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Abstract 

Physical activity and cognitive functioning are strongly intertwined. However, the causal 

relationships underlying this association are still unclear. Physical activity can enhance brain 

functions, but healthy cognition may also promote engagement in physical activity. Here, we 

assessed the bidirectional relationships between physical activity and general cognitive 

functioning using Latent Heritable Confounder Mendelian Randomization (LHC-MR). 

Association data were drawn from two large-scale genome-wide association studies (UK 

Biobank and COGENT) on accelerometer-measured moderate, vigorous, and average physical 

activity (N = 91,084) and cognitive functioning (N = 257,841). After Bonferroni correction, we 

observed significant LHC-MR associations suggesting that increased fraction of both moderate 

(b = 0.32, CI95% = [0.17,0.47], P = 2.89e-05) and vigorous physical activity (b = 0.22, CI95% = 

[0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found no 

evidence of a causal effect of average physical activity on cognitive functioning, and no 

evidence of a reverse causal effect (cognitive functioning on any physical activity measures). 

These findings provide new evidence supporting a beneficial role of moderate and vigorous 

physical activity (MVPA) on cognitive functioning. 

Keywords: Cognition, Exercise, Health Behavior, Mendelian Randomization Analysis, 

Accelerometry 
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Introduction 

Multiple cross-sectional and longitudinal studies have shown that physical activity and 

cognitive functioning are strongly intertwined and decline through the course of life (Cheval, 

Orsholits, et al., 2020; Cheval, Sieber, et al., 2018; DiPietro, 2001; Levy, 1994; Sebastiani et 

al., 2020). However, the evidence of causality of this relationship remains unclear Previous 

results have shown that physical activity can improve cognitive functioning (Angevaren et al., 

2008; Baumgart et al., 2015; Blondell et al., 2014; Colcombe & Kramer, 2003; Hamer et al., 

2018; Morgan et al., 2012; Sofi et al., 2011), but recent studies have also suggested that well-

functioning cognitive skills can influence engagement in physical activity (Cheval, Bacelar, et 

al., 2020; Cheval et al., 2022; Cheval, Orsholits, et al., 2020; Cheval et al., 2019; Daly et al., 

2015; Lindwall et al., 2012; Sabia et al., 2017; Snowden et al., 2011; Young et al., 2015). 

Several mechanisms could explain how physical activity enhances general cognitive 

functioning (Colcombe & Kramer, 2003; Colzato et al., 2018; Cotman & Berchtold, 2002; 

Cotman et al., 2007; Hillman et al., 2008; Lisanne et al., 2018; Raichlen & Alexander, 2017; 

Roig et al., 2013). For example, physical activity can increase brain plasticity, angiogenesis, 

synaptogenesis, and neurogenesis primarily through the upregulation of growth factors (e.g., 

brain-derived neurotrophic factor; BDNF) (Cotman & Berchtold, 2002; Cotman et al., 2007; 

Hillman et al., 2008). In addition, the repetitive activation of higher-order brain functions (e.g., 

planning, inhibition, and reasoning) required to engage in physical activity may contribute to 

the improvement of these functions (Frith & Loprinzi, 2018; Raichlen & Alexander, 2017). In 

turn, other mechanisms could explain how cognitive functioning may affect physical activity. 

For example, cognitive functioning may be required to counteract the innate attraction to effort 

minimization and thereby influence a person’s ability to engage in physically active behavior 

(Cheval, Daou, et al., 2020; Cheval, Radel, et al., 2018; Cheval et al., 2019; Cheval, Tipura, et 

al., 2018). Of note, these mechanisms are not mutually exclusive and could therefore lead to 
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bidirectionally reinforcing relationships (i.e., positive feedback loop) between physical activity 

and cognitive functioning (Choi et al., 2019). Thus, there is a mechanistic explanation 

theoretically supporting the associations between physical activity and cognitive function.   

Although these studies point to a potential mutually beneficial interplay between 

physical activity and cognitive functioning across the lifespan, these findings mainly stem from 

observational designs and analytical methods that cannot fully rule out the influence of social, 

behavioral, and genetic confounders (Choi et al., 2019). While randomized controlled trials 

minimizing these potential counfounds have been conducted (Northey et al., 2018), they were 

typically based on small sample sizes (n<100) that can bias the estimations (Northey et al., 

2018). Critically, these trials only investigated the effect of physical activity on cognitive 

functioning, not the opposite. Accordingly, current evidence on the causal association between 

physical activity and cognitive functioning and on whether this association is one or two-way 

could be considered weak. Because Mendelian Randomization (MR) is less vulnerable to 

confounding or reverse causation than conventional approaches in observational studies (Byrne 

et al., 2017; Davies, Holmes, et al., 2018), this method is particularly appropriate to address 

this knowledge gap. 

MR is an epidemiological method in which the randomized inheritance of genetic 

variation is considered as a natural experiment to estimate the potential causal effect of a 

modifiable risk factor (exposure) on health-related outcomes in an observational design (Byrne 

et al., 2017; Davies, Holmes, et al., 2018). MR draws on the assumption that genetic variants 

are associated with the exposure, because they are randomly allocated at conception, are less 

associated with other risk factors that may be confounders of the exposure and the outcome, 

and are immune to reverse causality since diseases or health-related outcomes have no reverse 

effect on genetic variants. Accordingly, if an exposure (e.g., physical activity) causally affects 

an outcome (e.g., cognitive function), the genetic variants that influences this exposure is 
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expected to affect the outcome to a proporitional degree if no separate pathway exists by which 

these genetic variants can affect the outcome (Choi et al., 2019). In other words, genetic variants 

associated with an exposure of interest can serve as instruments (or proxies) for estimating the 

causal association with an outcome (see Figure 1 for the conceptual illusation of the MR 

method).  

We used a newly-developed MR method showing improved power to simultaneously 

estimate the bidirectional causal effects between physical activity and cognitive functioning 

(Darrous et al., 2021). In a two-sample MR design, genetic instruments can be obtained from 

summary statistics of nonoverlapping large-scale genome-wide association studies (GWAS). 

That is, the genetic instruments for the exposure and the genetic instruments for the outcome 

can be obtained from separate studies (Hemani et al., 2018). This is an outstanding advantage 

for estimating the causal relationships between two traits (e.g., cognitive functioning and 

physical activity) because a trait does not necessarily need to be assessed in both samples 

(Hemani et al., 2018). Here, the causal estimates were modelled based on recently available 

summary statistics from large-scale GWAS of accelerometer-measured physical activity 

(Klimentidis et al., 2018), and general cognitive functioning (Davies, Lam, et al., 2018; Lee et 

al., 2018). Since it has been suggested that the intensity of physical activity can be an important 

consideration (Szuhany et al., 2015), we assessed whether the causal effect estimates on 

cognitive functioning were dependent on physical activity intensity (i.e., moderate vs. vigorous 

vs. average intensity). Of note, as existiting literature suggests reciprocal associations between 

physical activity and cognitive function, we applied bidirectional MR to examine the causal 

link from physical activity to cognitive function and from cognitive function to physical 

activity.  

Methods 

Data sources and instruments 
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This study used de-identified GWAS summary statistics from original studies that were 

approved by relevant ethics committees. The current study was approved by the Ethics 

Committee of Geneva Canton, Switzerland (CCER-2019-00065). The available summary-level 

data were based on 257,841 samples for general cognitive functioning and 91,084 samples for 

accelerometer-based physical activity. Participants’ age ranged from 40 to 69 years in the UK 

Biobank and from 8 to 96 years in the COGENT consortium. 

Physical activity  

Accelerometer-measured physical activity was assessed based on summary statistics 

from a recent GWAS (Klimentidis et al., 2018), analyzing accelerometer-based physical 

activity data from the UK Biobank. In the UK Biobank, about 100,000 participants wore a 

wrist-worn triaxial accelerometer (Axivity AX3) that was set up to record data for seven days. 

Individuals with less than 3 days (72 h) of data or not having data in each 1-hour period of the 

24-h cycle or for whom the accelerometer could not be calibrated were excluded. Data for non-

wear segments, defined as consecutive stationary episodes ≥ 60 min where all three axes had a 

standard deviation < 13 mg, were imputed. The details of data collection and processing can be 

found elsewhere (Doherty et al., 2017). We examined three measures derived from the three to 

seven days of accelerometer wear: the average acceleration in milli-gravities (mg) that includes 

acceleration > 100 mg, the fraction of accelerations > 100 mg and < 425 mg to estimate 

moderate physical activity, and fraction of accelerations ≥ 425 mg to estimate vigorous 

physical activity (Klimentidis et al., 2018). As previous reported (Hildebrand et al., 2014), 425 

mg cut-off was chosen because it corresponds to vigorous intensity (6 METS). The GWAS for 

average physical activity (nmax = 91,084) identified 2 independent genome-wide significant 

SNPs (P < 5e-09), with a SNP-based heritability of ~ 14%.  

As for the other two physical activity measures, the fractions of accelerations 

corresponding to moderate and vigorous physical activity were obtained by running new 
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GWAS on the decomposed acceleration data from UK Biobank using the BGENIE software 

(Bycroft et al., 2018). The phenotype for moderate physical activity was limited to acceleration 

magnitudes ranging from 100 to < 425 mg, whereas vigorous physical activity was limited to 

acceleration magnitudes ranging from 425 to 2,000 mg. These acceleration fractions were 

adjusted for age, sex, and the first 40 principal component (PC), and the analyzed individuals 

were restricted to unrelated white-British. The two datasets of average physical activity 

summary statistics, alongside the moderate and vigorous physical activity summary statistics, 

were used in Latent Heritable Confounder Mendelian Randomization (LHC-MR) to investigate 

the possible bidirectional effect that exists between these physical activity traits and cognitive 

functioning. 

General cognitive functioning 

General cognitive functioning was assessed based on summary statistics from a recent 

GWAS combining cognitive and genetic data from the UK Biobank and the COGENT 

consortium (N = 257,841) (Lee et al., 2018). The phenotypes of these cohorts are well-suited 

to meta-analysis because their pairwise genetic correlation has been shown to be high (Davies, 

Lam, et al., 2018). In the UK Biobank (nmax = 222,543) participants were asked to complete 13 

multiple-choice questions that assessed verbal and numerical reasoning. For verbal reasoning, 

a typical question was “bud is to flower what child is to …?”, and possible answers presented 

to the participants are “Grow”, “Develop”, “Improve”, “Adult”, or “Old”. For numerical 

reasoning, a typical question was “150…137…125…114…104… what comes next?” with 

possible answers being “96”, “95”, “94”, “93”, or “92” (Lee et al., 2018). The verbal and 

numerical reasoning score was based on the number of questions answered correctly within a 

two-minute time limit. Each respondent took the test up to four times. This test was designed 

as a measure of fluid intelligence. The phenotype consists of the mean of the standardized score 

across the measurement occasions for a given participant. In the COGENT consortium (nmax = 
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35,298), general cognitive function is statistically derived from a principal components analysis 

of individual scores on a neuropsychological test battery, such as the Verbal or spatial N-Back 

working memory task, Stroop Test, the Trail Making Test, or the Wechsler Adult Intelligence 

Scale (Trampush et al., 2017). Details on the test battery are available in the supplementary 

material of Davies et al. (2016). Of note, Davies et al. (2016) demonstrated that two general 

cognitive function components extracted from different sets of cognitive tests on the same 

participants exhibit a high correlation, addressing the fact that different cohorts relied on 

different cognitive tests. Thus, the phenotype estimates overall cognitive functioning and is 

relatively invariant to the battery used and specific cognitive abilities assessed (Johnson et al., 

2008; Panizzon et al., 2014). These COGENT data used to assess general cognitive functioning 

were also used in another GWAS study (Davies, Lam, et al., 2018). The GWAS identified 226 

independent genome-wide significant SNPs, with a SNP-based heritability of ~20%. 

Statistical analysis  

MR is a statistical approach for causal inference that can overcome the weaknesses of 

traditional observational studies (Byrne et al., 2017; Davies, Holmes, et al., 2018). MR-based 

effect estimates rely on three main assumptions (Lawlor et al., 2008), stating that genetic 

instruments i) are strongly associated with the exposure (relevance assumption), ii) are 

independent of confounding factors of the exposure-outcome relationship (independence 

assumption), and iii) are not associated to the outcome conditional on the exposure and potential 

confounders (exclusion restriction assumption). Well-powered GWAS offer multiple genetic 

instruments that are strongly associated with exposures of interest (cognitive functioning or 

physical activity in our case), which validates the relevance assumption. Each of these genetic 

variants (instruments) provides a causal effect estimate of the exposure on the outcome, which 

can be in turn combined through meta-analysis using inverse-variance weighting (IVW) to 

obtain an overall estimate. The second and third assumptions are less easily validated and can 
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be violated in the case of a heritable confounder affecting the exposure-outcome relationship 

and biasing the causal estimate. Such confounders can give rise to instruments with proportional 

effects on the exposure and outcome, hence violating the INstrument Strength Independent of 

Direct Effect (InSIDE) assumption requiring the independence of the exposure and direct 

outcome effects. There have been several extensions to the common IVW method of MR 

analysis, including MR-Egger, which allows for directional pleiotropy of the instruments and 

attempts to correct the causal regression estimate. Other extensions, such as median and mode-

based estimators, assume that at least half of or the most “frequent” genetic instruments are 

valid/non-pleiotropic. However, despite these extensions and relaxed assumptions, all these 

classical MR methods are notably underpowered32 and still suffer from two major limitations. 

First, they only use a subset of markers as instruments (genome-wide significant markers), 

which often dilutes the true relationship between traits. Second, they ignore the presence of a 

potential latent heritable confounder of the exposure-outcome relationship (e.g., body mass 

index, educational attainement, level of physical activity at work, or material deprivation). 

LHC-MR also uses GWAS summary statistics (Darrous et al., 2021), but importantly, 

this new method appropriately uses genome-wide genetic markers to estimate bidirectional 

causal effects, direct heritability, and confounder effects while accounting for sample overlap. 

LHC-MR can be viewed as an extension of the linkage disequilibrium score regression (LDSC) 

(Bulik-Sullivan et al., 2015), designed to estimate trait heritability, in that it models all genetic 

marker effects as random, but additionally estimates bidirectional causal effect, as well as other 

parameters. LHC-MR extends the standard two-sample MR by modeling a latent (unmeasured) 

heritable confounder that has an effect on the exposure and outcome traits. This allows LHC-

MR to differentiate SNPs based on their co-association to a pair of traits and distinguish 

heritable confounding that leads to genetic correlation from actual causation. Thus, the unbiased 

bidirectional causal effect between these two traits are estimated simultaneously along with the 
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confounder effect on each trait (Figure 2a-b). The LHC-MR framework, with its multiple 

pathways through which SNPs can have an effect on the traits, as well as its allowance for null 

effects, make LHC-MR more precise at estimating causal effects compared to standard MR 

methods (i.e., MR egger, weighted median, inverse variance weigthed, simple mode, and 

weighted mode).  

The likelihood function for LHC-MR, which is derived from the mixture of different 

pathways through which the genome-wide SNPs can have an effect (acting on either the 

exposure, the outcome, the confounder, or the combinations of these three), is then optimized 

given random starting values for the parameters it can estimate. The optimization of the 

likelihood function then yields the maximum likelihood estimate (MLE) value for a set of 

estimated parameters, including the bidirectional causal effect between the exposure and the 

outcome as well as the strength of the confounder effect on each of those two traits. The 

standard errors of each of the parameters estimated using LHC-MR were obtained by 

implementing a block jackknife procedure where the SNP effects are split into blocks, and the 

MLE is computed again in a leave-one-block-out fashion. The variance of the estimates can 

then be computed from the results of the various MLE optimizations. Furthermore, the causal 

estimates obtained from LHC-MR are on the scale of 1 standard deviation (SD) outcome 

difference upon a 1 SD exposure change due to the use of standardized summary statistics for 

the two traits. 

A sensitivity analysis in which the model was further adjusted for baseline self-reported 

level of physical activity at work, walking or standing at work, and the Townsend Deprivation 

Index was conducted. 

Results 

Three measures derived from accelerometer wear were used as a proxy for physical 

activity: average, moderate, and vigorous physical activity. These three measures were used in 
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LHC-MR to investigate the possible bidirectional causal effects between them and cognitive 

functioning. The model tested was adjusted for age, sex, genotyping chip, first ten genomic 

principal components (PC), center, and season (month) of wearing accelerometer. The 

Bonferroni correction was used to control for familywise error rates, yielding an α = 0.05 / (2 

directions × 3 tests) = 0.008. 

Average physical activity and general cognitive functioning 

LHC-MR applied to summary statistics belonging to model 1 showed no evidence for a 

potential causal effect of average physical activity on cognitive functioning (b = 0.245, CI95% 

= [-0.01,0.50], P = 0.065) (Table 1, Figure 3) and no evidence for the reverse causal effect (b = 

-0.145, CI95%. = [-0.26,-0.03], P = 0.013 [α = 0.008]). Similarly, standard MR methods such as 

IVW, MR Egger, weighted median, simple mode, and weighted mode yielded non-significant 

causal estimates in either direction (Table 2), using 129 genome-wide significant single 

nucleotide polymorphisms (SNPs) as instruments for cognitive functioning and 6 SNPs for 

average acceleration.  

Moderate physical activity and general cognitive functioning 

LHC-MR applied to the fraction of accelerations corresponding to moderate physical 

activity showed a potential positive causal effect of moderate physical activity on greater 

cognitive functioning (b = 0.32, CI95% = [0.17,0.47], P = 2.89e-05) (Table 1, Figure 3). We 

found no evidence for the reverse causal effect (b = -0.071, CI95%. = [-0.15, 0.01], P = 0.078 [α 

= 0.008]). As was found with average physical activity, there was no evidence for the presence 

of a heritable confounder. Standard MR methods yielded non-significant causal estimates in 

both directions (Table 2). 

Vigorous physical activity and general cognitive functioning 

LHC-MR applied to the fraction of accelerations corresponding to vigorous physical 

activity on cognitive functioning showed a potential positive causal effect of vigorous physical 
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activity on greater cognitive functioning (b = 0.22, CI95% = [0.06,0.37], P = 0.007) (Table 1, 

Figure 3). We found no evidence for the reverse causal effect (b = -0.031, CI95%. = [-0.08, 0.02], 

P = 0.237 [α = 0.008]). As was found with average and moderate physical activity, there was 

no evidence for the presence of a heritable confounder. Of note, the coefficient of this causal 

effect was qualitatively weaker than of the causal effect of moderate physical activity on 

cognitive functioning (b = 0.22 vs. b = 0.32). Standard MR methods yielded non-significant 

causal estimates in both directions (Table 2). 

Sensitivity analyses 

We tested another model where an extra adjustment had been done for the baseline self-

reported level of physical activity at work, walking or standing at work, and the Townsend 

Deprivation Index. LHC-MR applied to summary statistics emerging from this second model 

showed consistent results with that of the first model (b = 0.22, CI95% = [-0.05,0.50], P = 0.111 

and b = -0.090, CI95% = [-0.23,0.05], P = 0.200, respectively). Both models showed no evidence 

for the presence of a heritable confounder. Due to the similarity in results between these models, 

we did not conducted this second model on moderate and vigoruous physical activity.  

Discussion 

Main findings 

This study used a genetically informed method that provides evidence of putative causal 

relations to investigate the bidirectional associations between accelerometer-based physical 

activity and general cognitive functioning. Drawing on large-scale GWAS, we found evidence 

for potential causal effects, suggesting that higher levels of moderate and vigorous physical 

activity lead to increased cognitive functioning. In the opposite direction, we did not observe 

evidence of a causal effect of cognitive functioning on physical activity. Hence, our study 

suggests a favorable effect of moderate and vigorous physical activity on cognitive functioning, 
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but does not provide evidence that increased cognitive functioning promotes engagement in 

more physical activity. 

Comparison with previous studies 

Previous reviews and meta-analyses of observational studies showed a beneficial effect 

of physical activity on cognitive functioning (Baumgart et al., 2015; Morgan et al., 2012; 

Raichlen & Alexander, 2017; Sofi et al., 2011). However, the evidence arising from 

intervention studies was inconclusive (Angevaren et al., 2008; Colcombe & Kramer, 2003; 

Erickson et al., 2019; Sabia et al., 2017; Snowden et al., 2011; Young et al., 2015). It has been 

argued that these inconsistencies may primarily be attributed to the design-specific tools used 

to assess physical activity (Sabia et al., 2017). Specifically, many observational studies rely on 

self-reported measures of physical activity, whereas intervention studies often rely on 

accelerometer-measured physical activity, or have people exercising under monitored 

conditions. In other words, evidence of a favorable effect of physical activity on cognitive 

functioning may have emerged in observational studies because of the self-reported nature of 

the measures they typically used. Yet, in our study, results are based on accelerometer-assessed 

physical activity, thereby partially ruling out this explanation. Therefore, our findings further 

support the literature that demonstrated a protective role of physical activity on cognitive 

functioning and extend it by doing so using an accelerometer-based measure. Our findings are 

in line with recent MR-based results showing a protective effect of objectively assessed, but 

not self-reported, physical activity on the risk of depression (Choi et al., 2019).  

Of note, results obtained from LHC-MR differed from those obtained with standard MR 

methods. At least three key differences in the methods can explain this divergence: i) standard 

MR uses only genome-wide significant markers, ii) standard MR is biased in case of sample 

overlap (as is the case in this study) and hence their estimate may be biased towards the 

observational correlation, and iii) LHC-MR explicitly models correlated pleiotropy unlike 
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standard MR. Accordingly, our results obtained from LHC-MR are expected to be more robust 

than those obtained from standard MR. Since LHC-MR could not find evidence for the presence 

of a heritable confounder, correlated pleiotropy is less likely, or there might be multiple 

confounders with opposite effects cancelling each other out. This finding highlights that the 

main reason for the difference between LHC-MR and classical MR methods is statistical power. 

For testing the reverse causal effect (cognition on physical activity), we had numerous 

instruments available, ensuring that all MR-methods are well-powered and yielding the same 

(null effect) conclusion. The forward effect (physical activity on cognition) relied on only a few 

(weak) instruments, rendering classical MR methods notably underpowered. This is the type of 

situation in which methods such as LHC-MR, which leverage genome-wide genetic markers, 

are crucial to facilitate discovery. It is important to point out that while the statistical conclusion 

from classical and LHC-MR methods differ, their effect estimates are not significantly 

different, suggesting that there is no discrepancy in the results, but that they have different 

precision. Finally, we acknowledge that LHC-MR assumptions may be violated and results 

should thus still be considered cautiously. Yet, while the assumptions of LHC-MR may not 

hold, the assumptions of the other five methods are known not to hold because of insufficient 

genome-wide significant instrument. 

To the best of our knowledge, our study is the first to investigate the potential causal 

relationship between physical activity and cognitive functioning using a genetically informed 

method. We are aware of only two other, non-genetic studies that examined the potential 

bidirectional associations between physical activity and cognitive functioning (Cheval, 

Orsholits, et al., 2020; Daly et al., 2015). In contrast to the present study, those two studies 

observed a positive influence of cognitive functioning on physical activity. At least two factors 

can explain the differences in the results observed. First, both those studies are based on 

longitudinal assessment (Granger causality) of the two traits, while our approach is based on a 
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genetically instrumented causal inference technique (LHC-MR). Second, these studies draw on 

self-reported physical activity rather than accelerometer-measured physical activity, which may 

not accurately reflect the objective level of physical activity.  

Our results obtained with recently-improved genetically-informed analyses (LHC-MR) 

highlight the potential critical role of physical activity, specifically of moderate and vigorous 

intensity, on cognitive functioning. However, it should be noted that the estimated effect of 

moderate physical activity on cognitive functioning was about 1.5 times stronger in magnitude 

than the effect of vigorous physical activity. To the best of our knowledge, this study is the first 

to assess and compare the causal relationships of moderate and vigorous physical activity with 

cognitive functioning using a genetically-informed method based on large-scale datasets. 

Alhough additional evidence are needed, this study confirms the importance to examine the 

extent to which the intensity of physical activity moderates the effects observed on cognitive 

functioning (Szuhany et al., 2015). 

The LHC-MR method revealed two causal relations that are consistent with each other. 

Importantly, these findings are consistent with theoretical and experimental work explaining 

the mechanisms underlying the association between the physical activity and cognitive 

functioning. Results obtained with both the LHC and standard MR methods showed no 

evidence of an effect of average physical activity on cognitive functioning. This finding can 

likely be explained by physical activities of low intensity (i.e., < 100 mg) that are part of the 

average physical activity, which further suggests that physical activity should be of moderate-

to-vigorous intensity to benefit cognitive functioning. 

The absence of evidence for a reverse causal effect of cognitive functioning on physical 

activity may be partly explained by the lower power of this analysis due to smaller sample size 

of the GWAS of physical activity (n = 91,084) compared to the sample size of the GWAS of 

cognitive functioning (n = 257,841). This absence of evidence contrasts with other studies 
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arguing that cognitive functioning is critical for supporting engagement in physical activity 

(Cheval, Radel, et al., 2018; Cheval et al., 2019; Cheval, Tipura, et al., 2018). This difference 

could be explained in at least two ways. Firstly, previous studies examining the positive effect 

of cognitive functions on physical activity relied on self-reported physical activity, which can 

bias the observed associations (Cheval, Orsholits, et al., 2020; Cheval et al., 2019; Lindwall et 

al., 2012). Secondly, our study relied on general cognitive functioning, whereas previous results 

highlight the specific importance of inhibition resources that may be required to counteract an 

automatic tendency for effort minimization (Cheval & Boisgontier, 2021; Cheval et al., 2021; 

Cheval, Daou, et al., 2020; Cheval, Radel, et al., 2018; Cheval et al., 2019; Cheval, Tipura, et 

al., 2018). Therefore, future studies should investigate the specific relationships between motor 

inhibition and physical activity when such data is available.  

Strengths and limitations 

Among the strengths of the current study are the use of large-scale datasets, the reliance 

on instruments derived from objective measures of physical activity, and the application of a 

robust genetically informed method that can estimate causal effects. However, this study has 

several features that limit the conclusions that can be drawn. First, the measure of cognitive 

functioning spans multiple performance domains, which reduced the specificity of the cognitive 

functioning that was assessed. This feature limits our ability to evaluate the putative causal 

effects between specific cognitive functioning, such as motor inhibition, and physical activity. 

Second, MR analysis is designed to elucidate a life-long exposure effect on a life-long outcome 

(except in special cases when genetic factors have time-dependent effects), thus it is not suited 

to explore temporal aspects of these causal relationships. Third, 2-sample MR methods require 

that SNP effects on the exposure are homogeneous between the two samples. Here, because our 

two samples differ in age, we rely on the assumption that these genetic effects do not change 

depending on age. This assumption often turns out to be true, although there are rare exceptions 
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(Winkler et al., 2015). It is therefore still possible that genetic variants related to physical 

activity and cognitive function may differ across the life course. For example, genetic variants 

related to cognitive development, maintenance and decline may strongly differ. Likewise, the 

genetic variance predicting physical engagement in early-life may differ from those predicting 

engagement in adult or late-life. Accordingly, as the age range between the sample is not 

equivalent (40 to 60 years for the UK Biobank vs 8 to 96 years in the COGENT consortium) 

and, most importantly, as physical activity was only assessed in the UK biobank that provides 

the narrowest age range, the potential differences in the genetic variants depending on 

individual’s age may have bias the current findings. Testing to which extent age may influence 

the genetic variants associated with physical activity and cognitive functioning traits is thus 

warranted in future studies. Fourth, LHC-MR can be limited by the low heritability of traits, 

potentially causing bimodal/unreliable estimates. Fifth, LHC-MR assumes a single confounder 

(or several ones with similar effects), but a limitation exists when multiple confounders are 

present with similar but opposing effect directions on the traits of interest, resulting in a higher 

misdetection rate. Sixth, alhough the coefficients estimated with LHC-MR did not statistical 

differed from the coefficents estimated with classical MR, it is important to akcnowledge that 

no classical MR were unable to find  a significant association from physical activity to cognitive 

function. Accordongly, even if we can be rather confident in the estimation provided by the 

newly developed methods, it seems more reasonable to consider that the current findings are 

provisional and need to be replicated. Finally, it is worth noting that the genetic instruments 

were developed on a primarily white population of European ancestry, limiting the 

generelizeability of the results. 

Conclusion and policy implications  

Our findings provide preliminary support for a unidirectional relation whereby higher 

levels of moderate and vigorous physical activity lead to improved cognitive functioning. These 
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results underline the essential role of moderate and vigorous physical activity in maintaining or 

improving general cognitive functioning. Therefore, health policies and interventions that 

promote moderate and vigorous physical activity are relevant to improve cognitive functioning 

or to delay its decline. 
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Figure and tables 

Table 1.  Latent Heritable Confounder Mendelian Randomization (LHC-MR) results for 

the association between accelerometer-measured physical activity and general cognitive 

functioning 

Parameter 
Cognitive Functioning Physical Activity Cognitive Functioning 

→ Physical Activity  
Physical Activity 

→ Cognitive Functioning Heritability t Heritability t 

Average accelerometer-measured physical activity 

Estimate 0.207 0.033 0.123 -0.011 -0.145 0.245 

P-value 2.67E-115 0.612 4.41E-28 0.816 0.013 0.065 

Moderate accelerometer-measured physical activity (fraction of acceleration > 100 mg and < 425 mg) 

Estimate 0.202 0.072 0.092 -0.105 -0.071 0.323 

P-value 1.13E-165 0.032 5.98E-29 0.046 0.078 2.89e-05 

Vigorous accelerometer-measured physical activity (fraction of acceleration ≥ 425 mg) 

Estimate 0.210 0.002 0.069 -0.001 -0.031 0.212 

P-value 6.75E-157 0.972 3.95E-25 0.992 0.237 0.007 

Notes. Parameters estimates and their p-values obtained from the LHC-MR optimized model 

with the maximum likelihood. Bidirectional associations from cognitive functioning to physical 

activity and from physical activity to cognitive functioning are reported. t = effect of the 

confounder. Bonferroni corrected α = 0.008. 
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Table 2. Standard Mendelian Randomization (MR) results for the association between 

accelerometer-based physical activity and general cognitive functioning 

Exposure Outcome MR method Valid SNPs Causal estimate SE P-value 

Average accelerometer-based physical activity 

Cognitive 
Functioning 

Physical 
Activity 

MR Egger 129 0.015 0.185 0.935 

Weighted median 129 -0.027 0.036 0.440 

Inverse variance weighted 129 -0.011 0.032 0.723 

Simple mode 129 -0.102 0.116 0.376 

Weighted mode 129 -0.084 0.111 0.452 

Physical 
Activity 

Cognitive 
Functioning 

MR Egger 4 -2.833 1.148 0.069 

Weighted median 4 0.017 0.062 0.782 

Inverse variance weighted 4 -0.088 0.127 0.488 

Simple mode 4 0.020 0.076 0.801 

Weighted mode 4 0.023 0.074 0.770 
Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg) 

Cognitive 
Functioning 

Physical 
Activity 

MR Egger 129 -0.054 0.181 0.766 

Weighted median 129 -0.032 0.037 0.389 

Inverse variance weighted 129 -0.012 0.032 0.710 

Simple mode 129 -0.059 0.106 0.575 

Weighted mode 129 -0.031 0.091 0.729 
Physical 
Activity 

Cognitive 
Functioning 

MR Egger 106 0.325 0.319 0.310 

Weighted median 106 -0.001 0.021 0.981 

Inverse variance weighted 106 0.023 0.022 0.309 

Simple mode 106 -0.017 0.057 0.767 

Weighted mode 106 -0.010 0.050 0.837 
Vigorous accelerometer-based physical activity (fraction of acceleration ≥ 425 mg) 

Cognitive 
Functioning 

Physical 
Activity 

MR Egger 129 0.009 0.149 0.952 

Weighted median 129 0.018 0.036 0.623 

Inverse variance weighted 129 0.002 0.026 0.939 

Simple mode 129 0.021 0.097 0.829 

Weighted mode 129 0.021 0.088 0.812 
Physical 
Activity 

Cognitive 
Functioning 

MR Egger 88 0.151 0.335 0.653 

Weighted median 88 -0.035 0.022 0.108 

Inverse variance weighted 88 -0.016 0.020 0.432 

Simple mode 88 -0.065 0.060 0.286 

Weighted mode 88 -0.059 0.052 0.257 
Notes. Causal estimates from 5 standard Mendelian Randomization (MR) methods on 

alternating exposure and outcome traits. For both moderate and vigorous physical activity as 

exposure, the cutoff was decreased to 6.33e-5 because of the low number of genome wide 

significant single nucleotide polymorphisms (SNPs) to use as instruments. Corrected α = 0.008.  
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Figure 1. Conceptual illustration of the MR method 

 

Notes. The causal association of interest is between the exposure (e.g., physical activity) and 

the outcome (e.g., cognitive function). Relevance assumption states that the genetic instruments 

are strongly associated with the exposure but are not associated with the counfouders. The 

exclusion restriction assumption states that the genetic instruments are only indirectly 

associated with the outcome via the exposure. Thus, the solid paths are expected to exist, while 

the dashed paths are expected to be nonsngificant according to the core MR assumptions.  
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Figure 2. Visual representation of the model in LHC-MR 

 

Notes. G = Genetic instruments; CF = general cognitive functioning; a. For moderate physical 

activity (ModPA); b. For vigorous physical activity (VigPA); U = Latent heritable confounder; 

h2 = direct heritability. Each figure includes the bidirectional causal effects between the two 

traits as well as the confounder effects on each of them. Coefficients are beta values. P-values 

are indicated in brackets. The models were adjusted for age, sex, genotyping chip, first ten 

genomic principal components (PC), center, and season (month) of wearing accelerometer. 
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Figure 3. LHC-MR plots for the association between accelerometer-based physical 

activity and general cognitive functioning 

 

Notes. This modified dot-and-whisker plot reports the causal estimate between general 

cognitive functioning (CF) as exposure and varying physical activity (PA)-related traits as 

outcome. The forward (CF → PA) and reverse (PA → CF) causal estimates are shown in two 

different colors as dots (grey and white) with 95% CI whiskers (grey and black). Average PA 

= average of overall accelerations. Moderate PA = fraction of acceleration corresponding to 

moderate physical activity (> 100 mg and < 425 mg). Vigorous PA = fraction of acceleration 

corresponding to vigorous physical activity (≥ 425 mg). The models were adjusted for age, sex, 

genotyping chip, first ten genomic principal components (PC), center, and season (month) of 

wearing accelerometer. * = significant effect after Boneferroni correction (i.e., p-value < .008). 
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