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Abstract: Using a high-throughput mitochondrial phenotyping platform to quantify multiple 

mitochondrial features among molecularly-defined immune cell subtypes, we quantify the natural 

variation in citrate synthase, mitochondrial DNA copy number (mtDNAcn), and respiratory chain 

enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T 

lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same 5 

individuals, we show to what extent mitochondrial measures are confounded by both cell type 

distributions and contaminating platelets. Cell subtype-specific measures among women and men 

spanning 4 decades of life indicate potential age- and sex-related differences, including an age-

related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-

of-concept, repeated-measures study in a single individual validates cell type differences and also 10 

reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate 

and mechanistically extend these findings. These mitochondrial phenotyping data build upon 

established immunometabolic differences among leukocyte sub-populations, and provide 

foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial 

health.  15 
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Introduction 

Mitochondria are the most studied organelle across the biomedical sciences (Picard, 

Wallace, & Burelle, 2016). The growing focus on mitochondria is motivated by evidence 

positioning mitochondrial (dys)function as a driver of disease risk and aging (Jang, Blum, Liu, & 

Finkel, 2018; Picard et al., 2016; Wallace, 2015), and as a mediator of brain-body processes that 5 

shape health and disease trajectories across the lifespan (Picard, Trumpff, & Burelle, 2019). 

Addressing emerging biomedical research questions around the role of mitochondria on human 

health requires tractable quantitative biomarkers of mitochondrial content (the amount or mass of 

mitochondria per cell) and function (energy production capacity) that can be deployed in accessible 

human tissues, such as peripheral blood leukocytes. To develop such biomarkers, we need to 10 

establish standard effect sizes of mitochondrial variation – between immune cell subtypes and over 

time – as well as a quantitative handle on potential technical confounds and covariates such as age, 

sex, and known biomarkers. 

Although some cell-specific assays can interrogate immune cells mitochondrial function 

with a reasonable degree of cell specificity (Chacko et al., 2013), more frequent approaches in the 15 

literature use peripheral blood mononuclear cells (PBMCs) (Dixon et al., 2019; Ehinger, Morota, 

Hansson, Paul, & Elmér, 2016; Karabatsiakis et al., 2014; Picard et al., 2018; Tyrrell et al., 2015; 

Weiss et al., 2015). These approaches largely assume that the immunometabolic properties of 

different immune cells have a negligible influence on mitochondrial measurements. However, 

there are marked differences in the metabolic properties of different immune cell subtypes well 20 

known to immunologists. For example, lymphocytes and monocytes significantly differ in their 

respiratory properties and mitochondrial respiratory chain (RC) protein abundance (Chacko et al., 

2013; Kramer, Ravi, Chacko, Johnson, & Darley-Usmar, 2014; Maianski et al., 2004; Pyle et al., 

2010). In various leukocyte subtypes, these divergent immunometabolic properties even contribute 

to determine the acquisition of specialized cellular characteristics (Pearce, Poffenberger, Chang, 25 

& Jones, 2013). The activation, proliferation, and differentiation of monocytes (Nomura et al., 

2016) and T cells (Michalek et al., 2011) into specific effector cells require distinct metabolic 

profiles and cannot proceed without the proper metabolic states. Likewise, naïve and memory T 

lymphocytes differ in their reliance on mitochondrial oxidative phosphorylation (OxPhos) 

involving the RC enzymes (K. Brand, 1985; Jones et al., 2019; Ron-Harel et al., 2019), and harbor 30 

differences in protein composition and mitochondrial content within the cytoplasm (Bektas et al., 
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2019). Thus, the immune system offers a well-defined landscape of metabolic profiles which, if 

properly mapped, can potentially serve as biomarkers. 

The composition of peripheral blood leukocytes in the human circulation is influenced by 

several factors. Immune cell subtypes are normally mobilized from lymphoid organs into 

circulation in a diurnal fashion and with acute stress (Ackermann et al., 2012; Beis et al., 2018; 5 

Dhabhar, Malarkey, Neri, & McEwen, 2012; Dhabhar, Miller, Stein, McEwen, & Spencer, 1994). 

The abundance of circulating immune cell subtypes also vary extensively between individuals, 

partially attributable to both individual-level (e.g., sex and age) and environmental factors (Patin 

et al., 2018). As a result, sampling whole blood or mixed PBMCs from different individuals reflect 

different cell populations that may not be directly comparable.  10 

Furthermore, frequently used Ficoll-isolated PBMCs are naturally contaminated with 

(sticky) platelets (Butler et al., 2007). Platelets contain mitochondria and mtDNA but no nuclear 

genome to use as reference for mtDNA copy number (mtDNAcn) measurements (Hurtado-Roca 

et al., 2016), representing a major source of bias to mitochondrial studies in PBMCs or other 

undefined cell mixtures (Banas, Kost, & Goebel, 2004; Shim, Arshad, Gadawska, Côté, & Hsieh, 15 

2020; Urata, Koga-Wada, Kayamori, & Kang, 2008). But the extent to which platelet 

contamination influences specific mitochondrial content and RC capacity features in PBMCs has 

not been quantitatively defined. 

Another significant gap in knowledge relates to the natural dynamic variation in 

mitochondrial content and function over time. Mitochondria dynamically recalibrate their form 20 

and functions in response to mental stress (Picard & McEwen, 2018) and exercise (Gan, Fu, Kelly, 

& Vega, 2018). Mitochondria also contain receptors that enable their functions to be tuned by 

humoral metabolic and endocrine inputs (Bénard et al., 2012; Du et al., 2009). Thus, cell-specific 

mitochondrial features could vary over time. To develop valid blood-based mitochondrial markers, 

we therefore need to determine whether leukocyte mitochondria are stable trait-like properties of 25 

each person, or state-like properties possibly varying in response to metabolic or endocrine factors.  

To address these questions, we used a high-throughput mitochondrial phenotyping 

platform on immunologically-defined immune cell subtypes, in parallel with PBMCs, to quantify 

cell subtype-specific mitochondrial phenotypes in a small, diverse cohort of healthy adults. First, 
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we establish the extent to which cell type composition and platelet contamination influence 

PBMC-based mitochondrial measures. We then systematically map the mitochondrial properties 

of different immune cell subtypes and validate the existence of stable mitochondrial phenotypes 

in an intensive repeated-measures design within the same individual, which also begins to reveal 

a surprising degree of intra-individual variation over time. Collectively, these data confirm and 5 

quantify the biological limitations of PBMCs to profile human mitochondria, introduce the concept 

of multivariate mitotypes, and define unique cell-specific mitochondrial features in circulating 

human leukocytes in relation to age, sex, and biomarkers that can guide future studies. Together, 

these data represent a resource to design cell-specific immune mitochondrial phenotyping 

strategies. 10 

 

Results 

Cell subtype distributions by age and sex 

We performed mitochondrial profiling on molecularly-defined subtypes of immune cell 

populations in parallel with PBMCs in twenty-one participants (11 women, 10 men) distributed 15 

across 4 decades of life (ages 20-59, 4-8 participants per decade across both sexes). From each 

participant, 100ml of blood was collected; total leukocytes were then labeled with two cell surface 

marker cocktails, counted, and isolated by fluorescence-activated cell sorting (FACS, see Methods 

for details), frozen, and subsequently processed as a single batch on our mitochondrial phenotyping 

platform adapted from (Picard et al., 2018) (Figure 1a). In parallel, a complete blood count (CBC) 20 

for the major leukocyte populations in whole blood, standard blood chemistry, and a metabolic 

and endocrine panel were assessed (Figure 1b). 

We first quantified the abundance of specific cell subtypes based on cell surface marker 

combinations (Figure 1c, Figure 1-figure supplements 1-2, and Supplementary file 1). Men had 

66% fewer CD4+ naïve T cells than women (p<0.05) and tended to have on average 35-44% more 25 

NK cells and monocytes (Figure 1d). These differences were characterized by moderate to large 

standardized effect sizes (Hedge’s g=0.71-0.93), consistent with recent findings (Márquez et al., 

2020). Between individuals of the same sex, the circulating proportions of various cell subtypes 
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(e.g., B cells range: <0.01-15.3%, see Supplementary file 2) varied by up to an order of magnitude 

(i.e., 10-fold) (Figure 1e).  

In relation to age, as expected (Patin et al., 2018), CD8+ naïve T cell abundance was lower 

in older individuals (p<0.01). Compared to young adults in their 20’s, middle-aged individuals in 

their 50’s had on average ~63% fewer CD8+ naïve T cells (Figure 1f). In contrast, effector memory 5 

CD4+ (CD4+ EM) and central memory CD8+ (CD8+ CM) cell abundance tended to increase with 

age (positive correlation, r=0.31 for both), an overall picture consistent with immunological aging 

(Márquez et al., 2020; Nikolich-Žugich, 2014; Patin et al., 2018). 

CBC-derived cell proportions also showed that men had on average 28% more monocytes 

than women (Figure 1-figure supplement 3), consistent with our FACS results. Conversely, women 10 

had on average 20% more platelets than men. Platelet abundance also tended to decrease with age, 

a point discussed later.  
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Figure 1 – Immune cell subtype distribution in adult women and men. (a) Overview of 
participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes 
were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 1077. (right) The five 5 
mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. 
Mitochondrial phenotyping platform schematic adapted from Figure 1A (Picard et al., 2018). (b) 
Stacked histogram showing the leukocytes distribution derived from the complete blood count 
(CBC) of major cell types. (c) Diagram illustrating the proportion of circulating immune cell 
subtypes (% of all detected cells) quantified by flow cytometry from total peripheral blood 10 
leukocytes. Cell surface markers and subtype definitions are detailed in Supplementary file 1. (d) 
Effect sizes for cell subtype distribution differences between women (n=11) and men (n=10). P-
values from non-parametric Mann-Whitney T test. Error bars reflect the 95% confidence interval 
(C.I.) on the effect size, and the fold change comparing raw counts between women and men is 
shown on the right. (e) Example distributions of cell type proportions in women and men 15 
illustrating the range of CD4+ and CD8+ naïve cells, B cells, and monocytes, highlighting the 
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natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s 
r correlation between age and cell types proportion. n=21, p<0.05*, p<0.01**. 

Circulating cell composition influence PBMCs mitochondrial phenotypes   

We next examined how much the abundance of various circulating immune cell subtypes 

correlated with individual mitochondrial metrics in PBMCs. Our analysis focused on two key 5 

aspects of mitochondrial biology: i) mitochondrial content, indexed by citrate synthase (CS) 

activity, a Kreb’s cycle enzyme used as a marker of mitochondrial volume density (Larsen et al., 

2012), and mtDNAcn, reflecting the number of mtDNA copies per cell; and ii) RC function 

measured by complex I (CI), complex II (CII) and complex IV (CIV) enzymatic activities, which 

reflect the capacity for electron transport and respiratory capacity and serve here as a proxy for 10 

maximal RC capacity. Furthermore, by adding the three mean-centered features of RC function 

together as a numerator (CI+CII+CIV), and dividing this by the combination of content features 

(CS+mtDNAcn), we obtained an index reflecting RC capacity on a per-mitochondrion basis, 

known as the mitochondrial health index (MHI) adapted from previous work (Picard et al., 2018). 

As expected, the abundance of multiple circulating cells was correlated with PBMCs 15 

mitochondrial features (Figure 2). Notably, the correlation between circulating B cell abundance 

and PBMCs CS activity was r=0.78 (p<0.0001), meaning that the proportion of shared variance 

(r2) between both variables is 61% (i.e., B cell abundance explains 61% of the variance in PBMCs 

CS). Similarly, the correlations between B cell abundance and PBMCs mtDNAcn, CI, CII 

activities were 0.52-0.67 (27-45% of shared variance, ps<0.05-01). The circulating proportions of 20 

other cell types accounted for more modest portions (r2<14%) of the variance in PBMCs, although 

the higher abundance of memory cells tended to be negatively associated with PBMC RC 

enzymatic activities.  

Based on CBC-derived cell proportions, the abundance of eosinophils and neutrophils was 

positively correlated with most PBMC mitochondrial content and activity features (Figure 2-figure 25 

supplement 1). Because PBMCs do not contain granulocytes, these correlations may reflect the 

independent effect of a humoral factor on cell mobilization and mitochondrial function. Together, 

these data confirmed that mitochondrial features assessed in PBMCs in part reflect the proportions 
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of some but not all circulating cell subtypes, quantitatively documenting how cell type distribution 

may confound the measurements of mitochondrial function in PBMCs.  
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Figure 2 – Influence of cell subtypes on mitochondrial features in total PBMCs. (a) Pairwise 
correlations (Spearman’s r) between cell subtype proportions obtained from cell sorting with 
mitochondrial features measured in PBMCs for the cohort (n=20, 1 participant with missing 
PBMC-measured data). Aggregate correlations are shown as a heatmap (top) and (b) individual 
scatterplots (bottom). 5 

 

Platelets influence PBMCs mitochondrial phenotypes 

Given that platelets easily form platelet-leukocyte aggregates (Butler et al., 2007) (Figure 

3a), to partly resolve the origin of the discrepancies between isolated cell subtypes and PBMCs 

noted above, we directly quantified the contribution of platelets to total mitochondrial content and 10 

activity features in PBMCs. We note that the PBMCs in our experiments were carefully prepared 

with two passive platelet depletion steps (low speed centrifugations, see Appendix 1 for details), 

which should have already produced “clean” PBMCs.  

We first asked if the abundance of platelets from the CBC data in the cohort varies by age. 

Consistent with two large epidemiological studies of >40,000 individuals (Biino et al., 2013; J. 15 

Zhang, Li, & He, 2015), we found that platelet count decreased by ~6% for each decade of life 

(Figure 3b-c). This reflects a decline of 24% between the ages of 20 and 60, although the effect 

sizes vary by cohort and our estimate is likely overestimated due to the small size of our cohort. 

As expected, total platelet count tended to be consistently positively correlated with mtDNAcn, CS 

and RC activities in PBMCs (r=0.031-0.38) (Figure 3d). Therefore, the age-related loss of platelets 20 

(and of the mtDNA contained within them) could account for the previously reported age-related 

decline in mtDNAcn from studies using either whole blood (Mengel-From et al., 2014; Verhoeven 

et al., 2018) (which includes all platelets) or PBMCs (R. Zhang, Wang, Ye, Picard, & Gu, 2017) 

(which include fewer contaminating platelets).  

We directly tested this hypothesis by immunodepleting platelets from “clean” PBMCs and 25 

comparing three resulting fractions: total PBMCs, actively platelet-depleted PBMCs, and platelet-

enriched eluate. As expected, platelet depletion decreased mtDNAcn, CS, and RC activities, 

indicating that contaminating platelets exaggerated specific mitochondrial features by 9-22%, 

except for complex IV (Figure 3f-g). Moreover, the platelet-enriched eluate showed 23-100% 

higher mitochondrial activities relative to total PBMCs, providing direct evidence that the active 30 
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platelet depletion method was effective and that platelets inflate estimates of mitochondrial 

abundance and RC activity in standard PBMCs prepared with two passive platelet-depletion steps. 

Interestingly, the composite MHI was minimally affected by the platelet depletion procedure, 

suggesting that this multivariate index of respiratory chain capacity on a per-mitochondrion basis 

may be more robust to platelet contamination than its individual features 5 

Figure 3 – Influence of platelet contamination on mitochondrial features in total PBMCs. (a) 
Schematic of the natural state of Ficoll-isolated PBMCs associated with contaminating platelets. 
(b) Association of age and circulating platelet abundance (i.e., count) in our cohort (Spearman’s 
r). (c) Change in platelet abundance as a function of age. The magnitude of the association (slope 10 
of the regression: 109 platelets/L per year) from two large epidemiological studies and our cohort. 
The inset shows the actual regressions (n=21 to 22,351). (d) Effect sizes of the association between 
platelet count and PBMC mitochondrial features in our cohort (n=20). (e) Overview of the 
experimental PBMC platelet depletion study, yielding three different samples subjected to 
mitochondrial phenotyping. Mitochondrial phenotyping platform schematic adapted from Figure 15 
1A (Picard et al., 2018). (f) Fold change in mitochondrial parameters between i) platelet-depleted 
PBMCs, and ii) enriched platelets (with contaminating PBMCs), relative to iii) total PBMCs. P-
values from One-Way non-parametric ANOVA Friedman test, post-hoc Dunn’s multiple 
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comparisons relative to total PBMCs. (g) Percent change of platelet-depleted PBMCs 
mitochondrial features from total PBMCs. n=9, p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

Individual cell subtypes are biologically distinct from PBMCs contaminated with platelets 

Mitochondrial phenotyping was performed in FACS-purified immune cells, in parallel with 

PBMCs. To obtain sufficient numbers of cells for mitochondrial phenotyping, we selected the 6 5 

most abundant cell subtypes for each individual and isolated 5x106 cells for each sample. Because 

memory subtypes were relatively rare, central and effector memory (CM and EM) subtypes were 

pooled for CD4+ and/or CD8+ (CM-EM). This generated a total of 340 biological samples, 

including 136 biological replicates, yielding 204 individual participant/cell subtype combinations 

used in our analyses. 10 

Among cell subtypes, CS activity was highest in monocytes and B cells, and lowest in 

CD4+ naïve T cells, with other cell types exhibiting intermediate levels (Figure 4a). Regarding 

mitochondrial genome content, B cells had the highest mtDNAcn with an average 451 copies per 

cell compared to neutrophils and NK cells, which contained only an average of 128 (g=5.94, 

p<0.0001) and 205 copies (g=3.84, p<0.0001) per cell, respectively (Figure 4b). Naïve and 15 

memory CD4+ and CD8+ T lymphocytes had intermediate mtDNAcn levels of ~300 copies per 

cell, except for CD8+ naïve cells (average of 427 copies per cell). Between cell types, CS activity 

and mtDNAcn differed by up to 3.52-fold.  

In relation to RC function, monocytes had the highest complex I, II, and IV activities. 

Consistent with their low mtDNAcn, neutrophils also had the lowest activities across complexes, 20 

whereas naïve and memory subtypes of T and B lymphocytes presented intermediate RC enzyme 

activities (Figure 4c-e). PBMCs had up to 2.9-fold higher levels of CS, CI, and CII activity per 

cell than any of the individual cell subtypes measured, again consistent with platelet 

contamination. 

The correlations between different mitochondrial features indicate that CS and mtDNAcn 25 

were only weakly correlated with each other, and in some cases were negatively correlated Figure 

4f). This finding may be explained by the fact that although both CS and mtDNAcn are positively 

related to mitochondrial content, CS may be superior in some cases (Larsen et al., 2012), 

inadequate in specific tissues (McLaughlin et al., 2020), and that mtDNAcn can change 
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independently of mitochondrial content and biogenesis (Picard, 2021). For RC complexes CI, CII, 

and CIV, which physically interact and whose function is synergistic within the inner 

mitochondrial membrane, correlations tended to be positive, as expected (Figure 4f). However, 

relatively weak and absent inter-correlations between mitochondrial features in some cell types 

reveal that each metric (i.e., content features and enzymatic activities) provides relatively 5 

independent information about the immune cell mitochondrial phenotype.  

Figure 4 – Cell subtype differences in mitochondrial content and RC function. (a-e) Violin 
plots illustrating immune cell type differences in mitochondrial features across cell subtypes and 
total PBMCs. For each individual, only the 6 most abundant cell types were analyzed (n=21 10 
individuals, 12-18 per cell subtype). Dashed lines are median (thick) and 25th and 75th quartiles 
(thin). P-values from One-Way non-parametric ANOVA Kruskal-Wallis test, post-hoc Dunn’s 
multiple comparisons relative to PBMCs. (f) Spearman’s r inter-correlations of mitochondrial 
features across subtypes. Insets show the scatterplots for selected correlations. p<0.05*, p<0.01**, 
p<0.001***, p<0.0001****. 15 
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We extended the analyses of univariate metrics of mitochondrial content and function by 

exploring the multivariate MHI, which significantly differed between cell subtypes (p<0.0001) 

(Figure 4-figure supplement 1). These results are discussed in Appendix 2. 

Mitochondrial features exhibit differential co-regulation across immune cell subtypes  

Next, we asked to what extent mitochondrial markers correlate across cell subtypes in the 5 

same person (co-regulation). For example, we determined whether having high mtDNAcn or low 

MHI could constitute coherent properties of an individual that are expressed ubiquitously across 

cell types (e.g., an individual with the highest mtDNAcn in B cells also having the highest 

mtDNAcn in all cell types), or if these properties are specific to each cell subtype. 

CS activity and mtDNAcn were moderately co-regulated across cell subtypes (average 10 

correlation rz’=0.63 and 0.53, respectively) (Figure 4-figure supplement 1c-d). In comparison, RC 

enzymes showed markedly lower correlations between cell types and some cell types were not 

correlated with other cell types, revealing a substantially lower degree of co-regulation among RC 

components than in mitochondrial content features. MHI showed moderate and consistent positive 

co-regulation across cell types (average rz’=0.37). Notably, PBMCs exhibited moderate to no 15 

correlation with other cell subtypes, further indicating their departure from purified subtypes 

(Figure 4-figure supplement 2). Together, these subtype-resolution results provide a strong 

rationale for performing cell-type specific studies when examining the influence of external 

exposures and person-level factors on immune cells’ mitochondrial bioenergetics, including the 

influence of sex and age. 20 

Mitochondrial content and RC function differ between women and men 

To explore the added value of cell subtype specific studies when applied to real-world 

questions, we systematically compared CS activity, mtDNAcn, RC activity, and MHI between 

women and men (Figure 5a-f). Given the exploratory nature of these analyses with a small sample 

size, only two results reached statistical significance (analyses non-adjusted for multiple testing). 25 

Compared to men, women had 29% higher CS activity in CD8+ CM-EM T cells (g=1.52, p<0.05, 

Figure 5a) and 26% higher CI activity in monocytes (g=1.35, p<0.05, Figure 5c). Interestingly, 

across all cell subtypes examined, women showed a trend (p=0.0047, Chi-square) for higher CS 

activity (range: 4-29%, g=0.20-1.52, Figure 5a) and higher CII activity than men (range:1-10%, 

g=0.03-0.56, Figure 5d).  30 
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Other notable trends requiring validation in larger cohorts suggested that compared to 

women, men exhibited higher mtDNAcn in monocytes and neutrophils (range: 5-12%, g=0.37-

0.73, Figure 5b), higher CI activity in neutrophils and NK cells (range: 9-13%, g=0.26-0.64, Figure 

5c), and higher CIV activity specifically in B cells (20%, g=0.53, Figure 5e). Cells exhibiting the 

largest degree of sexual dimorphism on the integrated MHI were neutrophils (17% higher in 5 

women, g=0.52) and B cells (12% higher in men, g=0.73) (Figure 5f). In contrast, none of these 

differences were detectable in PBMCs, further illustrating the limitation of mixed cells to examine 

sex differences in mitochondrial function.  

Figure 5 – Associations of mitochondrial features with sex and age across cell subtypes. (a-f) 10 
Effect size of sex differences in mitochondrial activity across cell subtypes quantified by Hedges’ 
g. The fold change computed from raw values is shown on the right. P-values from Mann-Whitney 
test, not adjusted for multiple comparisons. Error bars reflect the 95% C.I. on the effect size. (g-l) 
Association of age and mitochondrial features across cell subtypes. P-values from Spearman’s r 
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correlations, not adjusted for multiple comparisons. n=21 (11 women, 10 men), p<0.05*, 
p<0.01**, p<0.001***.  

Age associations with mitochondrial content and RC function 

We then explored the association between mitochondrial features and age. With increasing 

age, CS activity was relatively unaffected except in neutrophils, where it significantly decreased 5 

by ~7% per decade (r=-0.63, p<0.05) (Figure 5g). In comparison, the correlation between age and 

mtDNAcn was positive among 7 out of 8 cell subtypes, with the exception being CD8+ naïve T 

cells. Interestingly, CD8+ naïve T cells is the cell type that exhibited the strongest age-related 

decline in abundance. CD4+ naïve T cells and monocytes showed the largest age-related change in 

mtDNAcn, marked by a significant ~10% increase in the number of mitochondrial genome copies 10 

per cell per decade of life (r=0.54, p<0.05 for both, Figure 5h).  

For RC function, an equal number of cell subtypes with either positive or negative 

correlations with age were found, except for CII (Figure 5i-l). Due to our small sample size, only 

CD4+ and CD8+ CM-EM T cells CII activity significantly increased with age (r=0.57 and 0.85, 

p<0.01 and 0.001 respectively, Figure 5j). However, CII activity was positively correlated with 15 

age across all cell types except for monocytes and NK cells. In contrast, CI and CIV activities were 

only weakly associated with age, highlighting again differential regulation and partial “biological 

independence" of different RC components. Of all cell types, CD8+ CM-EM T cells showed the 

most consistent positive associations for all RC activities and age, most notably for CII where the 

enzymatic activity per cell increased a striking ~21% per decade (r=0.85, p<0.001).  20 

Overall, these exploratory data suggest that age-related changes in CS activity, mtDNAcn, 

and RC function are largely cell-type specific. This conclusion is further reinforced by analyses of 

PBMCs where mitochondrial features consistently did not significantly correlate with age 

(r=0.008-0.15, absolute values) (Figure 5g-l). Larger studies adequately powered to examine sex- 

and age-related associations are required to confirm and extend these results.  25 

 Cell subtype distributions exhibit natural week-to-week variation 

 Samples collected weekly over 9 weeks from one repeat participant were used to i) examine 

the stability of cell-type specific mitochondrial phenotypes described above, and ii) quantify 

whether and how much mitochondrial content/function change over time (Figure 6a). First 
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focusing on immune cell distribution, the cell subtype with the least week-to-week variation in 

abundance was CD8+ EM (root mean square of successive differences [rMSSD]=0.22, coefficient 

of variation [C.V.]=19.5%), which varied between 6.3% (week 2, highest) and 3.3% of all 

circulating cells (week 9, lowest) (Figure 6-figure supplement 1). Other subtypes such as CD4+ 

TEMRA (min=0.02% to max=0.62%) and neutrophils (min=3.9% to max=31.8%) varied week-5 

to-week by an order of magnitude (i.e., 10-fold), similar to the between-person variation among 

the cohort (see Figure 1e and Supplementary file 2). The circulating abundance of B cells varied 

by up to 1.1-fold (min=0.86% to max=1.8%). Together, these time-course results illustrate the 

dynamic remodeling of circulating leukocyte populations (and therefore PBMC composition) 

within a single person. 10 

The correlations between immune cell type composition at each week and PBMC 

mitochondrial features are shown in Figure 6-figure supplement 2. On weeks when the participant 

had higher circulating levels of EM and TEMRA CD4+ and CD8+ lymphocytes, most 

mitochondrial features were considerably lower in PBMCs. The associations between CBC-

derived cell proportions and PBMCs mitochondrial features tended to be weaker and in opposite 15 

direction at the within-person level compared to the cohort (Figure 6-figure supplement 2c-d), but 

again document the influence of cell type composition on PBMC mitochondrial phenotypes.  

Mitochondrial content, mtDNAcn and RC activity exhibit natural week-to-week variation 

The 6 most abundant cell subtypes analyzed for this individual included: neutrophils, NK 

cells, monocytes, naïve and CM-EM subtypes of CD4+ T cells, and naïve CD8+ T cells. The robust 20 

cell type differences in mitochondrial content and RC activities reported above in our cohort were 

conserved in the repeat participant. This includes high mtDNAcn in CD8+ naïve T cells (average 

across 9 weeks=400 copies/cell, 427 in the cohort) and lowest mtDNAcn in neutrophils 

(average=123 copies/cell, 128 in the cohort).  

All mitochondrial metrics exhibited substantial weekly variation across the 9 time points. 25 

Different cell types showed week-to-week variation in CS, mtDNAcn, and RC activity ranging 

from 4.1 to 64.4% (Figure 6b-f). In most cases, the observed variation was significantly greater 

than the established technical variation in our assays (see Supplementary file 3), providing 

confidence that these changes in mitochondrial content and function over time reflect real 

biological changes rather than technical variability. 30 
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Figure 6 – Within-person variability of mitochondrial features across cell subtypes. (a) 
Overview of the repeat participant design, including blood collection, processing, and analysis. 
All samples were collected, stored, and processed as a single batch with samples from the cohort. 5 
Mitochondrial phenotyping platform schematic adapted from Figure 1A (Picard et al., 2018). (b-
g) Natural weekly variation for each mitochondrial feature across cell subtypes in the same person 
across 9 weeks represented as scaled centered data where 1 unit change represents a one-standard 
deviation (S.D.) difference. Root mean square of the successive differences (rMSSDs) quantify 
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the magnitude of variability between successive weeks. The coefficients of variation (C.V.) 
quantify the magnitude of variability across all time points. Monocytes and CD4+ CM-EM were 
not collected on weeks 1 and 2. (h) Side-by-side comparison of CS activity between the cohort 
(n=12-18 per cell subtype) and the repeat participant (n=7-9 time points) across cell subtypes. The 
dynamic range of two cell subtypes are highlighted: monocytes and CD4+ naïve T cells. (i) Within-5 
person correlation matrices between cell subtypes for each mitochondrial feature over 9 weeks, 
illustrating the magnitude of correlation (co-regulation) between cell subtypes. (j) Average inter-
correlation across all cell subtypes by mitochondrial feature (calculated using Fisher z-
transformation) indicating the degree of coherence within-person. (k) Comparison of co-regulation 
patterns among mitochondrial features between the cohort and the repeat participant. Each 10 
datapoint represents a cell subtype pair, indicating moderate agreement (datapoints in top right 
quadrant). 

 We then asked how much the same metrics naturally vary within a person relative to 

differences observed between people in the heterogeneous cohort. Remarkably, the 9-week range 

of natural variation within the same person was similar to the between-person differences among 15 

the cohort. Figure 6h and Figure 6-figure supplement 3 provide a side-by-side comparison of the 

cohort and repeat participant mitochondrial features (CS, mtDNAcn, RC activities, and MHI) on 

the same scale. A similar degree of variation (9.8-61.9%) was observed in PBMCs (Figure 6b-g), 

although again this variation may be driven in large part by variation in cell composition.  

And as in the cohort, CS and mtDNAcn were also the most correlated across cell types 20 

(average rz’=0.55-0.70) (Figure 6i-k, Figure 6-figure supplement 2e), indicating partial co-

regulation of mitochondrial content features across cell subtypes. 

Mitotypes differ between immune cell subtypes 

 To examine cell type differences more fully, and in line with the concept of mitochondrial 

functional specialization, we performed exploratory analyses of cell subtype-specific 25 

mitochondrial phenotypes, or mitotypes, by mathematically combining multiple mitochondrial 

features in simple graphical representations (listed and defined in Figure 7-figure supplement 1). 

Each mitotype can be visualized as a scatterplot with two variables of interest as the x and y axes. 

Cell types that align diagonal from the origin of the plot indicate the same mitotype profile (Figure 

7a).  30 

The first mitotype examined mtDNA copies per cell (mtDNAcn) relative to mitochondrial 

content per cell (CS activity), creating a mitotype (mtDNAcn/CS) reflecting mtDNA density per 

mitochondrion (Figure 7b). Alone, the mtDNA density per mitochondrion mitotype provided 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2020.10.16.342923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

remarkable separation of cell subtypes. Neutrophils and NK cells were low in both mtDNAcn and 

CS activity, B cells were high on both metrics, monocytes had the lowest mtDNA density, whereas 

CD8+ naïve T cells exhibited the highest mtDNA density of all cell subtypes tested. Figure 7c-e 

illustrate other mitotypes including i) CII activity per unit of mitochondrial genome 

(CII/mtDNAcn), as well as more complex combinations of variables such as ii) CI activity per 5 

mtDNA (CI/mtDNAcn ratio on y axis) in relation to mtDNA density (mtDNAcn/CS activity on x 

axis), and iii) CI activity per mitochondrial content (CI/CS, y axis) in relation to mtDNA density 

(mtDNAcn/CS, x axis). As Figure 7b-e shows, PBMCs generally exhibit a similar mitotype as 

innate immune cell subtypes (monocytes, NK cells, and neutrophils on the same diagonal), and 

are relatively distinct from lymphocyte subpopulations.  10 

This mitotype-based analysis revealed two main points. First, cells of the innate and 

adaptive immune subdivisions contain mitochondria that differ not only quantitatively in their 

individual metrics of mitochondrial content and RC activity, but also qualitatively, as illustrated 

by the distinct clustering of neutrophils, monocytes, and NK cells (innate) within similar mitotype 

spaces, and the distinct clustering of all lymphocyte subtypes together in a different space. 15 

Compared to cells of the innate immune compartment, lymphocytes (adaptive) had higher 

mtDNAcn and lower respiratory chain activity. Second, compared to naïve subsets of CD4+ and 

CD8+ T cells, which themselves have relatively distinct mitotypes (e.g., CII/mtDNAcn, Figure 7c), 

both memory CD4+ and CD8+ subtypes converged to similar mitotype spaces. Functionally, this 

naïve-to-memory transition is well known to involve a metabolic shift including changes in spare 20 

respiratory capacity, mitochondrial content, and glucose and fatty acid uptake (Nicoli et al., 2018; 

van der Windt et al., 2012). The mitotype analysis showed that compared to naïve cell subtypes, 

memory subtypes exhibit 26-29% lower mtDNA density per mitochondrion, but an 8-23% increase 

in RC activity per mitochondrion in CD4+ T cells, although not in CD8+ T cells (Figure 7f).  
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Figure 7 – Mitotypes in purified leukocyte populations from the cohort and repeated-
measures. (a) Schematic illustrating the multivariate approach to generate and visualize mitotypes 
by putting into relation two or more mitochondrial features. Note the similarity and added insight 
relative to single metrics, similar to the integration of height and weight into the body mass index 5 
(BMI). (b-e) Selected mitotypes plotted for each cell subtype among the cohort. Data are means ± 
SEM (n=12-18). Overlaid shaded areas denote general leukocyte categories, for visualization 
purposes only. (f) Summary of mitotype differences between (i) innate vs adaptive subdivisions, 
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and (ii) naïve vs memory T cells. (g-i) Validation of subtype-specific mitotype differences in the 
repeat participant, illustrating the conserved nature of mitotypes across individuals. Only the six 
cell subtypes analyzed in the repeat participant are plotted. Data are means ± SEM (n=7-9 for the 
repeat participant, 12-18 for the cohort). (j) Comparison of the magnitude of the difference 
(Hedges’ g) in mitotypes between cell types, and between individuals. Dark blue bars indicate the 5 
magnitude of the dominant difference in mitotypes between cell subtypes. Light blue bars indicate 
the magnitude of the difference between the cohort and the repeat participant within a cell type. 
Error bars are the 95% C.I. of the effect size. 

Stability of mitotypes 

 The 6 cell subtypes analyzed in the repeat participant and the matching cell types for the 10 

cohort showed a high degree of agreement when plotted on the same mitotype plots. Again, cell 

types belonging to the innate and adaptive immune subdivisions clustered together, and naïve and 

memory subtype differences were similarly validated at the within-person level (Figure 7g-i), 

demonstrating the conserved nature of immune cell mitotypes in our sample. On average, the 

magnitude of variation between cell subtypes (e.g., monocytes vs neutrophils) was 12.5-fold larger 15 

than the differences between the cohort and the repeat participant, indicating that immune cell 

subtypes have conserved mitotypes, exhibiting relative stability across individuals. 

Evidence for a sex- and age-related bias in mitotypes 

We next sought to systematically examine if mitotypes differ between women and men. 

Mitotypes were organized into five categories of indices based upon their features, yielding a total 20 

of 16 mathematically-distinct mitotypes (see Figure 7-figure supplement 1). For each mitotype, 

we quantified the magnitude of the difference between women and men by the effect size (g), 

ranked all mitotype x cell subtype combinations (16 mitotypes x 9 cell subtypes), and analyzed the 

distribution of these indices by sex. The majority of mitotypes reflecting mitochondrial RC 

activities per CS activity were higher in men (p<0.0001, Chi-square), while RC activity per 25 

mtDNA density (p<0.001) and RC activity per genome in relation to mtDNA density mitotypes 

(p<0.01) were predominantly higher in women (Figure 8a). The magnitude of sex differences 

ranged from 17% higher in men (CI/CS in CD4+ CM-EM T cells, g=1.14) to 38% higher in women 

(CII/mtDNA density in neutrophils, g=1.37) (Figure 8b). The direction of sex differences for all 

mitotypes (e.g., higher in women or in men) with effect sizes is illustrated in Figure 8c. The 30 

average effect size across all mitotypes was 0.31 (small) in CD4+ naïve T cells, compared to 
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monocytes where the average effect size was 0.71 (medium). Compared to purified cell subtypes, 

the magnitude of sex differences in PBMCs was blunted. 

Using the same approach, we then systematically quantified the relationship between 

mitotypes and age. Mitotypes reflecting RC activity per CS activity were predominantly positively 

correlated with age (p<0.05), while RC activities per genome in relation to mtDNA density were 5 

generally negatively correlated with age (p<0.05) (Figure 8d). This finding is consistent with the 

overall age-related increase in mtDNAcn across cell subtypes, and could indicate a general 

decrease in the RC output per unit of mitochondrial genome with aging in immune cells. The 

strength of these correlations ranged from r=-0.67 to 0.75 (Figure 8e). The correlations of 

individual mitotypes with age for each cell subtype are shown in Figure 8f. Again, PBMCs showed 10 

among the weakest associations with either sex or age (Figure 8c and f). Thus, even if specific cell 

subtypes reveal consistent sex- and age-related differences, PBMCs offer modest to no sensitivity 

to detect these associations. 
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Figure 8 – Mitotype distribution and strength of difference across sex and age. (a) Ranking 
of mitotype indices by the effect size (Hedges’ g) between women and men. A total of 16 mitotype 
indices were computed, subdivided into 5 main color-coded categories (see Figure 7-figure 
supplement 1). Pie charts illustrate the proportion mitotypes belonging to each category that are 5 
either higher in women (left) or in men (right). P-values for enrichment of sexually dimorphic 
mitotypes are derived from Chi-square test. (b) Violin plots illustrating the two mitotypes with the 
largest sex differences, both showing large effect sizes (g). (c) Heatmap of sex differences for 
primary measures of mitochondrial function (top) and multivariate mitotypes (bottom) across cell 
subtypes. The histogram at the bottom shows the average effect size across all mitotypes 10 
(calculated from absolute g values). (d) Ranking of mitotype indices by the strength and direction 
of their association with age, with enrichment analysis analyzed as for sex (Chi-square test). (e) 
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Spearman’s r correlations of mitotypes/cell type combinations with the strongest positive and 
negative associations with age. (f) Heatmap of the age correlations (Spearman’s r) for primary 
features and composite mitotypes across cell subtypes. The histogram (bottom) shows the average 
effect size (r) for each cell subtype (calculated using absolute values and Fisher z-transformation). 
p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 5 

Associations of blood biomarkers with subtype-specific mitochondrial features 

 Finally, to explore the source of inter-individual differences and within-person dynamics 

over time described above, we asked to what extent subtype-specific mitochondrial features were 

correlated with standard blood biomarkers, including a panel of sex hormones, inflammatory 

markers, metabolic markers, and standard clinical blood biochemistry (Figure 9a).  10 

At the cohort level, sex- and age-adjusted partial correlations between blood biomarkers 

and cell subtype mitochondrial phenotypes were relatively weak (average absolute values rz’=0.23, 

Figure 9b), indicating that circulating neuroendocrine, metabolic and inflammatory factors are 

unlikely to explain a large fraction of the variance in inter-individual differences in mitochondrial 

biology. At the within-person level, week-to-week variation is independent of constitutional and 15 

genetic influences; additionally, behavior (e.g., levels of physical activity, sleep patterns, etc.) is 

more stable relative to between-person differences among a cohort of heterogenous individuals. 

Accordingly, compared to the cohort, the strength of biomarker-mitochondria associations was on 

average rz’=0.39, or 70% larger in the repeat participant than the cohort (p<0.0001, comparing 

absolute correlation values) (Figure 9c). In particular, lipid levels including triglycerides, total 20 

cholesterol, and low- and high-density lipoproteins (LDL, HDL) were consistently positively 

correlated with markers of mitochondrial content (CS activity and mtDNAcn), with the largest 

effect sizes observed among innate immune cells: neutrophils, NK cells, and monocytes (Figure 

9c, red area on the heatmap). In these cells, lipid levels accounted on average for 53% of the 

variance (r2) in CS activity and 47% in mtDNAcn, possibly reflecting an effect of lipid signaling 25 

on mitochondrial biogenesis (Iershov et al., 2019; Lindquist et al., 2018; Picard et al., 2012; Turner 

et al., 2007). We also note major divergences in the correlation patterns between the cohort and 

repeat participant (Figure 9d-e). Although limited by the small number of observations, these 

results highlight the value of repeated-measures study designs to examine the influence of 

metabolic and other humoral factors on human immune mitochondrial biology which may be 30 

blunted at the group-level (Fisher, Medaglia, & Jeronimus, 2018).  
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Figure 9 – Association of blood biomarkers with mitochondrial parameters across cell 
subtypes and primary mitochondrial features. (a) Overview of blood biochemistry, hormonal, 
and metabolic biomarkers collected for each participant. (b) Sex- and age-adjusted correlations 
between blood biomarkers and mitochondrial features across cell subtypes for the cohort (n=10-5 
20 per mito:biomarker combinations) shown as a heatmap. (c) Same as (b) using weekly measures 
of both mitochondrial features and biomarkers in the repeat participant. (d) Scatterplots of the 
indicated correlations between Neutrophils CS activity and LDL cholesterol (left), and CD4+ CM-
EM mtDNAcn and potassium (K+) (right) for the cohort (top row) and the repeat participant 
(bottom row). (e) Frequency distributions of the aggregated effect sizes between biomarkers and 10 
mitochondrial features across cell subtypes for the cohort (total correlation pairs=1,080) and the 
repeat participant (total correlation pairs=882). 
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Discussion 

Developing approaches to quantify bioenergetic differences among various tissues and cell 

types is critical to define the role of mitochondria in human health and disease. Here we isolated 

and phenotyped multiple molecularly-defined immune cell subtypes and mixed PBMCs in >200 5 

person-cell type combinations among a diverse cohort of women and men, and in repeated weekly 

measures in the same participant. Our biochemical and molecular results confirm and extend 

previous knowledge of bioenergetic differences across human immune cell types established using 

extracellular flux analysis, protein and mtDNA quantification (Chacko et al., 2013; Lee et al., 

2021; Maianski et al., 2004; Pyle et al., 2010). We also report preliminary evidence that 10 

mitochondrial phenotypes vary with age and sex, which PBMCs lack the sensitivity to detect. 

Importantly, our results confirm and quantify the extent to which PBMCs mitochondrial 

measurements are confounded by i) cell type composition, ii) platelet contamination, iii) 

mitochondrial properties across different cell subtypes, and iv) by the dynamic remodeling of cell 

type composition and bioenergetics over time. In addition, large week-to-week, within-person 15 

variation in both cell subtype proportions and mitochondrial behavior points to heretofore 

underappreciated dynamic regulation of mitochondrial content and function over time in humans. 

Overall, our results provide standardized effect sizes of mitochondrial variation in relation to 

multiple key covariates, highlights the value of repeated-measures designs to carefully examine 

the mechanisms regulating mitochondrial health in humans, and call for the replication and 20 

extension of these findings in larger cohorts.  

This study emphasizes the value of using purified cell populations over PBMCs for 

mitochondrial analyses. In many cases, associations with moderate to large effect sizes in specific 

cell subtypes were either not observed or blunted in PBMCs. For example, we found no correlation 

between age and PBMC MHI neither in this study nor in a previous one (Karan et al., 2020), 25 

whereas purified cell subtypes showed associations. Interestingly, in the mitotype plots, total 

PBMCs had similar mitotypes (along the same mitotype diagonal space) as cells of the innate 

subdivision, namely neutrophils, NK cells, and monocytes. If PBMCs were composed uniquely of 

a mixture of lymphocytes and monocytes, the natural expectation is that PBMCs would lie 

somewhere between the specific subsets that compose it. Instead, PBMCs occupy an entirely 30 
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different and unexpected mitotype space. Additionally, our platelet depletion experiment leaves 

little doubt that platelet contamination skews the measurements of several mitochondrial features 

in PBMCs, with some features being apparently more affected than others, and yielding 

contradictory results: for example, PBMCs have higher CS activity values than any of the 

constituent cells (see Figure 4a). Although we cannot entirely rule out potential contamination of 5 

individual cell types with residual platelets, the FACS labeling, washing, and sorting procedures 

must produce the purest sample with the highest degree of biological specificity.  

 A major frontier for the human immunometabolism field consists in defining temporal 

trajectories of change in specific cell types (Artyomov & Van den Bossche, 2020). Achieving this 

goal promises to transform knowledge of immune and mitochondrial biology and allow for rational 10 

design of therapeutic approaches for immunometabolic conditions (Artyomov & Van den Bossche, 

2020). A primary finding from our analyses is the natural within-person variation in mitochondrial 

features, providing initial insight into the temporal dynamics of immunometabolism in human 

leukocytes. Sorting immunologically-defined cell subtypes removed the potential confound of 

week-to-week changes in cell type distributions, an inherent confounding variable in PBMCs, and 15 

therefore adds robustness to our observations. Mitochondrial features within immune cells 

exhibited state-like properties that varied by >20-30% week-to-week, warranting future, 

adequately-powered studies of causal influences. Previously, in PBMCs, up to 12% of the inter-

individual variation in MHI was found to be attributable to positive mood (e.g., excited, hopeful, 

inspired, love) the night prior to blood draw (Picard et al., 2018), implying that psychosocial 20 

factors could in part contribute to dynamic variation in leukocyte mitochondrial function over 12-

48 hours. However, limitations in this prior study – including the use of PBMCs and a single 

measurement time point for MHI – call for additional studies to disentangle the independent 

contributions of behavioral, psychosocial, nutritional, and other factors on specific mitochondrial 

features. Importantly, mitochondrial changes in the present study took place within less than one 25 

week. Tracking dynamic changes in biological markers with high intra-individual variability, such 

as cortisol (Segerstrom, Sephton, & Westgate, 2017), necessarily requires repeated-measures 

designs with sufficient temporal resolution. Therefore, the present results and others show that 

establishing the exact temporal dynamics of leukocyte mitochondrial variations, and 

immunometabolism in general, will require repeated assessments with substantially greater 30 

temporal resolution than weekly measures.    
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Animal studies have consistently identified sexually dimorphic mitochondrial features, 

such as greater mitochondrial content in females (reviewed in (Ventura-Clapier, Piquereau, 

Veksler, & Garnier, 2019)). Likewise, in humans, PBMCs from women had greater CS activity 

and greater CI and CII-mediated respiration (Silaidos et al., 2018). Our data show similar changes 

in enzymatic activities for most, but not all, cell types, suggesting that the magnitudes of sex 5 

differences are likely cell-type specific. Therefore, methods offering a sufficient level of biological 

specificity deployed in adequately powered samples are needed to reproducibly and accurately 

quantify sex differences among immune cell mitochondria. We also note that the binary definition 

of sex used in this study (i.e., sex assigned at birth) paints a rather incomplete picture. Exploring 

the interplay between mitochondria, sex and gender in humans will require more refined 10 

approaches that consider a range of biological characteristics (e.g., hormones, chromosomes, 

anatomy), alongside gender identity and its proceeding gendered exposures (e.g., differential diet 

or involvement in physical activity depending on gender/sex) (Fausto-Sterling, 2005; Johnson & 

Repta, 2012; Ritz et al., 2014).  

In relation to age, age-related decline in mtDNAcn has consistently been reported in whole 15 

blood (Mengel-From et al., 2014; Verhoeven et al., 2018), PBMCs (R. Zhang et al., 2017), and 

skeletal muscle tissue (Hebert et al., 2015; Short et al., 2005), although not in liver (Wachsmuth, 

Hübner, Li, Madea, & Stoneking, 2016). However, the interpretation of these results must take 

into account the existence of cell mixtures and platelet contamination, particularly for blood and 

PMBCs (Banas et al., 2004; Urata et al., 2008). In one large adult cohort study, accounting for cell 20 

type distribution and platelet count through measurement and statistical adjustments eliminated 

initial associations between mtDNAcn and age (Moore et al., 2018), suggesting that the apparent 

age-related decline in mtDNAcn in human blood in fact reflect a change in blood composition 

(fewer platelets in older people, explaining why mtDNAcn appears lower). In purified immune 

cell subtypes from our small cohort, the opposite association was observed. Although based on 25 

whole-blood and tissue studies this finding was unexpected, it could be explained by well-known 

processes related to the quality of mtDNA (Picard, 2021). Mutations and deletions in mtDNA 

accumulate with age (Ye, Lu, Ma, Keinan, & Gu, 2014; R. Zhang et al., 2017), and mtDNA defects 

can trigger the compensatory upregulation of mtDNAcn to counteract that loss of intact 

mitochondria (Giordano et al., 2014; Yu-Wai-Man et al., 2010). Therefore, the observed positive 30 

correlation of cell type-specific mtDNAcn with age in our sample could reflect compensatory 
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upregulation of mtDNA replication. Alternatively, this correlation could reflect impaired 

autophagic removal of mitochondria in aging cells, consistent with recent results suggesting that 

CD4+ T cells have impaired clearance of dysfunctional mitochondria (Bektas et al., 2019). 

Interestingly, the only cell type examined that did not exhibit positive correlation between 

mtDNAcn and age was CD8+ naïve T cells, which is also the only cell type whose abundance in 5 

circulation significantly declines with advancing age. The basis for the direction of this association 

requires further investigation.  

Some limitations of this study must be noted. Although this represents, to our knowledge, 

the largest available study of mitochondrial biochemistry and qPCR in hundreds of human 

samples, the sample size of the cohort was small and the power to examine between-person 10 

associations was limited. Women and men were equally represented, but the sample size precluded 

stratification of all analyses by sex. Sex and age analyses are exploratory and findings need to be 

validated by future adequately powered studies. Likewise, the exhaustive repeated-measures 

design was carried out in only one participant and should be regarded as proof-of-concept. 

Additionally, because our mitochondrial phenotyping platform required ~5x106 cells per sample, 15 

we could only collect the six most abundant cell subtypes from each participant, which in some 

instances reduced the final sample size for different cell subtypes. In order to accommodate the 

minimum cell number per sample, central and effector memory subtypes were pooled (CM-EM), 

although they may exhibit differences that are not resolved here. Furthermore, we recognize that 

additional cell surface markers may be useful to identify other cell populations (e.g., activated or 20 

regulatory lymphocyte subtypes). Finally, we did not test participants for cytomegalovirus (CMV) 

status, which could influence the proportion of immune cell subtypes. 

Furthermore, our analysis focused on RC activity, which performs electron transport and 

generates the mitochondrial membrane potential (∆Ψm) across the inner mitochondrial membrane 

(Nicholls & Ferguson, 2013). Besides being used for ATP synthesis by complex V, RC activity 25 

and membrane potential also contributes to reactive oxygen species (ROS) production, calcium 

handling, and gene expression regulation, among other cellular processes (M. D. Brand, Chen, & 

Lehninger, 1976; Hernansanz-Agustín & Enríquez, 2021; Martínez-Reyes et al., 2016; Picard et 

al., 2014). Thus, the observed cell type differences in mitochondrial content or RC activities across 

human immune cell subtypes likely reflect not only cellular ATP demand, but also the unique 30 
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immunometabolic, catabolic/anabolic, and signaling requirements among different immune cell 

subtypes that contribute to produce cell-specific mitotypes. 

Overall, our study of mitochondrial profiling in circulating human immune cells filled three 

main knowledge gaps. First, it quantified confounds for PBMCs and showed how PBMCs fail to 

capture age- and sex-related mitochondrial recalibrations in specific immune cell populations, 5 

which is important for the design of future studies. Second, mitochondrial profiling precisely 

documented large-scale, quantitative differences in CS activity, mtDNAcn, and RC enzyme 

activities between well-known immune cell subtypes, contributing to our knowledge of the distinct 

metabolic characteristics among circulating immune cell types in humans. The qualitative and 

quantitative divergences were particularly emphasized by mitotypes, which highlighted conserved 10 

multivariate phenotypic features between lymphoid- and myeloid-derived immune cells, and 

between naïve and memory lymphocyte states. Third, this study documents potentially large week-

to-week variation of mitochondrial activities that should be further examined in future studies. 

Together, this work provides foundational knowledge and a resource to develop interpretable 

blood-based assays of mitochondrial health. 15 
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Methods 

Participants and Procedures  

A detailed account of all methods and procedures is available in Appendix1. The study was 

approved by New York State Psychiatric Institute (Protocol #7618) and all participants provided 

written informed consent for the study procedures and reporting of results. Healthy adults between 5 

20 and 60 years were eligible for inclusion. Exclusion criteria included severe cognitive deficit, 

symptoms of flu or other seasonal infection four weeks preceding the visit, involvement in other 

clinical trials, malignancy or other clinical condition, and diagnosis of mitochondrial disease. The 

main study cohort included 21 individuals (11 women, 10 men), with a mean age of 36 years (SD= 

11, range: 23-57); there were 2 African Americans, 7 Asians, and 12 Caucasians. Morning blood 10 

samples (100 ml) were drawn between 9-10am from the antecubital vein and included one EDTA 

tube for complete blood count (CBC), two SST coated tubes for hormonal measures and blood 

biochemistry, and 11 Acid Dextrose A (ACD-A) tubes for leukocyte isolation and mitochondrial 

analyses. See Figure 1a-b for an overview of participants and procedures.  

Additionally, repeated weekly measures were collected across 9 weeks from one healthy 15 

Caucasian man (author M.P., 34 years old) to assess within-person variability in mitochondrial 

measures and immune cell type distribution. To standardize and minimize the influence of 

nutritional and behavioral factors in the repeat participant, repeated measures were collected at the 

same time (9:00am), on the same day of the week (Fridays), after a standardized breakfast 

(chocolate crepe), ~30-60 minutes after a regular bicycle commute to study site.  20 

PBMCs and leukocyte isolation 

A detailed version of the materials and methods is available in Appendix 1 of this article. 

Briefly, PBMCs were isolated on low density Ficoll 1077, and total leukocytes were separated on 

Ficoll 1119, centrifuged at 700 x g for 30 minutes at room temperature. Leukocytes were collected, 

washed, and centrifuged twice at 700 x g for 10 minutes to reduce platelet contamination. Pellets 25 

of 5x106 PBMCs were aliquoted and frozen at -80oC for mitochondrial assays. 

Immunolabeling and fluorescence-activated cell sorting (FACS) 

Antibody cocktails for cell counting (Cocktail 1) and cell sorting (Cocktail 2) were 

prepared for fluorescence-activated cell sorting (FACS). The following cell subtypes were 
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identified: neutrophils, B cells, monocytes, NK cells, naïve CD4+ and CD8+, central memory (CM) 

CD4+ and CD8+, effector memory (EM) CD4+ and CD8+, and terminally differentiated effector 

memory cells re-expressing CD45RA (TEMRA) CD4+ and CD8+ (see Figure 1-figure supplement 

1 and Supplementary file 1 for overview, and Supplementary file 4 for cell surface markers and 

fluorophores). A 2x106 cell aliquot was labeled with Cocktail 1. The remainder of total leukocytes 5 

(~100x106 cells) were incubated with Cocktail 2, washed, and used for FACS at final concentration 

of 20x106 cells/ml.  

Leukocytes were sorted using a BD™ Influx cell sorter using a 100 μm size nozzle. Sorting 

speed was kept around 11,000-12,000 events/second. Cell concentration for sorting was measured 

at about 15x106 cells per ml. For each participant, 1x106 cells (Cocktail 1 panel) were run first to 10 

calculate the potential yield of each subpopulation (total cell number x percentage of each 

subpopulation). The variable proportions of cell subtypes from person-to-person (provided in full 

in Supplementary file 2) determined which cell subtypes were collected from each participant, and 

5x106 cell aliquots of the six most abundant subpopulations were sorted. Purity checks were 

performed on all sorted subpopulations to ensure the instrument performance was good enough to 15 

reach the sorted population purity >95%. Data were processed using FCS Express 7 software (see 

Figure 1-figure supplement 2 for gating strategy).  

Mitochondrial enzymatic activities 

Sorted cell subtypes were centrifuged at 2,000 x g for 2 minutes at 4°C and stored in liquid 

nitrogen (-170°C) for 4-12 months until mitochondrial biochemistry and mtDNAcn analyses were 20 

performed as a single batch. Cell pellets (5x106) were mechanically homogenized with a tungsten 

bead in 500 ul of homogenization buffer as previously described (Picard et al., 2018) (see 

Appendix 1 for details). 

Mitochondrial enzyme activities were quantified spectrophotometrically for citrate 

synthase (CS), cytochrome c oxidase (COX, Complex IV), succinate dehydrogenase (SDH, 25 

Complex II), and NADH dehydrogenase (Complex I) as described previously(Picard et al., 2018) 

with minor modifications described in Appendix 1. Each sample was measured in triplicates. 

Mitochondrial enzymatic activities were measured on a total of 340 samples (including 136 

biological replicates), for a total of 204 unique participant-cell combinations. The technical 

variation for each enzyme, for each cell type, is detailed in Supplementary file 3.  30 
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Mitochondrial DNA copy number 

mtDNAcn was determined as described previously (Picard et al., 2018) using two different 

Taqman multiplex assays for ND1 (mtDNA) and B2M (nDNA), and for COX1 (mtDNA) and 

RnaseP (nDNA). mtDNAcn was calculated from the ΔCt obtained by subtracting the mtDNA Ct 

from nDNA Ct for each pair ND1/B2M and COX1/RNaseP, and mtDNAcn from both assays was 5 

averaged to obtain the final mtDNAcn value for each sample. The coefficients of variation (C.V.) 

for mtDNA for each cell subtype is detailed in Supplementary file 3 (average 5.1%). 

Platelet depletion in PBMCs 

A further 9 community-dwelling older adults (mean age = 79, range: 64-89, 4 women and 

5 men, including 7 white and 2 African American participants) were recruited for active platelet 10 

depletion experiments. Exclusion criteria included diseases or disorders affecting the immune 

system including autoimmune diseases, cancers, immunosuppressive disorders, or chronic, severe 

infections; chemotherapy or radiation treatment in the 5 years prior to enrollment; unwillingness 

to undergo venipuncture; immunomodulatory medications including opioids and steroids; or more 

than two of the following classes of medications: psychotropics, anti-hypertensives, hormones 15 

replacement, or thyroid supplements. Participants were recruited from a volunteer subject pool 

maintained by the University of Kentucky Sanders-Brown Center on Aging. The study was 

conducted with the approval of the University of Kentucky Institutional Review Board. Morning 

blood samples (20 mL) were collected by venipuncture into heparinized tubes. PBMCs were 

isolated from diluted blood by density gradient centrifugation (800 x g for 20 minutes) using 20 

Histopaque. Buffy coats were washed once, and cells were counted using a hemocytometer. 

PBMCs (20-30 M) were cryopreserved in liquid nitrogen in RPMI-1640 with 10% FBS and 10% 

DMSO until further processing.  

For active platelet depletion, PBMCs were first thawed at room temperature and 

centrifuged at 500 x g for 10 minutes, counted and divided into 2 aliquots, including 10x106 cells 25 

for total PBMCs, and 11x106 cells for platelet depletion. The total PBMCs were centrifuged at 

2,000 x g for 2 min at 4oC and frozen as a dry pellet at -80oC until processing for enzymatic assays 

and qPCR. The PBMCs destined for platelet depletion were processed immediately and depleted 

of platelets following manufacturer procedures using magnetically-coupled antibodies against the 

platelet marker CD61. This experiment yielded three samples per participant, including total 30 
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PBMCs, platelet depleted PBMCs, and enriched platelets. Each sample was processed in parallel 

for RC enzymatic activity assays and mtDNAcn as described above.  

Statistical analyses 

To adjust for potential order and batch effects across the 340 samples (31 samples per 96-

well plate, 17 plates total), a linear adjustment was applied to raw enzymatic activity measures to 5 

ensure consistency between the first and last samples assayed. Samples from both the cohort and 

repeat participant were processed and analyzed as a single batch, ensuring directly comparable 

data.   

Throughout, standardized effect sizes between cell subtypes and between groups were 

computed as Hedge’s g (g). Mann-Whitney T tests were used to compare sex differences in cell 10 

type proportions and mitochondrial measures. Spearman’s r (r) was used to assess strength of 

associations between continuous variables such as age and circulating proportions of cell subtypes. 

To assess to what extent mitochondrial features are correlated across cell subtypes (co-regulation) 

and to calculate the average correlation across mitotypes, Spearman’s r matrixes were first 

computed and transformed to Fisher’s Z’, and then averaged before transforming back to 15 

Spearman’s r (rz’). One-way non-parametric ANOVA Kruskal-Wallis with post-hoc Dunn’s 

multiple comparison tests were used to compare cell type mitochondrial measures in different cell 

subtypes and PBMCs. Between- and within-person variation were characterized using coefficients 

of variation (C.V.). The root mean square of successive differences (rMSSD) was computed to 

quantify the magnitude of variability between successive weeks for repeated measures. Chi-square 20 

tests were computed to compare proportion of mitotype indices categories (enzyme activity per 

CS, enzyme ratios, enzyme per mtDNA, enzyme per mtDNA density, and enzyme per mtDNA 

relative to mtDNA density) by age (lower vs higher with increased age) and sex (lower vs higher 

in men). Finally, one-way non-parametric Friedman tests with post hoc Dunn’s multiple 

comparisons were used to compare mitochondrial measures in platelet-depleted PBMCs, enriched 25 

platelets PBMCs, and total PBMCs. Statistical analyses were performed with Prism 8 (GraphPad, 

CA), R version 4.0.2 and RStudio version 1.3.1056. Statistical significance was set at p<0.05. 
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Data Availability 

All data generated and analyzed during this study, including mitochondrial biochemistry, 

mtDNA content, and blood chemistry, cell counts from CBC and flow cytometry, and de-identified 

participant information are included in the supporting data files. Source data files have been 

provided for Figures 1-9, and for figure supplements (Figure 1-figure supplement 3, Figure 2-5 

figure supplement 1, Figure 4-figure supplement 1, Figure 4-figure supplement 2, Figure 6-figure 

supplement 1, Figure 6-figure supplement 2, Figure 6-figure supplement 3, and Supplementary 

file 3). Requests for resources or other information should be directed to and will be fulfilled by 

the corresponding author.  

 10 
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Supplemental Figure Legends 
 
Figure 1-figure supplement 1 – Diagram of leukocyte cell lineages.  
Figure 1-figure supplement 1 adapted from [Figure 3.34, OpenStax 2021, 
https://openstax.org/books/anatomy-and-physiology/pages/3-6-cellular-differentiation]. Cells 5 
analyzed in this study are circled in red. The cell surface markers used to define sub-populations 
are indicated below each cell subtype. 
 
Figure 1-figure supplement 2 – Gating strategy to quantify all cell subtypes and sorting 
major cell subtypes for mitochondrial phenotyping.  10 
See the methods section for details of labeling cocktails and cell sorter parameters. An initial run 
of 2M cells was used to establish the six most abundant cell subtypes (targets) for each 
participant, followed by FACS to obtain at least one 5M aliquot of each target cell subtype. Up 
to five 5M aliquots were collected per cell subtype, per participant, to establish technical 
variability in downstream assays. 15 
 
Figure 1- figure supplement 3 – Sex differences and age correlations with leukocyte 
abundance measured by complete blood count.  
(a) Forest plot illustrating the effect size (g) of the sex differences in cell proportion derived from 
the complete blood count (CBC) results (n=21). Fold changes in the raw values are also shown. 20 
P-values from non-parametric Mann-Whitney T test. Error bars reflect the 95% C.I. on the effect 
size. (b) Correlation (Spearman’s r) between age and cell proportion derived from the complete 
blood count. n=21, p<0.05*. 
 
Figure 2-figure supplement 1 – Associations between CBC cell proportions with 25 
mitochondrial features measured in PBMCs. 
Correlations between CBC-based cell type abundance (% of total leukocytes) and PBMCs 
mitochondrial features for the cohort (n=20). 
 
Figure 4-figure supplement 1 – Mitochondrial health index (MHI) and coherence of 30 
mitochondrial features across cell subtypes. (a) Schematic of the MHI equation reflecting 
respiratory chain function as the numerator, and markers of mitochondrial content as the 
denominator, yielding a metric of energy production capacity on a per-mitochondrion basis. (b) 
MHI across immune cell subtypes. Dashed lines are median (thick), with 25th and 75th quartiles 
(thin). P-values from One-Way non-parametric ANOVA Kruskal-Wallis test with Dunn’s multiple 35 
comparison test of subtypes relative to PBMCs, n=12-18 per cell subtype. (c) Correlation matrices 
(Spearman’s r) showing the association between cell subtypes in mitochondrial features. 
Correlations were not computed for cell subtype pairs with fewer than n=6 observations (gray 
cell). (d) Average effect sizes reflecting the within-person coherence of mitochondrial features 
across cell types (calculated using Fisher z-transformation). p<0.05*, p<0.001***. 40 
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Figure 4-figure supplement 2 – Associations between subtype-specific enzymatic activities 
with mitochondrial features measured in PBMCs. 
Correlations of the mitochondrial features measured in each cell subtype and the same 
mitochondrial feature measured in PBMCs for the cohort (n=12-20). Heatmaps for the cohort 
show to what extent PBMCs-based measures reflect activities in various immunologically-5 
defined cell subtypes. This data integrates data presented in Figure 4-figure supplement 1, here 
focused on PBMCs. 
 
Figure 6-figure supplement 1 – Within-person variability of cell subtype proportions 
overtime. (a) Within-person variation of cell type proportions across 9 weeks. The FACS-10 
derived raw cell proportions (% of total cells) are shown on the left. Root mean square of 
successive differences (rMSSD) illustrating the magnitude of variability between successive 
weeks, and C.V. illustrating the magnitude of variability across the total 9 weeks are provided on 
the right for each cell subtype, by mitochondrial feature. (b) Same as a, but based on CBC 
results. 15 
 
Figure 6-figure supplement 2 – Associations between subtype-specific and CBC cell 
proportions, and subtype-specific enzymatic activities with mitochondrial features 
measured in PBMCs. (a) Pairwise correlations of cell subtype proportions obtained from cell 
sorting with mitochondrial features measured in PBMCs for the repeat participant (n=1 x 9 20 
timepoints). Aggregate correlations are shown as a heatmap (top) and individual scatterplots 
(bottom). (b) Frequency distributions of the effect sizes between PBMC mitochondrial features 
and cell subtypes proportions for the cohort (Figure 2) and the repeat participant (total 
correlation pairs=72, for both). (c) Correlations between CBC-based cell type abundance (% of 
total leukocytes) and PBMCs mitochondrial features for the repeat participant (n=1 x 9 25 
timepoints). (d) Frequency distribution of effect sizes. (e) Correlations of the mitochondrial 
features measured in each cell subtype and the same mitochondrial feature measured in PBMCs 
for the repeat participant. Heatmaps for the repeat participant (n=1 x 9 timepoints) show to what 
extent PBMCs-based measures reflect activities in various immunologically-defined cell 
subtypes. This data integrates data presented in Figure 6, here focused on PBMCs. (f) Frequency 30 
distributions of effect sizes for association between PBMC and cell subtype mitochondrial 
features for the cohort and the repeat participant (total correlation pairs=36, for both), showing a 
predominance of positive correlations. 
 
Figure 6-figure supplement 3 – Variability of mitochondrial features across cell subtypes 35 
between the cohort and the repeat participant.  
(a-e) Side-by-side comparison of mitochondrial features between the cohort (n=12-18 per cell 
type) and the repeat participant (n=1 x 9 timepoints) across cell subtypes. This figure shows the 
same data as in main Figure 6h, but for all mitochondrial features. (f) Summary of a-e illustrated 
by a bar graph showing observed variation (C.V.) of mitochondrial features between the cohort 40 
and the repeat participant. The technical variation established on a subset of samples and likely 
represents a conservative overestimation of noise is shown by red lines. 
 
Figure 7-figure supplement 1 – Operationalization and categorization of mitotypes.  
Chart illustrating mitotype ratios and their simple interpretations.  45 
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Supplementary Files Figure Legends 
 
Supplementary file 1 – Leukocyte subtypes included in the study. 
Immune cell subtypes included in this study, including a brief summary of their functions and cell 
surface markers used for immunolabeling and FACS. 5 
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Supplementary file 2 – CBC- and FACS-based cell proportions for all study participants and 35 
time points.  
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Participants are ordered by age. CBC measurements were performed using a Sysmex XN-9000™ 
instrument, and FACS-based cell proportions were determined using a BD™ Influx cell sorter. 
(See Appendix 1 for details). 
 
Supplementary file 3 – Technical variation for each mitochondrial assay and calculated MHI 5 
by cell type.  
Coefficients of variation (C.V.s) across 2-5 biological replicates (different 5M cell pellet isolated 
from the same blood draw) for each cell subtype and PBMCs (See Appendix 1 for details). 
 
Supplementary file 4 – Recipes for antibody cocktails used to detect cell surface markers for 10 
FACS-based cell proportions and sorting. 
(See Appendix 1 for details). 
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