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Abstract 14 

IL-1β and TNF-α are canonical immune response mediators that play key regulatory roles in a 15 

wide range of inflammatory responses to both chronic and acute conditions. Here we employ an 16 

automated microscopy platform for the analysis of messenger RNA (mRNA) expression of  IL-1β 17 

and TNF-α at the single-cell level. The amount of IL-1β and TNF-α mRNA expressed in a human 18 

monocytic leukemia cell line (THP-1) is visualized and counted using single-molecule fluorescent 19 

in-situ hybridization (smFISH) following exposure of the cells to lipopolysaccharide (LPS), an 20 

outer-membrane component of Gram-negative bacteria. We show that the small molecule 21 

inhibitors MG132 (a 26S proteasome inhibitor used to block NF-κB signaling) and U0126 (a 22 

MAPK Kinase inhibitor used to block CCAAT-enhancer-binding proteins C/EBP) successfully 23 

block IL-1β and TNF-α mRNA expression. Based upon this single-cell mRNA expression data, 24 

we screened 36 different mathematical models of gene expression, and found two similar models 25 

that capture the effects by which the drugs U0126 and MG132 affect the rates at which the genes 26 

transition into highly activated states. When their parameters were informed by the action of each 27 

drug independently, both models were able to predict the effects of the combined drug treatment. 28 

From our data and models, we postulate that IL-1β is activated by both NF-κB and C/EBP, while 29 

TNF-α is predominantly activated by NF-κB. Our combined single-cell experimental modeling 30 

efforts shows the interconnection between these two genes and demonstrates how the single-cell 31 

responses, including the distribution shapes, mean expression, and kinetics of gene expression, 32 

change with inhibition. 33 

 34 

Introduction 35 

 36 

Inflammation is a complex biological process that enables the host immune system to counteract 37 

potential biothreats. In the inflammatory response, select host receptors react to detrimental stimuli 38 

(e.g., pathogens, allergens, toxins, or damaged host cells), which activate various intracellular 39 

signaling pathways to secrete cytokines that trigger active recruitment of immune cells to the site 40 
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of insult/infection.[1] While inflammation is usually beneficial to the host organism when fighting 41 

an infection, there is also a wide range of both chronic and acute conditions where remediation of 42 

inflammation is necessary for host recovery. For example, in certain viral infections, over-43 

expression of inflammatory cytokines throughout the course of disease progression can lead to a 44 

potentially fatal cytokine storm that may be more harmful to the host than the underlying 45 

infection.[2] In addition to acute conditions, chronic inflammatory conditions, including  46 

rheumatoid arthritis, diabetes, [3] or persistent pain, can be caused by high concentrations of pro-47 

inflammatory cytokines, such as Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNF-α).  48 

 49 

There are several drugs and medications used to limit or dampen the inflammatory response. The 50 

best known of these, non-steroidal anti-inflammatory drugs (NSAIDs), work by inhibiting the 51 

activity of cyclooxygenase enzymes (COX-1 and COX-2), which are important for the synthesis 52 

of key biological mediators and blood clotting agents.[4] Other drugs may act to inhibit key 53 

proteins involved in immune response signaling, such as kinase inhibitors or proteasome 54 

inhibitors. For kinase and proteasome inhibitors, these compounds are generally discovered first 55 

through binding assays, then studied in vitro by activity assays.[5-8] Cellular assays that monitor 56 

the effects of drugs in a more complicated environment generally follow such in vitro studies.[9] 57 

In a cellular assay, the effects of a drug can be studied by monitoring the level of inhibition of the 58 

target of interest, or may be studied by monitoring changes in a downstream signaling pathway. 59 

The role drugs play in dampening mRNA expression can be measured by quantitative PCR of the 60 

mRNA[10], through DNA microarrays[11], or by RNA sequencing.[12] While informative, most 61 

of these methods explore the response of large, ensemble populations of cells.  62 

 63 

In contrast to traditional measurements of gene expression collected as bulk averages from large 64 

numbers of individual cells, single-cell techniques have revealed surprisingly rich levels of 65 

heterogeneity of gene expression.[13-16] When coupled with appropriate models, these 66 

distributions of single-cell gene expression can reveal fundamental information on expression 67 

kinetics and gene regulatory mechanisms, which is otherwise lost in the bulk measurements. [17, 68 

18]  Methods to measure gene expression in single cells generally rely on either amplification or 69 

imaging techniques. There are tradeoffs between the two techniques. Amplification-based 70 

methods, such as sequencing and PCR, provide high gene depth (tens-to-hundreds of genes can be 71 

analyzed) but can be expensive, generally analyze a small number of individual cells, and obscures 72 

spatial information.[19-23] Imaging methods generally utilize fluorescent oligonucleotide probes 73 

complementary to the RNA sequences of interest and include techniques such as single-molecule 74 

fluorescence in situ hybridization (smFISH)[16, 24, 25] and multiplexed barcode labeling 75 

methods.[26-28] Though fewer genes can be analyzed at one time, smFISH is relatively low cost, 76 

yields single-molecule resolution without the need for nucleic acid amplification, can readily 77 

measure several hundreds to thousands of individual cells, and directly visualizes the spatial 78 

location of each RNA copy.   79 

 80 

There have been several studies that exploit single-cell methods in conjunction with single-cell 81 

modeling to study host inflammatory responses. For example, fluorescence flow cytometry was 82 

used to study the population switching between effector and regulatory T cells and to develop a 83 

computational model describing this dynamic behavior.[29] Application of single-cell RNA 84 

sequencing methods led to discovery of bimodal expression patterns and splicing in mouse 85 

immune cells.[30] Another study integrated live cell imaging and mathematical modeling to 86 

understand the ‘analog’ NF-κ response of cell populations under ‘digital’ single-cell signal 87 
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activation.[31] Additionally, a model of JAK1-STAT3 signaling was constructed following cell 88 

treatment by a JAK inhibitor with validation by wide field fluorescence microscopy.[32] In order 89 

to visualize single-cell immune responses, our lab previously used smFISH to monitor the single-90 

cell mRNA expression of two cytokines, IL-1 and TNF-α  in a human monocytic leukemia cell 91 

line, THP-1, in response to lipopolysaccharide (LPS), a primary component of cell walls in Gram 92 

negative bacteria.[33] This work found a broad cell-to-cell heterogeneity in immune cell response 93 

to LPS. 94 

 95 

Here, we exploit single-cell imaging and modeling methods to visualize and understand the broad 96 

distribution of mRNA responses to LPS stimulation in THP-1 immune cells. Moreover, these 97 

models were used to describe the effects of specific inflammatory inhibitors on the host immune 98 

response. The drugs employed, MG132, a 26S proteasome inhibitor used to block NF-κB 99 

signaling[8], and U0126, a MAPK kinase inhibitor known to block CCAAT-enhancer-binding 100 

proteins C/EBP[34], were selected for their differing roles in dampening the inflammatory 101 

response mediated by two key inflammatory cytokines: IL-1 and TNF-. Our results show that 102 

MG132 inhibits both IL-1β and TNF-α mRNA expression, while U0126 primarily inhibits IL-1β 103 

expression. Models derived for the action of each drug independently can also accurately predict 104 

the behavior of the drug effects when applied in tandem. These results and models support the 105 

current biological understanding that  IL-1β expression is activated by both NF-κB and C/EBP 106 

signaling pathways while TNF-α is predominantly activated by NF-κB. Notably, we observe that 107 

models developed to describe the effect single drugs can accurately predict the effect of drug 108 

combinations, paving the way for predictive computational analyses of combination drug 109 

therapies.  110 

 111 

Methods 112 

Microscopy and Image Analysis 113 

A fully automated microscopy and image analysis routine was used to count and measure single-114 

mRNA molecules as previously described.[33] In brief, a conventional wide-field microscope 115 

(Olympus IX71), arc lamp (Olympus U-RFL-T), high NA objective (Olympus 1.49 NA, 100X),  116 

2D stage (Thorlabs BSC102), Z sectioning piezo (Physik Instrumente, PI-721.20) and cMOS 117 

camera (Hamamatsu orca-flash 4.0) are used to image single-cell mRNA content. Following image 118 

acquisition, a custom MATLAB script is used to: 1) automatically find and segment each 119 

individual cell based upon the bright-field cell image, the nuclear stain (DAPI), and the smFISH 120 

channel, 2) filter and threshold using a Laplacian-of-Gaussian filter (LOG) to find the single-121 

mRNA copies, 3) fit all of the mRNA ‘spots’ to a 2D Gaussian using a GPU-accelerated algorithm, 122 

and 4) assign and count all single mRNA copies within each cell. Single-cell distributions are 123 

characterized by both their shapes and their mean values. 124 

 125 

Cell Culture 126 

Human monocytic leukemia cells (THP-1, ATCC) were cultured in a humidified incubator with 127 

5% CO2 at 37°C in R10% medium: RPMI-1640 Medium (with glutamine, no phenol red, Gibco) 128 

supplemented with 10% fetal bovine serum (FBS, ATCC).  Cells were passaged every 5-7 days 129 

and used for experiments from age 60-120 days. 130 

 131 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2020.10.16.342576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Slide Preparation 132 

Chambered cover-glass slides (#1.0 borosilicate glass, 8 wells, Lab-Tek) were coated with a sterile 133 

bovine fibronectin solution (1g/well, Sigma, diluted in PBS, Gibco) overnight at 4°C.  105 THP-134 

1 cells/well were seeded onto fibronectin-coated slides for differentiation with R10% medium 135 

containing 100nM PMA (phorbol 12-myristate 13-acetate, Sigma) for 48hrs at 37°C.  After 136 

differentiation, cells were serum-starved in serum-free RPMI-1640 Medium (no FBS) for 2hrs at 137 

37°C. Cells were pre-treated with inhibitors (MG132, or U0126, or both) for 1hr at 37°C (10M 138 

each in serum-free RPMI-1640 medium, 200L/well). Untreated wells were kept in serum-free 139 

RPMI-1640 medium for 1hr at 37°C. Cells were then stimulated with a cocktail of 500g/mL 140 

lipopolysaccharide (LPS, isolated from E.coli O55:B5, Sigma) and 10M inhibitors (MG132, or 141 

U0126, or both) in R10% medium (200L/well) for 30min, 1hr, 2hrs, or 4hrs at 37°C.  Cells were 142 

washed in PBS and fixed in paraformaldehyde (4% solution in PBS (v/v), Alfa Aesar) for 15min 143 

at room temperature.  Unstimulated cells were washed and fixed at t=0hrs immediately after 1hr 144 

inhibitor pre-treatment.  After fixation, cells were washed twice in PBS, then permeabilized in 145 

70% ethanol in RNase-free distilled water (v/v) (ThermoFisher) for at least 1hr (or up to 24 hrs) 146 

at 4°C.  Cells were then washed in RNA FISH Wash Buffer A (Stellaris) for 20min at room 147 

temperature before RNA smFISH staining for mRNA.  148 

 149 

smFISH Staining for mRNA 150 

Cells were stained with custom-designed RNA FISH probes (Stellaris) for IL-1β and TNF-α 151 

mRNA.  Probes were diluted to 100nM each in RNA FISH Hybridization Buffer (Stellaris) 152 

containing 10% formamide (v/v) (ThermoFisher), then incubated on the fixed and permeabilized  153 

cells using 100L/well for 4hrs at 37°C.  Staining conditions were made in duplicate on each slide.  154 

Following probe hybridization, cells were washed three times in RNA FISH Wash Buffer A for 155 

30min each time at 37°C, stained for 20min at 37°C with 100ng/mL DAPI solution (Life 156 

Technologies) in RNA FISH Wash Buffer A for 20min at 37°C, and washed in RNA FISH Wash 157 

Buffer B (Stellaris) for 20min at room temperature.  Cells were washed once in PBS and stored in 158 

200L/well SlowFade Gold Anti-Fade Mountant (Life Technologies) diluted 4x in PBS for up to 159 

7 days at 4°C. Unless otherwise specified, all steps were performed at room temperature, 160 

incubations were performed using 250L/well, and washes were performed using 500L/well. 161 

 162 

Stochastic reaction networks for modeling gene expression dynamics 163 

The time-varying distributions of mRNA copy numbers observed from smFISH experiments are 164 

modeled in the framework of the chemical master equation (CME).[35, 36] This analysis proposes 165 

a continuous-time Markov chain in which each discrete state corresponds to a vector of integers 166 

that represents the copy number for each chemical species. In particular, we propose and compare 167 

different gene activation mechanisms with either two or three gene states and different ways in 168 

which the signal affects the gene activation/deactivation rates (see SI for details). 169 

 170 

The probabilistic rate of a reaction event is determined through the propensity functions. The time-171 

dependent probability vector 𝑝(𝑡) over all states is the solution of the system of linear differential 172 

equations 
𝑑

𝑑𝑡
𝑝(𝑡) = 𝐴(𝑡)𝑝(𝑡), where 𝐴(𝑡) is the transition rate matrix of the Markov chain. The 173 

CME was solved using the Finite State Projection (FSP) approach for marginal distributions.[37] 174 

All analysis codes are available at https://github.com/MunskyGroup/Kalb_Vo_2021. 175 

 176 
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Conditionally independent models for simultaneous expression of multiple genes and in 177 

variable environmental conditions 178 

The stochastic reaction network model above allows us to model the time-varying mRNA 179 

distribution for a single gene in a single experimental condition. However, our data comes with 180 

multiple genes and inhibitor treatment conditions, which necessitates a model to explain the joint 181 

mRNA count distribution of both IL-1β and TNF-α simultaneously. To do so, we make the 182 

assumption that the random variables describing IL-1β and TNF-α mRNA counts are conditionally 183 

independent, given a shared dependence on the same upstream time-varying NF dynamics. 184 

These downstream gene expression variables are otherwise independent from each other, and can 185 

then be described by separated reaction networks that are coupled only by time, specific 186 

experiment condition, and the choice of parameters for the NF reaction rates and the inhibitor 187 

effects. See SI for the precise mathematical description of this model. 188 

 189 

Parameter fitting 190 

The full single-cell dataset consists of four independent biological replicates, each of which 191 

contains measurements of IL-1β and TNF-α mRNA copy numbers under four different inhibitor 192 

conditions (No inhibitor, with MG132, with U0126, and with both MG132 and U0126) and five 193 

measurement time points after LPS stimulation (0min (untreated), 30min, 1hr, 2hrs, and 4hrs). The 194 

‘training’ dataset on which our CME model was parameterized consists of measurements made 195 

under three conditions (No inhibitor, with MG132, and with U0126). Parameters were estimated 196 

by minimizing the weighted sum of Kullback-Leibler divergences from the marginal empirical 197 

distributions of single-cell observations to those predicted by the CME model, which is equivalent 198 

to the log-likelihood of the observed joint distributions given the conditionally-independent model 199 

described in the previous section (See Section 3c in Supplementary Information). Evaluation of 200 

this likelihood requires the solutions of the CME, which were obtained using the Finite State 201 

Projection (FSP) algorithm.[37]  (See SI for more details). 202 

 203 

Model evaluation and selection 204 

We use a combination of statistical criteria to compare how well the different proposed 205 

mechanisms fit the ‘training’ data. These include the fit log-likelihood and the Bayesian 206 

Information Criteria (BIC, see Supplementary Information). In addition, we also compare the 207 

predictive performance of these alternative models using the log-likelihood of the dataset under 208 

the combined treatment that has both MG132 and U0126, which were not used for fitting the 209 

models. 210 

Results 211 

 212 

Inhibitor treatments reduce transcription levels of IL-1β and TNF-α in THP-1 human 213 

monocytic leukemia cells 214 

The single-cell mRNA content of IL-1β and TNF-α in THP-1 cells were monitored over time after 215 

exposure to LPS and in response to two small molecule inhibitors MG132 and U0126, both alone 216 

and in combination. MG132 is a selective inhibitor of the NF-B pathway, while U0126 inhibits 217 

the C/EBP pathway, part of the MAPK signaling cascade. [8, 38, 39] Representative images of 218 

gene expression after LPS exposure in the presence and absence of small molecule inhibitors are 219 

shown in Figures 1 and 2 for 1 and 2 hours post exposure.  220 
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 221 
 222 
Figure 1. Representative images of IL-1β and TNF-α mRNA expression with and without inhibitors at 2 hrs LPS exposure. Images 223 
are LOG-filtered to emphasize single mRNA copies that appear as small diffraction limited spots in images. Blue is DAPI-stained 224 
nuclei, whereas red spots are individual copies of IL-1  and green spots are individual copies of TNF-α. Each image is ~130 by 225 
130 m. 226 

 227 

 228 
Figure 2. Representative images of IL-1β and TNF-α mRNA expression with and without inhibitors at 2 hrs LPS exposure. Images 229 
are LOG-filtered to emphasize single mRNA copies that appear as small diffraction limited spots in images. Blue is DAPI-stained 230 
nuclei, whereas red spots are individual copies of IL-1  and green spots are individual copies of TNF-α. Each image is ~130 by 231 
130 m. 232 
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  233 

IL-1β and TNF-α  transcriptional responses to inhibitor conditions can be explained and 234 

predicted by signal-activated, multiple-state, stochastic bursting mechanisms 235 

 236 

 237 
Figure 3. Signal-activated two- and three-state gene expression models considered for fitting the observed mRNA distributions. 238 
(A): Schematic diagrams of the six mechanisms considered. These models differ in the number of gene states and the mechanism 239 
by which NF-B increases the probability of transcription, either by increasing the rate of gene activation or inhibiting the rate of 240 
gene deactivation. (B): Performance evaluation of these models in terms of the Bayesian Information Criterion (BIC) based on IL-241 
1β expression data and TNF-α expression data without inhibitor. 242 

 243 

 244 

A class of several different two-state and three-state gene expression models were hypothesized to 245 

capture the stochastic transcriptional dynamics of the individual genes TNF-α and IL-1β (see 246 

Figure 3 for the schematics of these models). This class of model topologies has been used 247 

successfully in other works that examine MAPK-induced gene expression in single-cells.[40, 41] 248 

Here we present the interpretation of model ‘3SA’ in Figure 3 as an example (see Supplementary 249 

Information for the full list of reactions and parameters). In this model, each gene can exist in one 250 

of three transcriptional states: 𝐺0, 𝐺1, or 𝐺2. The biological interpretation of these states depends 251 

upon the specific parameter values chosen for the state’s transcription rate. For example, when the 252 

transcription rate in 𝐺0 is set to zero, then that could be thought of as an ‘off’ state; when the 253 

transcription rate in 𝐺2 is large, then that can be thought of as an ‘on’ state; and when the 254 

transcription in 𝐺1 takes an intermediate value, it could be described as a `ready’ or `poised’ state. 255 

The activation of each gene by C/EBP and NF-B signals was modeled via time-dependent effects 256 

on gene-state transition rates. Specifically, for the model shown in Figure 3, the switching rate 257 

from 𝐺0 to 𝐺1 was assumed to depend on the time-varying abundance of NF-, where NF- 258 

increases the rate at which an ‘off’ gene switches to ‘ready’. More precisely, the time-dependent 259 

deactivation rate is given by 𝑘01(𝑡) = 𝑘01 + 𝑏01[𝑁𝐹 − κ𝐵](𝑡), where 𝑘01 is the basal gene 260 

activation rate and [𝑁𝐹 − κ𝐵](𝑡) is the concentration of NF-, parametrized by a function of the 261 

form 262 
[𝑁𝐹 − κ𝐵](𝑡) = 𝑒−𝑟1⋅𝑡(1 − 𝑒−𝑟2⋅𝑡). 263 
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This model of NF- activation is in general agreement with the literature on NF- nuclear 264 

localization.[42] C/EBP was assumed to exert a constant influence on the rate of switching from 265 

𝐺0 to 𝐺1. The expression dynamics of different genes (IL-1β, TNF-α) in response to different 266 

treatments (No inhibitors, with MG132, U0126, or both) were described by chemical master 267 

equations (CMEs) with the same reactions but different kinetic rate parameters. The effects of 268 

inhibitors, when present, were modeled as the reductions to the influence that C/EBP or NF- 269 

exerted on gene activation.  270 

 271 

We first attempt to independently fit the six gene expression models to the observed distributions 272 

of IL-1β and TNF-α, each individually under the inhibitor-free condition. Evaluating these fits 273 

using the Bayesian Information Criterion (BIC), we found that three of the different three-state 274 

models outperform all variants of the two-state models for both genes. From this comparison, we 275 

select these three variants of the three-state models and then extend them to postulate nine different 276 

model combinations (see Supplementary Figure 3), and we fit each of these models simultaneously 277 

to the mRNA distributions of both genes across all five time points and three experimental 278 

conditions (the remaining 27 combinatorial models that could have been constructed using one or 279 

more of the discarded models from above are ignored at this stage, although the effect of choice 280 

will be evaluated later). Specifically, we use the experimental data collected under inhibitor-free, 281 

MG132, and U0126 treatments to calibrate the parameters of all models. The full set of chemical 282 

reactions, as well as the fitted parameter values, are presented in the Supplementary Information. 283 

We then use the data under combined treatment (with both MG132 and U0126) as a testing dataset 284 

to see how well each of the fitted models predicts mRNA distributions under this experimental 285 

condition. The two models that yield the largest sum of the fit log-likelihood (computed on the 286 

training dataset under no or single inhibitor treatment) and the test log-likelihood (computed on 287 

the testing dataset under combined inhibitor treatment) are selected and illustrated in Figure 4. We 288 

confirm that these two models continue to provide good fits to the wildtype IL-1β and TNF-α  289 

expression data even when fitted simultaneously to both genes in all three conditions 290 

(Supplementary Figure 4). Moreover, since the final models continue to outperform the three 291 

previously discarded single-gene models for both genes in the drug-free condition, we are assured 292 

that these final models must also outperform all 27 of the discarded two-gene combinatorial 293 

models to match the drug-free data. 294 

In the two combinatorial models selected (Figure 4), both mRNA species are transcribed via bursty 295 

mechanisms with three gene states. Both models suggest an identical gene expression mechanism 296 

for TNF-α, but provide different explanations for the expression of IL-1β. Specifically, they differ 297 

in how the effects of NF- signal on IL-1β gene activation are explained. The first combinatorial 298 

model (CM1) postulates that the presence of NF- enhances the transition rate for IL-1β from 𝐺1 299 

to 𝐺2 by an additive term proportional to NF- concentration in the nucleus. On the other hand, 300 

the second combinatorial model (CM2) postulates that the same signal inhibits the deactivation 301 

rate of IL-1β for transiting from 𝐺1 to 𝐺0. In either case, the activity of NF- leads to a greater 302 

chance that the gene moves from the ‘off’ state and through the ‘ready’ state to reach the ‘on’ state. 303 

 304 

Figure 5 shows the single-cell mRNA distribution shapes of both IL-1β and TNF-α in response to 305 

LPS as well as the best combined model fit to these data, and Supplementary Figures 6 and 7 show 306 

expanded results for the fits of both genes in all time points and conditions. For both genes, the 307 

data are indicative of ‘bursting’ gene expression, characterized by most cells exhibiting lower 308 

expression and a long ‘tail’ of relatively rare high-expressing cells. The distributions of mRNA 309 

copies per cell in the presence of the small-molecule inhibitors (Figure 5(B-D) and Figure 5(F-H)) 310 
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 9 

retain their bursting shape (similar to the expression patterns seen with no LPS (Figure 5A and 311 

Figure 5E)). Based upon how the cell-to-cell mRNA distributions change in the presence of the 312 

drugs MG132 and U0126, we postulated that these drugs could modulate how NF- or C/EBP 313 

regulate gene expression. We note that kinetic parameters were determined from the measured 314 

mRNA distributions in the drug free and single-drug exposure time-course experiments (Table 1). 315 

These parameters then were used to predict the combined drug condition (without any additional 316 

fitting of the data), yielding a good approximation of the measured mRNA distributions (Figure 5 317 

D,H and bottom rows of Supplementary Figures 6 and 7).  318 

 319 

 320 
Figure 4. Two combinations of three-state gene expression models to simultaneously fit and predict the mRNA distributions 321 
transcribed from both IL-1β and TNF-. These models are selected from a set of nine different combinations that can potentially 322 
explain the observed mRNA distributions in the experiment. In the first combined model (CM1), NF- enhances the transition 323 
rate from 𝐺1 to 𝐺2 for the gene IL-1β. In the second model (CM2), NF- inhibits the deactivation rate for IL-1β to switch from 324 
𝐺1 to 𝐺0. 325 

 326 

CM1 CM2
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 327 
 328 

Figure 5. Distributions for single-cell mRNA content. (A-D) Probability distribution (data represented as bars, model 329 
fits/predictions as solid lines) for number of IL-1β copies per cell with: (A) 2hr LPS exposure with no inhibitor treatment, (B) 2hr 330 
LPS exposure with MG132, (C) 2hr LPS exposure with U0126, and (D) 2hr LPS exposure with U0126 and MG132 combined. (E-331 
H) same as (A-D), but for TNF-α. For reference, each panel shows the corresponding mRNA distribution at 2hr LPS exposure with 332 
no inhibitor treatment (data in grey, model in black). A-C and E-H show the model fits to data with no inhibitors or a single 333 
inhibitor, and D,H show the validation of model predictions for the two inhibitor combination. 334 
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 335 
 336 

Figure 6. Mean and standard deviation of mRNA copy numbers per cell with and without inhibitors over 4hrs of LPS exposure 337 
(timepoints 0min, 30min, 1hr, 2hr, and 4hr) estimated from four independent biological replicates per inhibitor condition (markers) 338 
and model fits based on the combinatorial model CM1 (solid and dashed lines). (A)&(B): mean mRNA copy numbers per cell for 339 
IL-1β and TNF-. (C)&(D): standard deviations of mRNA copy numbers per cell for IL-1β and TNF-. See Supporting Information 340 
(section 1b) for details on our computation of these model-predicted statistics. 341 

 342 
 343 

Measurement and analysis of mRNA expression suggests that MG132 inhibits both TNF-344 

α and IL-1β, while U0126 inhibits only IL-1β 345 

 346 

Figure 6 shows the measured and model-predicted mean (Figures 6A-B) and standard deviation 347 

(Figures 6 C-D) for mRNA expression versus time from 0 to 240 min post LPS exposure for 348 

both genes. In the absence of inhibitors, the cells show a rapid increase in both IL-1β and TNF-α 349 

mRNA content following introduction of LPS, with expression peaking at ~325 IL-1β mRNA 350 

copies per cell at 2 hrs and at ~200 TNF-α mRNA copies per cell at 1 hr. In the presence of 351 

inhibitors, we see that IL-1β expression is inhibited by both U0126 and MG132, but with 352 

different kinetic trajectories. MG132 treatment dampens IL-1β expression with maximum 353 

expression at ~140 mRNA copies per cell at 1 hr. In contrast, U0126 strongly inhibits IL-1β 354 

expression at early time points (0-30 min), but is less effective at later time points, with maximal 355 

expression at ~200 mRNA copies per cell after 120 min. The combination of the two inhibitors 356 

results in low expression of IL-1β across all time points, with <50 mRNA copies per cell. For 357 

TNF-α, MG132 markedly reduces expression from ~200 mRNA copies per cell to <50 mRNA 358 
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copies per cell at 60 min. Interestingly, U0126 shows very little inhibition of TNF-α when used 359 

alone. Addition of both inhibitors led to low expression of TNF-α, similar to MG132 treatment 360 

alone. In the rest of this section, we will provide a more detailed explanation of these 361 

observations based on the model fits. 362 

 363 

 364 

The selected three-state gene expression models provide descriptive explanations for the 365 

activation dynamics of IL-1β and TNF- under LPS stimulation 366 

 367 

The two best-fit models allow us to propose several mechanisms for signal-activated expression 368 

of IL-1β and TNF-, as well as how these mechanisms are affected by the small-molecule 369 

inhibitors MG132 and U0126. The inferred dynamics of NF- concentration, which are not 370 

directly observed from data, is qualitatively similar between two models (Figure 7A). For TNF-, 371 

both models yield similar fitted parameters that lead to identical interpretation. In the absence of 372 

LPS, the deactivation rate 𝑘10 for TNF- is about 385 times higher than the activation rate 𝑘01 for 373 

model CM1 (similar comparison for CM2). As a consequence, the gene spends most of its time in 374 

the basal state that has a very low basal mRNA production rate (~ 10−5 molecules per second). 375 

Under LPS stimulation, NF- concentration in the nucleus quickly increases to its maximal value 376 

in about 15 minutes, with the downstream effects of increasing the fractions of cells in the active 377 

states (Figure 7C and 7E). As a consequence, there is a temporary increase in the mean mRNA 378 

production rate (Figure 7G), which explains the increased width of the distribution of TNF- 379 

mRNA copy numbers observed. The signal starts decaying shortly after reaching its peak at around 380 

15 minutes, resulting in less mRNA being produced and the mean TNF- copy number slowly 381 

decreases (Figure 6B).  382 

 383 

For IL-1β, both models produce similar mRNA copy number distributions at the time points where 384 

experimental measurements were taken across experimental conditions (Supplementary Figure 6). 385 

In addition, parameter fits for both models suggest that mRNA transcription rates are low when 386 

IL-1β is in the states 𝐺0 and 𝐺1 (of the order of 10−4 and 10−5 respectively in model CM1, and 387 

5 × 10−5 and 10−6 respectively in model CM2), while the transcription rate at state 𝐺2 is high 388 

(both models fit to approximately one molecule per second). These fits allow us to interpret for 389 

IL-1β the state 𝐺1 as an intermediate “permissive” state from which the gene can become fully 390 

active at 𝐺2. Prior to LPS stimulation, the rate at which IL-1β switches to the fully active state 𝐺2 391 

from the intermediate state 𝐺1 is about 212 times smaller than the reverse rate in model CM1 (and 392 

15 times smaller in model CM2). As a consequence, IL-1β stays in the basal state for most cells, 393 

with model CM1 suggesting that a significant fraction of the cells are in the intermediate state 394 

without switching over to the highly active state 𝐺2, whereas model CM2 sugests that the fractions 395 

of cells in 𝐺1 and 𝐺2 are both low (Figure 7B,D). As a consequence, IL-1β stays in the basal states 396 

for most cells. Upon LPS induction, however, the increased NF- concentration either has a 397 

positive effect on the rate for switching from 𝐺1 to 𝐺2 (model CM1), or an inhibitory effect on the 398 

deactivation rate from 𝐺1 to 𝐺0. This either allows for more cells already in the intermediate state 399 

𝐺1 to switch to the active state 𝐺2 (model CM1), or for a significant increase in the fraction of cells 400 

in state 𝐺1 that consequently switch to 𝐺2 (model CM2) (Figure 7B).  Either way, IL-1β has 401 

markedly higher probability to be in the fully activated state 𝐺2 (Figure 7D), leading to an increase 402 

in the mean IL-1β mRNA transcription rate. This increased production is sustained for a relatively 403 

short time but achieves a high maximal value in model CM1, while it is sustained for longer but  404 
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with a lower maximum in CM2. Despite these differences for the intermediate, unobserved, 405 

components, both models yield fits for IL-1β degradation rates whose relative differences are 406 

below ten percent (5.67 × 10−5 molecules/second in CM1 and 5.27 × 10−5 molecules/second in 407 

CM2). The longer half-life of IL-1β compared to TNF- also explains why mean IL-1β mRNA 408 

levels remain higher than TNF- despite both genes reverting to their basal levels as NF- fades 409 

away at about 100 minutes.  410 

 411 

The selected models suggest that NF- activates both TNF- and IL-1β, while C/EBP 412 

has no major influence on TNF- transcriptional activity 413 

 414 

In addition to providing explanations for IL-1β and TNF- transcriptional dynamics under LPS, 415 

our exhaustive search for the reaction network parameters (Table 1) also leads to a quantitative 416 

understanding of the effects of the small-molecule inhibitors MG132 and U0126 on these genes. 417 

In the presence of the inhibitor MG132, the activation effect of NF- is substantially reduced for 418 

both genes (for model CM1, the ratio 𝑏01
 /𝑏01

 𝑀𝐺 is about 2.9 for TNF- and 𝑏12
 /𝑏12

 𝑀𝐺 is about 3.4 419 

for IL-1β; for model CM2, the ratio 𝑏01
 /𝑏01

 𝑀𝐺 is about 2.9 for TNF- and 𝑏10
 /𝑏10

 𝑀𝐺 is about 9.7 420 

for IL-1β), leading to smaller fractions of cells in the active states and consequently lower overall 421 

TNF- mRNA production. The inhibitor U0126 decreases the activation rate 𝑘01 of IL-1β by 2.18 422 

fold in CM1 and 4 fold in CM2, leading to overall reduction in IL-1β transcription. On the other 423 

hand, the addition of U0126 only reduces the rate 𝑘01 from 1.21 × 10−4 to 1.00 × 10−4 in model 424 

CM1 and from 1.17 × 10−4 to 1.00 × 10−4 in model CM2. Since U0126 is known to inhibit 425 

C/EBP,  this suggests that C/EBP does not have a major influence on TNF-. 426 

 427 

 CM1 CM2  

Parameter IL-1β  TNF-  IL-1β  TNF-  Interpretation 

𝑟1 9.01e-04 1.03e-03 Parameters for NF-kB dynamics (second-1) 

𝑟2 3.05e-04 4.39e-04 

𝑘01 3.89e-02 1.21e-04 4.77e-03 1.17e-04 LPS-free transition rate 𝐺0 to 𝐺1 (second-1) 

𝑏01 NA 2.27e-02 NA 2.09e-02 Multiplicative factor for NF-kB induced increase in 

gene activation rate (second-1) 

𝑘10 7.62e-03 4.67e-02 7.66e-02 5.48e-02 LPS-free gene deactivation rate 𝐺1 to 𝐺0 (second-1) 

𝑏10 NA NA 6.60e+00 NA Multiplicative factor for NF-kB induced decrease in 

gene deactivation (𝐺1 to 𝐺0) rate (second-1) 

𝑘12 3.93e-05 8.19e-03 5.50e-04 9.41e-03 LPS-free transition rate 𝐺1 to 𝐺2 (second-1) 

𝑏12 9.60e-03 NA NA NA Multiplicative factor for NF-kB induced increase in 

transition rate 𝐺1 to 𝐺2 (second-1) 
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𝑘21 8.37e-03 3.98e-03 8.79e-03 4.03e-03 Transition rate from highly activated state to 

moderately activated state (𝐺2 to 𝐺1) (second-1) 

𝛼0  1.09e-04 3.61e-05 5.29e-05 2.60e-05 Basal transcription rate when gene is at basal state 

𝐺0 (molecule/second) 

𝛼1  1.64e-05 6.24e-01 1.00e-06 7.07e-01 Transcription rate when gene is at 𝐺1 

(molecule/second) 

𝛼2  9.99e-01 5.39e-01 1.00e+00 5.41e-01 Transcription rate when gene is at 𝐺2 

(molecule/second) 

𝛿  5.67e-05 2.29e-04 5.27e-05 2.16e-04 mRNA degradation rate (molecule/second) 

𝑏01
 𝑀𝐺  NA 7.80e-03 NA 7.18e-03 MG-modulated value of 𝑏01 (second-1) 

𝑏10
 𝑀𝐺  NA NA 6.80e-01 NA MG-modulated value of 𝑏10 (second-1) 

𝑏12
 𝑀𝐺  2.83e-03 NA NA NA MG-modulated value of 𝑏12 (second-1) 

𝑘01
U0126 2.22e-03 1.00e-04 2.22e-03 1.00e-04 U0126-modulated value of 𝑘01 (second-1) 

 428 

Table 1 Fitted parameters for the two best performing combined multi-gene, multi-condition gene expression models. These are 429 
obtained by fitting the model-predicted distributions of RNA copy number to data collected under three inhibitor conditions (no 430 
inhibitors, MG132, and U0126). 431 
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 432 

 433 

 434 
Figure 7. Model-predicted downstream influence of NF- using the best two models. () Signal strength of NF in the 435 
nucleus in arbitrary units (AU). (B-C): The time-varying probability of IL-1β and TNF- to occupy the intermediate gene state 436 
(𝐺1). (D-E): The time-varying probability of IL-1β and TNF- to occupy the final gene state (𝐺2). (F-G): The time-varying mean 437 
transcription rates for IL-1β and TNF-, under four different inhibitor conditions (No inhibitors, MG132, U0126, both MG132 438 
and U0126). 439 

Discussion 440 

 441 

Single-cell measurements allow for a more complete description and characterization of gene 442 

expression kinetics and regulatory mechanisms. Applying single-cell measurement techniques, we 443 

have demonstrated that gene transcription heterogeneity of two key immune response genes, IL-444 

1β and TNF-α, occurs to a surprising extent within a seemingly uniform cell population following 445 

an immune assault. Such measurements of cell-to-cell distribution can be more informative than 446 

average values obtained from bulk measurements. For example, cells in the tail of the distribution 447 

may ultimately dictate the fate of disease progression rather than the average response, such as in 448 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2020.10.16.342576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

the case of  highly stimulated cells that lead to a cytokine storm. This is analogous to understanding 449 

how certain individuals (such as super-spreaders) may dictate the pathway of an epidemic more 450 

than basic reproduction number (R0) values.[43] Here we show that IL-1β and TNF-α genes, while 451 

upregulated upon bacterial LPS exposure, can be suppressed at the transcriptional level by the 452 

inhibitors MG132 and U0126.  Interestingly, each of these inhibitors has a different kinetic effect. 453 

U0126 inhibits early IL-1β expression, while MG132 causes a delayed inhibition pattern, 454 

suggesting that C/EBP signaling occurs prior to NF-κB activity, in response to LPS (see Figure 6). 455 

Additionally, we show that TNF-α is predominantly and rapidly inhibited by MG132 treatment, 456 

suggesting that NF-κB is the primary upstream regulator of TNF-α expression in response to LPS. 457 

 458 

To describe these results, we considered 36 potential stochastic models to reproduce IL-1β and 459 

TNF-α activity, and we found that the time-course of the cell-to-cell distributions of transcript 460 

copy numbers for both Il-1 and TNF- could be adequately captured by two stochastic models, 461 

each having three states for gene transcription. Moreover, the effects of anti-inflammatory drugs 462 

MG132 and U0126 on the mRNA copy numbers of these two genes could be captured with both 463 

three state models. While the kinetic models were fit to data for each drug acting independently, 464 

both models were able to predict the data well for the combined drug treatment. The final two 465 

models selected identical mechanisms and dynamics for the regulation of TNF-α activity, but 466 

different mechanisms for the control IL-1β. Interestingly, although both models make 467 

indistinguishable predictions for the distributions of mature IL-1β mRNA in all conditions and 468 

time points measured for this study (Supplementary Figure S6 and S7), the two models make 469 

qualitatively and quantitatively different predictions for other, as yet untested experimental 470 

conditions. Specifically, the two models differ in their predictions for the instantaneous 471 

transcription rate at early times, where model CM1 predicts a short period of high transcription 472 

activity and model CM2 predicts a sustained period of moderate strength activity (Figure 7F). 473 

Furthermore, the two models also differ how the instantaneous transcription rate would be affected 474 

by MG132 treatment. In principle, our analyses suggest that these two models could be resolved 475 

using intron smFISH labeling to measure nascent transcription activity to quantify instantaneous 476 

transcription rates in shorter time scale experiments (e.g., 40 to 80 minutes). These experiments 477 

are beyond the scope of the current study and are left for future investigation. 478 

 479 

Our results suggest that the integration of single-cell measurements and predictive kinetic 480 

modeling can lead to improved mechanistic understanding that could eventually lead to more 481 

effective combination therapies against chronic and acute inflammatory diseases. We note that 482 

while there are possible ways to extend the model proposed in this study to describe the joint 483 

expression of both IL-1β and TNF-α, the large state space required to analyze the joint expression 484 

of more than two mRNA species, coupled with the complexity of integrating time-varying kinase 485 

signals, poses a prohibitive challenge for current computational tools. Advances in high 486 

performance FSP-based inference methods (e.g., [44]) may potentially allow us to tackle the joint 487 

modeling approach in future work. Overall, this study emphasizes the need for further use of 488 

single-cell measurements to understand gene responses in order to identify outlier cells and capture 489 

full distributions.[45] Single-cell gene expression measurements combined with the appropriate 490 

model could provide otherwise overlooked insights into the kinetics, spatial distribution, and 491 

regulatory mechanisms of any number of genes.  492 

 493 

 494 
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