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Abstract 
IL-1β and TNFα are canonical immune response mediators that play key regulatory roles in a wide 
range of inflammatory responses to both chronic and acute conditions. Here we employ an 
automated microscopy platform for the analysis of messenger RNA (mRNA) expression of  IL-1β 
and TNFα at the single-cell level. The amount of IL-1β and TNFα mRNA expressed in a human 
monocytic leukemia cell line (THP-1) is visualized and counted using single-molecule fluorescent 
in-situ hybridization (smFISH) following exposure of the cells to lipopolysaccharide (LPS), an 
outer-membrane component of Gram-negative bacteria. We show that the small molecule 
inhibitors MG132 (a 26S proteasome inhibitor used to block NF-κB signaling) and U0126 (a 
MAPK Kinase inhibitor used to block CCAAT-enhancer-binding proteins C/EBP) successfully 
block IL-1β and TNFα mRNA expression. Based upon this single-cell mRNA expression data, 
mathematical models of gene expression indicate that the drugs U0126 and MG132 affect gene 
activation/deactivation rates between the basal and highly activated states. Models for which the 
parameters were informed by the action of each drug independently were able to predict the effects 
of the combined drug treatment.  From our data and models, we postulate that IL-1β is activated 
by both NF-κB and C/EBP, while TNFα is predominantly activated by NF-κB. Our combined 
single-cell experimental modeling efforts shows the interconnection between these two genes and 
demonstrates how the single-cell responses, including the distribution shapes, mean expression, 
and kinetics of gene expression, change with inhibition. 
 
Introduction 
 
Inflammation is a complex biological process that enables the host immune system to counteract 
potential biothreats. In the inflammatory response, select host receptors react to detrimental stimuli 
(e.g., pathogens, allergens, toxins, or damaged host cells), which activate various intracellular 
signaling pathways to secrete cytokines that trigger active recruitment of immune cells to the site 
of insult/infection.[1] While inflammation is usually beneficial to the host organism when fighting 
an infection, there is also a wide range of both chronic and acute conditions where remediation of 
inflammation is necessary for host recovery. For example, in certain viral infections, over-
expression of inflammatory cytokines throughout the course of disease progression can lead to a 
potentially fatal cytokine storm that may be more harmful to the host than the underlying 
infection.[2] In addition to acute conditions, chronic inflammatory conditions, including  

 
1Center for Integrated Nanotechnologies, Los Alamos National Laboratory 
2Department of Chemical and Biological Engineering, Colorado State University 
3Bioscience Division, Los Alamos National Laboratory 
+These authors contributed equally to this work.  
*Correspondence to: brian.munsky@colostate.edu;  jwerner@lanl.gov 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

rheumatoid arthritis diabetes[3] or persistent pain, can be caused by high concentrations of pro-
inflammatory cytokines, such as Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNFα).  
 
There are several drugs and medications used to limit or dampen the inflammatory response. The 
best known of these, non-steroidal anti-inflammatory drugs (NSAIDs), work by inhibiting the 
activity of cyclooxygenase enzymes (COX-1 and COX-2), which are important for the synthesis 
of key biological mediators and blood clotting agents.[4] Other drugs may act to inhibit key 
proteins involved in immune response signaling, such as kinase inhibitors or proteasome 
inhibitors. For kinase and proteasome inhibitors, these compounds are generally discovered first 
through binding assays, then studied in vitro by activity assays.[5-8] Cellular assays that monitor 
the effects of drugs in a more complicated environment generally follow such in vitro studies.[9] 
In a cellular assay, the effects of a drug can be studied by monitoring the level of inhibition of the 
target of interest, or may be studied by monitoring changes in a downstream signaling pathway. 
The role drugs play in dampening mRNA expression can be measured by quantitative PCR of the 
mRNA[10], through DNA microarrays[11], or by RNA sequencing[12]. While informative, most 
of these methods explore the response of large, ensemble populations of cells.  
 
In contrast to traditional measurements of gene expression collected as bulk averages from large 
numbers of individual cells, single-cell techniques have revealed surprisingly rich levels of 
heterogeneity of gene expression.[13-16] When coupled with appropriate models, these 
distributions of single-cell gene expression can reveal fundamental information on expression 
kinetics and gene regulatory mechanisms, which is otherwise lost in the bulk measurements [17, 
18].  Methods to measure gene expression in single cells generally rely on either amplification or 
imaging techniques. There are tradeoffs between the two techniques. Amplification-based 
methods, such as sequencing and PCR, provide high gene depth (tens-to-hundreds of genes can be 
analyzed) but can be expensive, generally analyze a small number of individual cells, and obscures 
spatial information.[19-23] Imaging methods generally utilize fluorescent oligonucleotide probes 
complementary to the RNA sequences of interest and include techniques such as single-molecule 
fluorescence in situ hybridization (smFISH)[16, 24, 25] and multiplexed barcode labeling 
methods.[26-28] Though fewer genes can be analyzed at one time, smFISH is relatively low cost, 
yields single-molecule resolution without the need for nucleic acid amplification, can readily 
measure several hundreds to thousands of individual cells, and directly visualizes the spatial 
location of each RNA copy.   
 
There have been a number of studies that exploit single-cell methods in conjuction with single-
cell modeling to study host inflammatory responses. For example, fluorescence flow cytometry 
was used to study the population switching between effector and regulatory T cells and to develop 
a computational model describing this dynamic behavior.[29] Application of single-cell RNA 
sequencing methods led to discovery of bimodal expression patterns and splicing in mouse 
immune cells.[30] Another study integrated live cell imaging and mathematical modeling to 
understand the ‘analog’ NF-κb response of cell populations under ‘digital’ single-cell signal 
activation.[31] Additionally, a model of JAK1-STAT3 signaling was constructed following cell 
treatment by a JAK inhibitor with validation by wide field fluorescence microscopy.[32] In order 
to visualize single-cell immune responses, our lab previously used smFISH to monitor the single-
cell mRNA expression of two cytokines, IL-1b and TNFa, in a human monocytic leukemia cell 
line, THP-1, in response to lipopolysacharride (LPS), a primary component of cell walls in Gram 
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negative bacteria.[33] This work found a broad cell-to-cell heterogeneity in immune cell response 
to LPS. 
 
Here, we exploit single-cell imaging and modeling methods to visualize and understand the broad 
distribution of mRNA responses to LPS stimulation in THP-1 immune cells. Moreover, these 
models were used to describe the effects of specific inflammatory inhibitors on the host immune 
response. The drugs employed, MG132, a 26S proteasome inhibitor used to block NF-κB 
signaling[8], and U0126, a MAPK kinase inhibitor known to block CCAAT-enhancer-binding 
proteins C/EBP[34], were selected for their differing roles in dampening the inflammatory 
response mediated by two key inflammatory cytokines: IL-1b and TNFa. Our results show that 
MG132 inhibits both IL-1β and TNFα mRNA expression, while U0126 primarily inhibits IL-1β 
expression. Models derived for the action of each drug independently can also accurately predict 
the behavior of the drug effects when applied in tandem. These results and models support the 
current biological understanding that  IL-1β expression is activated by both NF-κB and C/EBP 
signaling pathways while TNFα is predominantly activated by NF-κB. Notably, we observe that 
models developed to describe the effect single drugs can accurately predict the effect of drug 
combinations, paving the way for predictive computational analyses of combination drug 
therapies.  
 
Methods 
Microscopy and Image Analysis 
A fully automated microscopy and image analysis routine was used to count and measure single-
mRNA molecules as previously described.[33] In brief, a conventional wide-field microscope 
(Olympus IX71), arc lamp (Olympus U-RFL-T), high NA objective (Olympus 1.49 NA, 100X),  
2D stage (Thorlabs BSC102), Z sectioning piezo (Physik Instrumente, PI-721.20) and cMOS 
camera (Hamamatsu orca-flash 4.0) are used to image single-cell mRNA content. Following image 
acquisition, a custom Matlab script is used to: 1) automatically find and segment each individual 
cell based upon the bright-field cell image, the nuclear stain (DAPI), and the smFISH channel, 2) 
filter and threshold using a Laplacian-of-Gaussian filter (LOG) to find the single-mRNA copies, 
3) fit all of the mRNA ‘spots’ to a 2D Gaussian using a GPU-accelerated algorithm, and 4) assign 
and count all single mRNA copies within each cell. Single-cell distributions are characterized by 
both their shapes and their mean values. 
 
Cell Culture 
Human monocytic leukemia cells (THP-1, ATCC) were cultured in a humidified incubator with 
5% CO2 at 37°C in R10% medium: RPMI-1640 Medium (with glutamine, no phenol red, Gibco) 
supplemented with 10% fetal bovine serum (FBS, ATCC).  Cells were passaged every 5-7 days 
and used for experiments from age 60-120 days. 
 
 
Slide Preparation 
Chambered cover-glass slides (#1.0 borosilicate glass, 8 wells, Lab-Tek) were coated with a sterile 
bovine fibronectin solution (1µg/well, Sigma, diluted in PBS, Gibco) overnight at 4°C.  105 THP-
1 cells/well were seeded onto fibronectin-coated slides for differentiation with R10% medium 
containing 100nM PMA (phorbol 12-myristate 13-acetate, Sigma) for 48hrs at 37°C.  After 
differentiation, cells were serum-starved in serum-free RPMI-1640 Medium (no FBS) for 2hrs at 
37°C. Cells were pre-treated with inhibitors (MG132, or U0126, or both) for 1hr at 37°C (10µM 
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each in serum-free RPMI-1640 medium, 200µL/well). Untreated wells were kept in serum-free 
RPMI-1640 medium for 1hr at 37°C. Cells were then stimulated with a cocktail of 500µg/mL 
lipopolysaccharide (LPS, isolated from E.coli O55:B5, Sigma) and 10µM inhibitors (MG132, or 
U0126, or both) in R10% medium (200µL/well) for 30min, 1hr, 2hrs, or 4hrs at 37°C.  Cells were 
washed in PBS and fixed in paraformaldehyde (4% solution in PBS (v/v), Alfa Aesar) for 15min 
at room temperature.  Unstimulated cells were washed and fixed at t=0hrs immediately after 1hr 
inhibitor pre-treatment.  After fixation, cells were washed twice in PBS, then permeabilized in 
70% ethanol in RNase-free distilled water (v/v) (ThermoFisher) for at least 1hr (or up to 24 hrs) 
at 4°C.  Cells were then washed in RNA FISH Wash Buffer A (Stellaris) for 20min at room 
temperature before RNA smFISH staining for mRNA.  
 
smFISH Staining for mRNA 
Cells were stained with custom-designed RNA FISH probes (Stellaris) for IL-1β and TNFα 
mRNA.  Probes were diluted to 100nM each in RNA FISH Hybridization Buffer (Stellaris) 
containing 10% formamide (v/v) (ThermoFisher), then incubated on the fixed and permeabilized  
cells using 100µL/well for 4hrs at 37°C.  Staining conditions were made in duplicate on each slide.  
Following probe hybridization, cells were washed three times in RNA FISH Wash Buffer A for 
30min each time at 37°C, stained for 20min at 37°C with 100ng/mL DAPI solution (Life 
Technologies) in RNA FISH Wash Buffer A for 20min at 37°C, and washed in RNA FISH Wash 
Buffer B (Stellaris) for 20min at room temperature.  Cells were washed once in PBS and stored in 
200µL/well SlowFade Gold Anti-Fade Mountant (Life Technologies) diluted 4x in PBS for up to 
7 days at 4°C. Unless otherwise specified, all steps were performed at room temperature, 
incubations were performed using 250µL/well, and washes were performed using 500µL/well. 
 
Stochastic reaction networks for modeling gene expression 
The time-varying distributions of mRNA copy numbers observed from smFISH experiments are 
modeled in the framework of the chemical master equation (CME).[35, 36] This analysis proposes 
a continuous-time Markov chain in which each discrete state corresponds to a vector of integers 
that represents the copy number for each chemical species. State transitions correspond to reaction 
events, each of which is represented by a stoichiometry vector. The probabilistic rate of a reaction 
event is determined through the propensity functions. The time-dependent probability vector 𝑝(𝑡) 
over all states is the solution of the system of linear differential equations	 !

!"
𝑝(𝑡) = 𝐴(𝑡)𝑝(𝑡), 

where 𝐴(𝑡) is the transition rate matrix of the Markov chain. The CME was solved using the Finite 
State Projection (FSP) approach for marginal distributions.[37] All analysis codes are available at 
[GitHub Site] (This will be updated upon submission). 
 
Parameter fitting 
The full single-cell dataset consists of four independent biological replicates, each of which 
contains measurements of IL-1β and TNFa mRNA copy numbers under four different inhibitor 
conditions (No inhibitor, with MG132, with U0126, and with both MG132 and U0126) and five 
measurement time points after LPS stiumulation (0min (untreated), 30min, 1hr, 2hrs, and 4hrs). 
The ‘training’ dataset on which our CME model was parameterized consists of measurements 
made under three conditions (No inhibitor, with MG132, and with U0126). Parameters were 
estimated by minimizing the weighted sum of Kullback-Leibler divergences from the marginal 
empirical distributions of single-cell observations to those predicted by the CME model. 
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Evaluation of this likelihood requires the solutions of the CME, which were obtained using the 
Finite State Projection (FSP) algorithm.[37]  (See SI for more details). 
 
Results 
 
Inhibitor treatments reduce transcription levels of IL-1β and TNFα in THP-1 human monocytic 
leukemia cells 
The single-cell mRNA content of IL-1β and TNFα in THP-1 cells were monitored over time after 
exposure to LPS and in response to two small molecule inhibitors MG132 and U0126, both alone 
and in combination. MG132 is a selective inhibitor of the NF-kB pathway, while U0126 inhibits 
the C/EBP pathway, part of the MAPK signaling cascade. [8, 38, 39] Representative images of 
gene expression after LPS exposure in the presence and absence of small molecule inhibitors are 
shown in Figures 1 and 2 for 1 and 2 hours post exposure.  
 

 
 

Figure 1. Representative images of IL-1β and TNFα mRNA expression with and without inhibitors at 1hrs LPS exposure. Blue is 
DAPI-stained nuclei, whereas red spots are individual copies of IL1b  and green spots are individual copies of TNFa. Each image 
is ~130 by 130 µm. 
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Figure 2. Representative images of IL-1β and TNFα mRNA expression with and without inhibitors at 2 hrs LPS exposure. Images 
are LOG-filtered to emphasize single mRNA copies that appear as small diffraction limited spots in images. Blue is DAPI-stained 
nuclei, whereas red spots are individual copies of IL1b  and green spots are individual copies of TNFa. Each image is ~130 by 
130 µm. 

  
Stochastic models of individual gene expression can fit and predict the probability distribution of 
transcriptional responses to inhibitor conditions 
 

 
Figure 1.  Kinetic model of gene activation. Both TNFa and IL-1β genes can exist in one of three states (off (G0), ready (G1), or 
on (G2)). mRNA can be transcribed from both the ready and on states, but at a much faster rate from the on state. Forward and 
reverse transitions between the states occur with the indicated kinetic parameters.  The inhibitors U0126 and MG132 affect the 
transition rates between the off and ready states for the genes. Specifically, U0126 and the kinase C/EBP alter the transition from 
off to ready, while MG132 and NF-kB alter the transition from ready to off. 

 
A three-state gene expression model was developed to capture the stochastic transcriptional 
dynamics of the individual genes TNFa and IL-1β (Figure 1). Both TNFa and IL-1β genes can 
exist in one of three transcriptional states: ‘off’ (𝐺#), ‘ready’ (𝐺$), and ‘on’ (𝐺%). When the gene 

mRNA

NF-κB

0

C/EBPU0126

MG132
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is in the ‘off’ state, no transcriptional activity takes place, whereas when the gene is either ‘ready’ 
or ‘on’, transcription occurs stochastically, with the ‘on’ state having a much higher transcription 
rate. The activation of the two genes by C/EBP and NF-kB was modeled via their effects on gene-
state transition rates, either increasing the ‘off’ to ‘ready’ rate in the case of CEBP or decreasing 
the ‘ready’ to ‘off’ rate for NF-kB. Specifically, the switching rate from  𝐺$ to 𝐺# was assumed to 
depend on the time-varying abundance of NF-kB, where NF-kB  reduces the rate at which an 
already transcriptionally active gene switches off. More precisely, the time-dependent deactivation 
rate is given by 𝑘$#(𝑡) = 𝑚𝑎𝑥 /0, 𝑘$#

(') − 𝑘$#
())𝑁𝐹κ𝐵(𝑡)5, where 𝑁𝐹κ𝐵(𝑡) is the concentration of 

NF-kB, parametrized by a function of the form 
𝑁𝐹κ𝐵(𝑡) = 𝑒*+!⋅"(1 − 𝑒*+"⋅"). 

 
C/EBP was assumed to exert a constant influence on the rate of switching from 𝐺#	to 𝐺$. This 
model of NF-kB activation is in general agreement with the literature on NF-kB nuclear 
localization.[40] The expression dynamics of different genes (IL-1β, TNFα) in response to 
different treatments (No inhibitors, with MG132, U0126, or both) were described by chemical 
master equations (CMEs) with the same reactions but different kinetic rate parameters. The effects 
of inhibitors, when present, were modeled as the reductions to the influence that CEBP or NF-kB 
exerted on gene activation. The full set of chemical reactions as well as the fitted parameter values 
are presented in the SI. 
 
The single-cell mRNA distribution shapes of both IL-1β and TNFα in response to LPS (Fig. 4) are 
indicative of ‘bursting’ gene expression, characterized by most cells exhibiting lower expression 
and a long ‘tail’ of relatively rare high-expressing cells. The distributions of mRNA copies per cell 
in the presence of the small-molecule inhibitors (Figs.4(B-D) and 4(F-H)) retain their bursting 
shape (similar to the expression patterns seen with no LPS (Figs. 4A and 4E)). Based upon how 
the cell-to-cell mRNA distributions change in the presence of the drugs MG132 and U0126, we 
postulated that these drugs could modulate how NF-kB or C/EBP regulate gene expression. We 
note that kinetic parameters were determined from the measured mRNA distributions in the drug 
free and single-drug exposure time-course experiments (Table 1). These parameters then were used 
to predict the combined drug condition (without any additional fitting of the data), yielding a good 
approximation of the measured mRNA distributions (Supplementary Figures 1 and 2).  
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Figure 2. Distributions for single-cell mRNA content. (A-D) Probability distribution (data represented as bars, model 
fits/predictions as solid lines) for number of IL-1β copies per cell with: (A) 2hr LPS exposure with no inhibitor treatment, (B) 2hr 
LPS exposure with MG132, (C) 2hr LPS exposure with U0126, and (D) 2hr LPS exposure with U0126 and MG132 combined. (E-
H) same as (A-D), but for TNFα. For reference, each panel shows the corresponding mRNA distribution at 2hr LPS exposure with 
no inhibitor treatment (data in grey, model in black). A-C and E-H show the model fits to data with no inhibitors or a single 
inhibitor, and D,H show the validation of model predictions for the two inhibitor combination. 

 
Figure 3. Mean mRNA copies per cell with and without inhibitors over 4hrs of LPS exposure (timepoints 0min, 30min, 1hr, 2hr, 
and 4hr) estimated from four independent biological replicates per inhibitor condition (markers) and model fits based on the single-
gene models (solid and dashed lines).  
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The mean measured mRNA expression from 0 to 240 min post LPS exposure (as well as model 
predictions) are plotted in Figure 3. In the absence of inhibitors, the cells show a rapid increase in 
both IL-1β and TNFα mRNA content following introduction of LPS, with expression peaking at 
~325 mRNA copies per cell at 2 hrs and ~200 mRNA copies per cell at 1 hr, respectively. In the 
presence of inhibitors, we see that IL-1β expression is inhibited by both U0126 and MG132, but 
with different kinetic trajectories. MG132 treatment dampens IL-1β expression with maximum 
expression at ~140 mRNA copies per cell at 1 hr. In contrast, U0126 strongly inhibits IL-1β 
expression at early time points (0-30 min), but is less effective at later time points, with maximal 
expression at 200 mRNA copies per cell after 120 min. The combination of the two inhibitors 
results in low expression of IL-1β across all time points, with <50 mRNA copies per cell. For 
TNFα, MG132 markedly reduces expression from ~200 mRNA copies per cell to <50 mRNA 
copies per cell at 60 min. Interestingly, U0126 shows very little inhibition of TNFα when used 
alone. Addition of both inhibitors led to low expression of TNFα, similar to MG132 treatment 
alone.  
 

 
Table 1 Fitted parameters for the single-gene models. interpreted as average per second rates of the chemical reactions. These 
are obtained by fitting the model-predicted distributions of RNA copy number to data collected under three inhibitor conditions 

(no inhibitors, MG132, and U0126). 
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Figure 4. Coupled kinetic model of gene activation. The combined state of TNF-a and IL-1β genes can be in one of three states 
(G0, G1, or G2). Transcription is activated at different levels on the G1 and G2, while G0 assumes a low basal transcription activity. 
Forward and reverse transitions between the states occur with the indicated kinetic parameters.  The inhibitors U0126 and MG132 
affect the transition rates between the off and ready states for the genes. Specifically, U0126 and the kinase C/EBP alter the 
transition from off to ready, while MG132 and NF-kB alter the transition from ready to off. 

A coupled stochastic transcription model can fit and predict the simultaneous response of both 
TNFa and IL-1β genes to inhibitor conditions 
 
While the single-gene model introduced in the previous section can accurately reproduce the 
marginal distributions for the number of TNFa or IL-1β transcripts per cell (Figs. 4 and 5), these 
independent models cannot explain the observed correlation between the two mRNA species (See 
Fig. 8 and Supplementary Fig. S3 for plots of the joint gene distributions). Therefore, we sought 
an equally simple, but coupled model to capture the joint response of both genes (model shown 
schematically in Figure 4). Inspired by the strong similarity in parameters (Table 1) for the models 
when fit to the marginal distributions, as well as strong correlations in the TNFa and IL-1β single-
cell data, we hypothesized a coupled-gene model that assumes that cells switch stochastically 
between three cellular states, 𝐺#, 𝐺$, and 𝐺%, which control the activity of both genes 
simultaneously. Specifically, 𝐺# denotes a joint state in which both genes are at low basal 
transcription rates, while the 𝐺$, and 𝐺%	allow RNA molecules to be transcribed from both genes 
simultaneously, albeit at different rates. Similar to the single-gene model, we modeled inhibitor 
effects in terms of their modulation of the rate by which the cells switch between the 𝐺# and 𝐺$ 
states. Upon preliminary fitting of the individual and joint first and second statistical moments, we 
found that the coupled model could simultaneously capture the mean responses of both genes and 
also explain the observed positive covariance between the two genes. 
 
We next fit the coupled-gene model to the observed mRNA histograms of both genes at all five 
different time points, either without inhibitors or with single inhibitors (MG132 or U0126). We 
then combined the parameters from these fits to predict the response to the tandem inhibitor 
condition (both MG132 and U0126). The predicted results for the means and second-order 
summary statistics are plotted in Figure 5, and the model predictions for the joint distribution of 

NF-κB
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0

0
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MG132
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IL-1β and TNFα mRNA copy numbers are plotted in Figure 6. It is somewhat surprising that the 
model parameters, which were obtained by matching only the marginal distributions of individual 
mRNA species, yield relatively good predictions for the joint response under different treatments.  
 
Table 2 shows the best-fit parameters upon constraining the model to simultaneously match the 
marginal distributions of TNFα and IL-1β. In the context of the reaction network model (Figure 
4), these parameters allow us to propose several potential mechanisms for the observed gene 
regulation dynamics. First, in the absence of NF-kB, the average rate for the cell to escape the 
basal state (𝑘#$) is over 33 times smaller than the average rate to revert back into inactivation 
(𝑘$#

(')) or either of the transition rates between states G1 and G2. This means that over the long 
timespan prior to LPS stimulation, cells are most likely to be in the inactive G0 state. However, 
with an average burst refractory period of 1/𝑘#$' ≈ 909	seconds, there are occasional bursts of 
transcripts for both TNFα and IL-1β in a given cell. The majority of these bursts only last for an 
average burst duration of about 1/𝑘$#' ≈ 29 seconds. Although the average burst refractory period 
and duration are the same for both genes, the basal transcription rate of IL-1β is several orders of 
magnitude higher than TNFα, which accounts in part for the steady state difference in mean 
expression between the two genes. This effect is amplified by the fact that IL-1β mRNA (model-
estimated half life of 247 minutes) degrades approximately five times slower on average than do 
TNFα mRNA (model-estimated half-life of 49 minutes).  
 
Upon LPS stimulation, the model suggests that a pulse of NF-kB temporarily decreases the 𝑘$# 
rate to zero for approximately τNF-κB = 46 minutes (or approximately 0.65 burst refractory 
periods). This period of time is sufficient for a fraction of approximately 1 − exp(−𝑘#$ ×
τNFκB) ≈ 0.95 of inactive cells to reach the active state. The effect of this NF-kB signal pulse 
substantially disrupts the equilibrium between the G0 and G1 states and also allows the cells to 
spend a much longer time in the activated G1 state with a far greater probability to continue on into 
the G2 state. Figure 7 illustrates the expected cell state versus time after addition of the LPS 
stimulation. According to the model, the cell activation states are relatively short lived, lasting 
only a little longer than the NF-kB signal pulse itself. However, despite the short-lived activation 
of the cells, the relatively slow degradation rates for the two mRNA species assures that mRNA 
transcripts persist for much longer than either the activating signal or the cell activation states. The 
difference in the degradation rates between the two mRNA species then contributes to a higher 
peak and slower decay in the mean response of IL-1β in comparison to TNFα, as seen in Figure 5 
(panels A and B). 
 
The coupled-gene model also helps to explain the transcription response after treatment with the 
two anti-inflammatory drugs.  When MG132 is added, the effect of the NF-kB signal is 
substantially reduced. As a consequence, the burst refractory period of the cells is the same, but 
activated cells switch off relatively rapidly, as compared to the drug-free LPS response, with the 
deactivation rate 𝑘$#(𝑡) returning to its full strength after only about 20 minutes (a little less than 
half of the 46 minutes estimated for the untreated cells). This reduction in the NF-kB signal results 
in substantially fewer mRNA molecules being produced for either gene. The inhibitor U0126, on 
the other hand, increases the burst refractory period by a factor of 1.3, which also results in a 
slightly higher chance that the cell will not activate during the short period of elevated NF-kB and 
will therefore produce no mRNA. The combined effects of both drugs then deflate the production 
rate of mRNA further, resulting in almost no difference in the mean copy numbers of both mRNA 
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species before and after LPS addition (Figure 5, green dotted lines). Figure 7 illustrates the effect 
of inhibitors on the combined gene states, where the presence of inhibitors reduces the average 
cell state index, increasing the chance that the cell is in the inactive state. 
 

 

Table 2. Fitted parameters for the coupled-gene models (cf. Figure 4), interpreted as average per second rates of the chemical 
reactions. These are obtained by fitting the model-predicted marginal distributions of both RNA species to data collected under 
three inhibitor conditions (no inhibitors, MG132, and U0126). 

 
 
Figure 5. Coupled-gene model fits for the joint summary statistics of IL-1β and TNFα. (A-B): Mean mRNA copies per cell with and 
without inhibitors over 4hrs of LPS exposure (timepoints 0min, 30min, 1hr, 2hr and 4hr) measured from four biological replicates 
(markers) and predictions from the coupled-gene model (lines). (C-E): The time-dependent second-order summary statistics of IL-
1β and TNFα predicted by the coupled-gene model (lines) versus sampled measurements from four biological replicas(markers). 
These include the time history of IL-1β standard-deviation (C), TNFα standard deviation D), and square root of IL-1β--TNFα 
covariance (E).  
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Figure 6 Joint transcriptional response of IL-1β and TNFα without inhibitors (top row) and with combined inhibitors (bottom 
row) at measurement times 0 hr (left) and 2 hr after LPS addition (right). The model predicted joint distribution of the mRNA 
species is represented by the heatmap and with annotated contours at three levels 10-5, 10-6, and 10-7 . The data points from all 
biological replicates are represented as red dots. 

 

Figure 7. The downstream influence of NF-kB. (A): Signal strength of NFkB in the nucleus in arbitrary units (AU). (B): The time-
varying rates for switching off transcription activities, under four different inhibitor conditions (No inhibitors, MG132, U0126, 
both MG132 and U0126). (C): Plot of mean cell state under four different inhibitor conditions (No inhibitors, MG132, U0126, 
both MG132 and U0126). The average cell state is defined by the mathematical expression 0 × 𝑃(cell	state = 𝐶!) +
1 × 𝑃(cell	state = 𝐶") + 2 × 𝑃(cell	state = 𝐶#). (D): Plot of mean total mRNA copy number under four different inhibitor 
conditions (No inhibitors, MG132, U0126, both MG132 and U0126). 
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Discussion 
 
Single-cell measurements allow for a more complete description and characterization of gene 
expression kinetics and regulatiory mechansims. Applying single-cell measurement techniques, 
we have demonstrated that gene transcription heterogeneity of two key immune response genes, 
IL-1β and TNFα, occurs to a surprising extent within a seemingly uniform cell population 
following an immune assault. Such measurements of cell-to-cell distribution can be more 
informative than average values obtained from bulk measurements. For example, cells in the tail 
of the distribution may ultimately dictate the fate of disease progression rather than the average 
response, such as in the case of  highly stimulated cells that lead to a cytokine storm. This is 
analogous to understanding how certain individuals (such as super-spreaders) may dictate the 
pathway of an epidemic more than average R0 values.[41] Here we show that IL-1β and TNFα 
genes, while upregulated upon bacterial LPS exposure, can be suppressed at the transcriptional 
level by the inhibitors MG132 and U0126.  Interestingly, each of these inhibitors has a different 
kinetic effect. U0126 inhibits early IL-1β expression, while MG132 causes a delayed inhibition 
pattern,  suggesting that C/EBP signaling occurs prior to NF-κB activity, in response to LPS (see 
Figure 1). Additionally, we show that TNFα is predominantly and rapidly inhibited by MG132 
treatment, suggesting that NF-κB is the primary upstream regulator of TNFα expression in 
response to LPS. 
 
To describe these results, we have presented herein a regulatory model for IL-1β and TNFα in 
THP-1 immune cells.  We found the time-course of the cell-to-cell distribution of transcript copy 
numbers for Il-1b and TNFa could be adequately represented by a stochastic model having three 
states for gene transcription. Moreover, the effects of anti-inflammatory drugs MG132 and U0126 
on the mRNA copy numbers of these two genes could be captured with this three state model. 
While the kinetic model was fit to data for each drug acting independently, this model was able to 
predict the data well for the combined drug treatment. Our results suggest that a better mechanistic 
understanding of inhibitor activity on pro-inflammatory cytokines based on single-cell 
measurements can eventually lead to more effective combination therapies against chronic and 
acute inflammatory diseases. 
 
While beyond the scope of the current efforts, our results hold open the possibility of predictive 
kinetic modeling for combination therapies. We note that while there are possible ways to extend 
the model proposed in this study to describe the joint expression of both IL-1β and TNFα, the large 
state space required to analyze the joint expression of more than two mRNA species, coupled with 
the complexity of integrating time-varying kinase signals, poses a prohibitive challenge for current 
computational tools. Advances in high performance FSP-based inference methods (e.g., [42]) may 
potentially allow us to tackle the joint modeling approach in future work. Overall, this study 
emphasizes the need for further use of single-cell measurements to understand gene responses in 
order to identify outlier cells and capture full distributions.[43] Single-cell gene expression 
measurements combined with the appropriate model could provide otherwise overlooked insights 
into the kinetics, spatial distribution, and regulatory mechanisms of any number of genes.  
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