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Highlights: 13 

 Microstate topographies are similar across standard EEG 14 

bands.  15 

 The temporal dynamics of microstate topographies are 16 

independent across standard EEG bands  17 

 Band-specific microstate analysis may reveal more specific 18 

and/or novel effects compared to broadband microstate 19 

analysis 20 

 21 

Abstract 22 

Microstate (MS) analysis takes advantage of the 23 

electroencephalogram’s (EEG) high temporal resolution to 24 

segment the brain’s electrical potentials into a temporal 25 

sequence of scalp topographies. Originally applied to alpha 26 

oscillations in the 1970s, MS analysis has since been used to 27 

decompose mainly broadband EEG signals (e.g. 1-40 Hz). We 28 
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hypothesized that MS decomposition within separate, narrow 29 

frequency bands could provide more fine-grained information 30 

for capturing the spatio-temporal complexity of multichannel 31 

EEG. In this study using a large open-access dataset (n=203), 32 

we pre-filtered EEG recordings into 4 classical frequency bands 33 

(delta, theta, alpha, beta) in order to compare their individual 34 

MS segmentations using mutual information as well as 35 

traditional MS measures. Firstly, we confirmed that MS 36 

topographies were spatially equivalent across all frequencies, 37 

matching the canonical broadband maps (A, B, C, and D). 38 

Interestingly however, we observed strong informational 39 

independence of MS temporal sequences between spectral 40 

bands, together with significant divergence in traditional MS 41 

measures (e.g. mean duration, time coverage). For instance, MS 42 

sequences in the alpha-band exhibited temporal independence 43 

from sequences in all other frequencies, whilst also being 44 

longer on average (>100 ms). Based on a frequency vs. map 45 

taxonomy (e.g. ϴA, αC, βB), narrow-band MS analyses revealed 46 

novel relationships that were not evident from the coarse-47 

grained broadband analysis. Overall, our findings demonstrate 48 

the value and validity of spectral MS analysis for decomposing 49 

the full-band EEG into a richer palette of frequency-specific 50 

microstates. This could prove useful for identifying new neural 51 

mechanisms in fundamental research and/or for biomarker 52 

discovery in clinical populations. 53 

 54 

 55 
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1 Introduction 56 

Multi-channel Electroencephalography (EEG) is a long-established tool for 57 

exploring the human brain’s spatio-temporal activities. Microstate (MS) 58 

analysis [1] , first introduced by Lehmann [2]  in 1971, takes advantage of 59 

EEG’s high temporal resolution to segment EEG signals into short 60 

successive periods of time characterized by metastable scalp 61 

topographies. Initially applied to narrow-band alpha oscillations (8 -12 62 

Hz)[2], microstate analysis is nowadays usually performed on broadband 63 

EEG signals (1 – 40Hz)  [1], [3]. Historically, only a limited number of 64 

studies [4]–[6] have focused on applying MS analysis to the traditional 65 

frequencies associated with cortical oscillations (e.g. delta, theta, alpha, 66 

beta etc.). For example, in the 1990’s, Merrin et al [4] were the first to 67 

report on a significant difference in MS segments between schizophrenic 68 

patients and controls specifically in the theta EEG band. On the other hand, 69 

more recent work in healthy subjects found that MS dynamics were 70 

independent of EEG power fluctuations across the frequency spectrum [7], 71 

which technically supported the rationale for performing broadband MS 72 

analysis.  Neuroimaging studies have nevertheless emerged showing that 73 

anatomically-distinct cortical regions display different dominant EEG 74 

frequencies, with occipito-parietal regions more active in the alpha band, 75 

and prefrontal regions being biased more toward delta or theta power 76 

[8]–[10]. Moreover, ongoing cortical dynamics have been reported to 77 

fluctuate from a local resting/idling alpha oscillatory state to task-specific 78 

active mode(s) dominated by other rhythms (e.g. theta [11], gamma [12] 79 

). As a consequence, cortical regions could combine different frequencies 80 

for integrating/segregating information across large-scale networks, a 81 

phenomenon termed “oscillatory multiplexing” [13]. Finally, of more 82 

clinical significance, a growing body of work has indicated abnormal EEG 83 
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spectral power in distinct frequencies across cortical regions in a variety 84 

of brain disorders [14], [15]. Therefore, given that different spatial 85 

topographies uncovered by MS analysis imply anatomically-distinct 86 

cortical generators (according to the forward-model of EEG generation 87 

[1]), it is reasonable to hypothesize that distinct MS topographies may 88 

display different spatial and/or temporal profiles across the frequency 89 

spectrum.  90 

To investigate this question as well as gain a deeper understanding of 91 

frequency-specific MS signature(s), we sought to explicitly decompose MS 92 

spatio-temporal dynamics within discrete, narrow-band frequency bands 93 

(i.e. delta, theta, alpha, and beta), with the aim of comparing them to the 94 

classical analysis of the broadband signal. 95 

Here, we employed a validated, open-source dataset [16] of resting-96 

state EEG recordings from 203 healthy subjects during both eyes opened 97 

and eyes closed conditions. These were then filtered in the classical EEG 98 

bands (delta: 0-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 15-30 Hz) to 99 

obtain band specific signals. These narrow-band signals, in addition to the 100 

broadband (1-30 Hz) signal, were then independently subjected to 101 

standard microstate analysis [17]. Map topography, mean duration, 102 

occurrence, time coverage, and global explained variance (GEV) were used 103 

as quantitative measures of spatiotemporal microstate dynamics. In 104 

summary, and using spatial correlation analysis, we firstly demonstrate 105 

remarkably similar microstate topographies across frequencies, closely 106 

matching the classical broadband maps. Interestingly, however, we 107 

observed strong informational independence of microstate sequences 108 

between frequencies, in addition to significant differences in established 109 

measures of temporal dynamics (mean duration, occurrence, and time 110 

coverage). 111 
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In conclusion, our results support a more diverse, frequency-specific 112 

application of microstate analysis compatible with the narrow-band MS 113 

analyses of early pioneers [2], [4]. We anticipate this approach to provide 114 

a more fine-grained spectral information not visible to the standard 115 

broadband analysis, for example in the identification of biomarkers in 116 

clinical populations or for understanding the mechanisms underlying EEG 117 

microstates. 118 

2 Methods 119 

2.1 Dataset 120 

EEG recordings were obtained from 203 anonymized participants 121 

enrolled in the Mind-Brain-Body study [16]. Detailed protocol and 122 

inclusion criteria are reported in [16]. The overall sample consisted of 227 123 

participants divided into 2 groups: the younger adults group with 124 

participant age ranging between 20 and 35 years (N = 153, 45 females, 125 

mean age = 25.1 years, SD = 3.1) and an older adults group with age 126 

ranging between 59 and 77 years (N = 74, 37 females, mean age = 67.6 127 

years, SD = 4.7). Medical and psychological screening was conducted on all 128 

participants at the Day Clinic for Cognitive Neurology of the University 129 

Clinic Leipzig and the Max Planck Institute for Human and Cognitive and 130 

Brain Sciences in order to include only healthy patients. The study 131 

protocol was approved by the ethics committee of the University of 132 

Leipzig (reference 133 

154/13-ff). Data were obtained in accordance with the Declaration of 134 

Helsinki. 135 
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2.2 Recordings 136 

Resting state EEGs were recorded using 61 scalp electrodes (ActiCAP, 137 

Brain Products GmbH, Gilching, Germany), and one additional VEOG 138 

electrode for recording right eye activity. All electrodes were placed 139 

according to the international standard 10–20 extended localization 140 

system with FCz reference, digitized with a sampling frequency of fs=2500 141 

Hz,an amplitude resolution of 0.1 microV ,and bandpass filtered between 142 

0.015Hz and 1 kHz. The ground was located at the sternum and scalp 143 

electrode impedance was kept below 5 KΩ.  Recordings took place in an 144 

electrically shielded and sound-attenuated EEG booth. Here, 60s blocks 145 

alternated between eyes open (EO) and eyes closed (EC) conditions for a 146 

total recording of 16 min (8 blocks EC, 8 blocks EO, starting with EC). 147 

During the EO condition, participants were asked to stay awake while 148 

fixating their eyes on a black cross presented on a white background. 149 

2.3 Prepocessing 150 

The prepossessing steps are extensively described in [16], which we 151 

summarize below. All EEG recordings were down-sampled from 2500 to 152 

250 Hz and filtered between 1 and 45Hz (8th order, Butterworth filter). 153 

Blocks sharing the same condition were concatenated leading to the 154 

creation of 2 datasets per subject. After visual inspection, outlying 155 

channels were rejected and EEG segments presenting noise and/or 156 

artefacts were removed (except eye movements and eye blinks that were 157 

kept for further prepossessing). PCA was used to reduce data 158 

dimensionality, by keeping PCs (N≥30) that explain 95% of the total data 159 

variance. Then, independent component analysis (ICA) was performed 160 
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using the Infomax (runica) algorithm. Components reflecting eye 161 

movement, eye blink or heartbeat related artefacts were removed. 162 

Before performing microstate analysis, the following additional 163 

prepossessing steps were conducted using MNE-python [18]: missing/bad 164 

channels were interpolated using spherical spline interpolation, the 165 

reference was re-projected to average and recordings were down-166 

sampled to 100Hz. Finally, each recording was filtered into broadband 167 

plus the 5 traditional EEG frequency bands: broadband (1-30 Hz), delta (1-168 

4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz). Filter design 169 

consisted of a two-pass forward and reverse, zero-phase, non-causal band-170 

pass FIR filter with the following parameters. 171 

Broadband: - Lower passband edge: 1.00 - Lower transition 172 

bandwidth: 1.00 Hz (-12 dB cutoff frequency: 0.50 Hz) - Upper passband 173 

edge: 30.00 Hz 174 

- Upper transition bandwidth: 7.50 Hz (-12 dB cutoff frequency: 33.75 Hz) 175 

Filter length: 331 samples (3.310 sec) 176 

Delta: - Lower passband edge: 1.00 - Lower transition bandwidth: 1.00 177 

Hz (-12 dB cutoff frequency: 0.50 Hz) - Upper passband edge: 4.00 Hz - 178 

Upper transition bandwidth: 2.00 Hz (-12 dB cutoff frequency: 5.00 Hz) - 179 

Filter length: 331 samples (3.310 sec) 180 

Theta: - Lower passband edge: 4.00 - Lower transition bandwidth: 2.00 181 

Hz (-12 dB cutoff frequency: 3.00 Hz) - Upper passband edge: 8.00 Hz - 182 

Upper transition bandwidth: 2.00 Hz (-12 dB cutoff frequency: 9.00 Hz) - 183 

Filter length: 165 samples (1.650 sec) 184 

Alpha: - Lower passband edge: 8.00 - Lower transition bandwidth: 2.00 185 

Hz (-12 dB cutoff frequency: 7.00 Hz) - Upper passband edge: 12.00 Hz - 186 

Upper transition bandwidth: 3.00 Hz (-12 dB cutoff frequency: 13.50 Hz) - 187 

Filter length: 165 samples (1.650 sec) 188 
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Beta: - Lower passband edge: 15.00 - Lower transition bandwidth: 3.75 189 

Hz (-12 dB cutoff frequency: 13.12 Hz) - Upper passband edge: 30.00 Hz - 190 

Upper transition bandwidth: 7.50 Hz (-12 dB cutoff frequency: 33.75 Hz) - 191 

Filter length: 89 samples (0.890 sec) 192 

For all filters, a Hamming window with 0.0194 passband ripple and 53 193 

dB stopband attenuation was used to reduce border effects. 194 

2.4 MS segmentation 195 

2.4.1 Segmentation 196 

Microstate segmentation was applied to each combination of frequency 197 

band (broadband, delta, theta, alpha, beta) x behavioural condition (EO, 198 

EC) leading to the computation of 10 optimal clusters using the 199 

methodology described below. First, local maxima of the Global Field 200 

Power (GFP) known to represent portions of EEG data with highest signal 201 

to noise ratio [19], were extracted from each individual recording. Then, 202 

20 epochs of 500 time points randomly drawn from the previous 203 

extraction were submitted to a modified k-means cluster analysis using 204 

the free academic software Cartool [20]. For each number of cluster 205 

centers K ranging from 1 to 12, 50 k-means initialisations were applied to 206 

each epoch. The initialisation with highest global explained variance 207 

(GEV) was selected and kept for further processing. A meta-criterion [21] 208 

was used to choose the optimal number of cluster centers k for each epoch. 209 

Individual optimal clusters were then merged within conditions and 210 

within frequencies to form 10 groups of 4060 clusters. Each group was 211 

then randomly re-sampled into 100 epochs of 5000 time points, and 212 

submitted to the same clustering algorithm (50 initialisations, with meta 213 

criterion selection), leading to the extraction of 100 optimal clusters per 214 

group. Finally, these 100 clusters were submitted to the modified K means 215 
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clustering algorithm to extract, for each number of cluster centroids k, a 216 

set of maps which best represent the spatiotemporal variance of 217 

frequency specific EEG data within each condition. 218 

Selection of “common” MS maps 219 

Given that we found high spatial correlations between MS maps across all 220 

frequencies and EO/EC conditions, we fitted the broadband maps directly 221 

to all the frequency bands in order to have a common reference. This may 222 

be considered a heuristic approach for the sake of simplicity. An 223 

alternative approach we explored was to perform subject-level (i.e. 1st 224 

level) clustering on all data concatenated within-subject (across 225 

frequencies, and/or conditions), followed by group-level (i.e. 2nd-level ) 226 

clustering. We found this to once again produce identical maps to the 227 

broadband decomposition. This method could theoretically be used to find 228 

the most “common” clusters across different datasets, in case of variable 229 

k-means outputs (e.g. visually similar MS maps at different k-values). Since 230 

it is beyond the scope of this paper, we leave it to future studies to validate 231 

this method more rigorously. 232 

2.4.2 Fitting 233 

The common topographic maps selected above were then assigned to 234 

every time point from all individual recordings using the traditional MS 235 

back-fitting method [22]. First, the spatial correlation was computed 236 

between every timepoint and map. Using the so called ’winner takes all’ 237 

algorithm, each timepoint was labelled according to the map with which it 238 

shared the highest absolute spatial correlation. Timepoints were labelled 239 

as “non-assigned” when the absolute spatial correlation was below r < 0.5 240 

threshold. To ensure temporal continuity of MS segmentation, a 241 
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smoothing step [17], [20] was applied. Finally, segments with duration 242 

shorter than 3 samples (30ms) were assigned to neighbouring segments 243 

using the following rule: the segment was split into two parts, where each 244 

part was assigned to the neighbouring segment with the higher spatial 245 

correlation. With backfitting completed, we extracted 4 spatiotemporal 246 

parameters for each microstate map, namely: 247 

Global explained variance (Gev) described as the sum of variances of 248 

the original recording explained by the considered microstate map 249 

weighted by the Global Field Power at each moment in time. Units are 250 

percentages (%) between 0 and 1. 251 

Mean spatial correlation (MeanSpatCorr) defined as the mean spatial 252 

correlation value between the assigned MS map and actual scalp 253 

topography at each timepoint. This results in a correlation coefficient 0≤ r 254 

≤ 1. 255 

Mean duration (MeanDurs), defined as the mean temporal duration of 256 

segments assigned to each MS map. Units are in seconds (s). 257 

Time coverage (TimeCov) is the ratio of time frames assigned to each 258 

MS map relative to the total number of time frames from the recording. 259 

Results are Units are percentages (%) between 0 and 1. 260 

2.5 Adjusted Mutual information score 261 

Scikit-learn [23] implementation of the adjusted mutual information score 262 

(AMI) [24] was used to quantify the mutual information (MI) shared 263 

between different MS temporal segmentations, whilst simultaneously 264 

accounting for random overlap due to chance.  This metric, bounded 265 

between 0 and 1, is used to evaluate the statistical (in)dependence of two 266 

variables.  In our case, AMI is estimated between the symbolic sequences 267 

of two different microstate segmentations (e.g. ABDCADB vs ABDBDAC). 268 
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A high score (approaching 1) indicates that the two segmentations agree 269 

on the temporal order of all labels while a low score (approaching 0) 270 

indicates that the segmentations’ labels are not temporally aligned.  We 271 

selected the corrected version of this metric in order to control for the 272 

impact of differences in label distribution due to chance (for example 273 

differences in overall time coverage between labels). 274 

 275 

2.6 Statistics 276 

Statistical analyses were performed on the 4 main spatiotemporal 277 

parameters (Global explained variance, Mean spatial correlation, Mean 278 

duration, Time coverage). Tests were conducted using a two sided 279 

permutation test for equality of means on paired samples (same subject, 280 

either between condition, either between frequencies) under the H0 281 

hypothesis that both frequency (i.e. condition) share the same mean 282 

against the alternative H1 that the distributions come from two different 283 

populations. P-values were estimated by simulated random sampling with 284 

10000 replications. As a large number of statistical tests were carried out 285 

without specific pre-planned hypotheses [25], P values were corrected for 286 

multiple comparisons using the Bonferroni method. Corrected P-values 287 

are reported in the Results section, as well as the observed means (m) of 288 

both samples together with observed standard deviations. Effect sizes are 289 

reported as the standardised difference of means using Cohen’s d (d). 290 
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 291 

3 Results 292 

3.1 Spatial Similarity Analysis of Microstate Maps 293 

 294 

 295 

Figure 1: MS segmentation parameters of MS topographies. 296 

Global cluster centroids of each frequency band within each condition. Note 297 

that polarity inversion is ignored in the classical analysis of spontaneous EEG. 298 

 299 

Figure 1 illustrates the topographic results of MS segmentations in the 300 

different conditions and frequency bands. After visual inspection of 301 

optimal clusters at different cluster numbers (k), we identified that a value 302 

of k=5 revealed five MS topographies that were similar across all EEG 303 

bands and behavioural conditions, consistent with recent findings from 304 

our laboratory [21], [26], [27]. MS maps were designated in line with the 305 

canonical prototypes from the literature and their respective symbols, 306 

featuring a left-right orientation (A), a right-left orientation (B), an 307 

anterior-posterior orientation (C), fronto-central maximum (D) and 308 

occipito-central (C’)maximum.  309 

Given the additional frequency dimension, we labelled the MS maps 310 

firstly according to the Greek letters traditionally used for narrow-band 311 
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EEG (i.e. δ, θ, α, β) and then the Latin alphabet for the canonical map 312 

symbols (i.e. A, B, C, D) . For example, αA denoted the left-right diagonal 313 

map from the alpha band (α) segmentation, and δC the anterior-posterior 314 

map from the delta band (δ) segmentation. The broadband segmentation 315 

was designated with the prefix ‘bb’ 316 

 317 

 318 

Figure 2: MS segmentation parameters of MS topographies. 319 

Spatial correlation of cluster centers of each sub-frequency bands compared to 320 

broadband for eyes opened (EO) and eyes closed (EC) condition. 321 

 322 

As shown in Figure 2, when comparing topographies between 323 

broadband and each narrow-band (i.e. the diagonal entries in the 324 

correlation matrix), all spatial correlations were r > 0.98. Consequently, 325 

we fitted the broadband maps directly to all the frequency bands in order 326 

to have a common reference.  327 

 328 

 329 
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 330 

Figure 3: MS segmentation parameters of MS topographies. 331 

Spatial correlation of broadband cluster centers between eyes opened (EO) and 332 

eyes closed (EC) condition. 333 

 334 

We similarly observed common MS maps when comparing broadband 335 

topographies between EO and EC conditions (Figure 3), with all intraclass 336 

spatial correlations exceeding r > 0.98, thus providing justification for 337 

comparing microstate parameters between behavioural conditions while 338 

fitting condition specific broadband maps. 339 
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3.2 Mutual information 340 

 341 

Figure 4: Adjusted mutual information between band segmentations. 342 

Mean adjusted mutual information is depicted between broadband and narrow-343 

band segmentations, for each behavioural condition. n = 203 subjects. 344 

Figure 5: Mean adjusted mutual information between band 345 

segmentations. 346 

Mean (n = 203 subjects) adjusted mutual information for all frequency pairs. 347 
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 348 

Concisely, Adjusted Mutual Information (AMI, bounded between 0 and 349 

1) is an index of how similar two separate MS segmentations are, by 350 

estimating the degree of shared information (i.e. the number of time 351 

points assigned with the same MS) between their symbolic sequences (e.g. 352 

ABCD vs ABDA). The ’adjusted’ aspect ensures the measure is unbiased for 353 

symbolic overlap(s) due to chance when cluster numbers are low (as is the 354 

case here given k=5) [24]. Higher AMI (approaching 1) indicates nearly 355 

identical MS temporal sequences, while lower AMI (approaching 0) 356 

indicates temporally independent sequences. (i.e. low overlap) 357 

As shown in Figures 4 and 5, the AMI between broadband and narrow-358 

band segmentations in the EO condition showed a value of s = 0.06 for 359 

delta, s = 0.03 for theta, s = 0.05 for alpha, and s = 0.01 for beta. These 360 

values are surprisingly low and we can conclude that the broadband 361 

segmentation is comparatively independent of the narrow EEG bands. A 362 

similar conclusion can be made by examining the AMI between the 363 

narrow-bands themselves, with a maximum AMI value between theta and 364 

alpha bands (EO: s = 0.006, EC: s = 0.009), and a minimum AMI value of s 365 

= 0.001 for non-adjacent EEG bands (delta-alpha, delta-beta, theta-beta) 366 

As a sanity check, inspecting the EO vs EC transition, shared 367 

information with broadband decreased for the delta band (s = 0.03) but 368 

increased for the alpha band (s = 0.12). The latter is in line with 369 

predictions, as alpha oscillations are known to increase considerably 370 

during eye closure, which would amplify their contribution to the 371 

broadband signal and consequently their shared dynamics.  372 
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 373 

3.3 Across Frequency comparison 374 

 375 

 376 

Figure 6: MS segmentation parameters of MS topographies. 377 

Mean global explained variance (Gev), microstate time coverage (time coverage) 378 

and mean segment duration (MeanDurs, in s) within each microstate 379 

configuration (A – C’) for each frequency band (broadband, delta, theta, alpha, 380 

beta) for both eyes closed condition and eyes opened condition. Significance 381 
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values are indicated from paired permutation test on mean between conditions. 382 

ns: 0.05 < p, * 0.01 < p <= 0.05. 383 

Boxplots consist of median (Q2), first quartile (Q1), third quartile (Q3), 384 

maximum (Q3 + 1.5*(Q3 - Q1) ), minimum (Q1 -1.5*((Q3 - Q1).  Scales of 385 

Microstates C metrics are different from others states due to difference of order 386 

of magnitude. 387 

 388 

All subsequent results were computed using paired permutation tests and 389 

Bonferroni correction for c = 120 comparisons. In addition to Fig 6, p- 390 

values and effect sizes are reported in Table 1 of the Supplementary 391 

Results. 392 

 393 

In summary, only 23 of the 120 pairwise comparisons between 394 

broadband and narrow-band MS measures (Global explained variance 395 

(Gev), Mean spatial correlation, Mean duration (MeanDurs), Time 396 

coverage (TimeCov) did not meet the threshold for a statistical significant 397 

effect. As can be seen from Fig 6, these include Gev for δA, αC, βC, θC’, in 398 

EO and αA, αD, αC’, in EC. 399 

TimeCov for θA, βB, θC, αC, αD, θC’, in EO and δA, θB, δD, θC’, αC’, in EC. 400 

MeanDurs for βC, βD, in EO and βB, θC, βC’, in EC. 401 

 402 

The majority of pairwise comparisons with broadband (97) were found 403 

to be statistically significant, some of them with large effect sizes, in 404 

particular: 405 

In the EC condition, mean duration of map A was longer (d = 3.38, p < 0.05) 406 

in alpha (αA, 150 ms) compared to broadband (bbA, 90 ms). On the other 407 

hand, mean duration of map B was shorter (d = -2.08, p < 0.05) in delta 408 

(δB, 80 ms) compared to broadband (bbB, 90 ms), while map C duration 409 

was longer (d = 1.33, p <0 .05) in theta (θC , 130 ms) compared to 410 
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broadband (bbC, 110 ms). Relative time coverage of map D was lower (d 411 

= -1.14, p < .05) in beta (βD, 6 %) compared to broadband (bbD, 10%).  412 

 413 

In the EO condition, mean duration of map B was shorter (d = -1.69, p < 414 

0.05) in delta (δB, 74 ms) compared to broadband (bbB, 89 ms), but was 415 

longer (d = 3.25, p < 0.05) in alpha (αB, 151ms). In terms of time coverage, 416 

map D had a lower (d = -1.14, p < 0.05) presence in the beta band (βD, 5%) 417 

compared to broadband (bbD, 10%) while its presence was increased (d = 418 

1.02, p < 0.05) in theta frequencies. (θD 15%) Microstate C’ demonstrated 419 

more explained variance (d = -1.44, p < 0.05) in the delta band (δC’, 11%) 420 

compared to broadband (bbC’, 6%) 421 

422 
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 423 

3.4 Within Frequency comparison 424 

 425 

 426 

Figure 7: MS segmentation parameters of different frequency bands.  427 

Mean global explained variance (Gev), microstate time coverage (time 428 

coverage) and mean segment duration (MeanDurs, in s) for each microstate (A – 429 

C’) within each frequency band (broadband, delta, theta, alpha, beta) for both 430 
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eyes closed condition (EC, blue) and eyes opened condition (EO, red). 431 

Significance values are indicated from paired permutation test on mean between 432 

conditions. 433 

ns : 0.05 < p, ∗ for 0.01 < p <= 0.05 434 

 435 

In this section, we directly compared EO vs EC condition within each 436 

frequency band, and only relevant cases where narrow-band measures 437 

were distinctly different compared to the broadband analysis are reported 438 

(Figure 7). The full results are documented in Table 2 of the 439 

Supplementary Results.  440 

For time coverage (TimeCov), map A was relatively more prevalent in 441 

EO vs EC in the alpha band (d = 0.57, p < .05) than for broadband (d = 0.24, 442 

p < .05). Conversely, map C coverage was less prevalent in alpha (sd = -443 

1.00, p < .05) than broadband (d = -0.71, p < .05)  444 

Some narrow-band effects were found to be opposite compared to 445 

broadband : βA TimeCov had decreased prevalence (d = -0.48, p < .05) in 446 

EO  vs EC , while bbA TimeCov showed an increase (d = 0.24, p < .05). βC 447 

TimeCov had increased prevalence (d = 0.21, p <0 .05) in EO vs EC, while 448 

bbC TimeCov showed a decrease (d = -0.71, p < .05). 449 

Finally significant EO vs EC effects were found in the narrow-band 450 

analyses which were not evident in the broadband case: a decrease (d = -451 

0.31, p < 0.05) in Gev of map B was observed in the beta band   while no 452 

significant effect was found for broadband. Likewise in beta, map A 453 

TimeCov was decreased (d = -0.51, p <0.05) in EO vs EC, while broadband 454 

TimeCov was non-significant (p = 1.0, n.s.).  455 

 456 
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4 Discussion 457 

 458 

Historically, the first microstate (MS) analysis was applied by Lehmann 459 

and colleagues to narrowband (alpha) oscillations [2], yet this “frequency-460 

specific” approach appears to have been overlooked during the last 461 

decades of MS research  in favour of decomposing broadband (e.g. 2-40 462 

Hz) EEG signals. Hence, the present study specifically explored the MS 463 

characteristics of narrow-band EEG signals, their quantitative 464 

interrelationship, and whether they provide any novel information 465 

compared to course-grained broadband dynamics. This was done by first 466 

filtering the broadband EEG signal into several narrow-band frequencies 467 

(delta, theta, alpha, and beta), with the goal of comparing MS symbolic 468 

sequences and classical measures (explained variance, mean duration, 469 

time coverage) between them, as well as across different behavioural 470 

conditions (eyes open (EO) vs eyes closed (EC)). 471 

 472 

4.1 Topographic patterns 473 

We first investigated whether analogous MS scalp topographies would be 474 

produced by segmenting broadband versus narrow-band EEG signals 475 

(including the alpha band [28]). Interestingly, we observed highly similar 476 

MS topographies (with minimum spatial correlations of r > 0.98) across all 477 

investigated broad- and narrow- band frequencies (broadband, delta to 478 

beta), as well as between EO/EC conditions. This is compatible with recent 479 

work by Brechet and colleagues [27], who observed that states of sleep 480 

and wake exhibited significantly different spectral content (e.g. delta vs 481 

beta power) but very similar MS maps. Moreover, these maps 482 

corresponded to the canonical (broadband) topographies previously 483 

described in the literature [1], [29]. It is therefore tempting to assume that 484 
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identical neuronal sources are involved in generating the same 485 

topographies across frequencies. However, although different maps imply 486 

different generators (forward problem), same topographies do not 487 

necessarily imply identical generators (inverse problem). Due to the ill-488 

posed nature of EEG signals (constructive and destructive electromagnetic 489 

fields), similar scalp potentials can still be generated by different 490 

underlying brain mechanisms [30]. Hence, although we cannot 491 

unequivocally conclude that MS maps across the EEG spectrum are 492 

generated by the same brain sources operate, this would be the most 493 

probable and parsimonious interpretation. Moreover, we must juxtapose 494 

our findings with work from other groups [6] which applied a similar 495 

approach but didn’t necessarily find the same topographies across the EEG 496 

spectrum. From a methodological point of view, it should be kept in mind 497 

that narrow-band MS analysis does not per se require similar topographies 498 

between frequencies. In this case, although cross frequency comparisons 499 

would not be possible due to dissimilar maps, it would remain valid to 500 

study and quantify spatiotemporal MS parameters within each frequency 501 

band separately, for example, in the service of clinical biomarker 502 

discovery [4]. Reassuringly, the MS maps of our study replicate the ones 503 

derived from independent work utilising the same EEG dataset [3], further 504 

supporting the reproducibility of MS analysis despite methodological 505 

variations between studies (e.g. absence of resampling). 506 

4.2 Mutual information 507 

Milz and colleagues [28] recently proposed that alpha oscillations were 508 

the major component driving microstate dynamics. In general, adjusted 509 

mutual information (AMI) analyses reported in our work reveal low 510 

values (near or below 0.1) of information shared between the narrow-511 

band segmentations, including alpha, and that of the broadband 512 
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decomposition. However, consistent with the work of Milz and colleagues 513 

[28], the alpha-band during eyes-closed (EC) did indeed have the highest 514 

shared information with broadband (around 0.125).  Importantly 515 

however, this relationship did not necessarily hold during eyes-open 516 

(delta being highest). This indicates specific narrow-band contribution(s) 517 

to broadband dynamics heavily depend on behavioural state. Moreover, if 518 

narrow-band(s) topographies were directly responsible for the origin of 519 

the spatial distribution of the broadband signal, one would expect much 520 

higher AMI values (at least 0.5) than those, we observed. In view of the 521 

results presented, it would be inaccurate to claim that alpha band, or any 522 

other narrow-band as the dominant source of broadband topographies. 523 

In contrast, our results appear to support the ideas of Croce and 524 

colleagues [31], who suggested that broadband MS dynamics could not be 525 

extrapolated from one or a subset of EEG frequency bands. It remains 526 

unclear how the interaction of several narrow-band-components leads to 527 

a substantially different broadband MS decomposition. We speculate that 528 

this might stem from the fact that i) different narrow band signals could 529 

cancel each other at specific time points and ii) microstate assignment is 530 

non-linear given the winner-takes all approach.  531 

Lastly and most intriguingly, no significant informational interrelations 532 

were found between the narrow-band topographical dynamics 533 

themselves (e.g. delta vs beta, theta vs alpha), indicating that each EEG 534 

band appears to have has its own independent dynamics. This may not be 535 

surprising, considering that spontaneous EEG oscillations have been 536 

reported to dynamically switch from a resting signatures (e.g. alpha) to 537 

task-specific active mode(s) dominated by theta [11], beta [32] or gamma 538 

activities [12]). In this context, our observations of spatiotemporal 539 

independence between narrow-band EEG components support the  540 

operation of “oscillatory multiplexing” [13] mechanisms in the cortex, 541 
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whereby brain regions could combine different frequencies for 542 

integrating/segregating information across large-scale networks [33] 543 

 544 

4.3 Classical microstate parameters 545 

Microstates are defined as short periods of time during which the scalp 546 

electric field remains quasi-stable. Traditional microstate analysis does 547 

not suggest specific frequency filtering, thus resulting in various filters 548 

settings across studies [1]. Our findings show that quasi stable structures 549 

(around 80ms or longer) are present in all studied bands. It is established 550 

that such spatiotemporal structures do not appear for randomly shuffled 551 

EEG [34]. For most EEG narrow-bands, mean MS durations were usually 552 

in the same range as the typically reported 70–120 ms, but often longer 553 

(for example, alpha in EC was about 150 ms). It is therefore interesting to 554 

consider the mechanistic links between the course-grained broadband 555 

dynamics of the brain’s microstates and the dynamics of different 556 

frequency-specific modes. 557 

4.4 Between condition comparison: toward a 558 

systematic frequency decomposition of microstate 559 

dynamics? 560 

A total of about one third (22 of 75) of pairwise comparisons between 561 

eyes open and eyes closed conditions revealed significant effects. Within 562 

each frequency, between 14 (for alpha) and 8 (for theta) of the studied 563 

parameters were found significant. Compared to the narrow-band results, 564 

the classical broadband MS parameters had a higher effect size for only 565 

one parameter (broadband microstate B mean duration). For all other 14 566 
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parameters, at least one narrow-band component showed a relatively 567 

stronger effect size.  568 

The addition of the frequency dimension therefore has the primary 569 

benefit of increasing the number of potential markers that could aid 570 

clinical prognosis or for the understanding of brain mechanisms. Hence, 571 

the extra frequency dimension could in itself lead to more fine-grained 572 

explorations of the multiplex EEG signal than the more general broadband 573 

analysis. It remains for future work to investigate the statistical power and 574 

effect sizes of these markers compared to those studied traditionally. 575 

Moreover, narrow-band effects were sometimes found to be opposite 576 

to the broadband analysis, hence limiting the analysis to the latter could 577 

lead to incorrect or incomplete interpretations of underlying brain 578 

dynamics. We expect that future studies will explore the 579 

neurophysiological significance of narrowband MS analysis more deeply. 580 

4.5 Potential Limitations and Future Work 581 

We consider to current findings exploratory, considering the large number 582 

of tests that were carried out and in the absence of well-defined 583 

hypotheses. Nevertheless, we carried out Bonferroni correction, which 584 

may be considered the most conservative method for controlling multiple 585 

comparisons. Several studies have thus far proposed explanations for the 586 

origins of broadband MS topographies [7]. We feel it is still too early to 587 

make analogies or speculations between these results and those of the 588 

narrow-band dynamics. However, we believe that the application of the 589 

methodology proposed here may lead to valuable insights in order to 590 

more fully understand the underlying spectral tapestry of EEG 591 

microstates. 592 
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5 Conclusion 593 

Ultimately, we report a number of important new findings between the 594 

classical broadband MS analysis, usually performed in the EEG field, and 595 

its application to more narrow frequency bands relevant to cortical 596 

oscillatory activities. In a nutshell, it appears that each canonical EEG 597 

frequency band possesses its own spatiotemporal dynamics, and that 598 

broadband dynamics cannot be appropriately explained by individual 599 

narrow-band frequency components.  600 

Analysis of narrow-band MS parameters revealed spatial and temporal 601 

characteristics that both converged and diverged from broadband MS 602 

findings. At the very least, our results indicate that narrow-band analysis 603 

is justified as complementary to the usual broadband MS analysis. A 604 

narrow-band decomposition into frequencies more specific for cortical 605 

oscillatory activity could not only advance and/or consolidate findings in 606 

clinical disorders e.g. [4] [6], but also enable a better understanding of the 607 

organization and functioning of large-scale brain dynamics. 608 
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Figure : MS segmentation parameters of MS topographies. 
Spatial correlation of cluster centers between eyes opened (EO) and eyes closed (EC) condition across all 
frequency bands. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342378
http://creativecommons.org/licenses/by/4.0/


Figure: MS segmentation parameters of MS topographies. 
Spatial correlation of cluster centers between all frequency bands in both EO and EC conditions. 
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      EO                                                 EC 

 

 

Table 1: For both EO and EC condition, P values (p) and cohen’s d (d) are reported for each test 

between broadband and band segmentation on each studied metric (Global explained variance, 

Mean duration, time coverage). 
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map band metric d p 

A alpha 

 

Gev 0.12 0.10 

MeanDurs 3.25 0.02 

TimeCov 0.28 0.02 

beta 

 

Gev 1.12 0.02 

MeanDurs 0.44 0.02 

TimeCov 0.83 0.02 

delta 

 

Gev 0.88 0.02 

MeanDurs -2.00 0.02 

TimeCov -0.24 0.14 

theta 

 

Gev 0.66 0.02 

MeanDurs 0.55 0.02 

TimeCov 0.38 0.02 

B 

 

alpha 

 

Gev 0.22 0.02 

MeanDurs 2.91 0.02 

TimeCov 0.38 0.02 

beta Gev 0.82 0.02 

MeanDurs 0.19 0.14 

TimeCov 0.48 0.02 

delta 

 

Gev 0.60 0.02 

MeanDurs -2.08 0.02 

TimeCov -0.49 0.02 

theta 

 

Gev 0.46 0.02 

MeanDurs 0.43 0.02 

TimeCov 0.16 0.48 

C 

 

alpha 

 

Gev 0.34 0.02 

MeanDurs 1.50 0.02 

TimeCov 0.16 0.02 

beta 

 

Gev -1.00 0.02 

MeanDurs -0.76 0.02 

TimeCov -1.00 0.02 

delta 

 

Gev -0.48 0.02 

MeanDurs -1.64 0.02 

TimeCov -1.53 0.02 

theta 

 

Gev -0.50 0.02 

MeanDurs -0.08 1.00 

TimeCov -0.83 0.02 

C' 

 

alpha 

 

Gev 0.00 1.00 

MeanDurs 2.50 0.02 

TimeCov 0.05 1.00 

beta 

 

Gev -0.24 0.02 

MeanDurs -0.20 0.24 

TimeCov -0.54 0.02 

delta 

 

Gev 1.52 0.02 

MeanDurs -1.17 0.02 

TimeCov 0.63 0.02 

theta 

 

Gev 0.31 0.02 

MeanDurs 0.31 0.02 

TimeCov 0.07 1.00 

D 

 

alpha 

 

Gev 0.02 1.00 

MeanDurs 2.44 0.02 

TimeCov 0.14 0.02 

beta 

 

Gev -0.40 0.02 

MeanDurs -0.30 0.02 

TimeCov -0.73 0.02 

delta 

 

Gev 1.26 0.02 

MeanDurs -1.47 0.02 

TimeCov 0.17 1.00 

theta 

 

Gev 1.15 0.02 

MeanDurs 0.81 0.02 

TimeCov 0.87 0.02 

 

Table 2: For each between conditions (EO/EC) test P values (p) and cohen’s d (d) are reported for 

all combinations of band, map and metric. 
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