence networks have been used 104 

to predict the association between NCLDVs and their “parasites” (virophages) (29). 105 

However, the co-occurrence-based prediction is also controversial for viral host prediction 106 

since the abundance dynamics of viruses and their hosts (e.g., Emiliania huxleyi and 107 

Heterosigma akashiwo viruses) are sometimes not concordant (30, 31). Usually, validation 108 

with known virus–host relationships or corroboration with genomic evidence (e.g., HGT) is 109 

used to assess network-based predictions (18, 28). However, the effectiveness of previous 110 

and novel co-occurrence network methods has never been quantitatively tested for NCLDV 111 

host prediction. The current lack of quantitative assessment hinders the widespread use of 112 

this approach. Therefore, dedicated methods are needed to test the accuracy of NCLDV host 113 

prediction with co-occurrence networks and to improve the performance of co-occurrence-114 

based predictions. 115 

The Tara Oceans expedition is a global-scale survey on marine ecosystems that 116 

expands our knowledge of microbial diversity, organismal interactions, and ecological 117 

drivers of community structure (32). The present study used Tara Oceans metagenomic and 118 

metabarcoding datasets to predict virus–host relationships between NCLDVs and eukaryotes 119 

by constructing co-occurrence networks using different methods. To quantitatively assess the 120 

performance of network-based host prediction, we employed the positive likelihood ratio 121 

(LR+) using reference data for known NCLDV–host relationships. We developed a 122 

phylogeny-based enrichment analysis approach, Taxon Interaction Mapper (TIM), to enhance 123 

the performance in detecting positive signals in the intricate inferred networks. TIM has 124 

previously been used in host predictions for DNA and RNA viruses (33), but without a 125 

quantitative assessment on its effectiveness. In this study, we assessed the performance of 126 

TIM as a filter of co-occurrence networks. We examined NCLDV–virophage networks, 127 

which further justify the use of co-occurrence and filtering approaches to identify NCLDV 128 

interaction partners. 129 

 130 

 131 

Results  132 

NCLDV–eukaryote co-occurrence networks 133 

From five datasets that corresponded to five size fractions (Fig. S1), we generated five 134 

co-occurrence networks on a global scale (Fig. 1, S2A). Altogether, these networks were 135 
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composed of 20,148 V9 and 5,234 polB OTUs (nodes) and 47,978 polB–V9 associations 136 

(edges). Out of these associations, 47,296 had positive weights, and 682 had negative weights 137 

(Fig. 2A). The associations that involved the family Mimiviridae were numerically dominant 138 

(n = 36,830) among the different NCLDV families. The second largest family was 139 

Phycodnaviridae, with 5,521 edges involving eukaryotes. No other family had more than 2,000 140 

associations with eukaryotes. Marseilleviridae, forming the least associations in the networks, 141 

had 132 edges with eukaryotes. Taxonomic annotation of eukaryotic OTUs indicated that 142 

Alveolata, Opisthokonta, Rhizaria, and Stramenopiles were the major four eukaryotic groups 143 

connected to NCLDVs (with 21,167, 9,179, 6,521, and 5,327 edges, respectively). Three of 144 

these eukaryotic groups belong to the SAR supergroup (i.e., Stramenopiles, Alveolata, and 145 

Rhizaria), which represented 68.81% of the total associations. Regarding the pairs between 146 

viral families and eukaryotic lineages, Mimiviridae and Alveolata showed the largest number 147 

of edges (n = 16,548). Besides NCLDV–eukaryote associations, we detected 57,495 polB–polB 148 

associations and 234,448 V9–V9 associations (Fig. S2B). We also included environmental 149 

parameters in the network inference and identified 25 pairs of associations between 150 

environmental parameters and polB OTUs (Table S1). 151 

The number of NCLDV–eukaryote associations generally decreased with enlarging 152 

size fraction (Fig. S2A). The largest number of polB–V9 associations were found in the 0.8–153 

5-μm fraction (n = 10,647). Correspondingly, the eukaryotic community in 0.8–5-μm fraction 154 

had the greatest diversity (Fig. S3). However, the 0.8–inf-μm size fraction network was the 155 

largest (n = 10,477) for edges with positive weights. With the annotation of major lineages, 156 

the eukaryotic community compositions in the networks varied across different size fractions 157 

(Fig. 2B). In the smallest size fraction (0.8–5 μm) and the large range size fraction (0.8–inf 158 

μm), Marine Alveolate Group II was the eukaryotic lineage with the largest number of 159 

associations with NCLDVs (21.39% and 19.98%, respectively). Dinophyceae was the second 160 

largest group connected to NCLDVs in these two size fractions and showed the largest 161 

number of connections with NCLDVs in the 5–20-μm size fraction network (22.22% of total 162 

interactions). The viral associations with Metazoa and Collodaria increased with increasing 163 

size fractions. In the largest 180–2000-μm size fraction network, Metazoa contributed 164 

39.31% of the total polB–V9 edges.  165 

We calculated the degree of nodes (number of connected edges) for each NCLDV 166 

polB OTU (Fig. 3A, B). Naturally, the average degree of positive associations per polB was 167 

higher than negative edges in all size fractions and decreased along with increasing size 168 

fractions (2.69, 2.40, 2.25, and 2.10 from 0.8–5 μm to 180–2000 μm, and 2.76 for 0.8–inf). 169 
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Most of the polB nodes had more than one positive association (Fig. 3A). Together with the 170 

taxonomic annotation of nodes, polB–V9 associations in the networks generated with the 171 

Tara Oceans data revealed their high dimensionality and complexity.  172 

 173 

Network validation 174 

We quantitatively assessed the performance of predicting polB–V9 associations using 175 

the positive likelihood ratio (LR+) (Fig. 1). By defining groups of metagenomic PolBs as 176 

described in the Materials and Methods, 932 OTUs were recruited in the validation, and these 177 

sequences contributed 6191 polB–V9 associations in the FlashWeave networks (Fig. S4). To 178 

obtain an overall performance, we assessed the pooled associations (by removing 179 

redundancy) from the five co-occurrence networks. LR+ was separately calculated for edges 180 

with positive and negative weights because they can represent different infectious patterns. 181 

As shown in Fig. 4A, the LR+ of host prediction for positive associations was higher than 1 182 

(LR+ = 1 indicates no change in the likelihood of the condition). The LR+ generally 183 

increased with the cut-off for FlashWeave weights, which indicated that condition positive 184 

cases are enriched in the edges with higher weights. This result demonstrated that the co-185 

occurrence-based host prediction of NCLDVs outperformed random prediction (i.e., random 186 

inference of virus–host pairs). In high-weight regions: 1) weight > 0.6, the LR+ of 187 

associations was higher than 10; 2) weight > 0.4, the LR+ was roughly higher than 4. 188 

Nonetheless, the false discovery rate (FDR) was high (Fig. S5A), which indicated that the 189 

predictions contained numerous virus–host edges that were not considered condition positive. 190 

FDR was 91.67% and 96.34% when weight is greater than 0.6 and 0.4, respectively. An 191 

assessment of the host prediction for negative weight associations was also carried out. There 192 

were no known NCLDV–host pairs found in the negative networks (Fig. S5B). The analysis 193 

of the remaining part of our study was thus conducted for positive associations. 194 

Comparing the performance between different size fractions indicated that the 195 

networks of small size fractions (including the 0.8–inf-μm size fraction) performed better in 196 

predicting the NCLDV–host relationships (Fig. 4B, S6). The 0.8–inf-μm size fraction had the 197 

highest average LR+ out of the five size fractions (LR+ = 4.97). The LR+ of small size 198 

fractions was generally higher than that of large size fractions, but there were exceptions 199 

between 180–2000 and 20–180 μm. The LR+ of the associations in the 0.8–inf-μm, 0.8–5-μm 200 

and 5–20-μm was greater than 1. Different from the average results, when the weight is 201 

greater than 0.8, the associations of 5–20-μm size fraction had the best performance in terms 202 

of both LR+ and FDR (Fig. S6 A, B).  203 
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We also compared abundance filtration strategies using Flashweave-S (sensitive 204 

model) and FlashWeave-HE (heterogeneous model) but did not find a consistent pattern in 205 

prediction performance (Fig. S7). The networks from the Q1 filtration strategy performed 206 

best using Flashweave-S, but Q1 (lower quartile) filtration was not better than Q2 (middle 207 

quartile) for Flashweave-HE inferred networks. Flashweave-S had a better performance than 208 

HE model with any filtration strategy. Finally, we compared the performance of networks 209 

inferred by all three methods: FlashWeave-S, FastSpar and Spearman. Three methods 210 

generated a comparable number of positive associations, but FlashWeave-S made the largest 211 

number of true positive predictions (Fig. S8A). Noteworthy, the LR+ of these three methods 212 

were all larger than 1, however, FlashWeave-S and Spearman performed better than FastSpar 213 

(Fig. S8B). 214 

 215 

Assessment of host prediction improvement 216 

Then we used the newly developed phylogeny-guided host prediction tool, TIM, to 217 

filter polB–V9 associations, which is based on the assumption that evolutionarily related 218 

viruses tend to infect evolutionarily related hosts (see Materials and Methods). We identified 219 

24 eukaryotic taxonomic groups specifically associated with NCLDVs (Fig. S9). To compare 220 

the performance of the TIM results with the above raw FlashWeave results, we converted the 221 

three primary eukaryotic taxonomic ranks to their associated major lineages (Table S2), and 222 

the associations were plotted as a network (Fig. 5A). This network showed that three out of 223 

nine NCLDV families (Mimiviridae, Phycodnaviridae, and Iridoviridae) had enriched 224 

connections in specific eukaryotic lineages. Among the network edges, known virus–host 225 

pairs were found, such as Haptophyta–Mimiviridae, Mamiellophyceae–Phycodnaviridae, and 226 

Metazoa–Iridoviridae. The associations in the TIM-filtered results showed a sharp 227 

improvement in performance from the original result with and without an edge weight cut-228 

off. The average LR+ of TIM-enriched associations was 42.22, which was higher than the 229 

raw FlashWeave associations without a weight cut-off (3.43), with a weight cut-off of 0.4 230 

(5.20), and with a cut-off at 0.668 (14.23) (Fig. 5B, S9A). The FDR dropped from 0.97 (no 231 

cut-off) and 0.95 (weight cut-off of 0.4) to 0.74 (Fig. 5C). 232 

From the network, diverse putative hosts (13 lineages) emerged for Mimiviridae, 233 

including algae, protozoans, and metazoans. Metazoa had the most enriched nodes connected 234 

to Mimiviridae; additionally, MAST-3,12, Cryptophyta, Foraminifera, and Ciliophora had 235 

strong relationships with Mimiviridae. For Phycodnaviridae, there were six eukaryotic 236 

lineages retained after TIM filtration. Among these, Bacillariophyta, “other filosan (part of 237 
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filosan Cercozoa)”, and Mamiellophyceae had comparatively strong associations. Moreover, 238 

Rhodophyta, Ciliophora, and Dictyochophyceae had links to both Mimiviridae and 239 

Phycodnaviridae. There was also a connection between Iridoviridae and Metazoa.  240 

 241 

Associations between virophages and NCLDVs 242 

Using 6,818 NCLDV polB OTUs and 195 virophage major capsid proteins (MCPs), 243 

we identified 535 FlashWeave associations (196 and 339 for pico- and femto-size fractions, 244 

respectively) (Fig. 6A). Most of the associations had positive weights (n = 490), whereas 245 

some had negative weights (n = 45). The average number of associations per virophage MCP 246 

was different in two size fractions: 3.2 in femto- and 5.6 in pico-size fractions. The network 247 

revealed that Mimiviridae had the largest number of virophage associations in both size 248 

fractions. We also detected 84 positive associations between virophages and 249 

Phycodnaviridae. 250 

The phylogenetic tree defined three main virophage clades, and they were all found to 251 

have many connections to NCLDVs. To investigate significant relationships, Fisher’s exact 252 

test was performed between virophage clades and NCLDV families. Families other than 253 

Phycodnaviridae and Mimiviridae did not show significant associations. Therefore, we made 254 

a group, “Other NCLDVs,” to include all families except Phycodnaviridae and Mimiviridae. 255 

First, we only used FlashWeave results with a weight > 0.4, as previous results showed that a 256 

FlashWeave weight of 0.4 is a suitable cut-off that produced moderate performance (Fig. 257 

3A). From the femto-size fraction network, we found two significantly enriched connections 258 

(Fig. 6B): one was between virophage group C and Mimiviridae (p = 0.0022) and the other 259 

was between group A and “Other NCLDVs” (p = 0.0439). Another significantly enriched 260 

relationship between virophage group B and Phycodnaviridae (p = 0.0410) was found in 261 

pico-size fractions when we used all associations without edge weight cut-off. 262 

Finally, we examined HGTs of virophage MCPs in NCLDV genomes. We found two 263 

HGTs of virophage MCPs; both showed links between clade A and Iridoviridae (Table S3). 264 

This result was consistent with the Fisher’s exact test result, which revealed a connection 265 

between virophage clade A and “Other NCLDVs” including Iridoviridae. 266 

 267 

Discussion 268 

NCLDVs can infect a wide range of eukaryotes, from unicellular to multicellular 269 

organisms (34). However, we are still far from a comprehensive knowledge of their hosts 270 

because few have been isolated so far. Therefore, better host prediction algorithms are needed 271 
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to understand the ecological functions and evolutionary significance of NCLDVs. To make 272 

these predictions, we constructed global ocean co-occurrence networks based on the marine 273 

metagenome and metabarcoding datasets from 85 stations of the Tara Oceans expedition, 274 

which cover all major oceanic provinces across an extensive latitudinal gradient from pole to 275 

pole. The edges (associations) between polB and V9 nodes (OTUs) in the networks were 276 

generated using FlashWeave. The networks were particularly dense (Fig. 2A, S2A), thus 277 

suggesting that NCLDVs interact with numerous eukaryotes in the ocean. This was expected 278 

given the high abundance and diversity of NCLDVs in marine environments (18, 21) and the 279 

identification of HGT between these viruses and diverse eukaryotic lineages (24). The 280 

networks were dominated by the Mimiviridae nodes, which is consistent with previous 281 

reports that Mimiviridae is the most abundant and has the widest array of transcribed genes 282 

out of NCLDV families in marine environments (22, 23). Mimiviridae was known to infect 283 

amoebae, algae, and stramenopiles (3). In our study, these three eukaryotic groups were all 284 

found to have numerous associations with Mimiviridae. Phycodnaviridae has been known to 285 

infect many species of aquatic organisms, such as Emiliania huxleyi (Haptophyta), 286 

Ectocarpus siliculosus (Phaeophyceae), Chlorella heliozoae (Trebouxiophyceae), and 287 

Ostreococcus tauri (Mamiellophyceae) (35–37). Correspondingly, plenty of associations of 288 

Phycodnaviridae were found in the co-occurrence networks. For the eukaryotic nodes, all 289 

high taxonomic rank groups, including the SAR supergroup (i.e., Stramenopiles, Alveolata, 290 

Rhizaria), Opisthokonta, Archaeplastida, Amoebozoa, Excavata, and other eukaryotes, have 291 

associations with NCLDVs. Among these groups, the SAR supergroup contributed the most 292 

(~68%) polB–V9 associations. However, this is still lower than in other microbial co-293 

occurrence analyses; for example, a previous study showed SAR supergroup dominated 294 

~92% of the total aquatic microbial associations (38). A substantial proportion (~32%) of 295 

NCLDV–eukaryote interactions were from non-SAR groups, which covered the known 296 

NCLDV host range, such as Archaeplastida and Haptophyta.  297 

However, it is difficult to accurately predict NCLDV hosts from constructed networks 298 

because of the high degree of associations per polB OTU (Fig. 3A). One node connected to 299 

multiple edges was expected in the co-occurrence analysis. In previous NCLDV host 300 

prediction studies, additional processing was performed to filter the high dimensional 301 

associations to predict the meaningful interactions, such as weight cut-off or a combination of 302 

different co-occurrence network inference methods (18, 29). Moreover, no previous study 303 

quantitively assessed the performance of co-occurrence networks when predicting NCLDV–304 

host relationships. Qualitatively identifying known pairs and detecting HGT (without 305 
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validation) have been commonly used to assess prediction reliability (18, 28). Therefore, we 306 

aimed to 1) quantitatively assess the performance of co-occurrence-based host prediction for 307 

NCLDVs and 2) improve the prediction results using filtering methods.  308 

In a previous study of bacteriophage host prediction, ROC curves were used as an 309 

assessment metric to compare different prediction methods (39). However, the number of 310 

known virus–host pairs of NCLDVs is not sufficient to generate a dataset for ROC 311 

assessment. Therefore, in this study, we carried out an alternative method, the LR+, to assess 312 

the performance. LR+ is calculated with two relative values, sensitivity and specificity (Fig. 313 

1). The LR+ of co-occurrence-based host predictions for positive associations was higher 314 

than 1 and increased along with increasing cut-off values for the edge weights (Fig. 4A), 315 

which demonstrated that positive prediction results were more likely to be true positives than 316 

those based on random prediction. In high-weight regions (> 0.6 and > 0.4), LR+ values were 317 

larger than 10 and 4, respectively. These LR+ values indicate that FlashWeave can increase 318 

the probability of predicting true positives (40). However, both the true positive rate 319 

(sensitivity, < 18.9%) and false positive rate (< 6.37%) were very low (Fig. S5C). These low 320 

rates were from FlashWeave with a cut-off of alpha < 0.01, which excluded a large 321 

proportion of the polB–V9 pairs from the results. So only about 4000 predictions could be 322 

validated from a set of 6191 polB–V9 FlashWeave associations in this study (Fig. S5D, as 323 

described in the Materials and Methods). The FDR of co-occurrence was even higher than 324 

90% (Fig. S5A). Such a high FDR in co-occurrence networks demonstrates that condition 325 

positive connections (i.e., known interactions) are embedded in an immense pool of condition 326 

negative connections. However, these negative signals can correspond to either unidentified 327 

(i.e., currently unknown true interactions), indirect, or false relationships.  328 

We also found that true positive predictions only existed in positive weight 329 

associations, whereas negative weight associations did not contribute to NCLDV–host 330 

detection (Fig. S5B). This result indicates that the abundance dynamics of NCLDVs and their 331 

potential hosts were positively correlated with each other in the analyzed samples, which 332 

were collected at a global scale; this might be because NCLDVs detected in the dataset were 333 

active viruses that replicate locally in their hosts. Similar results were obtained in other co-334 

occurrence-based host prediction studies (28, 41). However, several experimental studies 335 

showed that the abundance dynamics of NCLDVs and hosts showed a delay in time (30, 31). 336 

It is possible that the global-scale samples did not have sufficiently high resolution to detect 337 

negative correlations (or correlations with a time delay) due to lack of time-resolution (42). 338 

Therefore, further studies, especially those that focus on a high temporal resolution, are 339 
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needed to better understand the detailed dynamics of virus–host associations and the capacity 340 

of co-occurrence-based methods for host prediction. 341 

The networks of different size fractions showed different performance patterns in 342 

predicting NCLDV–host relationships (Fig. 4B). This pattern is not dependent on the 343 

diversity of eukaryotic communities (Fig. S3A, B). Generally, small-sized fractions (0.8–5-344 

µm and 5–20-µm) networks performed better than large-sized fractions (20-180-µm and 180-345 

2000-µm) networks. This result is not dependent on the diversity of eukaryotic communities. 346 

To date, most of the known NCLDV hosts are small, such as the genera Micromonas, 347 

Aureococcus, and Ostreococcus are within the range of 0.8–5-µm, and Prymnesium, 348 

Heterosigma, and Heterocapsa are within the range of 5–20-µm. Because of this, our 349 

assessment method might be biased toward small size fractions as smaller organisms tend to 350 

be more abundant in the environment (43). However, it is also possible that NCLDV 351 

infections are more prevalent in smaller size fractions. Notably, the 0.8–inf-µm size fraction 352 

network, which covered all four individual size fractions, performed best. This might be 353 

because NCLDVs can infect not only small hosts but also hosts from a broad size range. 354 

Trimming of low-abundance OTUs was recommended to improve the prediction of 355 

true interactions and was often used in co-occurrence studies (44, 45). In our study, however, 356 

we did not achieve such performance improvement by treating input abundance data with a 357 

rigorous filtration (upper quartile) (Fig. S7). This result might be because the true positive 358 

and false positive rates defined in this study were too low; therefore, the validation may not 359 

be sufficiently sensitive to reflect the change between different abundance trimming 360 

strategies. However, it is also possible that low-abundance NCLDV OTUs are indeed 361 

network participants, as was demonstrated in a study showing that rare cyanobacterial species 362 

might play fundamental roles in blooming (46). Our result also revealed that FlashWeave-S 363 

was better than FlashWeave-HE at predicting NCLDV–host interactions (Fig. S7). The 364 

difference between FlashWeave-HE and FlashWeave-S is that HE mode can remove 365 

structural zeros during network inference. Structural zero is a typical property of 366 

heterogeneous datasets, like Tara Oceans datasets, and may lead to false-positive edges (47). 367 

Conversely, our results suggested that retaining structural zeros did not negatively influence 368 

the result, which indicates that the “presence–absence” pattern is as informative as the 369 

“more–less” pattern when identifying NCLDV–host relationships. This result is consistent 370 

with a previous “K-r-strategist” hypothesis: some NCLDVs, like mimiviruses, are K-371 

strategists that decay slowly and can form stable associations with their hosts (48, 49). A 372 

recent report supported these non-“boom and bust” dynamics of prasinoviruses and their 373 
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hosts with an experiment-based mathematical model (50). Overall, our results support co-374 

occurrence networks as a useful method for predicting NCLDV–host interactions in marine 375 

metagenomes, and likelihood ratios as useful quantitative metrics for assessing the 376 

performance of co-occurrence analysis for viral host predictions. 377 

Although the results generated by FlashWeave already improved the accuracy of 378 

predictions, the condition positive interactions were still embedded in many noise edges, as 379 

shown by a very high FDR (Fig. S5A, S6B). To overcome this situation, we developed TIM 380 

to reduce the high dimension of associations and improve NCLDV host prediction (33). The 381 

results showed that NCLDVs had enriched connections with 15 major eukaryotic lineages, 382 

which included 24 taxonomic groups in three different ranks (order, class, and phylum) 383 

(Table S2) (Fig. 5A, S7). Using the LR+ as a prediction diagnostic metric, NCLDV host 384 

prediction improved 12-fold with TIM filtration (Fig. 5B). FDR dropped below 23% after 385 

TIM treatment (Fig. 5C). In TIM-enriched connections, some are known NCLDV–host pairs, 386 

such as Phycodnaviridae and Mamiellophyceae, Mimiviridae and Haptophyta, and 387 

Iridoviridae and Metazoa. Some other studies revealed that Mimiviridae could exclusively 388 

infect diverse putative hosts (24, 51). Our results support the assumption that Mimiviridae has 389 

connections with 13 eukaryotic lineages out of 15 total lineages. Among these lineages, 390 

Mimiviridae had the most numerous links to Metazoa. Some mimiviruses (namaoviruses) are 391 

known to infect freshwater sturgeon, Acipenser fulvescens (52). Metazoans are presumed to 392 

be susceptible to mimiviruses, because the choanoflagellates, a group of eukaryotes that is 393 

phylogenetically close to metazoans, were recently identified to be the host of a species of 394 

Mimiviridae (15). Moreover, the TIM result revealed that Phycodnaviridae is closely 395 

connected to Bacillariophyta, which consists of three NCBI taxonomic groups: 396 

Thalassiophysales, Cymbellales, and Bacillariophyceae. Thalassiophysales was shown to 397 

have many HGT candidates with a large range of NCLDVs, and Bacillariophyceae also has a 398 

significant HGT candidate with phaeoviruses (24). Although Dictyochophyceae itself has not 399 

been proven to be a phycodnavirus host, its sister group Pelagophyceae was experimentally 400 

identified as an AaV host (53). Additionally, it is interesting to note the connection between 401 

Metazoa (Calanoida) and Iridoviridae. Calanoida is an order of arthropods commonly found 402 

as zooplankton; most of the sizes are 500–2000 µm. The viruses of the family Iridoviridae 403 

infect many Arthropod species, including insects and crustaceans (17). 404 

Furthermore, we also inferred associations between virophages and NCLDVs. To 405 

date, all isolated virophages are only known to infect Mimiviridae (54). As expected, 406 

Mimiviridae was the family with dominant connections to virophages (Fig. 6A). Recently, in 407 
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silico evidence demonstrated that virophages can infect Phycodnaviridae, which indicated 408 

that the virophage host range might be larger than we know (55). In support of this 409 

hypothesis, a relatively large number of virophage OTUs were found to be associated with 410 

Phycodnaviridae in our study. The enrichment analysis also revealed significant connections 411 

between three virophage clades and NCLDV families (Fig. 6B). To support the enrichment 412 

analysis, we conducted an HGT analysis because gene transfers have previously been found 413 

between Sputnik virophages and giant viruses (56). Our HGT analysis indicated a previously 414 

undescribed infectious relationship between virophage clade A and Iridoviridae. Overall, the 415 

results of virophage–NCLDV associations support our previous statement that co-occurrence 416 

networks inference and analysis are appropriate for investigating NCLDV interactions in 417 

marine metagenomic data. 418 

 419 

Materials and Methods  420 

Metagenomic and metabarcoding data 421 

The microbial metagenomic and eukaryotic metabarcoding data used in this study 422 

were previously generated from plankton samples collected by the Tara Oceans expedition 423 

from 2008 to 2013 (57, 58). Because our research requires paired metagenomic and 424 

metabarcoding datasets, we used data derived from the euphotic zone samples, namely those 425 

from the surface (SRF) and Deep Chlorophyll Maximum (DCM) layers (59). Type B DNA 426 

polymerase (polB) was used as the marker gene for NCLDVs. A total of 6818 NCLDV polB 427 

OTUs were extracted from the metagenomic datasets (i.e., the second version of the Ocean 428 

Microbial Reference Gene Catalog, OM-RGC.v2) using the pplacer phylogenetic placement 429 

method (ML tree) (22, 60, 61). These polB sequences were classified into seven NCLDV 430 

families (Mimiviridae, Phycodnaviridae, Marseilleviridae, Ascoviridae, Iridoviridae, 431 

Asfarviridae, and Poxviridae) and two other giant virus groups (“Medusaviridae” and 432 

“Pithoviridae”). For eukaryotes, we employed used the metabarcoding data for eukaryotes, 433 

which targeting the 18S ribosomal RNA gene hypervariable V9 region (V9) (62). Taxonomic 434 

annotation of the eukaryotic metabarcoding data was previously performed by the Tara 435 

Oceans consortium using an extensive V9_PR2 reference database (59), which was derived 436 

from the original Protist Ribosomal Reference (PR2) database (63). The diversity index of 437 

eukaryotic communities was calculated using the package “vegan” (64). Processed frequency 438 

data are available from GenomeNet 439 

(ftp://ftp.genome.jp/pub/db/community/tara/Cooccurrence). 440 

 441 
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Data processing 442 

A relative abundance matrix for the NCLDV polB OTUs was extracted from OM-443 

RGC.v2 for the samples derived from the pico-size fractions (0.22–1.6 or 0.22–3.0 µm). We 444 

converted the relative abundances of polB OTUs back to absolute read counts based on gene 445 

length and read length (assumed to be 100 nt). This process was required because small 446 

decimal numbers cannot be used by FlashWeave and because relative abundance data suffer 447 

from apparent correlations, which reduce the specificity of co-occurrence networks in 448 

revealing microbial interactions (44). To build comprehensive interaction networks involving 449 

eukaryotes of different sizes, we extracted the V9 read count matrices from the 450 

metabarcoding dataset for the following five size fractions: 0.8–5 μm; 5–20 μm and 3–20 μm 451 

(hereafter referred to as “5–20 μm” for simplicity); 20–180 μm; 180–2000 μm; and > 0.8 μm 452 

(hereafter referred to as 0.8–inf μm). To create the input files for network inference, the polB 453 

matrix was combined with each of the V9 matrices (corresponding to different size fractions), 454 

and only the samples represented by both polB and V9 files were placed in new files. In total, 455 

samples from 84 Tara Oceans stations (a total of 560 samples for two depths and five size 456 

fractions) widely distributed across oceans were used in this study (Fig. S1A). Depending on 457 

the individual size fractions, 84–127 samples were retained and included in the co-occurrence 458 

analysis (Fig. S1B). Read counts in the newly generated matrices were normalized using 459 

centered log-ratio (clr) transformation after adding a pseudo count of one to all matrix 460 

elements because zero cannot be transformed in clr. Following clr normalization, we filtered 461 

out low-abundance OTUs with a lower quartile (Q1) filtering approach. Specifically, OTUs 462 

were retained in the matrices when their clr-normalized abundance was higher than Q1 463 

(among the non-zero counts in the original count matrix prior to the addition of a pseudo 464 

count of one) in at least five samples. Normalization and filtering were separately applied to 465 

polB and V9. The numbers of OTUs in the final matrices are provided in Fig. S1C. 466 

 467 

Co-occurrence-based network inference 468 

Network inference was performed using FlashWeave [v0.15.0 (47)]. FlashWeave is a 469 

fast and compositionally robust tool for ecological network inference based on the local-to-470 

global learning framework. Meta-variables (such as environmental parameters) can be 471 

included in the FlashWeave network to remove potential indirect associations. We used 472 

temperature, salinity, nitrate, phosphate, and silicate concentrations as meta-variables in our 473 

network inferences to determine their correlations with polB OTUs. FlashWeave provides a 474 

heterogeneous mode (FlashWeave-HE), which helps overcome sample heterogeneity. 475 
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However, FlashWeave-HE may not be appropriate for the Tara Oceans data because it was 476 

shown to predict an insufficient number of known planktonic interactions (47). Therefore, we 477 

mainly used FlashWeave-S with default settings except for the FlashWeave normalization 478 

step and comparison between FlashWeave-S and FlashWeave-HE. A threshold to determine 479 

the statistical significance was set to alpha < 0.01. All detected pairwise associations were 480 

assigned a value called “weight” that ranged between −1 and +1. Edges with weights > 0 or < 481 

0 were referred to as positive and negative associations, respectively. To compare the 482 

performance of FlashWeave-S to other co-occurrence methods, we used FlashWeave-HE, 483 

Spearman, and FastSpar (65). The FlashWeave-HE settings were the same as FlashWeave-S 484 

but with a command “heterogeneous”. For Spearman, we used stats.spearmanr in package 485 

“Scipy” (66). In FastSpar, we used 50 iterations, 20 excluded iterations, and a threshold of 486 

0.1 to generate associations. To reduce the high dimensionality of the datasets, upper quartile 487 

(Q3) filtered matrices were used for comparison among FlashWeave-S, Spearman, and 488 

FastSpar. 489 

 490 

Network validation 491 

We validated the virus–host associations in inferred networks based on a confusion 492 

matrix defined by the known NCLDV–host information (Fig. 1). Briefly, we manually 493 

compiled 69 known virus–host relationships for NCLDVs (Table S4). In the validation 494 

process, eukaryotic taxonomic groups were annotated at the level of the “Major lineages” in 495 

the extensive PR2 database (updated after publication) (62). The “Major lineages” were used 496 

in the present study because 1) the deficiency of known virus–host relationships limited the 497 

use of lower eukaryotic taxonomy ranks, such as genus, for assessment, and 2) these lineages 498 

adequately represented marine eukaryotes by covering the full spectrum of cataloged 499 

eukaryotic V9 diversity at a comparable phylogenetic depth (62). Then, we performed 500 

BLASTp [2.10.1 (67)] searches from the Tara Oceans PolB sequences against the NCLDV 501 

reference database to define groups of metagenomic PolBs with a threshold of 65% sequence 502 

identity by retaining only the best hit for each environmental PolB sequence. This threshold 503 

was determined because, by using reference PolB sequences and RefSeq protein sequence 504 

databases, we found that 60–70% of sequence identity could distinguish whether the 505 

NCLDVs infected hosts of the same major lineages; this was mainly tested for 506 

Phycodnaviridae because of the lack of host information for closely related viruses in other 507 

NCLDV families (Table S5). Then, 65% was chosen because it could provide a better LR+ 508 

(as described below) than 60% and 70%. 509 
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The positive likelihood ratio was used in for assessment to estimate the predictions 510 

accuracy. This approach is commonly used in diagnostic testing to assess if a test (host 511 

prediction in this study) usefully changes the probability of the existence of condition 512 

positive (true positive). In this study, the LR+ was used because host prediction is a test to 513 

discover condition positive states (68). LR+ is calculated by dividing the true-positive rate 514 

(sensitivity) by the false-positive rate (1 –specificity). If LR+ is close to 1, the performance of 515 

the prediction is comparable to a random prediction. If LR+ >> 1, a positive prediction result 516 

is more likely to be a true positive than that based on random prediction. From the set of 517 

detected associations between a given polB OTU and V9 OTUs that belong to a given major 518 

eukaryotic lineage, we only kept the best positive and negative associations (i.e., the edges 519 

with the highest absolute weights) to simplify the prediction scheme. As an auxiliary 520 

assessment, the FDR was also calculated by dividing the number of false positives by the 521 

number of positive predictions (Fig. 1). For the comparison among five size fractions, we 522 

only used the abundance in the overlap samples of 0.8–5 µm, 5–20 µm, 20–180 µm, and 523 

180–2000 µm sizes. So the number of samples in five size fractions is comparable (84, 88, 524 

88, 88, 88), which could reduce the bias that may influence the topology of networks (69).  525 

 526 

Phylogeny-guided filtering of host predictions and its assessment 527 

We developed Taxon Interaction Mapper (TIM) to improve host predictions by co-528 

occurrence approaches (33). TIM assumes that evolutionarily related viruses tend to infect 529 

evolutionarily related hosts (17, 70), and extract the most likely virus-host associations from 530 

the co-occurrence networks. TIM requires a phylogenetic tree of viruses (based on marker 531 

genes) and a set of connections between viruses and eukaryotes (co-occurrence edges), and 532 

then tests whether leaves (i.e., viral OTUs) under a node of the virus tree is enriched with a 533 

specific predicted host group compared with the rest of the tree using Fisher’s exact test and 534 

Benjamini–Hochberg adjustment (Fig. S9A) (33). TIM is available from 535 

https://github.com/RomainBlancMathieu/TIM. 536 

We pooled network associations using FlashWeave analysis for five size fractions. To 537 

build a concise and credible viral phylogenetic tree, we removed all of the PolB sequences 538 

that were absent in the FlashWeave network associations, and the remaining sequences were 539 

filtered by the amino acid sequence length (≥ 500 aa). Protein alignment was conducted using 540 

MAFFT-linsi [version 7.471 (71)], and 18 sequences were manually removed because they 541 

were not well aligned with other PolB sequences. A total of 501 PolB sequences were used to 542 

make a maximum likelihood phylogenetic tree with FastTree [version 2.1.11 (72)]. Then, the 543 
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PolB–V9 associations were mapped on the tree to calculate the significance of the enrichment 544 

of specific associations using TIM. TIM provides a list of nodes in the viral tree and 545 

associated NCBI taxonomies (order, class, and phylum) of eukaryotes that show significant 546 

enrichment in the leaves under the nodes. The TIM result was visualized with iTOL [version 547 

5 (73)]. The TIM result was converted to a network, in which nodes correspond to the major 548 

eukaryotic lineages. The network edge weight was defined by the number of tree nodes in 549 

each viral family subtree enriched with a specific major eukaryotic lineage. The network was 550 

visualized with Cytoscape [version 3.7.1] using prefuse force directed layout (74). To assess 551 

the effectiveness of TIM in improving prediction, we extracted all the associations predicted 552 

by TIM and compared their performance with the raw and weight cut-off results.  553 

 554 

Virophage–NCLDV associations 555 

We inferred the networks between NCLDVs and virophages using. mcp was used as 556 

the marker gene for virophages. First, 47 reference MCP amino acid sequences were 557 

collected from public databases and used to build an HMM profile. The HMM profile was 558 

used to search against the amino acid sequences of OM-RGC v2 using HMMER hmmsearch 559 

[version 3.3.1] with the threshold of E-value < 1E−90 (75). This threshold was determined by 560 

searching reference sequences against the GenomeNet nr-aa database. The search detected 561 

195 Tara Oceans virophage MCP sequences in the OM-RGC database. Together with 47 562 

reference MCPs, a phylogenetic tree of MCP amino acid sequences was built using MAFFT 563 

and FastTree. 564 

We extracted the abundance profiles for the 195 MCP sequences from the pico- 565 

(0.22–1.6 or 0.22–3.0 µm) and femto-size (< 0.22 µm) fractions. We used samples from the 566 

SRF and DCM depths. PolB and MCP abundance profiles were merged into two matrices 567 

corresponding to the two virophage size fractions. Then, network inference was conducted 568 

using the FlashWeave default settings after Q1 filtration. In the MCP phylogenetic tree, three 569 

virophage clades contributed most of the NCLDV connections. Thus, an NCLDV enrichment 570 

analysis for the three clades was carried out using Fisher’s exact test, and the p-value was 571 

adjusted by the Benjamin–Hochberg method. This approach was the same as TIM, but we did 572 

not use the TIM software because the current version of TIM requires inputs of eukaryotic 573 

nodes with NCBI taxonomy annotations. 574 

We used another approach, HGT, to predict the virophage-NCLDV interactions. First, 575 

we generated an NCLDV genome database, which includes 56 reference NCLDV genomes 576 

corresponding to our polB dataset and 2,074 metagenome-assembled genomes from a 577 
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previous study (24). A total of 827,548 coding sequences were included in this database. 578 

Then, 195 virophage MCPs from the metagenomic data were BLASTp searched against this 579 

database using an E-value cut-off of 1E−10 (with a minimum query coverage of 50% and a 580 

minimum sequence identity of 50%). If a virophage MCP obtained a hit in the NCLDV 581 

genome database with a lower E-value compared with hits in the MCP database (the hit to 582 

itself was removed), the hit in the NCLDV genome database was considered an HGT 583 

candidate. 584 
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 599 
 600 
 601 
Figure 1. Overall workflow for inferring co-occurrence networks and quantitative 602 
assessment. This figure shows how the input data (Tara Oceans metagenomics and 603 
metabarcoding data) were used in this study. The definition of the confusion matrix for 604 
quantitative assessment is shown in the table. The LR+ and FDR equations are given at the 605 
lower right corner of the plot. 606 
 607 
 608 
 609 
 610 
 611 
 612 
 613 
 614 
 615 
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 616 
 617 
Figure 2. polB–V9 co-occurrence network. We performed co-occurrence analysis at the 618 
OTU level and constructed the network with pooled polB –V9 associations from five size 619 
fraction networks (A). To better display co-occurrence patterns, PolB OTUs were grouped at 620 
the family or family-like level, and V9 OTUs were grouped using annotation at high 621 
taxonomic ranks. The size of each node indicates the number of OTUs that belong to the 622 
group, and the width of each edge indicates the number of associations between two 623 
connected groups. Associations with positive weight are shown in red and negative 624 
associations are shown in blue. (B) Number of associations connected to NCLDVs for each 625 
major eukaryotic lineage in five size fractions. The top 10 lineages were retained, and other 626 
lineages were omitted and shown as “others.” Size fractions are presented in μm. 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 
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 635 
 636 
 637 
Figure 3. Density plots for the degree of NCLDV nodes in co-occurrence networks. The 638 
degree of an NCLDV node is given by the associations between this node and eukaryotes in 639 
the networks. The amount of NCLDV nodes are given on the top of the density values. (A) 640 
Positive degree (number of positive associations per node) for NCLDV nodes in five size 641 
fraction networks. (B) Negative degree (number of negative associations per node) for 642 
NCLDV nodes in five size fraction networks. Size fractions are presented in μm. NCLDV 643 
nodes with degree = 1 and degree > 1 are separated using a vertical line, and the number of 644 
nodes is given.  645 
 646 
 647 
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 654 
 655 
 656 
Figure 4. Positive likelihood ratios (LR+) in the NCLDV virus–host validation. (A) 657 
General performance of co-occurrence networks is shown with the LR+ calculated with 658 
associations pooled from five size fractions networks. To show the relationship between LR+ 659 
and FlashWeave association weight, the LR+ values are plotted along with the association 660 
weight. (B) Performance of each size fraction network is shown with the violin plot by 661 
ggplot2 with a bandwidth of 2. Size fractions are presented in μm. 662 
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 678 
 679 
 680 
Figure 5. Prediction of NCLDV virus–host relationships with TIM. (A) Undirected 681 
network that shows the relationships between NCLDVs and eukaryotes after TIM filtration. 682 
The size of each node indicates the number of predicted interactions of this group. The 683 
weight of network edges as defined by the number of tree nodes enriched in each viral family 684 
subtree to specific eukaryotic major lineages in the TIM analysis. Known virus–host 685 
relationships are highlighted in red, and the pairs found to have horizontal gene transfer are 686 
highlighted in yellow (1). (B) Performance of networks on NCLDV host prediction for 687 
original FlashWeave results without a weight cut-off, weight cut-off > 0.4, and TIM 688 
filtration, plotted by ggplot2 with a bandwidth of 2. (C) FDR of networks for NCLDV host 689 
prediction with the original FlashWeave results without a weight cut-off, weight cut-off > 690 
0.4, and TIM filtration. 691 
 692 
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 694 
 695 
 696 
 697 
Figure 6. Associations between virophages and NCLDVs. (A) Number of associations 698 
with virophages is shown for seven NCLDV families and two unclassified groups, 699 
“Medusaviruses” and “Pithoviruses.” Associations in the femto-size fraction network are 700 
shown in yellow, and in the pico-size fraction network are shown in green. The number of 701 
positive associations is above the zero axis, and the number of negative associations is below 702 
the zero axis. (B) Phylogenetic tree was constructed from 195 environmental virophages and 703 
47 reference MCP sequences. The outside layer indicates three major virophage clades. The 704 
inner two layers indicate that the virophage OTUs have at least one association with 705 
NCLDVs in femto- or pico-size fractions networks. 706 

 707 

References 708 

1.  Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, 709 

Federici BA, Van Etten JL, Koonin E V., La Scola B, Raoult D. 2013. “Megavirales”, 710 

a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 711 

158:2517–2521. 712 

2.  Koonin E V., Dolja V V., Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, 713 

Kuhn JH. 2020. Global Organization and Proposed Megataxonomy of the Virus 714 

World. Microbiol Mol Biol Rev 84:e00061-19. 715 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

3.  Koonin E V., Yutin N. 2019. Evolution of the Large Nucleocytoplasmic DNA Viruses 716 

of Eukaryotes and Convergent Origins of Viral Gigantism. Advances in Virus 717 

Research 103:167-202. 718 

4.  Legendre M, Alempic JM, Philippe N, Lartigue A, Jeudy S, Poirot O, Ta NT, Nin S, 719 

Couté Y, Abergel C, Claverie JM. 2019. Pandoravirus celtis illustrates the 720 

microevolution processes at work in the giant Pandoraviridae genomes. Front 721 

Microbiol 10:1–11. 722 

5.  Boratto PVM, Oliveira GP, Machado TB, Andrade ACSP, Baudoin J-P, Klose T, 723 

Schulz F, Azza S, Decloquement P, Chabrière E, Colson P, Levasseur A, La Scola B, 724 

Abrahão JS. 2020. Yaravirus: A novel 80-nm virus infecting Acanthamoeba 725 

castellanii. Proc Natl Acad Sci 117:16579–16586. 726 

6.  Yoshikawa G, Blanc-Mathieu R, Song C, Kayama Y, Mochizuki T, Murata K, Ogata 727 

H, Takemura M. 2019. Medusavirus, a Novel Large DNA Virus Discovered from Hot 728 

Spring Water. J Virol 93:1–3. 729 

7.  Forterre P. 2011. Manipulation of cellular syntheses and the nature of viruses: The 730 

virocell concept. Comptes Rendus Chim 14:392–399. 731 

8.  Mougari S, Sahmi-Bounsiar D, Levasseur A, Colson P, Scola B La. 2019. Virophages 732 

of giant viruses: An update at eleven. Viruses 11:1–28. 733 

9.  Koonin E V., Yutin N. 2010. Origin and evolution of eukaryotic large nucleo-734 

cytoplasmic DNA viruses. Intervirology 53:284–292. 735 

10.  La Scola B, Audic S, Robert C, Jungang L, De Lamballerie X, Drancourt M, Birtles R, 736 

Claverie JM, Raoult D. 2003. A giant virus in amoebae. Science  299:2033. 737 

11.  Nagasaki K, Yamaguchi M. 1997. Isolation of a virus infectious to the harmful bloom 738 

causing microalga Heterosigma akashiwo (Raphidophyceae). Aquat Microb Ecol 739 

13:135–140. 740 

12.  Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, 741 

Wilhelm SW. 2014. Genome of brown tide virus (AaV), the little giant of the 742 

Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. 743 

Virology 466–467:60–70. 744 

13.  Wilson WH, Schroeder DC, Allen MJ, Holden MTG, Parkhill J, Barrell BG, Churcher 745 

C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, 746 

Walker D, Craigon M, Roy D, Ghazal P. 2005. Complete genome sequence and lytic 747 

phase transcription profile of a Coccolithovirus. Science  309:1090–1092. 748 

14.  Colson P, Gimenez G, Boyer M, Fournous G, Raoult D. 2011. The giant Cafeteria 749 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

roenbergensis virus that infects a widespread marine phagocytic protist is a new 750 

member of the fourth domain of life. PLoS One 6:13–17. 751 

15.  Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, Irwin 752 

NAT, Wilken S, Yung CM, Bachy C, Kurihara R, Nakajima Y, Kojima K, Kimura-753 

Someya T, Leonard G, Malmstrom RR, Mende DR, Olson DK, Sudo Y, Sudek S, 754 

Richards TA, DeLong EF, Keeling PJ, Santoro AE, Shirouzu M, Iwasaki W, Worden 755 

AZ. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to 756 

unicellular marine predators. Proc Natl Acad Sci U S A 116:20574–20583. 757 

16.  Williams T. 2008. Natural Invertebrate Hosts of Iridoviruses ( Iridoviridae ). Neotrop 758 

Entomol 37:615–632. 759 

17.  Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, Hingamp 760 

P, Goto S, Ogata H. 2016. Linking virus genomes with host taxonomy. Viruses 8:10–761 

15. 762 

18.  Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, Ferrera I, 763 

Sarmento H, Villar E, Lima-Mendez G, Faust K, Sunagawa S, Claverie JM, Moreau 764 

H, Desdevises Y, Bork P, Raes J, De Vargas C, Karsenti E, Kandels-Lewis S, Jaillon 765 

O, Not F, Pesant S, Wincker P, Ogata H. 2013. Exploring nucleo-cytoplasmic large 766 

DNA viruses in Tara Oceans microbial metagenomes. ISME J 7:1678–1695. 767 

19.  Monier A, Claverie JM, Ogata H. 2008. Taxonomic distribution of large DNA viruses 768 

in the sea. Genome Biol 9:R106. 769 

20.  Li Y, Hingamp P, Watai H, Endo H, Yoshida T, Ogata H. 2018. Degenerate PCR 770 

primers to reveal the diversity of giant viruses in coastal waters. Viruses 10:496. 771 

21.  Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. 2018. Taxon richness 772 

of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes 773 

Environ 33:162–171. 774 

22.  Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, de Vargas C, 775 

Sullivan MB, Bowler C, Wincker P, Karp-Boss L, Sunagawa S, Ogata H. 2020. 776 

Biogeography of marine giant viruses reveals their interplay with eukaryotes and 777 

ecological functions. Nat Ecol Evol https://doi.org/10.1038/s41559-020-01288-w. 778 

23.  Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, 779 

Lima-Mendez G, Rocha F, Tirichine L, Labadie K, Kirilovsky A, Bertrand A, Engelen 780 

S, Madoui MA, Méheust R, Poulain J, Romac S, Richter DJ, Yoshikawa G, Dimier C, 781 

Kandels-Lewis S, Picheral M, Searson S, Acinas SG, Boss E, Follows M, Gorsky G, 782 

Grimsley N, Karp-Boss L, Krzic U, Pesant S, Reynaud EG, Sardet C, Sieracki M, 783 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Speich S, Stemmann L, Velayoudon D, Weissenbach J, Jaillon O, Aury JM, Karsenti 784 

E, Sullivan MB, Sunagawa S, Bork P, Not F, Hingamp P, Raes J, Guidi L, Ogata H, 785 

De Vargas C, Iudicone D, Bowler C, Wincker P. 2018. A global ocean atlas of 786 

eukaryotic genes. Nat Commun 9:373. 787 

24.  Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, McMahon KD, 788 

Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides NC, Woyke T. 2020. Giant virus 789 

diversity and host interactions through global metagenomics. Nature 578:432–436. 790 

25.  Gallot-Lavallée L, Blanc G. 2017. A glimpse of nucleo-cytoplasmic large DNA virus 791 

biodiversity through the eukaryotic genomicswindow. Viruses 9:17. 792 

26.  Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. 2019. Diversification of 793 

giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. 794 

Proc Natl Acad Sci U S A 116:19585–19592. 795 

27.  Cunha V Da, Gaïa M, Ogata H, Jaillon O, Delmont TO, Forterre P. 2020. Giant 796 

viruses encode novel types of actins possibly related to the origin of eukaryotic actin: 797 

the viractins. bioRxiv doi.org/10.1101/2020.06.16.150565. 798 

28.  Moniruzzaman M, Wurch LL, Alexander H, Dyhrman ST, Gobler CJ, Wilhelm SW. 799 

2017. Virus-host relationships of marine single-celled eukaryotes resolved from 800 

metatranscriptomics. Nat Commun 8:16054. 801 

29.  Roux S, Chan LK, Egan R, Malmstrom RR, McMahon KD, Sullivan MB. 2017. 802 

Ecogenomics of virophages and their giant virus hosts assessed through time series 803 

metagenomics. Nat Commun 8:858. 804 

30.  Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, Yamaguchi M, Nagasaki 805 

K. 2004. Isolation and characterization of two distinct types of HcRNAV, a single-806 

stranded RNA virus infecting the bivalve-killing microalga Heterocapsa 807 

circularisquama. Aquat Microb Ecol 34:207–218. 808 

31.  Martínez Martínez J, Schroeder DC, Larsen A, Bratbak G, Wilson WH. 2007. 809 

Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate 810 

mesocosm studies. Appl Environ Microbiol 73:554–562. 811 

32.  Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone 812 

D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. 813 

2020. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 814 

18:428–445. 815 

33.  Kaneko H, Blanc-Mathieu R, Endo H, Chaffron S, Delmont TO, Gaia M, Henry N, 816 

Hernández-Velázquez R, Nguyen CH, Mamitsuka H, Forterre P, Jaillon O, De Vargas 817 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

C, Sullivan MB, Suttle CA, Guidi L, Ogata H. 2019. Eukaryotic virus composition can 818 

predict the efficiency of carbon export in the global ocean. bioRxiv 819 

https://doi.org/doi.org/10.1101/710228. 820 

34.  Fischer MG. 2016. Giant viruses come of age. Curr Opin Microbiol 31:50–57. 821 

35.  Delaroque N, Wolf S, Muller DG, Knippers R. 2000. The brown algal virus EsV-1 822 

particle contains a putative hybrid histidine kinase. Virology 273:383–390. 823 

36.  Fitzgerald LA, Graves M V., Li X, Hartigan J, Pfitzner AJP, Hoffart E, Van Etten JL. 824 

2007. Sequence and annotation of the 288-kb ATCV-1 virus that infects an 825 

endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 826 

362:350–361. 827 

37.  Clerissi C, Desdevises Y, Grimsley N. 2012. Prasinoviruses of the Marine Green Alga 828 

Ostreococcus tauri Are Mainly Species Specific. J Virol 86:4611–4619. 829 

38.  Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. 2020. The 830 

planktonic protist interactome: where do we stand after a century of research? ISME J 831 

14:544–559. 832 

39.  Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. 2016. Computational approaches 833 

to predict bacteriophage-host relationships. FEMS Microbiol Rev 40:258–272. 834 

40.  Salkić NN. 2008. Objective assessment of diagnostic tests validity : a short review for 835 

clinicians and other mortals . Part II. Acta Med Acad 39–42. 836 

41.  Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard 837 

CPD, Dutilh BE, Thompson FL. 2017. Marine viruses discovered via metagenomics 838 

shed light on viral strategies throughout the oceans. Nat Commun 8:1–12. 839 

42.  Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, 840 

Polz MF. 2018. High resolution time series reveals cohesive but short-lived 841 

communities in coastal plankton. Nat Commun 9:266. 842 

43.  Huete-Ortega M, Cermeño P, Calvo-Díaz A, Marañón E. 2012. Isometric size-scaling 843 

of metabolic rate and the size abundance distribution of phytoplankton. Proc R Soc B 844 

Biol Sci 279:1815–1823. 845 

44.  Berry D, Widder S. 2014. Deciphering microbial interactions and detecting keystone 846 

species with co-occurrence networks. Front Microbiol 5:1–14. 847 

45.  Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse 848 

and Compositionally Robust Inference of Microbial Ecological Networks. PLoS 849 

Comput Biol 11:1–25. 850 

46.  Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J. 2018. Distinct patterns and 851 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

processes of abundant and rare eukaryotic plankton communities following a reservoir 852 

cyanobacterial bloom. ISME J 12:2263–2277. 853 

47.  Tackmann J, Matias Rodrigues JF, von Mering C. 2019. Rapid Inference of Direct 854 

Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial 855 

Sequencing Data. Cell Syst 9:286-296.e8. 856 

48.  Suttle CA. 2007. Marine viruses - Major players in the global ecosystem. Nat Rev 857 

Microbiol 5:801–812. 858 

49.  Blanc-Mathieu R, Dahle H, Hofgaard A, David B, Kalinowski J, Ogata H, Sandaa R-859 

A. 2020. The genome of a persistent giant algal virus encodes an unprecedented 860 

number of genes involved in energy metabolism. bioRxiv 861 

doi.org/10.1101/2020.07.30.228163. 862 

50.  Yau S, Krasovec M, Felipe Benites L, Rombauts S, Groussin M, Vancaester E, Aury 863 

JM, Derelle E, Desdevises Y, Escande ML, Grimsley N, Guy J, Moreau H, Sanchez-864 

Brosseau S, van de Peer Y, Vandepoele K, Gourbiere S, Piganeau G. 2020. Virus-host 865 

coexistence in phytoplankton through the genomic lens. Sci Adv 6:eaay2587. 866 

51.  Claverie JM, Grzela R, Lartigue A, Bernadac A, Nitsche S, Vacelet J, Ogata H, 867 

Abergel C. 2009. Mimivirus and Mimiviridae: Giant viruses with an increasing 868 

number of potential hosts, including corals and sponges. J Invertebr Pathol 101:172–869 

180. 870 

52.  Clouthier SC, Vanwalleghem E, Copeland S, Klassen C, Hobbs G, Nielsen O, 871 

Anderson ED. 2013. A new species of nucleo-cytoplasmic large DNA virus (NCLDV) 872 

associated with mortalities in Manitoba lake sturgeon Acipenser fulvescens. Dis Aquat 873 

Organ 102:195–209. 874 

53.  Gastrich MD, Leigh-Bell JA, Gobler CJ, Anderson OR, Wilhelm SW, Bryan M. 2004. 875 

Viruses as potential regulators of regional brown tide blooms caused by the alga, 876 

Aureococcus anophagefferens. Estuaries 27:112–119. 877 

54.  Duponchel S, Fischer MG. 2019. Viva lavidaviruses! five features of virophages that 878 

parasitize giant DNA viruses. PLoS Pathog 15:1–7. 879 

55.  Xu S, Zhou L, Liang X, Zhou Y, Chen H, Yan S, Wang Y. 2020. Novel Cell-Virus-880 

Virophage Tripartite Infection Systems Discovered in the Freshwater Lake Dishui 881 

Lake in Shanghai, China. J Virol 94:e00149-20. 882 

56.  Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG. 883 

2010. Structural Studies of the Sputnik Virophage. J Virol 84:894–897. 884 

57.  Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, 885 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, 886 

Ferland J, Kandels S, Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, 887 

Tremblay JÉ, Vik D, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, de 888 

Vargas C, Follows M, Gorsky G, Grimsley N, Guidi L, Hingamp P, Iudicone D, 889 

Jaillon O, Kandels-Lewis S, Karp-Boss L, Karsenti E, Not F, Ogata H, Poulton N, 890 

Raes J, Sardet C, Speich S, Stemmann L, Sullivan MB, Sunagawa S, Wincker P, 891 

Culley AI, Dutilh BE, Roux S. 2019. Marine DNA Viral Macro- and Microdiversity 892 

from Pole to Pole. Cell 177:1109-1123.e14. 893 

58.  Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D, 894 

Karsenti E, Speich S, Trouble R, Dimier C, Searson S. 2015. Open science resources 895 

for the discovery and analysis of Tara Oceans data. Sci Data 2:150023. 896 

59.  de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le 897 

Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, 898 

Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, 899 

Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent 900 

F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, 901 

Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, 902 

Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, 903 

Karsenti E. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. 904 

Science 348:1261605. 905 

60.  Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri 906 

B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, 907 

D’Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, 908 

Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, 909 

Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Boss E, Follows 910 

M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sieracki M, Velayoudon D, Bowler 911 

C, De Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, 912 

Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, 913 

Karsenti E, Raes J, Acinas SG, Bork P. 2015. Ocean plankton. Structure and function 914 

of the global ocean microbiome. Science  348:1261359. 915 

61.  Matsen FA, Kodner RB, Armbrust EV. 2010. pplacer: linear time maximum-916 

likelihood and Bayesian phylogenetic placement of  sequences onto a fixed reference 917 

tree. BMC Bioinformatics 11:538. 918 

62.  De Vargas C, Engelen S, Hingamp P, Sieracki M, Vargas C, Audic S, Henry N, 919 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Decelle J, Mahé F, Logares R, Lara E, Berney C, Bescot N, Probert I, Carmichael M, 920 

Poulain J, Romac S. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science  921 

103:167–202. 922 

63.  Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, De 923 

Vargas C, Decelle J, Del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann 924 

M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor 925 

M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot 926 

D, Zimmermann P, Christen R. 2013. The Protist Ribosomal Reference database 927 

(PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with 928 

curated taxonomy. Nucleic Acids Res 41:597–604. 929 

64.  Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos PM, Stevens 930 

MHH, & Wagner H. 2008. The vegan package. Community Ecol Packag 190. 931 

65.  Watts SC, Ritchie SC, Inouye M, Holt KE. 2019. FastSpar: Rapid and scalable 932 

correlation estimation for compositional data. Bioinformatics 35:1064–1066. 933 

66.  Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, 934 

Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, 935 

Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, 936 

Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, 937 

Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, 938 

Vijaykumar A, Bardelli A Pietro, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee 939 

A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson 940 

DA, Hagen DR, Pasechnik D V., Olivetti E, Martin E, Wieser E, Silva F, Lenders F, 941 

Wilhelm F, Young G, Price GA, Ingold GL, Allen GE, Lee GR, Audren H, Probst I, 942 

Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, 943 

Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, 944 

Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, 945 

Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, 946 

Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, 947 

Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, 948 

Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-949 

Baeza Y. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. 950 

Nat Methods 17:261–272. 951 

67.  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 952 

2009. BLAST+: Architecture and applications. BMC Bioinformatics 10:1–9. 953 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

68.  Yang WT, Parikh JR, Thomas Stavros A, Otto P, Maislin G. 2018. Exploring the 954 

negative likelihood ratio and how it can be used to minimize false-positives in breast 955 

imaging. Am J Roentgenol 210:301–306. 956 

69.  Faust K, Lima-Mendez G, Lerat JS, Sathirapongsasuti JF, Knight R, Huttenhower C, 957 

Lenaerts T, Raes J. 2015. Cross-biome comparison of microbial association networks. 958 

Front Microbiol 6:1–13. 959 

70.  Roux S, Adriaenssens EM, Dutilh BE, Koonin E V., Kropinski AM, Krupovic M, 960 

Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork 961 

P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, 962 

Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté 963 

JM, Lee KB, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino 964 

D, Petit MA, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, 965 

Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe 966 

SG, Thurber RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, 967 

Wrighton KC, Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, 968 

Eloe-Fadrosh EA. 2019. Minimum information about an uncultivated virus genome 969 

(MIUVIG). Nat Biotechnol 37:29–37. 970 

71.  Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: A novel method for rapid 971 

multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 972 

30:3059–3066. 973 

72.  Price MN, Dehal PS, Arkin AP. 2009. Fasttree: Computing large minimum evolution 974 

trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. 975 

73.  Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: Recent updates and new 976 

developments. Nucleic Acids Res 47:256–259. 977 

74.  Paul Shannon, Andrew Markiel, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 978 

Schwikowski B, Ideker T. 2003. Cytoscape: A Software Environment for Integrated 979 

Models. Genome Res 13:426. 980 

75.  Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. 981 

 982 

Author contributions 983 

LM and HO designed the study. LM performed most of the bioinformatics analysis. 984 

HE generated the primary NCLDV data. RBM, SC, RHV, and HK contributed to the 985 

bioinformatics analysis. All authors contributed to the writing of the manuscript. 986 

 987 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Materials & Correspondence 988 

Correspondence and material requests should be addressed to HO (email: 989 

ogata@kuicr.kyoto-u.ac.jp). 990 

 991 

Competing financial interests 992 

The authors declare no competing financial interests. 993 

 994 

 995 

 996 

 997 

 998 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.10.16.342030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342030
http://creativecommons.org/licenses/by-nc-nd/4.0/

