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ABSTRACT 24	

Adelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but 25	

harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which 26	

suggest multiple replacement and acquisition of symbionts over evolutionary time. 27	

Specific pairs of symbionts have been associated with adelgid lineages specialized on 28	
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different secondary host conifers. Using a metagenomic approach, we investigated the 29	

symbiosis of the Adelges laricis/tardus species complex containing 30	

betaproteobacterial (‘Candidatus Vallotia tarda’) and gammaproteobacterial 31	

(‘Candidatus Profftia tarda’) symbionts. Genomic characteristics and metabolic 32	

pathway reconstructions revealed that Vallotia and Profftia are evolutionary young 33	

endosymbionts, which complement each other’s role in essential amino acid 34	

production. Phylogenomic analyses and a high level of genomic synteny indicate an 35	

origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. 36	

This evolutionary transition was accompanied with substantial loss of functions 37	

related to transcription regulation, secondary metabolite production, bacterial defense 38	

mechanisms, host infection and manipulation. The transition from fungus to insect 39	

endosymbionts extends our current framework about evolutionary trajectories of host-40	

associated microbes.  41	

  42	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342642doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342642
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 43	

Plant-sap feeding insects harbor bacterial endosymbionts, which are of great 44	

importance in their host ecology and serve as a model for studying microbe-host 45	

relationships and genome evolution of host restricted bacteria (1–3). Adelgids 46	

(Insecta: Hemiptera: Adelgidae) live on Pinaceae conifers and feed on phloem sap or 47	

parenchyma cells (4,5). The group has nearly seventy species and is sister to the 48	

families of phylloxerans (Phylloxeridae) and aphids (Aphididae) within the suborder 49	

Sternorrhyncha (6). Some adelgid species, such as the balsam woolly adelgid 50	

(Adelges piceae) and the hemlock woolly adelgid (A. tsugae) are well-known forest 51	

pests and represent severe threats to firs and hemlocks (7,8). 52	

Adelgids have a complex multigenerational life cycle, which typically 53	

involves sexual generations and an alternation between spruce (Picea), which is the 54	

primary host, and another, secondary conifer host (Abies, Pinus, Larix, Pseudotsuga, 55	

or Tsuga). However, other adelgids reproduce asexually in all generations on either of 56	

the host genera (5).  57	

Similarly to other plant-sap feeding insects, adelgids harbor maternally 58	

inherited bacterial symbionts within specialized cells, so-called bacteriocytes, which 59	

form a large bacteriome in the abdomen (9–14). Although the function of these 60	

bacterial partners remains largely unexplored, they are expected to provide essential 61	

amino acids and B vitamins scarce in the plant sap diet, similarly to obligate 62	

endosymbionts of other plant-sap feeding insects (2,15). Besides these obligate 63	

nutritional endosymbionts, non-essential facultative symbionts might also occur 64	

within the bacteriome (or in other tissues), which can provide selective fitness 65	

benefits to insects such as protection against parasites and fungal pathogens, increased 66	
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heat tolerance, or expansion of host plant range (16–18). Similarly to obligate 67	

mutualists, facultative symbionts are usually maternally inherited, but can also spread 68	

horizontally within and between insect species via mating (19), parasites (20), and 69	

food source such as plant tissues (21). Few examples of newly emerged bacteriocyte-70	

associated symbionts of herbivorous insects pinpoint their source from plant-71	

associated bacteria, such as Erwinia in Cinara aphids (22), gut bacteria, such as 72	

cultivable Serratia symbiotica strains colonizing the gut of Aphis aphids (23), and 73	

other free-living bacteria such as a Sodalis strain (HS) isolated from human wounds 74	

and being akin to primary endosymbionts of Sitophilus weevils (24). 75	

Interestingly, two types of bacteriocyte-associated symbionts have been 76	

identified in all populations and life stages of most adelgid species (9–14). These 77	

symbionts belong to at least six different lineages within the Gammaproteobacteria or 78	

the Betaproteobacteria. A. tsugae populations also contain a universal Pseudomonas 79	

symbiont free in the hemocoel together with the bacteriocyte-associated symbionts 80	

(9,10,25). Remarkably, specific pairs of symbionts correspond to distinct lineages of 81	

adelgids specialized to one of the five secondary host tree genera (10,14). A 82	

gammaproteobacterial symbiont lineage involving ‘Candidatus Annandia 83	

adelgestsugas’ and ‘Candidatus Annandia pinicola’ (hereafter Annandia), is present in 84	

both A. tsugae and Pineus species, and was likely already associated with ancestral 85	

adelgids before diversification into the two major adelgid lineages, Adelges and 86	

Pineus, over 87 million years ago (5,9,10,14). Nevertheless, this putatively ancient 87	

symbiont lineage is missing from other adelgids, and the high diversity of symbionts 88	

within this small group of insects suggests an evolutionary history involving multiple 89	

acquisitions and replacement of bacterial partners (10,13,14). This is in sharp contrast 90	
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to the case in the aphid sister group, where most species have tightly co-evolved with 91	

a single obligate symbiont, Buchnera aphidicola, for over 180 million years (2). In the 92	

case of adelgids, it has been postulated that loss of the ancestral nutritional symbiont 93	

lineage and repeated replacements of bacterial partners might be due to fluctuating 94	

selective pressure on essential symbiotic functions during evolution as a consequence 95	

of repeated emergence of host-alternating lifestyles and feeding on nutrient-rich 96	

parenchyma versus nutrient-poor phloem on the primary and secondary host trees, 97	

respectively (10,25). 98	

To date, whole genome sequences of adelgid endosymbionts are available for 99	

only one species: the hemlock woolly adelgid, A. tsugae. Metabolic potential and 100	

genomic characteristics of Annandia resemble those of long-term obligate 101	

intracellular symbionts. However, Annandia has lost many genes in essential amino 102	

acid synthesis. The accompanying, evolutionary more recent, Pseudomonas symbiont 103	

can complement these missing capabilities and thus has a co-obligatory status in 104	

maintaining the symbiosis (25). In addition to this obligate dual endosymbiotic 105	

system, analysis of a genome fragment of a gammaproteobacterial symbiont 106	

(‘Candidatus Steffania adelgidicola’) of the Adelges nordmannianae/piceae species 107	

complex revealed a metabolically versatile, putatively evolutionary young 108	

endosymbiont in this adelgid lineage (12). Further genomic data on the symbionts 109	

would help to infer the history of association of adelgids with distinct bacterial 110	

groups.  111	

Here, we investigate the bacterial symbionts of the A. laricis/tardus species 112	

complex using a metagenomic approach and ask what is the function and putative 113	

origin of the dual symbiosis in this lineage of adelgids. A. laricis and A. tardus are 114	
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morphologically and genetically hardly distinguishable species of adelgids (4,26). 115	

They contain betaproteobacterial and gammaproteobacterial symbionts, ‘Candidatus 116	

Vallotia tarda’ and ‘Candidatus Profftia tarda’ (hereinafter Vallotia and Profftia), 117	

respectively. Both symbionts are rod-shaped and are located intermingled inside the 118	

same bacteriocytes. Profftia-related symbionts have only been found in larch-119	

associated, while Vallotia symbionts occur in both larch and Douglas-fir-associated 120	

lineages of adelgids. Although host-symbiont co-speciation could not be fully 121	

resolved with confidence yet, the dual obligatory status of Profftia and Vallotia in the 122	

symbiosis seems to be possible given their common occurrence across different 123	

populations and life stages of adelgids (10,13).  124	

Our results demonstrate that both bacteriocyte-associated symbionts are 125	

evolutionary recent partners of adelgids complementing each other's role in essential 126	

amino acid biosynthesis. Notably, phylogenomic analyses revealed a close 127	

relationship of Vallotia with endosymbionts of Rhizopus fungi. Detailed analysis of 128	

genomic synteny and gene content indicated an evolutionary transition from fungus to 129	

insect symbiosis accompanied by a substantial loss of functions in the insect symbiont 130	

especially in transcription regulation, secondary metabolite production, host infection 131	

and manipulation. 132	

Materials and Methods 133	

Sampling 134	

Spruce (Picea) branches with galls of adelgids (4) were collected near 135	

Klausen-Leopoldsdorf, Austria (Figure S1). Galls were stored at -80°C in the lab for 136	

subsequent genomic DNA isolation. 137	
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DNA isolation 138	

Before DNA isolation, adelgids were collected from the galls using teasing 139	

needles. The insects were washed twice in buffer A + EDTA solution (35mM Tris-140	

HCl, 250 mM sucrose, 25 mM KCl, 10 mM MgCl2, 250 mM EDTA; pH 7.5) and 141	

were subsequently homogenized in fresh solution with a plastic pestle. The 142	

suspension was then sequentially filtered through 53 and 30 µm pore size meshes and 143	

5 µm membrane syringe filters. Samples were centrifuged at 7,000 rpm for 5 min at 144	

4°C and supernatants were discarded. Pellets were re-suspended in buffer A and 145	

centrifuged again at 7,000 rpm for 5 min at 4°C. This washing step was repeated once 146	

and pellets were next re-suspended in 1xTE buffer (10 mM Tris-HCl, 1 mM EDTA; 147	

pH 7.5). High-molecular-weight DNA was isolated by an SDS-based DNA extraction 148	

method using 1% cetyltrimethylammonium bromide and 1.5% polyvinylpyrrolidone 149	

in the extraction buffer (27). DNA samples were stored at -20°C. 150	

Sequencing and genome assembly 151	

A paired-end library was sequenced on a HighSeq 2000 Illumina sequencer. 152	

Sequencing reads were quality filtered and trimmed with PRINSEQ (28), and were 153	

assembled with SPAdes v3.1 (29). Using a subset of 30 million read pairs, a single 154	

contig representing the circular Profftia chromosome was obtained with 52-fold 155	

coverage, while the assembly of the Vallotia genome remained fragmented probably 156	

due to repetitive sequences. To improve this assembly, reads were mapped on the 157	

Profftia genome using the Burrows-Wheeler Alignment (BWA) tool and the BWA-158	

MEM algorithm (30), and matching sequences were removed from further analysis. A 159	

novel assembly with the remaining reads resulted in 14 contigs longer than 1000 bp. 160	
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These contigs were further analyzed against a custom protein database containing 161	

single-copy markers found in 99% of prokaryote genomes using blastx (31) and 162	

phylogenetic information of the best hits was assessed in Megan v4.70.4 (32). 163	

Ribosomal RNAs were inferred by RNAmmer (33). Based on these, eight contigs 164	

belonging to the Vallotia genome were identified. Seven contigs represent the Vallotia 165	

chromosome with ~212-fold coverage. In addition, a single contig obtained with 169-166	

fold coverage corresponds to a putative circular plasmid of this endosymbiont. The 167	

remaining contigs, all shorter than 5,500 bp, were judged to belong to unrelated taxa, 168	

based on differences in GC content, coverage and taxonomic affiliation of best blastx 169	

hits in the NCBI non-redundant protein database (nr). 170	

Genome analysis 171	

The putative origin of replication was identified with GenSkew  172	

(http://genskew.csb.univie.ac.at/). We used the ConsPred genome annotation pipeline 173	

for gene prediction and annotation (34). Genome annotations were curated with the 174	

help of the UniPro UGENE software (35). We identified pseudogenes by using the 175	

intergenic and hypothetical protein regions as queries in blastx searches against nr and 176	

the UniProt Swiss-Prot database with an e-value < 1e-3 confidence threshold. 177	

Pseudogenes were identified as remains of genes, which were either truncated (having 178	

a length < 80% of the reference) or were interrupted by internal stop codons and/or 179	

frameshift mutations. Pseudogene coordinates were set according to the best blast hit 180	

in the UniProt Swiss-Prot database, if applicable. 181	

The presence of mobile genetic elements was inferred with blastn and blastx 182	

searches against the ISfinder database (36). Metabolic pathways were explored with 183	
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the help of the Ecocyc, Biocyc, and Metacyc databases (37) and the Pathway Tools 184	

software (38). Orthologous proteins shared by the relevant genomes or unique to 185	

either of the symbionts were identified by using OrthoMCL with a 1e-5 e-value 186	

threshold (39). Distribution of the predicted proteins among the main functional 187	

categories was explored by using eggNOG-mapper v2 (40,41) with the DIAMOND 188	

sequence comparison option and a 1e-3 e-value threshold (42). Genome alignments 189	

were performed by Mauve (43). The Vallotia contigs were reordered using the 190	

chromosome and plasmid sequences of the closely related fungus endosymbiont, 191	

Mycetohabitans rhizoxinica, as references (accession numbers: FR687359 and 192	

FR687360, respectively). Collinear genomic regions and genome rearrangements 193	

were visualized by Circos based on single-copy shared genes (44). A close-up of 194	

syntenic regions was created by using the Easyfig tool (45). The assembled genomes 195	

have been submitted to European Nucleotide Archive under accession number 196	

[submission in process, to be added]. 197	

Phylogenetic analyses 198	

A phylogenomic approach was used to infer the phylogenetic positions of the 199	

endosymbionts. Protein sequences of closely related species within the 200	

Burkholderiales and the Enterobacteriales were collected from the Assembly database 201	

of NCBI. Single copy marker genes were identified by Phyla-AMPHORA (46) using 202	

the Brandon Seah (2014) Phylogenomics-tools (online: 203	

https://github.com/kbseah/phylogenomics-tools). Individual sets of genes were 204	

aligned with Muscle 3.8.31 (47). Poorly aligned positions were removed with Gblocks 205	

0.91b (48) using default parameters apart from the following settings: allowed gap 206	
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positions with half, the minimum length of a block was 5. Alignments of 108 and 45 207	

proteins were concatenated and used for the calculation of phylogenetic trees for 208	

Vallotia and Profftia, respectively.  209	

For both endosymbionts, we generated maximum likelihood trees with IQ-210	

TREE after selecting the best-fit substitution models with ModelFinder as available at 211	

http://iqtree.cibiv.univie.ac.at (49–51). SH-like approximate likelihood ratio test (SH-212	

aLRT) and ultrafast bootstrap support values, both based on 1000 iterations, were 213	

calculated (52). The best-fit models were LG+F+R5 and LG+R5 for the Vallotia and 214	

Profftia tree, respectively. Besides, Bayesian phylogenetic analyses were performed 215	

by MrBayes 3.2.7a (53) with the LG+I+G model and 4 gamma categories on the 216	

CIPRES Science Gateway v.3.3. web interface (54). Two runs, each with 4 chains 217	

were performed until convergence diagnostics fell below 0.01. A 50% majority 218	

consensus tree was created with a relative burn-in of 25%. 219	

 220	

Results and discussion 221	

Vallotia and Profftia are evolutionary young symbionts of adelgids 222	

Intermediate states of genome reduction 223	

The complete sequence of the Profftia chromosome had a length of 1,225,795 224	

bp and a G+C content of 31.9% (Table 1). It encoded for 645 proteins, one copy of 225	

each rRNA, 35 tRNAs, and 10 ncRNAs. It had tRNAs and amino acid charging 226	

potential for all 20 standard amino acids. However, protein-coding sequences made 227	

up only 52.4% of the genome, and 21 pseudogenes indicated an ongoing gene 228	

inactivation.  229	
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Currently, eight contigs with a total length of 1,183,315 bp represent the 230	

Vallotia genome. Seven contigs had an average G+C content and a coding density of 231	

42.8% and 65.5%, respectively. However, a 72,431 bp long contig showed a 232	

characteristically lower G+C content (36.1%) and contained only 46.2% putative 233	

protein coding sequences (CDSs). This contig had identical repeats at its ends, and 234	

genome annotation revealed neighboring genes for a plasmid replication initiation 235	

protein, and ParA/ParB partitioning proteins, which function in plasmid and 236	

chromosome segregation between daughter cells before cell division (55). We thus 237	

assume that this contig corresponds to a circular plasmid of Vallotia. The 16S rRNA 238	

and the 5S plus 23S rRNA genes were encoded on two small contigs in the Vallotia 239	

assembly (1976 and 3571 bp, respectively) and were covered by nearly three times 240	

more sequence reads than the rest of the chromosomal contigs. This implies that 241	

Vallotia has three copies of each rRNA, similarly to its closest relative for which a 242	

complete genome sequence is available, Mycetohabitans rhizoxinica (56). In total, the 243	

Vallotia genome encoded for 780 proteins (29 on the putative plasmid), 37 tRNAs, 244	

and 52 predicted pseudogenes (5 on the putative plasmid).  245	

The host-restricted lifestyle has a profound influence on bacterial genomes. 246	

Living in a stable, nutrient-rich niche relaxes purifying selection on many redundant 247	

functions, and small effective population size of the symbionts increases genetic drift. 248	

These can lead to the accumulation of slightly deleterious mutations, a proliferation of 249	

mobile genetic elements, and gene inactivation (57–60). Non-functional genomic 250	

regions and mobile genetic elements get subsequently lost, and ancient obligate 251	

endosymbionts typically have tiny (<<0.8 Mb), gene dense and stable genomes with 252	

AT-biased nucleotide composition (2,61,62). Facultative symbionts also possess 253	
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accelerated rates of sequence evolution but have larger genomes (>2Mb) with variable 254	

coding densities following the age of their host-restricted lifestyle (63). The only 255	

moderately reduced size and AT bias together with the low protein-coding density of 256	

the Vallotia and Profftia genomes was most similar to those of evolutionary young 257	

co-obligate partners of insects (63), for instance ‘Ca. Pseudomonas adelgestsugas’ in 258	

A. tsugae (25), Serratia symbiotica in Cinara cedri (64,65) and the Sodalis-like 259	

symbiont of Philaenus spumarius, the meadow spittlebug (66). However, compared to 260	

these systems involving a more ancient and a younger symbiont, similar genome 261	

characteristics of Vallotia and Profftia implied that both bacteria are evolutionarily 262	

recent symbionts in a phase of extensive gene inactivation typical for early stages of 263	

adaptation to an obligate host-restricted life-style (59,60). 264	

Differential reduction of metabolic pathways  265	

Although compared to their closest free-living relatives both Vallotia and 266	

Profftia have lost many genes in all functional categories, both retained a greater 267	

proportion of genes in translation-related functions and cell envelope biogenesis 268	

(Figures S2, S3). High retention of genes involved in central cellular functions such as 269	

translation, transcription, and replication is a typical feature of reduced genomes, even 270	

extremely tiny ones of long-term symbionts (62). However, ancient intracellular 271	

symbionts usually miss a substantial number of genes for the production of the cell 272	

envelope and might rely on host-derived membrane compounds (67–69). 273	

Based on pathway reconstructions, both Vallotia and Profftia had a complete 274	

gene set for peptidoglycan, fatty acid, phospholipid biosynthesis, and retained most of 275	

the genes for the production of lipid A, LPS core, and the Lpt LPS transport 276	

machinery. Besides, we found a partial set of genes for O antigen biosynthesis in the 277	
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Vallotia genome. Regarding the membrane protein transport and assembly, both 278	

adelgid endosymbionts had the necessary genes for Sec and signal recognition particle 279	

(SRP) translocation, and the BAM outer membrane protein assembly complex. 280	

Profftia also had a complete Lol lipoprotein trafficking machinery (lolABCDE), 281	

which can deliver newly matured lipoproteins from the inner membrane to the outer 282	

membrane (70). Besides, Profftia had a near-complete gene set for the Tol-Pal 283	

system, however, tolA has been pseudogenized suggesting an ongoing reduction of 284	

this complex. In addition, both adelgid endosymbionts have retained mrdAB and 285	

mreBCD having a role in the maintenance of cell wall integrity and morphology 286	

(71,72). The observed well-preserved cellular functions for cell envelope biogenesis 287	

and integrity are consistent with the rod-shaped cell morphology of Profftia and 288	

Vallotia (13), contrasting the spherical/pleomorphic cell shape of ancient 289	

endosymbionts, such as Annandia in A. tsugae and Pineus species (9,10,14).  290	

Regarding the central metabolism, Vallotia lacks 6-phosphofructokinase, but 291	

has a complete gene set for gluconeogenesis and the tricarboxylic acid (TCA) cycle 292	

cycle. TCA cycle genes are typically lost in long-term symbionts but are present in 293	

facultative and evolutionary recent obligate endosymbionts (66,73,74). Vallotia does 294	

not have any sugar transporter genes, similarly to its close relative, the fungus 295	

symbiont M. rhizoxinica (56). A glycerol kinase gene next to a putative glycerol 296	

uptake facilitator protein is present on its plasmid, however, it has a frameshift 297	

mutation and a premature stop codon in the first 40% of the sequence and whether it 298	

can still produce a functional protein remains unknown.  299	

Profftia can convert acetyl-CoA to acetate for energy but lacks TCA cycle 300	

genes, a feature characteristic to more reduced genomes, such, for instance, Annandia 301	
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in A. tsugae (25). Profftia has import systems for a variety of organic compounds, 302	

such as murein tripeptides, phospholipids, thiamine, spermidine, and putrescine and 3-303	

phenylpropionate and two complete phosphotransferase systems for the uptake of 304	

sugars. NADH dehydrogenase, ATP synthase, and cytochrome oxidases (bo/bd-1) are 305	

encoded on both adelgid symbiont genomes. 306	

Profftia retained more functions in inorganic ion transport and metabolism, 307	

while Vallotia had a characteristically higher number of genes related to amino acid 308	

biosynthesis (see its function below) and nucleotide transport and metabolism 309	

(Figures S2, S3). For instance, Profftia can take up sulfate and use it for assimilatory 310	

sulfate reduction and cysteine production, and it has also retained many genes for 311	

heme biosynthesis. However it cannot produce inosine-5-phosphate (5’-IMP) and 312	

uridine 5'-monophosphate (5’-UMP) precursors for the de novo synthesis of purine 313	

and pyrimidine nucleotides thus would need to import these compounds. 314	

Taken together their moderately reduced, gene-sparse genomes but still 315	

versatile metabolic capabilities support that Vallotia and Profftia are both in an 316	

intermediate stage of genome erosion and functional reduction similar to evolutionary 317	

recently acquired endosymbionts.  318	

 319	

Vallotia and Profftia are both obligatory nutritional symbionts  320	

Complementary functions in essential amino acid provision 321	

Vallotia and Profftia complement each other's role in the essential amino acid 322	

synthesis, thus have a co-obligatory status in the A. laricis/tardus symbiosis (Figure 323	

1). Although Vallotia likely generates most essential amino acids, it can not provide 324	
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phenylalanine and tryptophan on its own. Solely, Profftia can produce chorismate, a 325	

key precursor for the synthesis of both amino acids. Profftia is likely responsible for 326	

the complete biosynthesis of phenylalanine as it has a full set of genes for this 327	

pathway. It can also convert chorismate to anthranilate, however further genes for 328	

tryptophan biosynthesis are only present in the Vallotia genome. Thus Vallotia likely 329	

takes up anthranilate for tryptophan biosynthesis. Anthranilate synthase (trpEG), is a 330	

subject to negative feedback regulation by tryptophan (75), thus partition of this rate-331	

limiting step between the co-symbionts can enhance overproduction of the amino acid 332	

and might stabilize dual symbiotic partnerships at an early stage of coexistence. The 333	

production of tryptophan is partitioned between Vallotia and Profftia similarly as seen 334	

in other insect symbioses such as between Buchnera and Serratia symbiotica in co-335	

obligatory partnerships in aphids (64,65) and between Carsonella and certain co-336	

symbionts in psyllids (76). The tryptophan biosynthesis is also shared but is more 337	

redundant between the Annandia and Pseudomonas symbionts of A. tsugae (25). This 338	

association generally shows a higher level of functional overlap between the 339	

symbionts than the Vallotia - Profftia system, as redundant genes are present also in 340	

phenylalanine, threonine, lysine, and arginine synthesis in the A. tsugae symbiosis. 341	

Besides, the Vallotia - Profftia consortium is also more unbalanced than the A. tsugae 342	

system where Annandia can produce seven and the Pseudomonas partner five 343	

essential amino acids with the contribution of host genes (25). 344	

The Vallotia genome encodes for all the enzymes for the synthesis of five 345	

essential amino acids (histidine, leucine, valine, lysine, threonine). Among the 346	

essential amino acid synthesis related genes, argG and tyrB of Vallotia are only 347	

present on the plasmid, which might have contributed to its maintenance in the 348	
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genome. However, neither of the endosymbionts can produce ornithine, 2-349	

oxobutanoate and homocysteine de novo, which are key for the biosynthesis of 350	

arginine, isoleucine and methionine, respectively. metC and argA are still present as 351	

pseudogenes in Vallotia suggesting a recent loss of these functions in methionine and 352	

arginine biosynthesis, respectively. The corresponding functions are also missing 353	

from the Annandia - Pseudomonas system (Weglarz et al., 2018). Ornithine, 2-354	

oxobutanoate, and homocysteine are thus likely supplied by the insect host, as seen for 355	

instance in aphids, mealybugs, and psyllids, where the respective genes encoding for 356	

cystathionine gamma and beta lyases and insect ornithine aminotransferase are 357	

present in the insect genomes and are typically overexpressed within the bacteriome 358	

(68,77,78). However, we can not confirm the presence of relevant genes in the A. 359	

laricis/tardus genome, as our metagenome data were almost free from eukaryotic 360	

sequences.  361	

Vallotia and Profftia have more redundant functions in non-essential amino 362	

acid production. Both symbionts can synthesize seven non-essential amino acids 363	

mostly through a series of amino-acid conversions (Figure 1). Only Profftia can 364	

produce cysteine and tyrosine, while none of the symbionts can build up glutamine 365	

thus this latter amino acid is likely supplied by the insect bacteriocytes.  366	

The presence of amino acid transporters can complement missing functions in 367	

amino acid synthesis in the endosymbionts (Figure 1). For instance Profftia has a 368	

high-affinity glutamine ABC transporter, and three symporters (BrnQ, Mtr, TdcC), 369	

which can import isoleucine, leucine, valine, tryptophan, and threonine among the 370	

essential amino acids that can be produced by Vallotia. Vallotia might excrete 371	

isoleucine, valine, and leucine via AzICD, a putative branched-chain amino acid 372	
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efflux pump (79), and these amino acids could be taken up by Profftia via BrnQ and 373	

would be readily available also for the insect host. 374	

B vitamin provision by Vallotia 375	

Regarding the B vitamin synthesis, Vallotia should be able to produce thiamine (B1), 376	

riboflavin (B2), pantothenate (B5), pyridoxine (B6), biotin (B7), and folic acid (B9) 377	

(Figure S4). Although Vallotia misses some genes of the canonical pathways, 378	

alternative enzymes and host-derived compounds might bypass these reactions, as 379	

detailed in the supplementary material. Profftia has only a few genes related to B 380	

vitamin biosynthesis. Three pseudogenes (ribAEC) in the riboflavin synthesis 381	

pathway indicate that these functions might have been lost evolutionary recently in 382	

this symbiont.  383	

In summary, Profftia and Vallotia are both obligate nutritional endosymbionts 384	

of adelgids, however, Vallotia has a pivotal role in essential amino acid and B vitamin 385	

provision.  386	

 387	

Profftia and Vallotia are related to free-living bacteria and fungus 388	

endosymbionts  389	

Previous 16S rRNA-based phylogenetic analyses suggested an affiliation of 390	

Profftia with free-living gammaproteobacteria and a close phylogenetic relationship 391	

between Vallotia and betaproteobacterial endosymbionts of Rhizopus fungi (13). 392	

Biased nucleotide composition and accelerated sequence evolution of endosymbiont 393	

genomes (2,3) often result in inconsistent phylogenies and may cause grouping of 394	

unrelated taxa (68,80,81). Thus to further investigate the phylogenetic relationships of 395	
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the A. laricis/tardus symbionts, we used conserved marker genes for maximum 396	

likelihood and Bayesian phylogenetic analyses. 397	

Phylogenetic analysis of 45 single-copy proteins demonstrated that Profftia 398	

opens up a novel insect symbiont lineage most similar to Hafnia species and an isolate 399	

from the human gastrointestinal tract within the Hafniaceae, which has been recently 400	

designated as a distinct family within the Enterobacteriales (82) (Figure S5). Hafnia 401	

strains are frequently found in the gastrointestinal tract of humans and animals 402	

including insects, among others (83,84). The phylogenomic placement of Profftia in 403	

our analysis is in agreement with previous 16S rRNA based analyses (13).  404	

Vallotia formed a monophyletic group with Mycetohabitans endofungorum 405	

and M. rhizoxinica, endosymbionts of Rhizopus fungi within the Burkholderiaceae 406	

(85,86) with strong support in phylogenetic analyses based on a concatenated set of 407	

108 proteins (Figures 2, S6; previous taxonomic assignments of the fungus 408	

endosymbionts were as Burkholderia/Paraburkholderia endofungorum and 409	

rhizoxinica, respectively). Interestingly, Vallotia and M. endofungorum appeared as 410	

well-supported sister taxa within this clade. This implies a closer phylogenetic 411	

relationship between Vallotia and M. endofungorum, and a common origin of adelgid 412	

endosymbionts from within a clade of fungus endosymbionts. Lengths of branches 413	

leading to the fungus endosymbionts were similar to those of free-living bacteria in 414	

the data set, however Vallotia had a remarkably longer branch marking a rapid rate of 415	

sequence evolution characteristic of obligate intracellular bacteria (2,3). M. 416	

endofungorum and M. rhizoxinica have been identified in the cytosol of the 417	

zygomycete Rhizopus microsporus, best known as the causative agent of rice seedling 418	

blight (86,87). The necrotrophic fungus secrets potent toxins, rhizoxin and rhizonin, 419	
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which are produced by the endosymbionts (86,88). The bacterial partners are 420	

obligatory for their host as they tightly control its sporulation, while they benefit from 421	

host nutrients and spread with the fungal spores (89,90). Additionally, related 422	

bacterial strains have also been found in association with Rhizopus fungi worldwide in 423	

a diverse set of environments, including other plant species, soil, food, and even 424	

human tissues (91–93). 425	

Taken together, phylogenomic analyses support that Profftia and Vallotia open 426	

up novel insect symbionts lineages most closely related to free-living bacteria within 427	

the Hafniaceae and a clade of fungus endosymbionts within the Burkholderiaceae, 428	

respectively. Given the well supported phylogenetic positioning of 'Candidatus 429	

Vallotia tarda' nested within a clade formed by Mycetohabitans species, we propose 430	

the transfer of 'Candidatus Vallotia tarda' to the Mycetohabitans genus, as 431	

'Candidatus Mycetohabitans vallotii' (a detailed proposal for the re-classification is 432	

given in the supplementary material). 433	

 434	

The evolutionary link between Vallotia and fungus endosymbionts 435	

High level of genomic synteny between Vallotia and M. rhizoxinica 436	

The close phylogenetic relationship between Vallotia and Rhizopus symbionts 437	

offers a unique opportunity to gain insight into the early stages of genome reduction 438	

and to infer functional consequences of the partnerships of bacterial symbionts with 439	

insects and fungi, respectively. Among the Rhizopus endosymbionts, a closed genome 440	

is available for M. rhizoxinica (56). We therefore mostly focused on this fungus 441	

symbiont as a reference for comparison with Vallotia. 442	
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A surprisingly high level of synteny between the genomes of Vallotia and M. 443	

rhizoxinica provides further evidence for their shared ancestry. Seven contigs 444	

representing the Vallotia genome showed a high level of collinearity with the 445	

chromosome of M. rhizoxinica (Figure 3A). However, their cumulative size was only 446	

~40% of the fungus endosymbiont chromosome. The contig that corresponded to a 447	

putative plasmid of Vallotia was perfectly syntenic with the larger of the two plasmids 448	

of M. rhizoxinica (pBRH01), although the Vallotia plasmid was over 90% smaller in 449	

size (72 431 bp vs. 822 304 bp) (56). Thus, the Vallotia plasmid showed a much 450	

higher level of reduction than the chromosome, which together with its lower G+C 451	

content and gene density suggest differential evolutionary constraints on these 452	

replicons. The observed high level of genome synteny between Vallotia and M. 453	

rhizoxinica genomes is consistent with the phylogenetic position of Vallotia 454	

interleaved within the clade of Rhizopus endosymbionts and points towards a direct 455	

evolutionary link between these symbioses and a symbiont transition between the 456	

fungus and insect hosts. 457	

The conservation of genome structure contrasts with the elevated number of 458	

transposases and inactive derivatives making up ~6% of the fungus symbiont genome 459	

(56). Transition to a host-restricted lifestyle is usually followed by a sharp 460	

proliferation of mobile genetic elements coupled with many genomic rearrangement 461	

and gene inactivation. As seen for instance in endosymbionts of grain weevils (94), 462	

facultative and co-obligate Serratia symbiotica strains (95), and facultative 463	

endosymbionts, such as Hamiltonella defensa and Regiella insecticola in aphids (74). 464	

However, mobile genetic elements get subsequently purged out of the genomes of 465	

strictly vertically transmitted symbionts via a mutational bias towards deletion and 466	
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because of lack of opportunity for horizontal acquisition of novel genetic elements 467	

(59,61). In contrast to the fungus symbiont, mobile elements are notably absent from 468	

the Vallotia genome, suggesting that they might have been lost early after the 469	

establishment of the adelgid symbiosis conserving high collinearity between the 470	

fungus and adelgid symbiont genomes.  471	

Shrinkage of the insect symbiont genome 472	

Deletion of large genomic fragments – spanning many functionally unrelated 473	

genes – represents an important driving force of genome erosion especially at early 474	

stages of symbioses when selection on many functions is weak (3,96). Besides, gene 475	

loss also occurs individually and is ongoing, albeit at a much lower rate, even in 476	

ancient symbionts with tiny genomes (62,97,98). Both small and large deletions could 477	

be seen when comparing the Vallotia and M. rhizoxinica genomes. Several small 478	

deletions as small as one gene were observed sparsely in the entire length of the 479	

Vallotia genome within otherwise syntenic regions. The largest genomic region 480	

missing from Vallotia encompassed 165 kbp on the M. rhizoxinica chromosome 481	

(Figure 3B). The corresponding intergenic spacer was only 3,843 bp long on the 482	

Vallotia genome between a phage shock protein and the Mfd transcription-repair-483	

coupling factor, present both in Vallotia and M. rhizoxinica. Interestingly, this large 484	

genomic fragment included the large rhizoxin biosynthesis gene cluster 485	

(rhiIGBCDHEF), which is responsible for the production of rhizoxin, a potent 486	

antimitotic macrolide serving as a virulence factor for R. microsporus, the host of M. 487	

rhizoxinica (88). A homologous gene cluster is also present in M. endofungorum and 488	

Pseudomonas fluorescens and it has been suggested that the rhi cluster might have 489	

been horizontally acquired by M. rhizoxinica (56,88). Rhizoxin blocks microtubule 490	
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formation in various types of eukaryotic cells (88,99), thus lack of this gene cluster in 491	

ancestral Vallotia was likely a prerequisite for the establishment of the adelgid 492	

symbiosis. However, this large deleted genomic region also contained several 493	

transposases and many other genes, such as argE and ilvA, coding for the final 494	

enzymes for ornithine and 2-oxobutanoate productions, which were located adjacent 495	

to each other at the beginning of this fragment. The largest deletion between the 496	

plasmids encompassed nearly 137 kbp of the megaplasmid of M. rhizoxinica and 497	

involved several non-ribosomal peptide synthetases (NRPS), insecticidal toxin 498	

complex (Tc) proteins, and a high number of transposases among others. M. 499	

rhizoxinica harbors 15 NRPS genes clusters (56) in total, all of which are absent in 500	

Vallotia. NPRPs are large multienzyme machineries that assemble various peptides, 501	

which might function as antibiotics, signal molecules, or virulence factors (100). 502	

Insecticidal toxin complexes are bacterial protein toxins, which exhibit powerful 503	

insecticidal activity (101). Two of such proteins are also present in the large deleted 504	

chromosomal region in close proximity to the rhizoxin biosynthesis gene cluster 505	

(Figure 3B), however, their role in M. rhizoxinica remains elusive.  506	

The Vallotia genome encodes for a subset of functions of the fungus 507	

endosymbionts 508	

The number of protein coding genes of Vallotia is less than one-third of those 509	

of M. rhizoxinica and M. endofungorum, although metabolic functions are already 510	

reduced in the fungus endosymbionts compared to free-living Burkholderia (56). 511	

When compared to the two genomes of the fungus endosymbionts, only 53 proteins 512	

were specific to Vallotia (Figure S7). All of these were hypothetical proteins, and 513	

most of them showed no significant similarity to other proteins in public databases. 514	
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However, several fall within regions syntenic to the M. rhizoxinica genome and even 515	

retained partial sequence similarity to intact genes present solely in the fungus 516	

endosymbiont. Thus we assume that at least some of these Vallotia specific 517	

hypothetical proteins might rather be remnants of degrading genes and over-518	

annotated/non-functional open reading frames than orphan genes with a yet unknown 519	

function (102,103). Four genes were present in Vallotia and M. rhizoxinica but were 520	

missing in M. endofungorum. These encoded for BioA, BioD in biotin biosynthesis, 521	

NagZ in cell wall recycling, and an MFS transporter. Fifteen genes, including for 522	

instance the MreB rod-shape determining protein, glycosyltransferase and hit family 523	

proteins, genes in lipopolysaccharide, lipoate synthesis, and the oxidative pentose 524	

phosphate pathway were shared between Vallotia and M. endofungorum only. The 525	

rest of the Vallotia genes, coding for 91% of all of its proteins, were shared among the 526	

fungus endosymbionts and the insect endosymbiont.  527	

Comparing the genes present in both the insect and the fungus endosymbionts 528	

to those shared only by the fungus endosymbionts (Figure S8), we can infer selective 529	

functions maintained or lost during transition to insect endosymbiosis. Translation 530	

related functions have been retained in the greatest measure in the group shared by all 531	

endosymbionts. Functions, where higher proportion of genes were specific to the 532	

fungus endosymbioses, were related to transcription, inorganic ion transport and 533	

metabolism, secondary metabolite biosynthesis, signal transduction, intracellular 534	

trafficking, secretion, vesicular transport and defense mechanisms. (Most of the 535	

proteins specific to either of the fungus endosymbionts were homologous to 536	

transposases and integrases, transcriptional regulators, or had an unknown function.) 537	
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Fungus endosymbionts encode for a high number of transcriptional regulators 538	

(~5% of all genes in M. rhizoxinica) (56), but Vallotia has retained only a handful of 539	

such genes, which is a feature similar to other insect symbionts and might contribute 540	

to the overproduction of essential amino acids (62,104).  541	

M. rhizoxinica is resistant against various β-lactams and has an arsenal of 542	

efflux pumps which might provide defense against antibacterial fungal molecules: the 543	

latter might also excrete virulence factors to the fungus cytosol (type I secretion) (56). 544	

Besides, M. rhizoxinica has several genes for pilus formation, adhesion proteins, and 545	

type II, type III, and type IV secretion systems which likely have a central role in host 546	

infection and manipulation in the bacteria-fungus symbiosis (56,105,106). However, 547	

all of the corresponding genes are missing in Vallotia thus neither of these 548	

mechanisms likely plays a role in the operation of the adelgid symbiosis. We could 549	

not even detect remnants of these genes in the Vallotia genome, except for a type II 550	

secretion system protein as a pseudogene. Loss of these functions is consistent with a 551	

strict vertical transmission of Vallotia between host generations, in contrast to M. 552	

rhizoxinca, which can spread also horizontally among fungi and can re-infect cured 553	

Rhizopus strains under laboratory conditions (86,87).  554	

Additionally, the M. rhizoxinica genome encodes several predicted toxin-555	

antitoxin systems (56). Plasmid-associated toxin-antitoxin systems can act as 556	

addiction molecules, which promote the maintenance of plasmids within bacterial 557	

populations (107). However, most of these are missing from Vallotia, only PasT, the 558	

toxic component of a chromosomal type II toxin-antitoxin system is present. Low 559	

levels of PasT can enhance bacterial stress resistance and growth of free-living 560	
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bacteria, while high concentrations can induce persister cell formation (108). 561	

However, the function of PasT in Vallotia remains unclear. 562	

 563	

Conclusions 564	

In most plant-sap feeding insects harboring a dual symbiotic system, typically 565	

the more ancient symbiont provides most of the essential amino acids. However, due 566	

to the ongoing genomic degradation characteristic for endosymbionts even genes 567	

essential in the symbiosis can get inactivated (3,58). These events might lead to the 568	

acquisition and fixation of an additional, younger symbiont, which can complement 569	

these lost functions. For instance, among Auchenorrhyncha, the universal ancient 570	

symbiont Sulcia provides seven or eight essential amino acids, while the rest is 571	

supplied by different younger co-symbionts (109). As a consequence of a host-572	

restricted lifestyle, the genome of the newly arriving symbiont will also lose many 573	

functions even among those key in the symbiosis but present in the other resident 574	

symbiont (64,67,109). Co-obligate symbionts of A. laricis/tardus are both 575	

evolutionary recent bacterial endosymbionts of adelgids with moderately reduced 576	

genomes. This is following their occurrence in larch (Profftia and Vallotia) and 577	

Douglas fir (Vallotia) associated lineages of adelgids, which likely diversified 578	

relatively recently, ~47 and ~60 million years ago from the remaining clades of 579	

adelgids, respectively (5). However, these recently gained adelgid symbionts show a 580	

high level of metabolic complementarity and low functional redundancy in essential 581	

amino acid synthesis. Given its presence in both larch and Douglas fir associated 582	

adelgids, Vallotia might be the relatively older symbiont, and it can synthesize nine 583	
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essential amino acids with a putative contribution of insect delivered compounds. 584	

Loss of functions in chorismate and anthranilate biosynthesis might have led to the 585	

fixation of Profftia in the system. Profftia can produce phenyalanine, but has lost its 586	

capabilities for synthetizing other essential amino acids. Host-derived compounds and 587	

partition of tryptophan biosynthesis between the co-symbionts in A. laricis/tardus are 588	

similar to other insect symbioses suggesting convergent evolution. However, the 589	

Vallotia - Profftia system differs from the Annandia - Pseudomonas system in A. 590	

tsugae where functions of the symbionts in essential amino acid synthesis are more 591	

balanced and redundant. It has been suggested that repeated replacement of symbionts 592	

among adelgids might be a consequence of periods with relaxed selection on 593	

symbiont functions due to different feeding behavior of adelgids on primary and 594	

secondary host trees – that is feeding on nutrient-rich parenchyma cells on spruce 595	

versus nutrient-poor phloem sap on alternate hosts – and multiple origins of host-596	

alternating lifestyles (10). Annandia, the ancient symbiont of adelgids has lost many 597	

functions in essential amino acid biosynthesis, which could support this hypothesis 598	

(25), however the Vallotia - Profftia system does not follow this pattern.  599	

One of the most remarkable findings of our study is the evolutionary link 600	

between the betaproteobacterial insect symbiont, Vallotia, and endosymbionts of 601	

Rhizopus fungi supported by their close phylogenetic relationships and a high-level of 602	

genomic synteny. There are many possible scenarios that could explain the origin of 603	

these symbioses. A common free-living ancestor could infect ancestral adelgids and 604	

Rhizopus fungi independently or developed an intracellular lifestyle in either of these 605	

hosts and got subsequently transmitted between them. We assume that a fungus-insect 606	

symbiont transition is more likely than multiple origins of these associations as the 607	
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proliferation of mobile genetic elements typical in early stages of host restriction 608	

would have resulted in extensive rearrangements and a substantially different genomic 609	

structure (94,110), as seen, for instance, between very closely related Serratia 610	

symbiotica strains in aphids (95). Alternative scenarios are also possible, but the 611	

phylogenetic position of Vallotia interleaved within the clade of Rhizopus 612	

endosymbionts and lack of functions specific to the adelgid symbiont point towards 613	

the putative origin of Vallotia from the fungus endosymbionts. The origin of insect 614	

symbionts from fungus endosymbionts is, according to our knowledge, 615	

unprecedented. Rhizopus endosymbionts are equipped with many functions for 616	

infection and overcoming host defense. Chitinase, chitosanase, and a putative chitin-617	

binding protein have also been found among the putatively Sec exported proteins of 618	

M. rhizoxinica (56), which besides the infection of fungi could have had a role in the 619	

transmission into an insect host. In addition, Rhizopus endosymbionts could be 620	

maintained in pure cultures (86), thus, at least for a limited time, they might survive 621	

also outside of their hosts in the environment. Their host, Rhizopus microsporus, is a 622	

plant pathogen fungus with a broad environmental distribution. Thus a potential route 623	

for acquisition of the symbionts by insects could have been via plant tissues, the food 624	

source of adelgids, similar to plant-mediated symbiont transmission observed for 625	

intracellular insect symbionts (21). 626	

Taken together, our genomic analysis of co-obligate endosymbionts of 627	

adelgids revealed a novel path for the evolution of bacteria-insect symbioses from a 628	

clade of fungus-associated ancestors. 629	

 630	
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	946	

Figure Legends 947	

Figure 1. Division of labor in amino acid biosynthesis and transport between 948	

Vallotia and Profftia showing co-obligatory status of endosymbionts of A. 949	

laricis/tardus. Amino acids produced by Vallotia and Profftia are shown in blue and 950	

red, respectively. Bolded texts indicate essential amino acids. The insect host likely 951	

supplies ornithine, homocysteine, 2-oxobutanoate and glutamine. Other compounds 952	

that cannot be synthesized by the symbionts are shown in grey italics.  953	

 954	

Figure 2. Phylogenomic analysis showing the affiliation of the adelgid 955	

endosymbiont ‘Candidatus Vallotia tarda’ and its closest relatives, the fungus 956	

endosymbionts M. rhizoxinica and M. endofungorum within the 957	

Burkholderiaceae. Free-living and pathogenic bacteria are colored in purple. Selected 958	

members of Oxalobacteraceae (Janthinobacterium agaricidamnosum [HG322949], 959	

Collimonas pratensis [CP013234] and Herbaspirillum seropedicae [CP011930]) were 960	

used as outgroup. Maximum likelihood (IQ-TREE) and Bayesian analyses (MrBayes) 961	

were performed based on a concatenated alignment of 108 proteins. Maximum 962	

likelihood tree is shown. SH-aLRT support (%) and ultrafast bootstrap support (%) 963	

values based on 1000 replicates, and Bayesian posterior probabilities are indicated on 964	

the internal nodes. Asterisks stand for a maximal support in each analysis (100% / 1). 965	

	966	

Figure 3. (A) Synteny between the chromosome and plasmid of Vallotia and M. 967	

rhizoxinica, an endosymbiont of Rhizopus fungi. The outermost and the middle 968	
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rings show genes in forward and reverse strand orientation, respectively. These 969	

include rRNA genes in red and tRNA genes in dark orange. The innermost ring 970	

indicates single-copy genes shared by M. rhizoxinica and Vallotia in black. Purple and 971	

dark yellow lines connect forward and reverse matches between the genomes, 972	

respectively. The two small contigs involving the rRNA genes of Vallotia are not 973	

shown. (B) Close-up of the largest deletion on the chromosome of M. rhizoxinica 974	

and the syntenic region on the Vallotia chromosome. Genes are colored according 975	

to COG categories. Yellow: secondary metabolite biosynthesis; red: transposase; 976	

grey: unknown function; khaki: replication, recombination and repair; pink: lipid 977	

transport and metabolism; brown: protein turnover and chaperones; dark green: amino 978	

acid transport and metabolism; light green: cell envelope biogenesis; black: 979	

transcription. 980	

  981	
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 Profftia Vallotia  
Feature Chromosome Chromosome Plasmid 
Genome size (bp) 1,225,795 1,110,884 72,431 
GC (%) 31.9 42.8 36.1 
Coding density (%)  52.4 65.6 46.2 
CDS 645 751 29 
rRNA genes 3 3* 0 
tRNAs 35 37 0 
Pseudogenes 21 47 5 
	982	
	983	
Table 1. Genomic features of Profftia and Vallotia. *Vallotia likely has three copies 984	

of each rRNA gene based on the sequence coverage of the corresponding contigs 985	

involving these genes. 986	

  987	
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 988	

Figure 1. Division of labor in amino acid biosynthesis and transport between 989	

Vallotia and Profftia showing co-obligatory status of endosymbionts of A. 990	

laricis/tardus. Amino acids produced by Vallotia and Profftia are shown in blue and 991	

red, respectively. Bolded texts indicate essential amino acids. The insect host likely 992	

supplies ornithine, homocysteine, 2-oxobutanoate and glutamine. Other compounds 993	

that cannot be synthesized by the symbionts are shown in grey italics.  994	

  995	
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 996	

Figure 2. Phylogenomic analysis showing the affiliation of the adelgid 997	

endosymbiont ‘Candidatus Vallotia tarda’ and its closest relatives, the fungus 998	

endosymbionts M. rhizoxinica and M. endofungorum within the 999	

Burkholderiaceae. Free-living and pathogenic bacteria are colored in purple. Selected 1000	

members of Oxalobacteraceae (Janthinobacterium agaricidamnosum [HG322949], 1001	

Collimonas pratensis [CP013234] and Herbaspirillum seropedicae [CP011930]) were 1002	

used as outgroup. Maximum likelihood (IQ-TREE) and Bayesian analyses (MrBayes) 1003	

were performed based on a concatenated alignment of 108 proteins. Maximum 1004	

likelihood tree is shown. SH-aLRT support (%) and ultrafast bootstrap support (%) 1005	

values based on 1000 replicates, and Bayesian posterior probabilities are indicated on 1006	

the internal nodes. Asterisks stand for a maximal support in each analysis (100% / 1). 1007	

  1008	
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 1009	

Figure 3. (A) Synteny between the chromosome and plasmid of Vallotia and M. 1010	

rhizoxinica, an endosymbiont of Rhizopus fungi. The outermost and the middle 1011	

rings show genes in forward and reverse strand orientation, respectively. These 1012	

include rRNA genes in red and tRNA genes in dark orange. The innermost ring 1013	

indicates single-copy genes shared by M. rhizoxinica and Vallotia in black. Purple and 1014	

dark yellow lines connect forward and reverse matches between the genomes, 1015	

respectively. The two small contigs involving the rRNA genes of Vallotia are not 1016	

shown. (B) Close-up of the largest deletion on the chromosome of M. rhizoxinica 1017	

and the syntenic region on the Vallotia chromosome. Genes are colored according 1018	

to COG catergories. Yellow: secondary metabolite biosynthesis; red: transposase; 1019	

grey: unknown function; khaki: replication, recombination and repair; pink: lipid 1020	

transport and metabolism; brown: protein turnover and chaperones; dark green: amino 1021	

acid transport and metabolism; light green: cell envelope biogenesis; black: 1022	

transcription. 1023	

A	
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