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HIGHLIGHTS 
 

• An integrative multi-omic resource profiling chromatin and expression dynamics across 
keratinocyte differentiation 

• Predictive deep learning models of chromatin dynamics reveal a high-resolution cis-
regulatory DNA motif lexicon of epidermal differentiation 

• Model interpretation enables discovery of combinatorial cis-regulatory logic of homotypic 
and heterotypic motif combinations 

• Massively parallel reporter experiments validate temporal dynamics and cis-regulatory 
logic of the combinatorial motif lexicon 
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Transcription factors (TFs) bind DNA sequence motif vocabularies in cis-regulatory 
elements (CREs) to modulate chromatin state and gene expression during cell state 
transitions. A quantitative understanding of how motif lexicons influence dynamic 
regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory 
code. To address this, we undertook multi-omic data profiling of chromatin and 
expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs 
associated with 3,609 dynamically expressed genes, then applied an interpretable deep 
learning framework to model the cis-regulatory logic of chromatin accessibility. This 
identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene 
modules with diverse roles in skin differentiation. Massively parallel reporter analysis 
validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to 
human polygenic skin disease were enriched in these time-dependent combinatorial motif 
rules. This integrative approach reveals the combinatorial cis-regulatory lexicon of 
epidermal differentiation and represents a general framework for deciphering the 
organizational principles of the cis-regulatory code in dynamic gene regulation. 
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INTRODUCTION 
The outermost layer of the skin, the epidermis, is formed and maintained by a dynamic 

homeostatic process involving the conversion of metabolically active basal cells that adhere to 
the epithelial basement membrane into cells that undergo cell cycle arrest and migrate outwards, 
engaging a program of terminal differentiation to form cornified keratinocytes (Fig. S1A). A host 
of human diseases are caused by disruption of this differentiation process (Lopez-Pajares et al., 
2013). Calcium-induced differentiation of primary human keratinocytes in vitro mimics key 
properties of in vivo epidermal differentiation, making it a simple, tractable, and accurate in vitro 
system to study this medically relevant cellular differentiation. 

Such differentiation processes involve dynamic cell state transitions accompanied by 
genome-wide changes in gene expression, chromatin state and three dimensional genome 
organization (Levine, 2010; Spitz and Furlong, 2012). Transcription factors (TFs) orchestrate 
these chromatin and expression dynamics by cooperatively binding cognate DNA sequence 
motifs residing in cis-regulatory elements (CREs), such as promoters and enhancers, and forming 
complexes that have regulatory potential to activate nearby genes (Kundaje et al., 2015; Reiter 
et al., 2017; Rubin et al., 2017). The quantitative changes in chromatin state and expression are 
hence highly dependent on the cis-regulatory code of motif patterns encoded in CREs (Arnosti et 
al., 1996; Banerji et al., 1981; Levo and Segal, 2014; Thanos and Maniatis, 1995). Previous 
studies have shown that the process of terminal differentiation alters the expression of thousands 
of genes, regulatory elements, proteins and metabolites (Michaletti et al., 2019). However, such 
efforts require increased temporal resolution to map dynamic regulation of subtle cell state 
transitions. While a number of regulators of epidermal differentiation have been previously 
identified (Hopkin et al., 2012; Lopez et al., 2009; Lopez-Pajares et al., 2015; Rubin et al., 2017; 
Segre et al., 1999; Sen et al., 2012; Truong et al., 2006), the combinatorial, dynamic cis-
regulatory code of epidermal differentiation has remained elusive. 

Recently, deep learning models such as convolutional neural networks (CNNs) have 
emerged as state-of-the-art predictive models of regulatory DNA. CNNs learn non-linear 
predictive functions that can accurately map DNA sequence to genome-wide profiles of regulatory 
activity by learning de novo predictive motif patterns and their higher-order combinatorial logic 
(Eraslan et al., 2019; Kelley et al., 2016, 2018; Zhou and Troyanskaya, 2015). Hence, interpreting 
these models could provide new insights into the cis-regulatory sequence code. We and others 
have recently developed powerful interpretation methods to extract rules of cis-regulatory logic 
from these black-box models (Avsec et al., 2020; Ching et al., 2018; Greenside et al., 2018; 
Shrikumar et al., 2017). These interpretable deep learning models have the potential to offer new 
insights into the cis-regulatory code of epidermal differentiation. 

Here, we use a battery of assays to comprehensively profile the multi-modal landscape of 
chromatin and expression dynamics across a densely sampled time course of epidermal 
differentiation. We train robust CNN models that can accurately predict quantitative changes in 
chromatin accessibility from DNA sequence alone across the entire time course (Fig. 1A). We 
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interpret the models to annotate tens of thousands of dynamic CREs with homotypic and 
heterotypic combinations of active motif instances then introduce an in silico combinatorial 
perturbation framework to decipher quantitative rules of cis-regulatory logic. We identify 
multiplicative and super-multiplicative effects of co-occurring motif combinations on chromatin 
accessibility and predict putative TFs that cooperatively bind these combinatorial motif patterns 
and link dynamic CREs to their putative target genes. Finally, we validate temporal dynamics and 
cis-regulatory logic of combinatorial motif rules on intrinsic regulatory activity across 
differentiation using massively parallel reporter assays (MPRAs). Genetic variants associated 
with diverse skin-related complex traits are found to be enriched in time-dependent combinatorial 
motif rules, supporting a potential disease-relevant role in mediating phenotypic effects. This 
integrative framework can be broadly applied to discover dynamic cis-regulatory logic across 
diverse cell states, cell types and conditions. 
 
RESULTS 
 
An integrative resource profiling chromatin and expression dynamics during epidermal 
differentiation 

To characterize the multi-modal regulatory landscapes of keratinocyte differentiation, 
transcriptional and chromatin state was profiled across multiple timepoints of calcium-induced in 
vitro differentiation (Fig. 1B) with high quality, replicated PAS-seq, ATAC-seq, H3K27ac ChIP-
seq, H3K4me1 ChIP-seq, H3K27me3 ChIP-seq, CTCF ChIP-seq, and H3K27ac HiChIP 
experiments (Fig. S1B-E, Tables S1-S5). Principal component analysis (PCA) showed high 
consistency between biological replicates (Fig. 1C, S1E), and gene set enrichments validated 
veridical activation of keratinocyte differentiation in these data (Subramanian et al., 2005) (Fig. 
1D). Important gene loci showed complex dynamic regulatory landscapes (Fig. 1E). 

We used the ATAC-seq profiles to identify 225,996 high-confidence, reproducible CREs 
across all time points, of which 40,103 CREs exhibited significant variation of chromatin 
accessibility across the time course. Clustering these CREs based on their ATAC-seq profiles 
resulted in 15 distinct trajectories across differentiation (Love et al., 2014; McDowell et al., 2018) 
(Fig. 2A). Chromatin accessibility dynamics were strongly correlated with the dynamics of 
activating histone marks H3K27ac and H3K4me1. We associated the dynamic CREs to their 
putative target genes based on proximity and H3K27ac HiChIP data. Functional enrichment 
analysis of the gene sets associated with each dynamic CRE cluster revealed relevant and 
expected biological functions that were consistent with expression dynamics (Fig. 2A, S1F,G). 
For example, CREs linked to hemidesmosome genes, whose expression characterizes 
progenitors (Simpson et al., 2011), decreased in accessibility during differentiation. In contrast, 
CREs linked to differentiation genes (Candi et al., 2005) were enriched in trajectories activated 
during differentiation. Analysis of gene expression quantification from the PAS-seq experiments 
identified 3,069 dynamic RNA transcripts that clustered into 11 dynamic trajectories (Fig. 2B). 
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Down-regulated genes encompassed progenitor proliferation genes and up-regulated genes 
including early and late epidermal differentiation genes. The dynamic CRE clusters and their 
associated target genes also exhibited synchronous concordance of gene expression and 
chromatin accessibility dynamics (Fig. 2C,D), consistent with a picture of coordinated waves of 
target gene activation driven by dynamically accessible CREs. These data map the dynamic 
regulatory landscape of keratinocyte differentiation and indicate a coordinated interplay of tens 
of thousands of regulatory regions with thousands of genes. 
 
Predictive deep learning models of chromatin dynamics reveal a high-resolution cis-
regulatory lexicon of epidermal differentiation 

To learn predictive sequence models of chromatin dynamics, we trained multi-task CNNs to 
map 1 kb DNA sequences tiled across the genome to associated quantitative measures of ATAC-
seq signal at 10 time points across the differentiation time course (Fig. 3A). We used a 10-fold 
chromosome hold-out cross-validation scheme to train and evaluate the predictive performance 
of the model (Table S6). We used a multi-stage transfer learning protocol. We first trained a 
reference model on large compendia of DNase-seq data from 431 diverse cell types and tissues. 
The reference model was then fine-tuned on the ATAC-seq data from our time course, accounting 
for the cross-validation structure of the 10 folds (Fig. S2A, Tables S7, S8). The model’s 
predictions on all held-out test set chromosomes were strongly correlated with the observed 
ATAC-seq signal in each time point (Fig. 3A,B, Fig. S2B). The model’s predictions for dynamic 
CREs were also strongly correlated with their measured ATAC-seq signal across the time course 
(Fig. S2C). This transfer learning approach substantially improved performance and stability of 
the model’s predictions across models and folds. The predictions of the models from the 10 folds 
for each CRE in each time point were subsequently calibrated and ensembled for downstream 
inference and prediction.  

Next, we used the ensemble of trained models to infer sequence features in each CRE that 
are predictive of chromatin accessibility at each time point. Specifically, we used efficient 
backpropagation methods (Shrikumar et al., 2017; Simonyan et al., 2014) that can infer 
contribution scores of each individual nucleotide in each input sequence with respect to the 
predicted output from the model at each time point (Fig. 3C). Although the sequence of a CRE is 
the same across all time points, the base-resolution contribution scores are dynamic and reflect 
the time-point specific activating or repressive effect of predictive sequence features through the 
lens of the model (Fig. 3C). To evaluate the potential functional consequences of predictive 
nucleotides highlighted by the model, we estimated the allelic imbalance of ATAC-seq reads 
(Harvey et al., 2015) of 16,686 single nucleotide polymorphisms (SNPs) in CREs. SNPs 
overlapping bases with high contribution scores were associated with larger allelic effect sizes 
(Fig. S2D). Additionally, model-derived predicted allelic effects using an in-silico mutagenesis 
approach were stronger for SNPs exhibiting statistically significant (FDR < 0.10) allelic imbalance 
than for SNPs that were allele-insensitive. These results indicate that the base-resolution 
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contribution scores are enriched for nucleotides with putative functional effects on chromatin 
accessibility. 

The base-resolution contribution scores highlighted short contiguous stretches of bases, 
reminiscent of TF binding motifs (Fig. 3C). Hence, to annotate predictive motif instances in each 
CRE in each time point, we scanned the base-resolution contribution scores with a non-redundant 
set of known sequence motifs of a large compendium of TFs (Kulakovskiy et al., 2018). We found 
59 motifs with statistically significant (empirical p < 0.05) motif instances that were enriched in 
dynamic CREs (Fig. 3D,E). Dynamic, predictive motif instances inferred using this approach were 
strongly supported by matched TF occupancy and ATAC-seq footprints, indicating that they are 
likely capturing bound motif instances. For example, p63, ZNF750, and KLF4 ChIP-seq (Boxer 
et al., 2014; Liu et al., 2011; McDade et al., 2014) profiles exhibited higher occupancy at their 
predictive motif instances as compared to non-predictive motif instances within CREs (Fig. 3F, 
S2E). Similarly, ATAC-seq footprinting analysis (Li et al., 2019) identified stronger TF footprints 
at predictive motif instances (Fig. 3G, S2F). TFs belonging to the same family often bind very 
similar motifs. We mapped motifs to putative TFs that bind them by correlating predictive motif 
contribution scores across time points with mRNA expression of candidate TFs (Fig. 3H, S2G-I, 
Table S9). This analysis matched the 59 motifs to 100 putative TFs, many of which are known to 
be essential in keratinocyte differentiation, such as p63, CEBPA, GRHL2, AHR, FOSB, DLX3, 
VDR, ZNF750, MAFB, RARG, JUNB, KLF4, and OVOL1 (Boxer et al., 2014; Nair et al., 2006; 
Sen et al., 2012; Truong et al., 2006).  
 
Model interpretation enables discovery of combinatorial cis-regulatory logic of homotypic 
and heterotypic motif combinations 

Next, we used the models to predict the quantitative effect of homotypic motif density and 
spacing on chromatin accessibility using synthetic DNA sequence inputs embedded with 
systematically varying density and spacing of motif instances of each of the 59 predictive motifs. 
While most TFs showed monotonic increases in accessibility with increasing homotypic motif 
density, some TFs displayed saturation effects indicating non-linear cooperative homotypic 
interactions (Fig. S2J). Increased spacing between homotypic motif instances was associated 
with decreasing accessibility up to 150 bp away (Fig. S2K) (Weingarten-Gabbay et al., 2019), 
indicating that combinatorial influence of homotypic TF binding on chromatin accessibility is 
constrained by proximity.  

We then used two complementary in-silico motif perturbation analysis methods to quantify 
the influence of heterotypic pairs of co-occurring motifs on chromatin accessibility dynamics. The 
first approach quantifies the impact of in silico disruption of one instance of a predictive motif on 
the contribution scores of a co-occurring predictive instance of a different motif (Greenside et al., 
2018). The second approach compares the sum of the marginal effects of in silico disruption of 
each motif instance to the effect size of jointly disrupting both motif instances on predicted 
chromatin accessibility (Fig. 4A). The models predict chromatin accessibility signal as the depth 
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of normalized read coverage on log scale. Hence, additive effects on the log scale represent 
multiplicative effects on normalized read coverage. Motif pairs with joint effects larger than the 
sum of their marginal effects represent super-multiplicative interactions. Motif pairs whose joint 
effects are smaller than the sum of their marginal effects represent sub-multiplicative motif 
combinations that potentially act through independent, additive effects (Fig. 4B, S3A). We 
restricted heterotypic motif interaction analysis to motif pairs with enriched co-occurrence of 
predictive motif instances in the dynamic CREs (Fig. 4C). Co-occurrence statistics using only 
predictive motif instances instead of all motif instances revealed more specific and less 
promiscuous motif pairs (Fig. S3B,C). For each heterotypic pair of motifs, we estimated in silico 
interaction effects for all dynamic CRE sequences containing predictive instances of both motifs. 
A majority of the enriched co-occurring motif pairs exhibited multiplicative (log-additive) and super 
multiplicative effects (Fig. 4D), indicating extensive cooperativity between co-binding TFs through 
heterotypic motif syntax. 

We also computed in silico interaction effects for motif pairs after embedding them in 
synthetic scrambled background sequences to avoid cryptic cooperative effects induced by 
additional predictive motifs in the endogenous context (Fig. 4E). We observed more sub-
multiplicative motif interactions in these synthetic backgrounds as compared to endogenous 
sequence context. These differences indicate that the native genomic context likely encodes 
higher-order cooperative interactions between the tested motif pairs and additional motif partners. 
In order to winnow down the motif pairs to those with likely functional roles, we computed 
enrichments of functional terms using proximal gene sets associated with all CREs harboring 
predictive instances of each motif pair (Fig. S4A) and restricted to those that were enriched for 
skin related functional terms (Fig. 4F). We thus obtained a core lexicon comprising 80 heterotypic 
pairs of significantly co-occurring TF motifs linked to distinct processes at different stages of 
epidermal differentiation.  

This combinatorial lexicon implicates known and novel cooperative partners (Fig. S4A). 
ZNF750 motif was found to strongly interact with CEBP family member motifs (CEBPA/CEBPD), 
both of which are known to be important in KRT10 regulation (Maytin et al., 1999). The ATF1 
motif is present in stem cell maintenance rules, such as ATF1 with GLI1, as well as late 
differentiation rules, such as ATF1 with TP63. Notably, of the TFs that can bind to the ATF1 motif, 
CREB1 is most expressed at the beginning and end of differentiation while ATF1 increases in 
expression. NFKB/REL motifs are only present in stem cell maintenance rules, supporting a role 
for NFKB/REL motifs in progenitor state maintenance (Li et al., 2000). Notably, of the TFs that 
bind to the NFKB/REL motifs, RELB/NFKB2 decrease in expression while REL/RELA increase 
in expression. These rules in conjunction with matched TF dynamics demonstrate that precise 
targeting of gene modules and coordination of activation and deactivation relies on combinatorial 
sequence and specific TF family member expression. 
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Massively parallel reporter experiments validate temporal dynamics and cis-regulatory 
logic of the combinatorial motif lexicon 

Next, we validated the temporal dynamics and the quantitative effects of the combinatorial 
motif lexicon on intrinsic regulatory potential using massively parallel reporter (MPRA) 
experiments in multiple time points of in vitro differentiation. We used the model-derived, 
predictive motif annotations of all dynamic CREs to design libraries for the MPRA experiments. 
We designed 160 bp constructs for 19 randomly selected endogenous CRE sequence examples 
from each of the 80 heterotypic motif pairs, mutants with combinatorially scrambled motif 
instances (individually and jointly) as well as corresponding positive and negative controls for the 
MPRA library – a total of 77,090 sequences (Fig. 5A, S5A,S5B, Table S10). MPRA read outs for 
the entire library were obtained on days 0 (progenitor state), 3 (early differentiation), and 6 (late 
differentiation) of the differentiation time course (Fig. S5C,D,E). Sample clustering and principal 
component analysis demonstrated high reproducibility and clear separation between the 
progenitor state at day 0 and the differentiated state at days 3 and 6 (Fig. S5F).  

First, we compared the MPRA-measured expression for the endogenous genomic 
regulatory sequences in our library to their corresponding measured and predicted ATAC-seq 
signal as well as H3K27ac signal in matched time points. We observed low correlation between 
MPRA expression and observed ATAC-seq signal (Pearson ρ	= 0.097, Spearman ρ# = 0.075), 
predicted ATAC-seq signal (Pearson ρ	= 0.088, Spearman ρ# = 0.065) and observed H3K27ac 
signal (Pearson ρ	= 0.061, Spearman ρ# = 0.046) (Fig. S5G), suggesting fundamental differences 
between the MPRA-derived intrinsic measures of regulatory potential and endogenous chromatin 
state of regulatory sequences. However, we found that simple linear models that used the non-
linear sequence representation encoded in the final layer of the ATAC-seq CNN models as inputs 
were able to fit the MPRA expression levels with improved correlation (Pearson ρ	= 0.344, 
Spearman ρ# = 0.3) (Fig. S5G). These results suggest that the combinatorial sequence features 
that are predictive of ATAC-seq signal are also predictive of MPRA activity after a simple linear 
transformation. Hence, we postulated that the MPRAs could be used to validate the different 
types of motif interactions discovered by the models trained on the ATAC-seq data.  

Since we observed synchronicity between chromatin dynamics and expression dynamics of 
associated putative target genes, we considered a heterotypic pair temporally valid if it produced 
a synchronous effect in reporter expression compared to the measured and predicted chromatin 
accessibility dynamics of the CREs containing the pair. For example, for tested sequences 
containing the HOXA1-ERG motif pair, reporter activity decreases during differentiation, 
synchronous with the accessibility dynamics of the CREs containing this pair (Fig. 5B, S5H). 
Using this criterion, 55 of the 80 heterotypic motif pairs (68%) were validated for temporal 
dynamics. Of these, 43 of the pairs (78%) showed significant differential activity relative to the 
mutated constructs in which both motifs were scrambled, suggesting that these motif pairs are 
key drivers of regulatory potential for these CREs. Next, we used the combinatorially scrambled 
mutant sequences to determine whether the heterotypic motif pairs had multiplicative, super-
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multiplicative or sub-multiplicative effects on reporter expression. Of the 55 temporally valid motif 
pairs, we found that 18 pairs had super-multiplicative effects, 37 rules had multiplicative (log-
additive effects) and none of the rules exhibited sub-multiplicative effects on reporter expression 
(Fig. 5C, 6A). Hence, the MPRA experiments support the multiplicative and super-multiplicative 
cooperative effects of motif pairs on chromatin accessibility as predicted by the model. 
 
The cis-regulatory lexicon of epidermal differentiation is enriched for skin disease-
associated genetic variation 

Utilizing imputed GWAS studies from the UK Biobank database (http://www.nealelab.is/uk-
biobank/), we observed that 493 genome-wide significant variants for a curated set of skin 
phenotypes were found in 295 CREs (from 2,092 total genome-wide significant variants across 
the phenotypes). These phenotypes included a variety of human skin diseases characterized by 
dysregulated epidermal differentiation, such as pre-malignant actinic keratoses, dermatitis, 
psoriasis, rosacea, and acne vulgaris. To test whether the combinatorial motif lexicon was 
enriched for non-coding variants associated with these complex skin phenotypes, we used LD-
score regression (Finucane et al., 2015, 2018) in conjunction with the curated UK Biobank 
phenotypes and curated GWAS studies with summary statistics (Hirata et al., 2018; Paternoster 
et al., 2015). Genetic variants associated with skin-related diseases and traits were enriched in 
CREs containing specific motif rules with distinct temporal activity (Fig. S6A), indicating that 
disruption of cooperative TF interactions that regulate epidermal differentiation could mediate 
disease risk and pathogenesis. No such enrichment was observed in variants linked to other 
traits, such as body mass index (BMI). Skin disease variants were enriched in lexicons linked to 
in a manner consistent with pathogenic features of the corresponding skin disease. For example, 
motif pairs that influence the late stages of differentiation were enriched for heritability associated 
in acne, which is pathogenically linked to abnormal terminal follicular keratinization. In contrast, 
motif pairs that influence the mid stages of differentiation were enriched in variants linked to 
heritability for actinic keratosis, a pre-malignant neoplasm characterized by a failure to fully enter 
the normal differentiation pathway. These results suggest heterogeneous effects of different 
components of the cis-regulatory motif lexicon on different phenotypic outcomes through different 
stages of differentiation relevant to pathogenesis of human disease. 
 
DISCUSSION 

Here, we present a unique resource for deciphering the cis-regulatory code of epidermal 
differentiation. Dense longitudinal profiling of the transcriptome and epigenome through the 
differentiation process enabled the identification of distinct dynamic trajectories of 40,103 
dynamic CREs driving synchronous changes in gene expression of linked target genes. The 
depth and breadth of the data allowed training of deep learning models to infer the combinatorial 
lexicon of cooperative transcription factor binding sites encoded in the dynamic CREs at single 
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base resolution. Massively parallel reporter experiments validated predicted temporal dynamics 
and cis-regulatory logic involving cooperative TF interactions.  

This integrative resource serves as a repository of hypotheses about combinatorial cis-
regulatory control of several key processes in epidermal differentiation (Fig. 6B). We find a 
progenitor maintenance lexicon including RELB, NFKB2, ETS1, SMAD3, and RUNX1 motifs that 
jointly orchestrate deactivation and disassembly of hemidesmosomes, structural proteins that 
anchor keratinocytes to the basement membrane. Notably the associated TFs decrease in 
expression quickly, within the first 12 hours of initiating differentiation. The deactivation of this 
lexicon thus enables prompt migration of cells from the basement membrane. We also identified 
intricate interplay of motifs in an early differentiation lexicon involving ATF4, ATF6, GRHL2, 
MTF1, and NR2C1 motifs that associates with induction of early differentiation genes. ATF4 motif, 
the hub motif in this lexicon, is bound by ATF4 whose mRNA is induced earlier, at day 2.5, while 
the other TFs follow, suggesting that ATF4 may be responsible for priming the landscape for 
subsequent activation of specific gene modules directed by its partners. ATF4 is also the first TF 
to decrease in expression later in the time course around day 5, suggesting that ATF4 leaving 
the landscape might bookend this phase of differentiation. In late differentiation, we discovered a 
lexicon comprising HSF2, CEBPD, ZFX, CEBPA, and ZNF750 motifs that regulate a module of 
genes involved in fatty acid catabolism, an essential process for cornification and maintenance 
of skin barrier function. ZNF750 is one of the last TFs to sharply increase in expression around 
day 5.5, consistent with the essential role of ZNF750 in orchestrating terminal skin barrier 
formation (Birnbaum et al., 2006; Sen et al., 2012). Finally, the enrichment of skin disease 
associated variants in specific rules of the cis-regulatory lexicon suggest that this approach could 
prove useful in future efforts aimed at fine mapping causal variants and genes as well as providing 
mechanistic insights into how these variants might disrupt key pathways in skin differentiation. 

The cis-regulatory code is more than the sum of its parts. The interpretable, deep learning 
framework presented here (https://github.com/kundajelab/tronn) provides a generalizable 
approach to move beyond static catalogs of cis-regulatory “parts-lists” (Bentsen et al., 2020; 
ENCODE Project Consortium, 2012; ENCODE Project Consortium et al., 2020; Fornes et al., 
2020; Kulakovskiy et al., 2018; Kundaje et al., 2015; Luo et al., 2020; Vierstra et al., 2020; 
Weirauch et al., 2014) to predictive, quantitative models of higher-order cis-regulatory logic. 
Previous advances in deep learning model interpretation methods have largely focused on 
discovering motif representations, active motif instances and their co-occurrence patterns 
(Alipanahi et al., 2015; Ghandi et al., 2014; Kelley et al., 2016, 2018; Maslova et al., 2019; Sanford 
et al., 2020; Zhou and Troyanskaya, 2015). The current in-silico combinatorial perturbation 
framework extends this to enable discovery of quantitative rules of homotypic and heterotypic 
cis-regulatory logic such as the multiplicative and super-multiplicative effects of frequently co-
occurring motif combinations on chromatin accessibility. Unlike previous studies that have 
investigated the critical regulatory role of cooperative TF binding in limited contexts, this approach 
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allows comprehensive, genome-wide elucidation of these effects, at the resolution of individual 
CREs in dynamic processes such as cellular differentiation. 

The present analyses also reconcile the influence of cis-regulatory logic on endogenous 
chromatin state and intrinsic regulatory potential. MPRAs offer a powerful experimental platform 
to test the effects of motif combinations on reporter gene expression activity (Sharon et al., 2012; 
Smith et al., 2013). However, interpretation of MPRAs designed to test endogenous properties of 
regulatory DNA is challenging since the sequences are tested outside their native genomic 
context. We show that the sequence features learned by deep learning models of chromatin 
accessibility, however, are also predictive of MPRA read-outs. Hence, despite the fundamental 
differences between these assays, we observe largely consistent rules of cooperative cis-
regulatory logic derived from predictive models of chromatin state and the MPRA experiments.  

Our study has several limitations, providing scope for future enhancements. Our cis-
regulatory lexicon is biased towards activators due to inherent biases of our chosen assays and 
our modeling focus on active CREs in each time point. Models trained on markers of repression 
as well as differential effects across time points could reveal cis-regulatory sequences associated 
with dynamic repression. The current work also does not model the combinatorial effects of 
multiple CREs on gene expression. However, our chromatin-based models serve as a foundation 
for higher-order predictive models of gene expression which could be interpreted using similar in 
silico combinatorial perturbation strategies to decipher the distributed cis-regulatory code. We do 
not directly model the combinatorial influence of trans-acting factors on chromatin state and gene 
expression. Future modeling efforts, however, could be designed to jointly learn cis and trans 
regulatory logic from multimodal perturbation experiments (Sanford et al., 2020). Finally, 
extensions of these models to continuous cell state transitions from multi-modal single cell 
readouts of chromatin state and expression are exciting avenues for future research.  
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FIGURE LEGENDS 
 
Figure 1. A high-resolution integrated multi-omic data resource in primary keratinocyte 
differentiation. (A) Schematic of the integrative framework for discovery of a dynamic, 
combinatorial cis-regulatory lexicon. Convolutional neural networks are trained to predict 
quantitative ATAC-seq signal from DNA sequence across a time course, augmented with 
prediction tasks for active chromatin marks. After model training, base-resolution contribution 
scores are inferred for all sequences using backpropagation-based interpretation methods, 
followed by motif scanning to identify predictive motif instances. In silico combinatorial 
perturbation analyses are used to identify interaction effects between co-enriched combinatorial 
motif rules. Gene expression (PAS-seq) across the time course enables identification of TFs that 
may bind motif rules and downstream target gene modules. Massively parallel reporter assays 
(MPRAs) validate predicted effects of combinatorial cis-regulatory logic. (B) Schematic of multi-
omic data collected across the epidermal differentiation time course. (C) Principal component 
analyses of ATAC-seq data highlight time as the primary axis of variation. (D) Gene set 
enrichments validate veridical activation of keratinocyte differentiation in the gene expression 
data. (E) Representative loci around the ITGB4, KRT78, and CEBPA genes exhibit different 
trajectories of chromatin and expression dynamics.  
 
Figure 2. The dynamic chromatin and expression landscapes of epidermal differentiation 
(A) ATAC-seq and ChIP-seq (H3K27ac, H3K4me1) heatmaps of 40,103 dynamic cis-regulatory 
elements, ordered by trajectories of dynamic accessibility; gene set enrichments of proximal 
genes (right). ATAC-seq signals are relative to day 0. (B) 3,609 dynamic genes identified in the 
same set of cells as in (A); gene set enrichments for each gene subset (right). RNA signals are 
relative to day 0. (C) Accessibility trajectories mapped to gene set trajectories. Correlation of 
accessibility trajectories (rows) to gene set trajectories (columns) by mean trajectory vectors. (D) 
Normalized enrichment of accessibility trajectory regions (rows) linked to each gene set 
(columns) when linked by proximity. Enrichments when linking with proximity show consistency 
with expected mappings by correlation. 
 
Figure 3. Deep learning models of chromatin accessibility reveal dynamic predictive motif 
instances across the differentiation time course. (A) Left: Schematic of a multi-task 
convolutional neural network that maps 1 Kb DNA sequences across the genome to quantitative 
chromatin accessibility signal across time points. Right: Pearson correlation (R) between 
predicted and observed accessibility across CREs of each time point for 10 folds of held-out test 
set chromosomes. (B) Scatter plots of predicted vs. observed accessibility signal (units of log 
depth normalized coverage) across CREs in test set chromosomes for three time points: (left to 
right) ATAC-seq at days 0, 3, and 6. (C) Left: Schematic of inference of base resolution 
contribution scores for a sequence with respect to predicted output at specific time points using 
efficient backpropagation methods. Right: A CRE linked via H3K27ac HiChIP to the promoter of 
the KRT77 gene shows progressively increasing contributions of nucleotides in CEBPA and TP63 
motifs across the time course in concordance with increasing accessibility. (D) Schematic for 
identification of predictive motif instances by scanning contribution scores with known motifs. 
Base-resolution contribution scores are inferred for all CREs corresponding to each dynamic 
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trajectory. Contribution score weighted sequences are scanned and scored using a compendium 
of TF motifs (HOCOMOCO) to identify active, predictive motif instances. (E) Dynamics of 
predictive scores of motifs across time aggregated over all dynamic CREs. (F) Predictive motif 
instances of p63 and ZNF750 motifs exhibit higher ChIP-seq signal than predicted inactive motif 
instances in CREs. (G) ATAC-seq footprints are stronger at predictive motif instances of HOXA1 
and CEBPD motifs relative to footprints at predicted inactive motif instances. (H) Dynamic 
expression patterns of TFs with correlated dynamics of matched predictive motifs across the 
differentiation time course.  
 
Figure 4. Combinatorial in silico perturbation analysis to infer heterotypic cis-regulatory 
logic. (A) Schematic for combinatorial in silico perturbation analysis. All genomic instances of 
CREs containing significantly co-occurring motif pairs are evaluated. Motif pairs are also 
embedded in synthetic scrambled background sequences for orthogonal evaluation. For each 
candidate sequence containing a motif pair, the neural network is used to predict changes in 
chromatin accessibility due to marginal perturbation of each motif and joint perturbation of both 
motifs. The joint effects are compared to the sum of the marginal effects (log-additivity) to test 
super-multiplicative, multiplicative (log-additive) or sub-multiplicative joint effects. (B) Example 
locus around the CERS3 gene. A CRE that loops to the CERS3 promoter contains active motif 
instances of CEBPA and GRHL motifs. Perturbing either of the motifs impacts contribution scores 
of the partner indicating an interaction effect. The contribution score tracks from top to bottom are 
the endogenous sequence, the sequence with GRHL motif scrambled, the sequence with CEBPA 
scrambled, and the sequence with both scrambled (double scramble). The right plot shows the 
predicted accessibility for the endogenous sequence, sequences with marginal perturbations of 
individual motifs and joint perturbations (as the baseline). The motifs exhibit a multiplicative (log-
additive) joint effect. (C) Number of CREs supporting significantly co-occurring predictive pairs of 
motifs. (D) Scatter plot comparing the difference between the joint effect on predicted accessibility 
and the sum of the predicted marginal effects (y-axis: neural net predicted joint effect minus the 
sum of the marginal effects) to the sum of marginal effects (x-axis) of motif perturbations for all 
significantly co-occurring motif pairs using genomic sequences. Super-multiplicative pairs (pink) 
fall above the dashed line, multiplicative pairs (yellow) fall near and on the dashed line and sub-
multiplicative (green) pairs fall below the dashed line. (E) Scatter plot comparing the difference 
between the joint effect on predicted accessibility and the sum of the predicted marginal effects 
(y-axis) to the sum of marginal effects (x-axis) of motif perturbations for all significantly co-
occurring motif pairs using synthetic sequences. (F) Comparison of interaction effects of all 
significantly co-occurring motif pairs that exhibit skin-related functional enrichments using 
genomic sequences (below diagonal) and synthetic sequences (above diagonal). The size of the 
circles represents the number of dynamic CREs supporting each motif pair. The color of the circle 
represents the type of interaction: super-multiplicative (pink), multiplicative (yellow), sub-
multiplicative (green). 
 
Figure 5. Validation of combinatorial motif pairs using massively parallel reporter assays. 
(A) MPRA design. For each of the derived combinatorial rules, genomic instances of each rule 
were selected randomly and the motif pair in the instance was combinatorially scrambled. All 
combinatorial versions of the sequence were added to the MPRA library, which was lentivirally 
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inserted into primary keratinocytes. These cells were induced to differentiate, and reporter RNA 
was collected at days 0, 3, and 6, (B) Examples of three combinatorial rules: HOXA1/ERG motif 
pair (progenitors), ZFX/CEBPD motif pair (early differentiation), and FOXA1/CEBPA motif pair 
(late differentiation). Left column plots show observed expression across time for the endogenous 
sequences as well as double motif scrambled mutants, normalized to day 0. Right column shows 
the combinatorial dynamics of genomic instances of each rule, relative to joint motif scrambled 
mutants. (C) Summary of combinatorial interaction effects of all temporally valid motif pairs. The 
scatter plot compares the joint effect (log fold change of reporter expression) of each motif pair 
(y-axis) relative to the sum (log-additivity) of the marginal effects of each motif. Motif pairs with 
significant super-multiplicative effects on fold-change are marked in pink above the diagonal. 
Sub-multiplicative (log-additive) motif pairs are marked in yellow. No motif pairs were found to 
have sub-multiplicative effects. 
 
Figure 6. A combinatorial motif lexicon in keratinocyte differentiation. (A) Summary of the 
validated combinatorial lexicon of motif pairs. Left to right: heat map of ATAC-seq dynamics 
associated with each motif pair; motif pairs (each row is a distinct motif pair); expression dynamics 
of putative downstream target genes associated with each motif pair; type of interaction (pink: 
super-multiplicative, yellow: multiplicative), expected sum of marginal effects compared to joint 
effects in the MPRA; enriched functional terms for downstream target gene sets associated with 
each motif pair. (B) Predicted TF interactions on the dynamic keratinocyte epigenome. Each node 
is a TF (or multiple) that are matched to their DNA binding motifs, and the node is filled in by the 
most active timepoint by TF expression. Each edge is a predicted interaction on regulatory DNA, 
as predicted by the validated motif interactions from MPRA, between the TFs. Each edge is 
colored by the most active timepoint by accessibility. Edges are weighted by the predicted 
interaction effect: super-multiplicative, multiplicative, or sub-multiplicative. 
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SUPPLEMENTAL FIGURE LEGENDS 
 
Figure S1. Data quality and other characteristics of the regulatory landscape. (A) 
Morphology schematic of normal human epidermis. (B) Selected biomarker gene panel from 
PAS-seq, demonstrating proper differentiation across time in vitro. (C) Global statistics on ATAC-
seq. Left plot shows the number of reproducible peaks across the timepoints. Right plot shows 
the number of up and down regulated differential peaks across time, using day 0 as the 
background. (D) Global statistics on PAS-seq. Left plot shows the number of expressed genes 
(> approximately 1TPM) at each timepoint. Right plot shows the number of up and down regulated 
differential genes across time, using day 0 as the background. (E) PCA of other datasets: ATAC-
seq, H3K27ac ChIP-seq, H3K4me1 ChIP-seq, H3K27me3 ChIP-seq, HiChIP. (F) Analysis of 
regions with stable (invariant) accessibility and dynamic chromatin modifications surrounding 
them (28,973 regions). The regions are clustered according to their dynamic chromatin mark 
patterns and marked with enriched GO terms accordingly. (G) Analysis of regions with stable 
(invariant) accessibility and stable chromatin modifications (84,678 regions). The regions are 
clustered according to combinatorial chromatin states and marked with enriched GO terms 
accordingly. 
 
Figure S2. Extended analysis of deep neural net models and their utility for biological 
interpretation. (A) Schematic describing transfer learning set up. From left to right: first, models 
are trained on a large compendium of DNase-seq and TF ChIP-seq datasets from ENCODE and 
Roadmap, predicting accessibility and TF binding from DNA sequence; the weights from these 
models are then used as initialization weights for a classification model with keratinocyte-specific 
datasets from this study to predict keratinocyte accessibility/histone marks/trajectories from DNA 
sequence; finally, the weights from the classification model are used as initialization weights for 
a regression model in which DNA sequence is mapped to accessibility, H3K27ac, and H3K4me1 
signals. This operation is done with 10-fold cross validation, where a test set is held out for the 
entire transfer learning process. (B) Metrics across transfer learning. Left plot shows the AUPRC 
for the ENCODE/Roadmap classification tasks (DNase and TF ChIP-seq) across 10 folds. Right 
plot shows AUPRC for accessibility in keratinocyte timepoints across 10 folds, considering 
transfer learning or fresh initialization (random seeded weights). (C) Heatmaps of observed ATAC 
signal vs neural net predicted ATAC signal across dynamically accessible regions. (D) Validation 
of contribution scores by comparing to SNPs exhibiting significant allelic imbalance of ATAC-seq 
signal. Left: Comparison of effect sizes of allelic imbalance of ATAC-seq signal, between SNPs 
overlapping non-significant contribution scores and those overlapping significant contribution 
scores. Right: comparison of model derived allelic effect predictions (reference allele - alternate 
allele) on SNPs overlapping significant contribution scores, separated by whether the SNP was 
considered allele-sensitive (FDR < 0.10) or not allele-sensitive. (E) Predictive, active motif 
instances of KLF4 show higher ChIP-seq signal relative to inactive motifs in CREs. (F) 
Footprinting across time demonstrates dynamic footprinting. DLX3 motif is shown here, where 
the accessibility increases across time while the footprint also deepens across time. (G) Example 
map of motif contribution scores across time points and expression of matched TFs for one 
trajectory pattern. Top: comparison of observed ATAC signal with the neural net predicted ATAC 
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signal. Left heatmap: Motif contribution scores across timepoints. Right heatmap: Expression 
patterns of matched TFs (TFs that bind the motif and exhibit expression dynamics that is 
concordant with motif dynamics) across timepoints. Each row represents a matching expressed 
TF to the motif in the left heatmap row. (H) Heatmap showing which motifs were found significant 
in which trajectory patterns. (I) Heatmap showing which TFs were found with correlating patterns 
(r > 0.8) to their matching PWMs and which trajectory pattern. (J) Analysis of homotypic density 
on chromatin accessibility using synthetic sequences. Synthetic scrambled background 
sequences were embedded with varying number and spacing of motif instances of each 
predictive motif. The neural network was used to predict chromatin accessibility. Left: Each curve 
summarizes the predicted accessibility with increasing motif density for each motif averaged over 
multiple synthetic backgrounds. Middle/right: Predicted chromatin accessibility for increasing 
density of FOSB, and CEBPD motifs. Each black curve represents a specific random synthetic 
background sequence, while the red curve is the average pattern across all backgrounds. (K) 
Predicted chromatin accessibility as a function of distance between two instances of a motif 
embedded in synthetic backgrounds. Top: accessibility for FOSB motif pairs, showing decreasing 
accessibility when the FOSB motifs are farther apart. Bottom: accessibility for GRHL2 motif pairs, 
showing decreased accessibility when the GRHL2 motifs are farther apart. 
 
Figure S3. Examples of interacting motif pairs and motif co-occurrence statistics. (A) 
Example regions demonstrating interacting motifs. Top row: putative enhancer affecting LAMC2 
gene expression with an interacting NFKB1 motif and RUNX1 motif. The highlighted region in the 
signal tracks (left) demonstrates correctly predicted ATAC signal by the neural net (top middle 
heatmap). Base-resolution contribution score tracks are shown for the endogenous sequence 
and sequences with marginal and joint perturbation of both motifs (middle tracks). The model 
predicts a super-multiplicative effects of the motif pair on chromatin accessibility (right plot). 
Bottom row: Analogous plots for a putative enhancer affecting MUC15 gene expression with an 
interacting GRHL motif and ATF4 motif. (B) Co-occurrence statistics (size of circle represents 
number of instances) for motif pairs based on all motif instances based on sequence matches 
(left) and motif pairs based on predictive, active motif instances based on contribution score 
weighted sequence matches (right). Predictive motif instances highlight less promiscuous, more 
specific co-occurrence statistics. (C) Analogous co-occurrence statistics for motif pairs using all 
motif instances (left) and predictive motif instances (right) after filtering for pairs that show 
significant GO term enrichments for associated target genes. Once again, more specific co-
occurrence patterns are observed for the predictive motif instances. 
 
Figure S4. Mapping co-occurring motif pairs to enriched Gene Ontology terms. (A) Map of 
combinatorial rules derived from in silico motif interaction analyses. Each row across plots 
represents a predicted interacting motif pair. From left to right: the motif presence plot 
demonstrates which motifs are part of the combinatorial rule; the ATAC heatmap demonstrates 
the average accessibility pattern over CREs containing each motif pair across all time points; the 
RNA heatmap displays the average gene expression over genes associated with CREs 
containing each motif pair across the time points; Gene Ontology terms are significantly enriched 
in the gene sets associated with CREs containing each motif pair. 
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Figure S5. MPRA data quality and comparisons to epigenomic landscapes. (A) Distribution 
of barcodes in plasmid library, demonstrating the skew of barcode representation. (B) Number of 
barcodes per fragment in plasmid library, demonstrating on average 10 barcodes per fragment 
tested. (C) Number of reads per MPRA sample. (D) Number of barcodes per fragment in MPRA 
RNA reads, demonstrating on average 10 barcodes per fragment tested. (E) Average MPRA 
signal compared to controls, showing ATAC regions on average have activity in between negative 
controls (genomic negatives and shuffled sequences) and positive controls (promoter 
sequences). (F) MPRA replicate consistency. Left: Consistency by Pearson R across replicates 
and timepoints tested. Right: Consistency of MPRA replicate signal for two example replicates in 
timepoint day 0. (G) Correlation of MPRA signal to various genomic and/or modeling signals: 
ATAC signal, NN predictions of ATAC signal, H3K27ac, and regression predictions utilizing NN 
final layer activations as model inputs (results shown on held out test data). (H) ATAC signal 
across timepoints day 0,3, and 6 for sequences containing HOXA1 motif and ERG motif. 
 
Figure S6. Combinatorial motif pairs are enriched for genetic variants associated with skin 
phenotypes. (A) LD score regression analysis showing differential heritability enrichment of 
various skin-related diseases and traits in different sets of CRE. The skin phenotypes include: 
acne, dermatitis, psoriasis, rosacea, actinic keratosis. BMI is shown as a control phenotype. The 
sets of CREs include: “Early” rules are CREs containing motif pairs that demonstrate decreasing 
accessibility and activity across the epidermal differentiation time course. “Mid” rules are CREs 
containing motif pairs those that demonstrate maximal accessibility and activity in the middle of 
the epidermal differentiation time course. “Late” rules are CREs contained motif pairs that 
demonstrate maximal accessibility and activity at the end of the epidermal differentiation time 
course. Union DHS is the union of DNase peaks across all ENCODE DNase datasets. HepG2 
are DNase peaks in the HepG2 liver carcinoma cell line. Union ATAC is the union of CREs across 
all time points of the differentiation time course. ATAC timepoints are the CREs that are 
accessible in each time point of the epidermal differentiation time course. Dynamic trajectories 
are clusters of CREs that display specific concordant patterns of dynamic accessibility across the 
epidermal differentiation time course. Grouped rules are unions of CREs containing motif pairs 
grouped by different types of dynamic patterns (early, mid, late patterns) across the epidermal 
differentiation time course. 
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Figure 4

F

ZBTB6
OVOL1
SOX17
TBX21

SMAD3
RFX5

NR2C1
GATA3
FOXA1

ZFX
POU1F1

KLF4
CDX2
TP63
HSF1
DLX3
TAF1

ZNF750
MAFB
RELA

NFKB1
ASCL1
ZFP42

LEF1
VDR

MTF1
GRHL2
NR2F1

ATF6
ATF4
AHR

CEBPD
CEBPA

GLI3
ERG

RUNX1
HOXA1

ATF1

AT
F1

H
O

X
A

1
R

U
N

X
1

E
R

G
G

LI
3

C
E

B
P

A
C

E
B

P
D

A
H

R
AT

F4
AT

F6
N

R
2F

1
G

R
H

L2
M

TF
1

V
D

R
LE

F1
ZF

P
42

A
S

C
L1

N
FK

B
1

R
E

LA
M

A
FB

ZN
F7

50
TA

F1
D

LX
3

H
S

F1
TP

63
C

D
X

2
K

LF
4

P
O

U
1F

1
ZF

X
FO

X
A

1
G

AT
A

3
N

R
2C

1
R

FX
5

S
M

A
D

3
TB

X
21

S
O

X
17

O
V

O
L1

ZB
TB

6

Motif

M
ot

if

multiplicative sub−multiplicative super−multiplicative

400 800 1200

Predicted pairwise interactions driving accessibility

Number of genomic regions

Synthetic data

Genomic data

−0.1

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Sum of NN predicted marginal
effects of each motif

(log−additive expectation)

P
re

di
ct

ed
 jo

in
t e

ffe
ct

 −
 s

um
 o

f m
ar

gi
na

l e
ffe

ct
s

multiplicative
sub−multiplicative
super−multiplicative

Interaction scores
from synthetic data

E

−0.1

0.0

0.1

0.2

0.4 0.6 0.8 1.0 1.2

Sum of NN predicted marginal
effects of each motif

(log−additive expectation)

P
re

di
ct

ed
 jo

in
t e

ffe
ct

 −
 s

um
 o

f m
ar

gi
na

l e
ffe

ct
s

multiplicative
sub−multiplicative
super−multiplicative

Interaction scores
from genomic data

D

ZBTB6
OVOL1
SOX17
TBX21

SMAD3
RFX5

NR2C1
GATA3

ZFX
POU1F1

KLF4
CDX2
TP63
HSF1
DLX3
TAF1

ZNF750
MAFB
RELA

NFKB1
ASCL1
ZFP42

LEF1
VDR

MTF1
GRHL2
NR2F1

ATF6
ATF4
AHR

CEBPD
CEBPA

GLI3
ERG

RUNX1
HOXA1

ATF1

AT
F1

H
O

X
A

1
R

U
N

X
1

E
R

G
G

LI
3

C
E

B
P

A
C

E
B

P
D

A
H

R
AT

F4
AT

F6
N

R
2F

1
G

R
H

L2
M

TF
1

V
D

R
LE

F1
ZF

P
42

A
S

C
L1

N
FK

B
1

R
E

LA
M

A
FB

ZN
F7

50
TA

F1
D

LX
3

H
S

F1
TP

63
C

D
X

2
K

LF
4

P
O

U
1F

1
ZF

X
G

AT
A

3
N

R
2C

1
R

FX
5

S
M

A
D

3
TB

X
21

S
O

X
17

O
V

O
L1

ZB
TB

6

Motif

M
ot

if

1000 2000 3000 4000 5000

Co−occurrence of motif pairs in the epigenomeC

Number of genomic regions

B

−0.1
0.1

0 20 40 60 80 100 120

d0 d6

0

1

2

3

en
do

g
m

ot
if,

sc
r

sc
r,m

ot
if

sc
r,s

cr

Lo
g2

(F
C

)

Predicted
accessibility

CERS3

Observed ATAC-seq signal
NN predicted ATAC-seq signal

d0 d6

PAS-seq

endogenous

motif, scramble

scramble, motif

double scramble

Combinatorial motif mutations
CEBPA GRHL

X

X
X
X

AT
A

C
-s

eq
H

3K
27

ac
H

3K
4m

e1
A

Genomic instances

Synthetic instances

Combinatorial 
mutations

...

Model predictions 
on combinations

=
Predicted joint effect by 

DNN

=
Sum (log-additivity) of 

marginal effects of each 
motif

+

Interaction scoring

x

x

x x

Sequences with motif 
combination

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.16.342857doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342857
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5
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Figure 6
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Figure S1
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Figure S2
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Figure S4
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Figure S5
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Figure S6
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MATERIALS AND METHODS 
 
Lead Contacts 
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by Lead Contacts Anshul Kundaje (akundaje@stanford.edu) and Paul A. 
Khavari (khavari@stanford.edu).  
 
Materials Availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
ATAC-seq, ChIP-seq, and PAS-seq experiments can all be found at the ENCODE portal 
(https://www.encodeproject.org/). The HiChIP data can be found on at the Gene 
Expression Omnibus (GEO): GSE158642. The MPRA data can be found on GEO: 
GSE158477. Integrative analysis code and scripts can be found at 
https://bitbucket.org/vervacity/ggr-project/, and the deep learning code can be found at 
https://github.com/kundajelab/tronn. 
 
Experiments and data processing 
 
Cell culture 
Primary human keratinocytes were isolated from fresh surgically discarded neonatal 
foreskin and cultured in Keratinocyte-SFM (Life Technologies 17005-142) and Medium 
154 (Life Technologies M-154-500). Pen/Strep (Life Technologies 15140-122) and Anti-
mycotic (Life Technologies 15240-062) were also added to the culture. Keratinocytes 
were induced to differentiate by addition of 1.2 mM calcium (added 12 hours after 
seeding at confluence) for 6 days in full confluence. Cells were harvested every 12 
hours for a total of 13 timepoints and banked into cell pellets, viable batches (10% 
DMSO in media), or cross-linked with 1% formaldehyde and frozen down at -80 deg C. 
Further details can be found on the ENCODE portal under GGR experiment accessions 
(Table S1). 
 
ATAC-seq experiments 
ATAC-seq (Buenrostro et al., 2013) was performed on all 13 timepoints. Detailed 
methods can be found on the ENCODE portal under GGR experiment accessions (see 
Table S1). ATAC-seq read alignment, quality filtering, duplicate removal, transposase 
shifting, peak calling, and signal generation were all performed through thes ENCODE 
ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). Briefly, 
adapter sequences were trimmed, sequences were mapped to the hg19 reference 
genome using Bowtie2 (-X2000) (Langmead and Salzberg, 2012), poor quality reads 
were removed (Li et al., 2009), PCR duplicates were removed (Picard Tools 
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MarkDuplicates) (2020), chrM reads were removed, reads with MAPQ > 30 were 
retained and read ends were shifted +4 on the positive strand or -5 on the negative 
strand to produce a set of filtered high quality reads. These reads were put through 
MACS2 (Feng et al., 2012) to get peak calls and signal files. Finally, IDR analysis was 
run on the two replicate peak files to produce an IDR peak file that is the reproducible 
set of peaks across both replicates (Li et al., 2011). 
 
ChIP-seq experiments 
ChIP-seq for H3K27ac, H3K4me1, H3K27me3, and CTCF were performed on 3 
timepoints (days 0.0, 3.0, and 6.0). Detailed methods can be found on the ENCODE 
portal under GGR experiment accessions (Table S1). ChIP-seq read alignment, quality 
filtering, duplicate removal, peak calling, and signal generation were all performed 
through the ENCODE ChIP-seq pipeline. Briefly, sequences were mapped to the hg19 
reference genome using BWA (Li and Durbin, 2009), and poor quality reads were 
removed, PCR duplicates were removed (Picard Tools MarkDuplicates) to produce a 
set of filtered high quality reads with high mapping scores (MAPQ > 30). These reads 
were put through MACS2 to get peak calls and signal files. Finally, reproducible sets of 
peaks across both replicates (naïve overlap peaks) were used for all downstream 
analysis. The full pipeline can be found at https://github.com/ENCODE-DCC/chip-seq-
pipeline2. 
 
PAS-seq experiments 
PAS-seq was performed on all 13 timepoints. Detailed methods can be found on the 
ENCODE portal under GGR experimental accessions (Table S1). PAS-seq read 
alignment and quantification were performed using the ENCODE RNA-seq pipeline 
v2.3.1 (https://github.com/ENCODE-DCC/long-rna-seq-pipeline). Briefly, sequences 
were mapped to the hg19 reference genome with GENCODE V19 annotations using 
STAR aligner (v2.4.1d) (Dobin et al., 2013), quantification was performed with RSEM 
(v1.2.21) (Li and Dewey, 2011), and signal files were produced with STAR and ucsc 
tools (v3.0.9, http://hgdownload.soe.ucsc.edu/admin/exe).  
 
DESeq2 (Love et al., 2014) was used to identify gene sets that were significantly 
differentially expressed (adjusted p-value < 0.05) in each time point relative to timepoint 
day 0. We used GSEA (v3.0) (Subramanian et al., 2005) to identify enriched functional 
terms for each differential gene set. We used the GseaPreranked tool and classic 
scoring scheme, to determine the GSEA normalized enrichment score (NES) for skin-
relevant gene sets from MSigDB (Subramanian et al., 2005), specifically 
CORNIFIED_ENVELOPE, KERATINIZATION, and 
KERATINOCYTE_DIFFERENTIATION. 
 
HiChIP experiments 
The HiChIP protocol was performed as previously described (Mumbach et al., 2016), 
using antibody H3K27ac (Abcam, ab4729) on 10 million cells per sample with the 
following modifications. Samples were sheared using a Covaris E220 using the 
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following parameters: Fill Level = 10, Duty Cycle = 5, PIP = 140, Cycles/Burst = 200, 
Time = 4 minutes and then clarified by centrifugation for 15 minutes at 16100 rcf at 4° 
C. We used 4 ug of antibody to H3K27ac and captured the chromatin-antibody complex 
with 34 uL Protein A beads (Thermo Fisher). Qubit quantification following ChIP ranged 
from 125-150 ng. The amount of Tn5 used and number of PCR cycles performed were 
based on the post-ChIP Qubit amounts, as previously described (Mumbach et al., 
2016). HiChIP samples were size selected by PAGE purification (300-700 bp) for 
effective paired-end tag mapping and where therefore removed of all primer 
contamination. All libraries were sequenced on the Illumina HiSeq 4000 instrument to 
an average read depth of 300 million total reads. 
  
HiChIP paired-end reads were aligned to the hg19 genome using the HiC-Pro pipeline 
(Servant et al., 2015). Default settings were used to remove duplicate reads, assign 
reads to MboI restriction fragments, filter for valid interactions, and generate binned 
interaction matrices. HiC-Pro filtered reads were then processed using hichipper 
(Lareau and Aryee, 2018) using the {EACH, ALL}  settings to call HiChIP peaks to MboI 
restriction fragments. HiC-Pro valid interaction pairs and hichipper HiChIP peaks were 
then processed using FitHiChIP (Bhattacharyya et al., 2019) to call significant chromatin 
contacts using the default settings except for the following: MappSize=500, IntType=3, 
BINSIZE=5000, QVALUE=0.01, UseP2PBackgrnd=0, Draw=1, TimeProf=1. 
 
Analysis of epigenomic and transcriptomic landscapes 
 
Genome annotations: reference genome, transcription factors, known motifs 
We use reference genome hg19 and GENCODE v19 (Frankish et al., 2019). For 
conversions between Ensemble IDs and HGNC, we use the biomaRt package in R 
(Durinck et al., 2009). For transcription factors, we use the FANTOM5 list of 
transcription factors (Table S9) (Lizio et al., 2017). For conversion of Entrez IDs to 
Ensembl IDs, we use the biomaRt package in R.  
 
For our known motif compendium, we use the HOCOMOCO resource (Kulakovskiy et 
al., 2018). To improve the quality of the motifs, we first remove non-informative bases 
on the ends of all position weight matrices (PWMs) in the database by clipping positions 
with information content (IC) < 0.4 from the ends in, until we hit a position with IC > 0.4. 
We reduce redundancy in this database using the RSAT matrix clustering methodology 
(Castro-Mondragon et al., 2017). In brief, we cross correlate all motifs to all other motifs 
in the database, getting both the max raw cross correlation (cor) and the max 
normalized cross correlation (Ncor). The Ncor is the max cross correlation normalized 
by a width metric (divide the length of the best cross correlated alignment of the two 
PWMs by the number of overlapping base pairs between the two PWMs). We use 1 - 
Ncor as a distance metric to build a hierarchical clustering of the PWMs. We then merge 
PWMs from the leaves of the hierarchical clustering tree towards the root, stopping at 
each branch when cutoffs for cor and Ncor (cor < 0.8, Ncor < 0.65) are passed. These 
cutoffs are the ones empirically derived in the RSAT matrix clustering study. We track 
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all PWMs that were merged as well as associated Ensembl IDs for the corresponding 
transcription factors. 
 
Determining a keratinocyte atlas of cis-regulatory elements 
To determine the landscape of accessible regulatory elements across keratinocyte 
differentiation, we take the union set of the ATAC-seq peaks across all timepoints, using 
bedtools merge (Quinlan and Hall, 2010), to determine an atlas of cis-regulatory 
elements (CREs). We use the IDR peak files for each timepoint as the peak set for that 
timepoint. This CRE atlas consists of 225,996 accessible regions that are accessible at 
some timepoint in differentiation. At this point in the analysis it was noted that days 3.5, 
4.0, and 5.5 had small differences that could be attributed to a growth response from 
media changes, which were not noted to significantly change the regions included in the 
CRE atlas but could have important effects on the accessibility signals and downstream 
quantitative analyses. These timepoints were therefore removed for all downstream 
analyses. With our valid timepoints we generated a signal coverage matrix with the 
following computational pipeline. At the biological replicate level, we determined the 
transposase-corrected cut sites (the single base pair locations of transposase binding 
events on genomic DNA) from the sequencing reads by taking the read ends and 
correcting the positions to be +4 on the 5’ end and -5 on the 3’ end. We then count the 
number of cut sites that fall into each element of our CRE atlas to get transposase 
events per biological replicate sample. This gives us a count-based matrix of (regions, 
samples). This count matrix with replicate information can be appropriately analyzed 
with DESeq2 with its underlying assumptions (Love et al., 2014). We thus use DESeq2 
on all pairs of timepoints to get all CREs that have differential signal between any pair of 
timepoints, using an FDR of 0.0005 to give us a post-analysis Bonferroni corrected FDR 
of 0.05 across all tests. Under this analysis framework, 47,835 CREs (21% of the CRE 
atlas) were found to be dynamically accessible across differentiation. 
 
Time series clustering of dynamic CREs with replicate reproducibility 
To group the dynamically accessible CREs into defined trajectories across time, we 
utilized Dirichlet Process-Gaussian Process (DP-GP) time series clustering with 
replicate reproducibility. This analysis framework extends DP-GP time series clustering 
(McDowell et al., 2018) to consider replicates and to determine which clusters are 
reproducible across replicates. First, we sum the transposase event counts for each 
biological replicate into a pooled count for each timepoint. This pooled count matrix is 
then used to calculate the DESeq2 regularized log transform to get a normalized signal 
matrix, where each CRE has a normalized value across timepoints. This same 
regularized log transform is applied to count matrices for replicate 1 and replicate 2, to 
generate similar normalized signal matrices for each replicate that are all normalized to 
the same transform. Then, the signal matrix with the pooled data is subsampled 
(n=5000 for speed, since the algorithm was originally built to run effectively at the scale 
of thousands of genes, not tens of thousands of regions) with the default parameters, 
providing the initial set of time series clusters. The cluster set is filtered for cluster size 
such that any cluster that has a total membership of CREs < 2% of all dynamically 
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accessible CREs is removed. The cluster set is further filtered to remove non-dynamic 
trajectories, which are the clusters whose multivariate Gaussian process does not reject 
the null hypothesis of no change across time (in other words, the 0-vector falls in the 
99.9% multivariate confidence interval). We then run reproducibility in the following 
manner. For each CRE, with its corresponding signal trajectory across time, we assign 
the CRE to each cluster that it could match, and this is also done for the pooled signal 
trajectory of that CRE as well as the signal trajectories in the separated replicates. The 
CRE matches a cluster if it’s in the multivariate confidence interval (CI 0.95) for the 
trajectory, and is correlated by Spearman and Pearson correlation (p<0.05). We then 
only keep cluster matches for that CRE if all three trajectories – pooled, replicate 1, and 
replicate 2 – were matches in that cluster. If there is more than one matched cluster, the 
CRE is assigned to the cluster for which it is the least Euclidean distance away from the 
mean trajectory. If there are no matched cluster, the CRE is considered irreproducible 
across time and discarded. After this is done for all CREs, any clusters that do not have 
matched CREs are discarded. This framework thus allows for utilizing replicate 
information within a time series framework to improve clustering as well as cluster 
membership. Under this analysis, 15 time series patterns of accessibility were found in 
keratinocyte differentiation, comprising 40,103 dynamically accessible and time series 
reproducible CREs.  
 
Analysis of histone modifications in the CRE atlas 
To characterize the diversity of CREs by histone modification, histone marks were 
analyzed with an accessibility-centric approach. For each histone mark (H3K27ac, 
H3K4me1, and H3K27me3), a union set of regions was generated by taking the CREs, 
extending the flanks on either side by 1kbp, and keeping any CREs that overlapped 
peaks for that mark across any of the timepoints. This analysis finds 83,785 CREs 
marked by H3K27ac, 122,395 CREs marked by H3K4me1, and 36,084 CREs marked 
by H3K27me3. We then generated count matrices for each set of CREs in the following 
manner. At the biological replicate level, we determined the midpoints from the paired 
sequencing reads as estimated positions where the histone was present on genomic 
DNA. We then count the number of read midpoints that fall into each flank-extended 
element of each CRE to get marked histone events per biological replicate sample. This 
gives us a count-based matrix of (regions, samples). This count matrix with replicate 
information can be appropriately analyzed with DESeq2 with its underlying assumptions 
(Love et al., 2014). We thus use DESeq2 on sequential pairs of timepoints to get 
differentially marked CREs across time. Given three possible transitions (increase, no 
change, decrease in histone mark signal), and three timepoints (day 0, 3, and 6) for 
which histone mark data was collected, we enumerate 9 possible patterns for histone 
marks across time.  
 
Analysis of chromatin states in the CRE atlas  
To characterize the diversity of CREs by chromatin state, the histone mark analysis 
from above was used to consider all histone marks together. Chromatin states were 
generated by enumeration. With 9 possible patterns for each histone mark and three 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.16.342857doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342857
http://creativecommons.org/licenses/by-nc/4.0/


Kim, et al 

 8 

assayed marks, the total possible chromatin states is 729. However, most of the 
possible states do not appear, demonstrating a much more limited set of states.  
 
Determining the transcriptomic atlas of keratinocyte differentiation 
To determine the landscape of transcripts across keratinocyte differentiation, we first 
determine the set of expressed genes at each timepoint. We do this by first normalizing 
the full matrix of protein-coding transcripts across timepoints using the rlog function from 
DESeq2 (Love et al., 2014), and then setting an empirical threshold based on the best 
separation of a Gaussian mixture model on the rlog normalized values (threshold = 4.0). 
We then take the union of all expressed genes across timepoints to determine the 
transcriptomic atlas, which consists of 12,190 genes. We then use DESeq2 on all pairs 
of timepoints to get all genes that have differential signal between any pair of 
timepoints, using an FDR of 0.0005 to give us a post-analysis Bonferroni corrected FDR 
of 0.05 across all tests. Under this analysis framework, 5,046 genes (41% of the 
transcriptome atlas) were found to be dynamically accessible across differentiation. 
 
Time series clustering of dynamic genes with replicate reproducibility 
To group the dynamic genes into defined trajectories across time, the same framework 
used for the dynamic CREs was also utilized for the dynamic genes (see above section, 
“Time series clustering of dynamic CREs with replicate reproducibility”). Under this 
analysis, 11 time series patterns of expression were found in keratinocyte 
differentiation, comprising 3,610 genes (29% of the transcriptomic atlas) that are 
dynamic and time-series reproducible. 
 
Analysis of chromatin conformation 
To determine a set of loops for downstream analyses, a replicate-based analysis was 
run to get replicate reproducible loops. For each timepoint, loops were generated for the 
pooled data (aggregated across both replicates), replicate 1, and replicate 2. 
Consensus loops were generated by getting the consensus endpoints from the union 
merge across the pooled, replicate 1, and replicate 2 endpoints. These were filtered 
such that each loop had a non-zero value for the pooled version, replicate 1 version, 
and replicate 2 version. These values were run through IDR (p<0.05) to keep loops that 
were replicate consistent (Li et al., 2011). These loops were then merged across 
timepoints to get the union set of replicate consistent loops across differentiation. Under 
this analysis, 101,884 loops were replicate consistent. 
 
Linking by proximity 
We utilize an exponential decay function  to compute a linkage score between 
each ATAC-seq peaks and each expressed genes separated by distance . Since 
previous work has shown that the median distance for functional distal regulatory 
elements to gene TSSs is 25kb (Gasperini et al., 2019), we fit the exponential decay 
function such that the median score is at 25kb (i.e., ). We then keep all 
peak-gene links that are within 100kb of each other. For curating a gene set linked to a 
region set, we use the above links to get genes that are proximally linked to the regions 
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where 1) the genes are expressed at some point in the timecourse, 2) the gene TSS is 
within 100kb upstream or downstream of a region, 3) the summed score for the gene is 
> 0.5. For example, if two regions are within 100kb of a gene TSS and the sum of the 
link scores for the two regions is 0.51, then the gene is kept as part of the downstream 
gene set, with the corresponding summed score. We then use this summed score to 
rank the genes so that a ranked enrichment tools can be used. This linking and scoring 
strategy is the main strategy used to find gene sets and gene set enrichments.  
 
Deep learning on dynamic regulatory DNA sequence 
 
Convolutional neural networks on DNA sequence 
We trained multi-task convolutional neural networks (CNNs) to accurately map 1 kbp 
DNA sequence regions across the genome to quantitative read outs of chromatin 
accessibility and multiple histone marks in each time point of keratinocyte differentiation. 
CNNs can learn complex sequence patterns that are predictive of genome-wide 
chromatin accessibility and histone mark profiles. We use a multi-stage, transfer 
learning training regimen to maximize prediction performance and model stability by 
leveraging large compendia of chromatin accessibility data across 100s of diverse 
tissues. 
 
Architecture 
We used the previously optimized multi-task Basset CNN architecture for predicting 
genome-wide chromatin accessibility from DNA sequence across multiple samples 
(Kelley et al., 2016). The inputs to the model are 1 kbp long DNA sequences that are 
one-hot encoded (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]). The Basset model 
has three convolutional layers with the following parameters: the first layer has 300 
filters of size (1, 19) and stride (1, 1) followed by batch normalization, a ReLU non-
linearity, and max-pooling with size (1, 3) and stride (1, 3); the second layer has 200 
filters of size (1, 11) and stride (1, 1) followed by batch normalization, a ReLU non-
linearity, and max-pooling with size (1, 4) and stride (1, 4); the third layer has 200 filters 
of size (1, 7) and stride (1, 1) followed by batch normalization, a ReLU non-linearity, and 
max pooling with size (1, 4) and stride (1, 4). After the convolutional layers there are two 
fully connected layers, each with 1000 neurons, followed by batch normalization, a 
ReLU non-linearity, and dropout where the keep probability is 0.7. The final layer 
mapped to multiple outputs (multi-task output) spanning the time points and each of the 
different types of molecular read outs (chromatin accessibility or histone marks). We 
use binary or continuous output labels and associated loss functions in the multi-stage 
training (see below). When training on binary labels (accessible vs. not accessible or 
bound vs. unbound), we use the binary cross-entropy loss function with logistic outputs. 
When training on continuous, quantitative measures of accessibility or histone marks, 
we use the mean-squared error loss function with linear outputs. The multi-task loss is 
the sum of the loss over all tasks. 
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Multi-stage transfer learning regimen 
We bin the genome into 1 kbp windows with a stride of 50 bp. Each bin can serve as an 
example in a training, validation/tuning or test set. We divide chromosomes into 10 folds 
(Table S6). We use a cross-validation set up where we use 8 folds for training, 1 for 
validation/tuning, 1 for testing.  
 
We use a multi-stage training regimen to maximize performance and model stability. In 
stage 1, we train a ‘reference’ multi-task CNN model with randomly initialized 
parameters (variance scaling initialization, ie Xavier intialization) on DNase-seq and TF 
ChIP-seq data from a large collection of biosamples from the ENCODE and Roadmap 
Epigenomics Project (ENCODE Project Consortium, 2012; Kundaje et al., 2015). All 
datasets used are detailed in Tables S7, S8. In this stage, the labels associated with 
each input sequence are binary. A 1 kbp sequence in the genome is assigned a positive 
label for a particular task (DNase-seq or TF ChIP-seq in a specific biosample), if the 
central 200bp of the sequence overlaps a DNase-seq or TF ChIP-seq peak in the 
biosample by at least 50%. All other bins in the genome are assigned negative labels 
for that task. The possible negative labeled bins significantly outnumber the positive 
labeled bins, since much of the genome is not accessible (or not TF bound). Hence, we 
use a subset of informative negative examples from the training chromosomes to train 
the models. For each task, we include negative labeled bins flanking every positive 
labeled bin (3 flanks, stride 50bp, on either side of the region). We further sample 
negatively labeled bins (half as many positive bins in the task). Finally, we include bins 
that overlap a comprehensive catalog of DNase-seq peaks (Kundaje et al., 2015). This 
generates a dataset with reasonable class imbalances per task while maintaining 
diversity in negative examples (Kim and Kundaje, 2020a).  
 
In stage 2, we initialize a multi-task CNN model with the parameters derived from the 
reference ENCODE/Roadmap model (Kim and Kundaje, 2020b) and then train it to map 
DNA sequence bins to binary labels corresponding to important region sets as derived 
in the characterization of the epigenomic landscape. These important region sets 
include: ATAC-seq, H3K27ac, H3K4me1, and H3K27me3 region sets by timepoint, the 
region sets defined by accessibility time series clustering, region sets defined by 
dynamic and static histone modifications, region sets defined by dynamic and static 
chromatin states, and region sets from TF ChIP-seq experiments for CTCF, TP63, 
ZNF750, POL2, and KLF4. In total these region sets comprise 119 binary label sets 
used for multitask training. The genomic bins for training and their associated binary 
labels for each of the tasks are constructed as described above (Kim and Kundaje, 
2020c).  
 
In the final stage 3, we initialize a multi-task CNN with the parameters of the binary 
keratinocyte model from stage 2 (Kim and Kundaje, 2020d). We then train the model 
CNN with the mean-squared error regression loss function to map DNA sequence bins 
to continuous, quantitative measures of ATAC-seq, H3K27ac ChIP-seq and H3K4me1 
ChIP-seq in our keratinocyte differentiation time course (19 tasks). The genomic bins 
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used for training cover the union of peaks across all time points. For each 1 kbp 
sequence bin, we compute the average of the log of the smoothed depth-normalized 
read coverage (log of the MACS2 fold-enrichment of smoothed observed 5’ end counts 
relative to expected local Poisson background) over the central 200 bp of the bin for 
ATAC-seq or over the entire 1 kbp for histone marks. The average is computed using 
bigWigAverageOverBed (column mean0). The average signal scores are normalized 
using quantile normalization across all time points for each of the assays (ATAC, 
H3K27ac, and H3K4me1). These normalized scores are used as quantitative labels for 
each bin.  
 
We use the same cross-validation folds for training, tuning and testing across all stages. 
The model parameters are transferred across stages to exactly match the cross-
validation fold structure. Hence, for each fold, the test sets are completely held-out 
across all stages of training. This multi-stage training set up allows the model to utilize 
larger sets of existing data to improve its understanding of DNA sequence and 
regulatory logic encoded in the human genome. 
 
Training hyperparameters 
The following hyperparameters were used for all models at all stages. We train for a 
maximum of 30 epochs with early stopping, where the patience (number of epochs of 
nonimproved performance before stopping) is 3 and the metric considered is average 
AUPRC across all tasks on the validation set. The loss function for classification models 
is binary cross entropy, and the loss function for regression is mean squared error 
(MSE). The optimizer used is RMSprop with a learning rate of 0.002, a decay of 0.98, 
and a momentum of 0.0.  
 
Performance evaluation 
We evaluate on the held-out test chromosomes of each fold, calculating our 
performance metrics across the entire length of the chromosomes (genome-wide 
evaluation). For each task, we use the area under the precision-recall curve (AUPRC) to 
measure performance of the binary models and Spearman’s R and Pearson’s R to 
measure performance of the regression models. 
 
Prediction calibration through quantile normalization 
Using MSE loss on regression models provides effective ranking across predictions in 
the same task, but the prediction outputs may not be well calibrated to match the 
observed output labels. As such, we rescale the model’s continuous output predictions 
by quantile normalizing the distribution of the model predictions with respect to the 
distribution of the ground truth measured labels. We obtain prediction scores for a 
random set of 1000 examples, which then provides us with a distribution of predicted 
scores and a corresponding distribution of the labels. We can then use those 
distributions to quantile match a prediction score value to a label score (for example, we 
can determine that a prediction score is in the 90th percentile of the distribution of 
prediction scores and should be matched to the 90th percentile of the distribution of 
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label scores). Importantly this re-scaling does not actually change the performance of 
the model, it simply re-calibrates the output. Additionally, given that the continuous 
signal labels across tasks are quantile normalized relative to each other, the re-
calibration of the prediction scores also normalizes the prediction scores across tasks. 
 
Inference of predictive motif instances  
 
Overview 
The multi-task CNNs, described above, map every candidate regulatory DNA sequence 
to quantitative measures of chromatin accessibility at each time point in the 
differentiation time course. We developed an interpretation framework to interrogate the 
model and decipher motif instances in each candidate element that are predictive of 
chromatin accessibility at each time point. First, we use gradient based feature 
attribution methods to decompose the predicted output (at each time point) for an input 
sequence in terms of contribution scores of each nucleotide in the sequence. We 
develop methods to stabilize and normalize the scores. We develop stringent null 
models to identify statistically significant contribution scores. We then use a large 
compendium of pre-compiled TF motifs to scan and score the sequences as well as the 
contribution score profiles. We develop stringent null models to infer predictive motif 
instances that have statistically significant contribution scores and sequence match 
scores. The following sections provide details for each of these steps. 
  
Estimating nucleotide-resolution contribution scores 
The gradient of the predicted output with respect to each base at each position in the 
input DNA sequence, gated by the observed base, estimates the sensitivity of the 
output to infinitesimal changes in the input (Simonyan et al., 2014). This measure of 
importance is often referred to as input-gated gradients. The method is efficient since a 
single backpropagation pass can be used to estimate the contribution of all nucleotides 
in an input DNA sequence to a specific output prediction. 
 
We compared the input-gated gradient scores to contribution scores derived from 
another related approach called DeepLIFT (Shrikumar et al., 2017) on a subset of the 
time points. DeepLIFT backpropagates a score, analogous to gradients, which is based 
on comparing the activations of all the neurons in the network for the input sequence to 
those obtained from neutral ‘reference’ sequences. We use 12 dinucleotide-shuffled 
versions of each input sequence as reference sequences. We used the DeepSHAP 
implementation of DeepLIFT 
(https://github.com/slundberg/shap/blob/0.28.5/shap/explainers/deep/deep_tf.py) to 
obtain contribution scores for all observed bases in each sequence. 
 
We estimated input-gated gradient and DeepLIFT contribution scores for all nucleotides 
in all sequences with respect to quantitative chromatin accessibility predictions for three 
time points (0h-early, 3h-mid and 6h-late), using each of the models for the 10 folds of 
cross-validation. For each method, we averaged the scores for each sequence in each 
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time point across all the 10 folds. For each sequence, we used cosine similarity to 
compare the average input-gated gradient and DeepLIFT score profiles separately. We 
observed high similarity between input-gated gradients and DeepLIFT scores (median 
cosine similarity across all sequences and all the 3 time points = 0.8736). While gradient 
based scores are often more unstable and less accurate than DeepLIFT scores, the 
regularization of our models via the multi-stage transfer learning and averaging over 
folds, greatly stabilizes the gradient based scores. Hence, we decided to use input-
gated gradient scores as contribution scores for all downstream analyses, since it is 
more efficient than DeepLIFT and produces very similar contribution score profiles with 
respect to motif instance discovery. 
 
Estimating statistically significant contribution scores 
For each input sequence, we compute input-gated gradient score profiles from 
dinucleotide shuffled versions of the sequence. We use these scores to construct an 
empirical null distribution of contribution scores for that sequence. We use that empirical 
null distribution to derive empirical statistical significance of the observed contribution 
scores. We use a threshold of p < 0.01 to call statistically significant scores. The scores 
of all positions that do not pass the significance threshold are set to 0. 
 
Normalization of contribution scores 
We normalize the contribution score profile of each sequence by dividing the score of 
each position by the sum of the absolute value of contribution scores across the entire 
sequence and multiplying them by the predicted output.  
 
Trimming contribution scores 
We observed that statistically significant contribution scores peaked within 160 bp for 
the peak summit. Hence, we trim the DNA sequences from its original 1000bp context 
to the central 160bp for downstream analyses. We further eliminate the trimmed 
sequences from downstream analyses that have less than 10 base pairs of significant 
scores. These shorter sequences are also compatible with testing in reporter constructs. 
 
Average contribution score profiles across all folds for each sequence in each 
time points 
We estimate contribution score profiles for each sequence with respect to predictions in 
each of the time points using models from each of the 10 folds. These score profiles are 
filtered for statistical significance, normalized and trimmed as described above. We 
average the contribution scores of each position in each sequence for each time point, 
across the 10 folds. We compute the 99% confidence interval for each position using 
the scores from the 10 folds. If the confidence interval includes 0, the score of the 
position is set to 0, else it is set to be the average score across the 10 folds.  
 
Validation of contribution scores by Allele-sensitive ATAC (asATAC) analysis 
We utilized our ATAC-seq data to determine allele-sensitive accessible sites. Since the 
data was collected from primary samples, we were able to utilize an allele-sensitive 
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ATAC-seq analysis to determine a number of single nucleotide polymorphisms (SNPs) 
that exhibited significant allelic imbalance of ATAC-seq reads. Utilizing QuaSAR 
(Harvey et al., 2015), a computational framework for calling genotypes and allelic 
imbalanced sites, we were able to call 16,686 heterozygous SNPs and capture 283 
SNPs with statistically significant (FDR < 10%) allelic sensitivity across our two patient 
samples (and across all ATAC timepoints). We estimated contribution score profiles for 
the sequences containing each of these 16,686 SNPs, to determine if the SNP locations 
overlapped statistically significant contribution scores and whether the models predicted 
differential accessibility prediction for the two alleles (Fig. S2D). 
 
Identifying dynamic predictive motif instances using sequence match and 
contribution scores 
We identify dynamic predictive motif instances in each input sequence across time 
points, for each of the known motifs in the motif compendium, by scanning and scoring 
the sequence as well as the dynamic the contribution score profiles derived from the 
model. 
  
First, for each PWM motif, we compute sequence match scores at every position in 
each sequence. The scanning and scoring can be implemented as a convolution 
operation. Hence, we use the deep learning framework to implement a single 
convolutional layer with filters corresponding to each of the PWMs in the deep learning 
framework. When loading the PWM weights into the filters, we pad the weights to get all 
filters to be the same size, normalize by the length of the nonzero weights (divide by the 
length), and convert the weights to a unit vector (divide by L1 norm). We use the 
convolutional layer to scan and score all PWMs across the forward and reverse 
complement of each one-hot encoded sequence. We also use the same operation to 
scan and score dinucleotide shuffled versions of each of the genomic sequences. We 
thus obtain an empirical null distribution of match scores for each PWM for each 
sequence. We identify positions with significant sequence match scores as those that 
pass p < 0.05 based on the empirical distributions. For any sequence, the significant 
positions based on sequence match scores will be identical across all time points.  
 
Next, we use the PWMs to scan and score the dynamic contribution score profiles for 
each sequence in each time point. Essentially, we repeat the same convolution 
operation using PWM filters but using the contribution score profiles to weight the one-
hot encoded sequences and their reverse complements. Hence, we obtain contribution 
weighted match scores to the PWMs. We once again retain statistically significant 
contributed weighted match scores, using a p < 0.05 threshold, based on null 
distributions of the contribution weighted match scores for dinucleotide shuffled 
sequences. We compute these contribution weighted match scores and significance 
separately for the positive contribution scores and negative contribution scores, as 
negative scores can influence PWM weights detrimentally (e.g. negative PWM weight 
value that now contributes positively because of a negative contribution score.)  
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Our final set of predictive motif instances for each sequence in each time point 
correspond to positions that have significant sequence match scores and significant 
contribution weighted match scores. Since the contribution score profiles for each 
sequence can change across time points, the predictive motif instances are dynamic 
across time points.  
 
Identifying significant differential motifs between two sets of sequences  
We developed an approach to identify significant differential motifs between any 
foreground set of sequences relative to a background set of sequences. We use the 
sequences belonging to each dynamic trajectory as foreground region sets. First, we 
identify predictive motif instances for all PWMs in both sets using the method described 
above. We then use bootstraps of GC-content matched background genomic 
sequences (n=1000) that do not overlap any accessible peaks to estimate a null 
distribution of the number of PWM hits (average across the sequences in the 
bootstrapped background set). We then estimate an empirical p-value for each PWM in 
the foreground relative to these bootstrapped backgrounds. We use Storey’s q-value 
method to perform a multiple hypothesis correction. We use an q-value threshold of 
10% to identify statistically significant differential PWMs. 
 
Validation of predictive motif sites by TF ChIP-seq  
The predictive motif instances are a subset of all sequence-based motif instances that 
also have significant contribution scores. We hypothesized that predictive motif 
instances are more likely to distinguish those that are bound by TFs from unbound motif 
instances. Hence, we used publicly available TF ChIP-seq to analyze occupancy over 
these motif sites. First, for each TF with available ChIP-seq data, we used our models to 
obtain all predictive motif instances of the PWM for the TF. We also collated a control 
set of motif instances with significant sequence match scores that are not marked as 
predictive and are matched for accessibility to the set of predictive instances. We 
matched for accessibility to account for confounding effects of differentially accessible 
regions. Using pre-processed normalized (MACS2 derived fold enrichment of smoothed 
5’-end read coverage relative to local Poisson background) bigwigs from Cistrome (Liu 
et al., 2011), we contrasted the average the ChIP-seq signal profile over predictive motif 
instances versus control motif instances using a +/- 1 kbp window (20 p bins) around 
the instances (Ramírez et al., 2016).  
 
Validation of predictive motif sites by ATAC-seq footprinting analysis 
As above, we separated motif instances of each PWM into two sets depending on 
whether they were marked as predictive or not, matched for GC content of the surround 
sequencing context. We then utilized the HINT footprinting tool to generate average 
ATAC-seq bias-corrected cut site coverage profiles over the two sets of motif instances 
(Li et al., 2019) using a +/-250 bp window around the motif. We normalized the average 
footprint profile by computing the fold enrichment of average footprint signal at each 
position relative to a reference. The reference was computed by averaging the footprint 
signal in the 50bp flanks on either side of the 250 bp footprint window. We computed 
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the ‘average footprint height’ as the area under the normalized footprint profile in a +/- 
100 bp window around the motif center, excluding the central +/15 bp around the motif 
center. We computed the ‘average footprint depth’ as the area under the local maximum 
of the normalized average footprint profile within +/- 10bps on either side of the motif 
center. 
 
Identifying putative TFs binding the motifs based on correlation of weighted PWM 
scores and TF expression 
Since the contribution score profiles for each sequence are dynamic across the time 
points, the predictive motif instances within each sequence also have dynamic 
contribution scores across the time points. For each PWM, we identify the locations of 
all predictive motif instances across all the time points. Each instance is represented by 
an instance activity vector across time consisting of contribution scores (sum over all 
positions in the instance) for each of the time points. For a pre-defined set of 
sequences, we first identify all significant differential motifs relative to a background set 
(as described above). For each motif, we obtain a motif activity vector for the set of 
sequences as the average of the activity vectors over all its predictive instances in those 
sequences. We identify all candidate TFs associated with the motifs (TFs of the same 
family often bind similar motifs). For each candidate TF, we extract the RNA-seq 
expression profile (variance stabilized rlog transformed counts from DESeq2) across the 
time points. We compute the Pearson correlation between the TF expression profile and 
its motif activity vector. We retain TFs that are expressed in keratinocytes (> 1 TPM) 
and exhibit a correlation of at least 0.75 with the activity vectors of associated motifs. 
 
Estimating interaction effects between motifs 
 
In silico mutagenesis scores for motif instances 
We use each set of candidate regulatory elements that belong to each trajectory of 
accessibility dynamics as a foreground set of sequences to identify significant 
differential motifs relative to the background set of all peaks. As described above, we 
identify predictive motif instances of differential motifs by scanning sequence and 
gradient based contribution score profiles with the known motif compendium. We use an 
in-silico motif mutagenesis approach to further corroborate and filter high-confidence 
predictive motif instances. Specifically, we expect in-silico perturbation of predictive 
motif instances to induce (1) a significant change in the predicted output of the model, 
(2) a significant change in the contribution scores across the sequence.  
 
We use two complementary approaches to perturb motif instances. The first approach 
called the “motif scramble” method, randomly scrambles the 10 bp sequence around the 
center of a predictive motif instance. The scramble maintains the sequence composition 
of the window while destroying the precise sequence of the motif instance. The second 
approach, called the “point mutation” method, mutates the most influential base pair 
with the highest contribution score in the 10bp window around the center of the motif 
instance. The position is mutated to the base with the most detrimental predicted effect 
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i.e. the base with the most negative gradient score at that position. For both types of 
mutations, we compute the ‘mutagenesis effect size of a motif instance’ as the 
difference in the predicted output (units of log depth normalized coverage of ATAC-seq 
signal) of the model for the mutated sequence relative to the wild type. We also 
recompute the contribution score profile of the mutated sequence and record the 
difference in contribution score (‘delta contribution score’) of each position in the 
sequence relative to the wild type contribution score profile. 
 
We generate null control distributions for the mutagenesis effect sizes and change in 
contribution scores as follows. First, we identify 10 randomly chosen positions that have 
non-significant contribution scores (set to 0 after thresholding for significance) in the 
central 200 bp of each wild type sequence. We expect mutations to these positions to 
have no significant effect on the output or contribution scores of other positions in the 
sequence. We mutate (point mutation or scramble around) each of these 10 positions 
and compute the difference in the output prediction as well the delta contribution scores 
for all the other positions in the sequence. We fit separate Gaussian null distributions to 
the mutagenesis scores and the delta contribution scores from these 10 expected null 
mutations. The use these null distributions to estimate the statistical significance (p-
value < 0.1) of mutagenesis scores and delta contribution score profiles for each 
predictive motif instances.  
 
We identify candidate epistatic partners of a motif instance in a sequence, as all other 
predictive motif instances in the sequence that overlap positions with significant delta 
contribution scores of a target motif instances in the sequence. We have previously 
described this approach as Deep Feature Interaction Maps (Greenside et al., 2018). 
 
Functional enrichment of co-occurring pairs of predictive motifs 
We associate each of the regulatory sequences of accessible peaks supporting a 
combinatorial motif set to proximal genes as follows. For sequence, we first identify up 
to two closest candidate genes (based on distance from TSS) within a +/- 500 kb of the 
sequence, such that the genes are expressed in at least one of the time points in our 
differentiation time course. We then restrict all peak-gene associations to those that 
exhibit significant correlation between the ATAC-seq enrichment of the peaks (log fold 
enrichment) and the RNA-seq (TPM) expression levels of the genes across the time 
course. We thus obtain a gene set that is putatively regulated by any combinatorial motif 
set. We then test the gene sets for enrichment of functional annotations using gProfiler 
(Reimand et al., 2016). We use a background set of all genes expressed at any 
timepoint in differentiation time course) to get functional enrichments. We keep 
combinatorial rules that are functionally enriched for skin-related terms. We also 
combine combinatorial rules that were discovered in different trajectories but marked 
with the motif combination to create a set of rules that are all distinct motif combinations. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.10.16.342857doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342857
http://creativecommons.org/licenses/by-nc/4.0/


Kim, et al 

 18 

Testing interaction effects between pairs of motifs with combinatorial in silico 
mutagenesis 
Co-occurring pairs of predictive motifs in a regulatory sequence can have different types 
of quantitative joint effects on chromatin accessibility (depth normalized ATAC-seq read 
coverage). We explore three types of joint effects. Lack of motif interactions would 
manifest as independent, additive effects on coverage. Interactions between motifs 
learned by the model would manifest as multiplicative (additive in log space) or super-
multiplicative effects (multiplicative in log space) on coverage. For all pairs of 
functionally enriched pairs of co-occurring motifs, we identified all the sequences 
containing predictive instances of the pair (as described above). We then used two 
complementary approaches to test each instance of a pair of motifs for epistatic 
interactions. 
 
First, we used the Deep Feature Interaction Map method (Greenside et al., 2018) to 
score epistatic interactions between pairs of candidate predictive motif instances (say A 
and B) in a sequence. Specifically, as described in the motif ISM section, we infer the 
positions in the sequence that exhibit statistically significant delta contribution scores 
due to in silico mutations to motif A. If motif instance B overlaps any positions with 
significant delta contribution scores then it is estimated to have an interaction effect with 
motif A on ATAC-seq read coverage.  
 
Next, we corroborate the DFIM scores, with an explicit combinatorial in silico motif 
mutagenesis approach using both the ‘scramble’ and ‘point mutation’ approach. 
Assume we have two motif instance A and B in a sequence that we would like to test for 
epistatic interactions using the model.  

• We record the model’s output with both motif instances intact in the sequence = 
o.  

• We record the output after ‘mutating’ only motif A i.e. the sequence only contains 
an intact motif  B = b.  

• We record the output after mutating only motif  B, i.e. the sequence contains an 
intact motif A = a. 

• Finally, we record the output after mutating both motifs A and B, which is a 
baseline = n.  

• We compute the marginal effect size of adding motif A relative to a null sequence 
that does not contain either of the motifs = (a – n). 

• We compute the marginal effect size of adding motif B relative to a null sequence 
that does not contain either of the motifs = (b – n). 

• We compute the joint effect of adding motif A and B relative to the sequence that 
does not contain either of the motifs = (o – n) 

 
We then compare the joint effect size (o – n) to the sum of the marginal effect sizes (a – 
n) + (b – n) = (a + b – 2n). We run a Wilcoxon signed-rank test on the paired values 
(joint vs. sum of marginals) across all instances of a motif pair to determine whether the 
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joint effects on the motif pair instances is significantly greater or less than the sum of the 
marginal effects. 
 
Since the output predictions are in units of log depth normalized coverage, additivity in 
log units translates to multiplicative effects in units of coverage. If the joint effect is 
significantly larger than the sum of the marginal effects, motifs A and B have super-
multiplicative effect on coverage. If the joint effect is significantly lower than the sum of 
the joint effects, motifs A and B exhibit a sub-multiplicative effect on coverage. A non-
significant difference between the joint and sum of marginals indicates a multiplicative 
effect of motif A and B on coverage. 
 
Design of Massively Parallel Reporter Assay (MPRA) to test intrinsic 
activity dynamics of combinatorial motif rules 
 
MPRA design 
We designed MPRA constructs guided by the combinatorial motif sets that have positive 
motif interaction scores using the ‘motif scramble’ and ‘point mutation’ motif 
perturbations. For each rule of interacting motif pairs, we randomly select 19 genomic 
subsequences of length 160 bp within accessible peaks, contain predictive instances of 
both motifs in the rule and exhibit positive interaction scores. We test the endogenous 
sequence and all versions of the sequences in which the motifs are combinatorially 
mutated.  
 
This sampling design allows us to test the following hypotheses: 
 

1. Trajectory: does the motif combination produce a reporter activation pattern 
across time points (days 0, 3, and 6 in the in vitro model) that was predicted by 
the trajectory it was derived from? 

2. Interactions: do the motif pairs exhibit multiplicative or super-multiplicative 
interaction effects on intrinsic reporter activity? 

 
We include the following positive and negative controls. As positive controls, we use 
316 TSSs of the highest expressed genes (at any time point in skin differentiation). As 
negative controls, we generate dinucleotide shuffled versions of 50 randomly selected 
genomic test sequences selected above. We also select 50 negative controls from the 
genome that are not found in the master list of accessible regions across keratinocyte 
differentiation. The list of all constructs are in Table S10. 
 
Library cloning 
The MPRA oligo library was synthesized using Agilent's oligo library synthesis platform. 
Each oligo sequence consisted of: 5'-FWD primer binding site-
[ACTGGCCGCTTCACTG]-176 nt insert-XhoI-NheI-20 nt oligo barcode-REV primer 
binding site-[AGATCGGAAGAGCGTCG]-3'. The oligo library was amplified using the 
FWD primer 5'-GCTAAGGAATTCACTGGCCGCTTCACTG-3' and REV primer 5'-
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GCTAAGGGATCCCGACGCTCTTCCGATC-3', which add EcoRI and BamHI restriction 
sites, respectively. The resulting PCR product was gel purified, digested with EcoRI and 
BamHI, and ligated into the pGreenFire1 lentivector backbone. Takara Stellar 
competent cells were transformed with the plasmid library and a fraction of the bacteria 
were plated to ensure a library coverage of at least ten-fold. The remainder of the 
transformation was incubated overnight in Luria broth. Plasmids were isolated using the 
Qiagen Plasmid Plus Maxi kit. If insufficient colonies were obtained to ensure a library 
coverage of at least ten-fold, additional transformations were performed and plasmid 
preps were pooled. In the second cloning step, the plasmid library was digested with 
XhoI and NheI and ligated with an insert containing a minimal promoter and a short 
stuffer sequence consisting of the first 100 bp of luciferase. The luciferase sequence is 
not functional and merely provides a transcript sequence linked to each oligo barcode, 
which is necessary for downstream sequencing library construction. The ligated 
plasmids were used to transform Stellar competent cells as described above. The final 
plasmid library pool was sequenced on an Illumina MiSeq to ensure an oligo library 
coverage greater than 90%.  
  
Cell culture 
Lentivirus was produced in 293T cells in 10cm plates. Cells were transfected with 
3.75ug pUC MDG, 7.5ug pCMV Δ8.91, and 7.5ug plasmid library using Lipofectamine 
2000 (Life Technologies). Viral particles were collected 48 hours post-transfection and 
concentrated using Lenti-X Concentrator (Takara). Lentivirus was titrated in primary 
keratinocytes to maximize viral transduction while minimizing lentiviral toxicity. For each 
MPRA biological replicate, 12 million keratinocytes were transduced in 15cm plates 
containing 5ug/mL polybrene. Cells were selected in 0.8ug/mL puromycin 24 hours post 
transduction. Once selected, cells were seeded for day 0, 3, and 6 timepoints of 
differentiation. At each timepoint, total RNA was isolated using Qiagen's RNeasy Plus 
kit and then used to generate MPRA sequencing libraries.  
  
MPRA sequencing library construction 
cDNA was synthesized from total RNA using SuperScript IV (ThermoFisher Scientific) 
using a gene specific primer that anneals to the MPRA transcript. The primer also 
contains a 15 nt degenerate sequence that serves as a transcript UMI. cDNA synthesis 
reactions were cleaned up using SPRIselect beads (Beckman) and amplified using 
PrimeSTAR Max DNA Polymerase (Takara) for five PCR cycles to add Illumina 
sequencing adapters. Sequencing indexes were added in a second PCR step, which 
was monitored on a Stratagene MX3005P quantitative PCR machine to avoid library 
over-amplification. Final sequencing libraries were gel purified in a 2% agarose gel. 
Library concentration was determined using a KAPA Library Quantification Kit (Roche). 
Deep sequencing was performed on an Illumina NovaSeq 6000. 
 
MPRA analysis 
The DNA plasmid library was sequenced to capture the baseline fractions of each 
sequence in the library. Since the UMI is on read 1 and the barcode is on read 2 based 
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on the primer locations, we perform paired ended sequencing. The reads are then 
trimmed (only the 20bps after the first 17 bps in read 2 constitute the barcode) and the 
UMI is associated with the read such that downstream analysis can proceed as single-
ended data. These adjusted reads are aligned to the barcode sequences using bwa 
aln/samse with default parameters, and the aligned reads are then reduced by UMI to 
get unique read counts per barcode. These counts are then divided by the total to get 
the fractional value for each barcode in the library. 
 
The MPRA library reads were sequenced and analyzed in the same fashion as the DNA 
plasmid library. The counts were then renormalized using the plasmid fractions by 
multiplying the MPRA counts by the plasmid fractions, converting to fractions, and 
multiplying by the total count across the MPRA library. In other words, the 
renormalization provides the counts per MPRA barcode assuming a uniform distribution 
of barcodes in the library at the same sequencing depth as was actually performed. 
These counts are then run through regularized log transform from DESeq2 to get a 
normalized signal matrix. This normalized matrix is then used in downstream analyses.  
 
To test trajectory patterns, the normalized MPRA signal for all sequences belonging to 
the pattern are collected for days 0, 3 and 6. Then day 3 and 6 read outs are compared 
to day 0 by a Wilcoxon signed rank test (p < 0.05) to determine differential signal 
between timepoints. If the measurements show differential signal for any of the two 
days, the trajectory is considered to have dynamic activity across the time course. Then, 
the mean (across all sequences) pattern of the MPRA signal across the three time 
points is compared to the corresponding average ATAC trajectory to determine a 
correlative match (Spearman rank correlation p < 0.05) in terms of the dynamics. 
 
To estimate interaction scores for motif pairs tested in the MPRAs, we compare the 
distribution of normalized MPRA signal (log scale) of endogenous sequences contained 
both motifs to the expected log-additive effect of each individual motif. When motif a is 
scrambled, we note the MPRA signal = a. When motif b is scrambled, we note the 
MPRA signal = b. When both motif a and b are scrambled, we note the MPRA signal = 
n. Then, the expected log-additive signal for the endogenous sequence containing both 
motifs = (a – n) + (b – n). We then utilize the Wilcoxon signed rank test (p < 0.10) to 
determine whether there is a significant difference between the observed endogenous 
signal and the log-additive expected signal. A significantly positive score indicates a 
super-multiplicative effect of the motif pair. A non-significant score indicates a 
multiplicative (log-additive) effect of the motif pair. A significant negative score indicates 
a sub-multiplicative effect of the motif pair. 
 
Analysis of genetic variation and heritability 
 
We utilized LD-score regression software (https://github.com/bulik/ldsc) to determine 
genome-wide significant variants. From UK Biobank (http://www.nealelab.is/uk-
biobank/), we utilized the GWAs results for the following phenotypes (codes in 
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parentheses): basal cell carcinoma (20001_1061), eczema (200002_1452), psoriasis 
(20002_1453, L12_PSORIASIS, L12_PSORI_NAS, L40), non-melanoma malignant 
neoplasms of skin (C3_OTHER_SKIN, C44, C_OTHER_SKIN), actinic keratosis 
(L12_ACTINKERA), rosacea (L12_ROSACEA, L71), seborrheic keratosis (L82), 
diseases of skin and subcutaneous tissue (XII_SKIN_SUBCUTAN), and 
other/unspecified disorders of skin and subcutaneous tissue (L12_SKINSUCUTISNAS). 
We additionally utilized two other GWAS studies for dermatitis (GWAS catalog: 
GCST003184) and acne (GWAS catalog: GCST006640) as cited in the main text. 
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