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Abstract

Background: Transcranial alternating current stimulation (tACS), applied to two brain sites with different phase

lags, has been shown to modulate stimulation-outlasting functional connectivity between the targeted regions.

Objective: Here, we test if spike-timing-dependent plasticity (STDP) can explain stimulation-outlasting con-

nectivity modulation by dual-site tACS and explore the effects of tACS parameter choices.

Methods: Networks with two populations of spiking neurons were simulated. Synapses between the popula-

tions were subject to STDP. We re-analyzed resting-state EEG data to validate the model.

Results: Simulations showed stimulation-outlasting connectivity changes between in- and anti-phase tACS,

dependent on both tACS frequency and conduction delays. Importantly, the model predicted that the largest

effects would occur for short conduction delays between the stimulated regions, which agreed with experimen-

tal EEG connectivity modulation by 10 Hz tACS.

Conclusion: STDP can explain connectivity aftereffects of dual-site tACS. However, not all combinations of

tACS frequency and application sites are expected to effectively modulate connectivity via STDP. We therefore

suggest using appropriate computational models and/or EEG analysis for planning and interpretation of dual-

site tACS studies relying on aftereffects.
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1 Introduction

Transcranial alternating current stimulation (tACS) became a popular tool to modulate both oscillations and os-

cillatory connectivity in the brain [1]. As the measurement of extracellular potentials during tACS, including EEG

and MEG, is hampered by large and hard-to-predict stimulation artifacts [2, 3], measurement of stimulation-

outlasting aftereffects turned into the standard [4, 5]. So far, mechanisms mediating these aftereffects are not

identified yet, but spike-timing-dependent plasticity (STDP) has been proposed as a candidate [6]. For EEG

aftereffects in alpha- and beta-power, experimental evidence supports the involvement of STDP [7,8].

Applying electric fields with different phase lags to two different regions of the brain (dual-site tACS), seems

ideal to exploit the plasticity of synapses between the targeted regions to induce aftereffects. Indeed, we [4]re-

cently found that tACS at 10 Hz, applied in a focal montage to each hemisphere, transiently modulates

stimulation-outlasting functional connectivity in the alpha range depending on the phase lag between the two

applied electric fields. Specifically, functional connectivity increased after in-phase stimulation (phase lag zero)

compared with anti-phase stimulation (phase lag π).

Here, we aim to test in a small computational model whether STDP can account for the experimentally ob-

served connectivity changes after dual-site 10 Hz tACS. Furthermore, we vary tACS frequencies and synaptic

delays between the stimulated regions to investigate which experimental settings maximize the size of effects

in a given direction. We assume that tACS entrains at least some proportion of the targeted neurons, as shown

in macaques [9,10], and validate the results of our simulations with existing EEG data [4].

2 Materials and Methods

We used small network models of spiking neurons to test the effect of different dual-site tACS protocols on

connectivity changes due to STDP. A network consisted of two populations with 1000 Izhikevich neurons each

[11] that followed the ordinary differential equations

dv

dt
= 0.04v2 + 5v + 140− u+ I (2.1)

du

dt
= 0.4a(bv − u) (2.2)

with the auxiliary after-spike resetting

if v ≥ 30, then v ← c and u← u+ e. (2.3)
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Although the model is dimensionless, the variables v (transmembrane voltage) and t (time) can be interpreted

in units of mV and ms, respectively. The membrane recovery variable u provides negative feedback to v. After

v reaches the apex of a spike (30 mV), both v and u are reset. The parameters a, b, c, and e describe the

time scale of u, the sensitivity of u to subthreshold fluctuations of v, the after-spike reset value of v, and the

after-spike reset of u, respectively, which differ for neuron types. I represents input currents to the neuron,

summing the up synaptic input from other neurons, random thalamic input, and tACS currents.

Depending on the network’s architecture, neurons were synaptically coupled with fixed axonal conduction

delays. After a spike in a presynaptic neuron, each postsynaptic neuron received an input of size w with

delay d. Excitatory synapses between the two populations were subject to STDP. Connections between the

populations were set to w = 0.01 in order to preserve the dynamics of each population but weakly couple the

populations. Synaptic weight change ∆w followed the rule

∆w(∆t) =

 A+ · e−∆t/τ+ , ∆t > 0

−A− · e∆t/τ− , ∆t < 0
(2.4)

with the difference between post- and presynaptic spike timing at the synapse ∆t = tpost − tpre and the pa-

rameters A+ = 0.015, A− = 0.007, τ+ = 13ms, τ− = 34ms. This rule was found experimentally by Froemke

and Dan [12] in slices of rat visual cortex, layer 2/3, and is shown in Fig. 1A. Characteristics of this rule — in

particular, A+ > A− and τ+ < τ− — have been corroborated by many other studies [13–15].

Importantly, synaptic weights will on average decrease in the case of independent Poisson firing (
∫∞
−∞∆w(t)dt <

0). In contrast, if ∆t is small (say, distributed equally between −ε and ε with small, positive ε), average synaptic

weights increase (
∫ ε
−ε ∆w(t)dt > 0). As a a presynaptic spike at time t1 arrives at the synapse at time t1 + d,

sharp synchrony of somatic pre- and postsynaptic spikes is expected to depress synapses (see Fig. 1A). How-

ever, spike synchrony with sufficient jitter may lead to a net potentiation (e.g.,
∫ ε−d
−ε−d ∆w(t)dt > 0 for sufficiently

small d and sufficiently large ε). For details on this mechanism, see [16].

Network 1: First, we implemented a network without connections within each population (Fig. 1B), producing

random firing in the absence of tACS, and tACS-phase locked activity in the presence of tACS at various fre-

quencies (Supplement A). All neurons were assigned b = 0.2, c = −65mV , and e = 8.The parameter a differed

between neurons and was randomly set for each neuron following a Gaussian distribution A with mean 0.04

and standard deviation (STD) 0.015. Negative values of a were set to their absolute value. Every millisecond,

40 neurons of each population were chosen randomly to receive an input of 20a/Ā. Thus, the larger the pa-

rameter a of a neuron, the larger its thalamic input. This combination of the parameter a and thalamic input

led to a flat power spectrum (Fig. 1C) and a realistic distribution of firing rates (Supplement A). Each neuron

was assigned 100 excitatory connections to random neurons of the other population with delay d. tACS was
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modeled as sinusoidal current input with amplitude 2 to all neurons, with phase lag zero or π between the pop-

ulations. Network 1 was simulated 100 times for two seconds; results were analyzed only for the last second.

Network 2:

Next, we adapted the network to a more realistic architecture that produces spontaneous alpha oscillations

based on Izhikevich [17] (Fig. 2A,C). Each population was divided into an excitatory subpopulation of 800 neu-

rons and an inhibitory subpopulation of 200 neurons. Excitatory neurons were assigned b = 0.2, c = −65mV ,

e = 8, and a drawn randomly from a Gaussian distribution with mean 0.04 and STD 0.01, where negative

values were set to their absolute value. Parameters of all inhibitory neurons were set to a = 0.2, b = 0.2,

c = −65mV , and e = 2. Connectivity within each population was similar to what was chosen in Izhikevich [17]:

each excitatory neuron projected to 60 random neurons, which could be excitatory or inhibitory, with fixed

weight w = 6. Delays for those connections were distributed uniformly between 1 ms and 10 ms. Inhibitory

neurons connected to 100 random excitatory neurons with fixed weight w=-5 and a delay of 1 ms. w = −5

and delay d = 1ms. This choice of connectivity and parameters led to realistic distributions of firing rates

(Supplement B) and spontaneous emergence of alpha oscillations (Fig. 2B,D). Each excitatory neuron addi-

tionally connected to 100 random excitatory neurons of the other population with low weight w=0.01 (Fig. 2A).

All synapses between the populations were subject to STDP. Each millisecond, 30 random neurons of each

population received a thalamic input of size 30. tACS was modeled as sinusoidal current input with amplitude

1 to excitatory neurons only. Network 2 was simulated for four seconds with tACS and aftereffects of three

seconds with the latter being subject to analysis.

All simulations were run in MATLAB (The MathWorks Inc). Functional connectivity in Network 2 was simulated

as the alpha-coherence (8-12 Hz) between the average transmembrane voltage of each population. To remove

STDP, the learning rule was set to zero weight change for all time lags. To remove entrainment echoes, all

transmembrane voltages were reset to their original values after tACS-offset. We also compared the simu-

lations with our experimental data. Seven regions of interest (ROIs) in each hemisphere were targeted by

tACS [4]. Thus, we were able to investigate 49 interhemispheric connections between stimulated ROIs, pos-

sibly differing in their conduction delays. EEG data were projected to source space using ELORETA and time

series in each voxel were extracted as described in [4]. For all voxel pairs, we computed the cross-correlation

function and extracted the absolute value of the time lag of its maximum. This lag was averaged for pairs

between the same ROIs, and the average was correlated with the experimentally observed change in alpha-

imaginary coherence. Permutation statistics were used to compute the p-value for this correlation (Supplement

C).
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Figure 1: A simple model of two spiking neuron populations (Network 1). A: STDP rule based on [12]. B:
Network 1 consists of two populations with coupling only to neurons of the other population. C:
Without stimulation, the network does not oscillate at a particular frequency. D: Stimulation of the two
populations at different phase lags affects connectivity differently from population 1 to population 2
(e12) and vice versa (e21), shown here for d=10 ms. At phase zero (“in-phase tACS”) and phase π
(“anti-phase tACS”), the system is symmetric, thus e12 and e21 show comparable changes in synaptic
weights. E: The average difference in synaptic weight change between in- and anti-phase stimulation
(mean STD) depends on both tACS frequency and synaptic delay of connections e12 and e21. For
low tACS frequencies and short delays, in-phase stimulation increases synaptic weights compared
with anti-phase stimulation.

3 Results

We first simulated two populations of randomly spiking neurons with weak connections subject to STDP (Net-

work 1, Fig. 1A-C), which entrained to any tACS frequency in the range 10-50 Hz (Supplement A). 10 Hz tACS

at different phase lags led to direction-specific changes in mean synaptic weights (Fig. 1D). As expected, weight

changes were symmetric only for phase lags zero (“in-phase stimulation”) and π (“anti-phase stimulation”). We

focused on these two special cases and, from then on, on average synaptic weights for all connections of e12

and e21. In particular, we were interested in the difference in average synaptic weight change between in-

and anti-phase stimulation, which is shown in Fig. 1E for different combinations of stimulation frequency and

synaptic delay. Clear effects in the positive direction direction — in-phase stimulation leads to an increase in

synaptic weight compared with anti-phase stimulation — were found for low frequencies and short delays. With

increasing frequency and delay, the effects diminished and eventually reversed.

Do our results depend on a realistic connectivity architecture and intrinsic oscillations? To answer this question,

we extended the network with inhibitory subpopulations as well as intrinsic coupling (Network 2, Fig. 2A), which

led to spontaneous alpha oscillations (Fig. 2B). Network 2 easily entrained to tACS at 10 Hz (Supplement B).
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Figure 2: Network 2, oscillating at alpha frequency due to realistic connectivity, confirms the results and is in
agreement with experimental data. A: Architecture of Network 2: Each population consists of an exci-
tatory and an inhibitory subpopulation. Excitatory neurons couple also between the two populations.
B: Network 2 shows spontaneous alpha oscillations due to intrinsic coupling within each population.
C: Experimental connectivity modulation dependent on the estimated conduction delay (CCF time
lag). Stimulated pairs (black) show a negative relation between connectivity modulation and CCF
time lag. D-F: Difference in average synaptic weight change (mean ± STD) between in- and anti-
phase stimulation for the system with both STDP and entrainment echoes (D), with only entrainment
echoes (E) and with only STDP (F). G-I: Respective differences in functional connectivity (mean ±
STD) between in-and anti-phase stimulation
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Re-analysis of our experimental data revealed that the difference in functional connectivity between in- and

anti-phase stimulation drops with the conduction delay between ROIs (Fig. 2C; for details, see Supplement D).

In fact, our model predicted the same finding: differences in both structural connectivity (Fig. 2D) and functional

connectivity (Fig. 2G) decreased with the conduction delay. At delay (20.2±5.2) ms, the change in functional

connectivity in our model was zero, in accordance with the experimental data ((22.8±7) ms). Finally, we tested

whether the change in functional connectivity actually related to the change in synaptic weights due to STDP,

or was rather a result of entrainment echos. Removal of STDP (Fig. 2E,H) led to an absence of effects, while

removal of entrainment echoes (Fig. 2F,I) only attenuated the effects. Therefore, in this model, STDP seems

necessary to induce the experimentally observed effects, while entrainment echoes can further enhance effect

sizes.

4 Discussion

With a small network model of spiking neurons, we demonstrated that aftereffects of dual-site tACS on connec-

tivity at an intrinsic frequency of the network can be explained by STDP of synapses between the stimulated

ROIs, possibly in combination with entrainment echoes. Critically, our model further suggests that these af-

tereffects depend on tACS frequency and synaptic delays, with the largest effects for low tACS frequencies

and short delays. Re-analysis of our EEG data confirmed the dependence of connectivity modulation on the

estimated conduction delay, and thereby explained the heterogeneity of experimental results across ROI pairs.

Indeed, most robust effects of dual-site tACS described in the literature have been found for theta frequen-

cies [18]. In contrast, neural effects during tACS may be directly related to entrainment of spiking [9,10] rather

than plasticity of synapses and could therefore depend on different factors.

It is not the aim of this study to present a dynamic model with realistic cortical dynamics and effect sizes of

tACS. Instead, the model relies on the assumption that spike timing is relevant for connectivity modulation.

Thus, firing rate distributions, as well as the STDP rule, are critical and have to be adjusted to experimental

data. Moreover, depending on factors like montage, amplitude, or brain state, tACS is expected to entrain only

a small proportion of neurons. We simplify the situation by choosing tACS amplitudes large enough to entrain

the majority of cells (Supplement B and C). Nevertheless, this discrepancy does not affect our conclusions, as

the mechanism holds for neurons that are entrained.

5 Conclusions

Our model demonstrates that STDP can explain experimentally observed connectivity changes of dual-site

stimulation at the network’s intrinsic frequency. The direction of aftereffects is expected to depend on both tACS

frequency and conduction delay between the targeted ROIs. Computational modeling and EEG connectivity

analysis to estimate conduction delays may be used to predict the sign and magnitude of expected connectivity
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modulation by tACS to decrease variability and maximize effect sizes in future experimental studies.
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Supplement A: Examples for Network 1 with d=2 ms. A,B: Firing patterns of neurons in population 1 and 2,
respectively. No prominent oscillation is visible. C: Average synaptic weights of the connections between the
two populations decrease. D, E: Firing rates of both populations are distributed in a wide range between 0 and
40 Hz. F, G: In-phase tACS leads to synchronous entrainment of the two population and a net potentiation of
synaptic weights (H). I, J: In contrast, anti-phase stimulation entrains the two populations at phase lag π and
induces a net depression of synaptic weights (K). L: Also tACS at higher frequencies entrains the network,
here shown for 30 Hz. While firing rates are still distributed mainly around 10 Hz (M), average transmembrane
voltages show a power peak at 30 Hz (N).
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Supplement B
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Supplement B: Examples for Network 2. A: Without tACS, the network spontaneously oscillates at around
8 Hz. B: 10 Hz tACS entrains the network to the stimulated frequency and phase. Firing rate distributions
for excitatory (C, E) and inhibitory (D, F) neurons are comparable between the un-stimulated (C, D) and the
stimulated (E, F) network.

Supplement C

Permutation statistics

We used permutation statistics to determine the p-value of the correlation between experimentally observed

tACS effects and the estimated conduction delay (CCF lag) between the targeted regions (Fig. 1G). Each

point in the scatter plot represents the connection between one ROI in the left hemisphere and one ROI

in the right hemisphere. As ROIs contribute not only to one, but to multiple connections, values for both

functional connectivity change and CCF lag are dependent on the other values. We therefore did not permute

connections, but the seven ROIs, keeping the dependence between connections due to shared ROIs. The

seven ROIs can be permuted in 7!=5040 different sequences. For each sequence, we computed the r-value

(“permutation r”). The p-value could then be determined from percentiles of the distribution of permutation

r-values.

Supplement D

Details and robustness of experimental results

To validate our model, we re-analyzed EEG data recorded in healthy participants before and after tACS [4].

Conduction delays between ROIs were approximated by the absolute time lag of the CCF peak. The dif-

ferences in alpha-imaginary coherence between in- and anti-phase stimulation negatively correlated with the
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estimated conduction delay (r=-0.79, p=0.001) when restricting the analysis to the stimulated pairs (Fig. 2C,

black crosses). We additionally analyzed the change in absolute coherence between ROIs that were not domi-

nated by volume conduction. Domination of volume conduction was defined for ROI pairs with CCFs that were

largest at absolute time lags below 1 ms. Again, for stimulated pairs, condition differences in absolute coher-

ence negatively correlated with the estimated conduction delay (r=-0.38, p=0.03), although results were much

more variable, possibly due to remaining effects of volume conduction. Finally, we considered an alternative

measure for conduction delays between ROIs, the width of the largest CCF peak at half maximum. Similar to

the previous measure (CCF lag), we found a negative correlation between this CCF width and differences in

alpha-imaginary coherence (r=-0.51, p=0.01), further stressing the robustness of our findings.
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