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Abstract  

Mitochondrial function studies in human leukocytes have mainly focused on peripheral blood 

mononuclear cells (PBMCs), with the assumption that the immunometabolic properties of different 

immune cells have a negligible effect on PBMCs. Using a high-throughput mitochondrial 

phenotyping platform to quantify multiple mitochondrial features among both PBMCs and 

immunologically-defined immune cell subtypes from the same individuals, we show how 

mitochondrial activity in PBMCs is confounded by both cell type distributions and contaminating 

platelets. Then, applying this cell-specific approach in women and men spanning 4 decades of 

life, we find that mitochondria exhibit specific age- and sex-related differences, including an age-

related elevation in mtDNAcn, which are masked or blunted in PBMCs. Our purified cell subtypes 

data also defines in humans the variation in mitochondrial DNA copy number (mtDNAcn), 

mitochondrial content (citrate synthase), and respiratory chain enzymatic activities among 

neutrophils, monocytes, B and T lymphocyte subtypes. Moreover, we validate these cell type 

differences and define the natural intra-individual variation in mitochondrial function using an 

intensive repeated-measures study in a single individual, revealing substantial natural variation 

over time among cell subtypes and PBMCs. Finally, we introduce multivariate mitochondrial 

phenotypes – mitotypes – that distinguish lymphoid from myeloid cell types, naïve-to-memory 

lymphocyte states, and moderately differ between women and men, which we propose as 

potential cell-specific biomarkers for future studies. Together, these findings identify dynamic cell-

type specific variation in mitochondrial biology in circulating human leukocytes, providing 

foundational knowledge to develop interpretable blood-based assays of mitochondrial health. 

Keywords: mitochondria; leukocytes; sexual dimorphism; aging; dynamic variation  
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Introduction 

Mitochondria are the most studied organelle across biomedical sciences1. Accumulating 

evidence implicate mitochondrial (dys)function as a major determinant of disease risk and aging1, 

2, 3 and as a mediator of psycho-biological processes4. As a consequence, there is an increasing 

interest to develop tractable biomarkers and quantify mitochondrial content (the mass of 

mitochondria per cell) and function (energy production capacity) in accessible human tissues, 

such as peripheral blood leukocytes. Although some research has applied cell-specific assays to 

interrogate mitochondrial function in immune cells5 the majority of studies have examined 

peripheral blood mononuclear cells (PBMCs), with the assumption that the immunometabolic 

properties of different immune cells have a negligible effect on PBMCs. However, it remains 

unclear to what extent mitochondrial measurements in PBMCs are confounded by biological 

factors such as: i) cell type composition, ii) platelet contamination, iii) mitochondrial properties 

across different immune cells, and iv) the variability of cell type composition and bioenergetics 

over time. These four main gaps in knowledge hamper rational decision making about the need 

to collect purified cell populations to reliably quantify mitochondrial function in observational and 

intervention studies.  

As part of normal human physiology, specific immune cell types are mobilized from 

lymphoid organs into circulation in a diurnal fashion, substantially influencing the pool of 

peripheral blood leukocyte composition6. Moreover, the circulating abundance of immune cell 

subtypes is highly variable between individuals, a feature partially attributable to both individual-

level (e.g., sex and age) and environmental factors7. So PBMCs from different individuals reflect 

different cell populations. This is significant since the major immune cell types differ in their 

respiratory properties and mitochondrial RC protein abundance5, 8, 9, with mixed lymphocytes and 

monocytes exhibiting substantial differences10. Therefore, we hypothesized that the relative 

abundance of different cell types (i.e., cell type composition) confounds measurements of 

mitochondrial functions in PBMCs. Furthermore, commonly used Ficoll-isolated PBMCs are 

contaminated with (sticky) platelets, which themselves contain mitochondria and mtDNA but no 

nuclear genome to use as reference for mtDNA copy number (mtDNAcn) measurements11. This 

adds another potential source of bias to mitochondrial studies in PBMCs or other undefined cell 

mixtures12, 13, 14. To enable scalable translational mitochondrial research, there is therefore a need 

to develop biologically valid measures of mitochondrial health in specific immune cells and to 

quantify the influence of cell type abundance and platelet contamination on specific features of 

mitochondrial behavior beyond mtDNAcn. 
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Mitochondria are multifunctional organelles that are not all created equal – various 

features of mitochondrial content and function vary based on the tissue and cell type they inhabit15, 

16 a phenomenon termed functional specialization17. But little is known about the nature and 

magnitude of inter-individual differences in mitochondrial phenotypes within specific molecularly-

defined immune cell subtypes. The immune system provides a particularly powerful system to 

examine this question since the acquisition of specialized cellular characteristics during 

differentiation is known to be determined by changes in mitochondrial metabolism18. For example, 

the activation, proliferation, and differentiation of both monocytes19 and T cells20 into specific 

effector cells require distinct metabolic profiles and cannot proceed without the proper metabolic 

states. Likewise, naïve and memory T lymphocytes differ in their reliance on mitochondrial 

oxidative phosphorylation (OXPHOS) involving the respiratory chain (RC) enzymes21, 22, 23, and 

harbor differences in protein composition and mitochondrial content within the cytoplasm24. Thus, 

we hypothesized that circulating immune cell subtypes in human blood should exhibit robust 

differences in mitochondrial phenotypes (mitotypes) including both features of mitochondrial 

content and RC function.  

An equally significant gap in knowledge relates to the natural dynamic variation in 

mitochondrial content and function. Mitochondria dynamically recalibrate in response to stress 

exposure (for a review see25), and well-defined mitochondrial recalibrations to stress25 and 

exercise26 suggest that cell-specific mitochondrial features could exhibit natural variation over 

time. Are leukocyte mitochondrial content and RC function stable trait-like properties of each 

person, or are they state-like features that vary over time, possibly in response to metabolic or 

endocrine mediators?  

To address these questions, we deployed a high-throughput mitochondrial phenotyping 

platform on immunologically-defined immune cell subtypes, in parallel with PBMCs, to define cell-

specific, multivariate mitochondrial phenotypes27. First, we establish the extent to which cell type 

composition and platelet contamination influence PBMCs-based mitochondrial measures. We 

then systematically map the mitochondrial properties of different immune cell subtypes, and 

validate the existence of stable mitochondrial phenotypes in an intensive repeated-measures 

design within the same individual, which also reveals a surprising degree of change over time. 

Collectively, these data highlight the inadequacy of PBMCs to profile human mitochondrial 

function between individuals and over time, and define unique cell-specific mitochondrial features 

in circulating human leukocytes in relation to age, sex, and biomarkers. These data represent a 

resource to design cell-specific immune mitochondrial phenotyping strategies in future studies.  
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Results 

Cell subtype distributions by age and sex 

Our goal was to perform mitochondrial profiling on molecularly-defined subtypes of 

immune cell populations in parallel with PBMCs collected at the same time. Twenty one 

participants (11 women, 10 men) distributed across 4 decades of life (ages 20-59, 4-8 participants 

per decade across both sexes) were recruited, and ~100ml of blood was collected; total 

leukocytes were then labeled with two cell surface marker cocktails, counted and isolated by 

fluorescence-activated cell sorting (FACS, see Methods for details), and processed on our 

mitochondrial phenotyping platform adapted from 27 (Figure 1a). In parallel, a complete blood 

count (CBC) for the major leukocyte populations in whole blood, standard blood chemistry, and a 

metabolic and endocrine panel were assessed (Figure 1b). 

We first quantified the abundance of specific cell subtypes based on cell surface marker 

combinations listed in Figure 1c (see Supplemental Figures 1 and 2 for the gating strategy, and 

Supplemental Table 1), including innate (neutrophils, NK cells, and monocytes) and adaptive T 

and B lymphocytes. We further distinguished CD4+ and CD8+ T cells by their naïve and memory 

states, including central (CM) and effector memory (EM), as well as terminally differentiated 

effector memory cells re-expressing CD45RA (TEMRA) subtypes. Evaluating the abundance of 

each cell subtype among participants, we found that compared to women, men had on average 

35-44% more NK cells and monocytes, but 66% less CD4+ naïve T cells (Figure 1d). These 

differences were characterized by moderate to large standardized effect sizes (Hedges’ g=0.71-

0.93), confirming as previously established7 that the composition of circulating immune cells differ 

between women and men. Even between individual participants of the same sex, the circulating 

proportions of various cell subtypes (e.g., B and T lymphocytes, monocytes) varied by up to an 

order of magnitude (i.e., 10-fold) (Figure 1e).  

In relation to age, as expected7 CD8+ naïve T cells abundance was lower in older 

individuals (p<0.01). Specifically, compared to young adults in their 20’s, middle-aged individuals 

in their 50’s had on average ~63% fewer CD8+ naïve T cells (Figure 1f). In contrast, CD4+ EM 

and CD8+ CM abundance tended to increase with age (positive correlation, r=0.31 for both), an 

overall picture consistent with immunological aging7, 28. 

CBC-derived cell proportions also showed that compared to women, men had on average 

28% more monocytes (Supplemental Figure 3), consistent with our FACS results. Conversely, 
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compared to men, women had on average 20% more platelets. Platelet abundance also tended 

to decrease with age, a point discussed later. 

Next, we built on these results to examine the influence of blood cell type composition and 

platelets on mitochondria in PBMCs. Our analysis focused on two broad aspects of mitochondrial 

biology: i) mitochondrial content, indexed by citrate synthase (CS) activity, a Kreb’s cycle enzyme 

used as a marker of mitochondrial volume density29, and mtDNAcn, reflecting the number of 

mtDNA copies per cell; and ii) RC function measured by complex I (CI), complex II (CII) and 

complex IV (CIV) enzymatic activities, which reflect the capacity for electron transport and 

respiratory capacity and serve here as a proxy for maximal oxidative phosphorylation (OXPHOS) 

capacity (Figure 1a). Furthermore, by adding the three mean-centered features of RC function 

together as a numerator (CI+CII+CIV), and dividing this by the combination of content features 

(CS+mtDNAcn), we obtained an index reflecting RC capacity on a per-mitochondrion basis, 

known as the mitochondrial health index (MHI) adapted from previous work27. 

Circulating cell composition influence mitochondrial features in PBMCs  

Compared to isolating purified cell subtypes, cell mixtures such as PBMCs are more easily 

collected and require less blood volume to obtain a sufficient number of cells for downstream 

analyses. As a result, PBMCs have been the preferred material of choice in human leukocyte 

studies examining environmental influences on mitochondria (e.g., 27, 30, 31, 32, 33, 34). However, in 

light of i) large variation in the abundance of circulating cell types, both between- and within-

person, and ii) general bioenergetic differences between the major cell types5, we hypothesize 

that cell mixtures are likely to be confounded by cell type distribution.  

We first established how much the abundance of various circulating immune cell subtypes 

correlates with individual mitochondrial metrics in PBMCs. The null hypothesis was that cell type 

abundances (e.g., having more or fewer B cells in circulation) does not influence PBMCs 

mitochondrial features. The proportion of variance in PBMCs mitochondrial features attributable 

to cell type abundance measured by flow cytometry is shown in Figure 2a. Contrary to the null 

hypothesis, the abundance of multiple circulating cells correlated with PBMCs mitochondrial 

features. Notably, the proportion of circulating B cells accounted for 27% of the variance (r2) in 

PBMCs mtDNAcn, and for 32-61% of the variance in CS, CI, and CII activities. These findings 

were consistent with the fact that individuals varied substantially in B cell proportions (range: 

<0.01-15.3%) (Supplemental Table 2), and that B cells exhibited the highest mtDNAcn of all cell 

subtypes (see below). The proportion of other cell types accounted for more modest portions 
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(<14%) of the variance in PBMCs, although we note that higher abundance of memory cells 

tended to be negatively associated with PBMCs RC enzymatic activities.  

This analysis was repeated with CBC-derived cell proportions to examine the association 

of broad leukocyte groups with mitochondrial features in PBMCs. The abundance of eosinophils 

and neutrophils was positively correlated with most PBMCs mitochondrial content and activity 

features (Supplemental Figure 4a). Because PBMCs do not contain granulocytes, it appears more 

likely that these correlations reflect the independent effect of a humoral factor on cell mobilization 

and mitochondrial function.  

Together, these data demonstrate that mitochondrial features assessed in PBMCs in part 

reflect the proportions of some but not all circulating cell subtypes. Therefore, these results 

objectively document cell type distribution as a major confounding factor in the measurements of 

mitochondrial function in PBMCs.  

Platelets influence PBMCs mitochondrial phenotypes 

 Platelets contain mitochondria and mtDNA, but no nucleus. Because cell-based qPCR-

based procedures rely on the presence of the nuclear genome to quantify mtDNA copies per cell, 

platelets are essentially invisible to cell-based normalization procedures and therefore inflate 

mitochondrial activities on a per-cell basis12, 13. Moreover, platelets are naturally adherent and 

easily form platelet-leukocyte aggregates35, such that they typically “contaminate” leukocyte 

preparations and inflate mtDNAcn measurements11, 12, 13, 14 (Figure 3a). Therefore, to partly 

resolve the origin of the discrepancies between isolated cell subtypes and PBMCs noted above, 

we sought to directly quantify the contribution of platelets to total mitochondrial content and activity 

features in PBMCs. We note that the PBMCs used in our study were carefully prepared with two 

passive platelet depletion steps consisting of low centrifugation spins where leukocytes sediment 

but platelets float (see Methods for details). Thus, theoretically, our PBMCs should be “platelet-

free”. 

We first asked if the abundance of platelets from the CBC data in the cohort varies by age. 

In our cohort, we found that platelet count decreased by 6% for each decade of life (Figure 3b), 

declining by an average of 24% between the ages of 20 and 60. The loss of platelets with age, in 

women and men, is consistent with two large epidemiological studies of >40,000 individuals 

each36, 37, although the effect sizes vary by cohort and our estimate is likely overestimated due to 

the small sample size (Figure 3c). As expected, we also found that total blood platelet count 

tended to be consistently positively correlated with mtDNAcn, CS and RC activities in PBMCs 
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(r=0.031-0.38) (Figure 3d), suggesting that PBMCs preparations from individuals with more 

circulating platelets may also contain more contaminating platelets. Therefore, the age-related 

loss of platelets and of the mtDNA contained within them could account for the previously reported 

age-related decline in mtDNAcn from studies using either whole blood38, 39 (which includes all 

platelets) or PBMCs40 (which includes fewer contaminating platelets).  

To directly test this hypothesis, we ran a separate experiment to quantify the influence of 

platelets on multiple mitochondrial features in PBMCs (Figure 3e). This consisted of isolating 

PBMCs using standard methods, which again included two commonly-used low speed “platelet 

depletion” steps (see Methods for details). A portion of the obtained PBMCs platelets were then 

actively immunodepleted using anti-CD61-tagged magnetic beads. Three fractions were 

ultimately processed for mitochondrial phenotyping and compared: i) total PBMCs, ii) active 

platelet-depleted PBMCs, and iii) platelet-enriched eluate from the depletion procedure. As 

expected, platelet depletion decreased mtDNAcn, CS, and RC activities, indicating that 

contaminating platelets exaggerated specific mitochondrial features by 9-22%, with the exception 

of complex IV (Figure 3f). Moreover, the platelet-enriched eluate showed 23-100% higher 

mitochondrial activities relative to total PBMCs, providing further evidence that platelet depletion 

was effective and that platelets inflate estimates of mitochondrial abundance and RC activity in 

standard PBMCs.  

Interestingly, the composite MHI was not affected by the platelet depletion procedure, 

suggesting that this multivariate index of respiratory chain capacity on a per-mitochondrion basis 

may be more robust to platelet contamination than its individual features. Overall, these data 

demonstrate platelet-contamination even in carefully prepared PBMCs, and show that the 

magnitude of platelet contamination significantly alters specific mitochondrial metrics in PBMCs-

based mitochondrial studies. 

Individual cell subtypes are biologically distinct from PBMCs  

Having established that PBMCs provide an imperfect picture of mitochondrial function 

implies that specific leukocyte cell subtypes should be studied. To address these questions, we 

next deployed our mitochondrial phenotyping platform in both FACS-purified immune cells and 

PBMCs collected simultaneously to define their unique properties. To obtain sufficient numbers 

of cells for mitochondrial phenotyping, we selected the 6 most abundant cell subtypes for each 

individual and isolated 5 million cells for each sample. Because memory subtypes were relatively 

rare, central and effector memory (CM and EM) subtypes were pooled for CD4+ and/or CD8+ (CM-
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EM). This generated a total of 340 biological samples, including 136 biological replicates, yielding 

204 individual person-to-cell-type combinations used for mitochondrial phenotyping. 

If PBMCs were comprised solely of those individual cell types, mitochondrial activities 

normalized on a per-cell basis in PBMCs could only be as high as the highest cell subtype it 

contains (e.g., B cells), and as low as the lowest (e.g., neutrophils). Curiously, we found that 

PBMCs had up to 2.9-fold higher levels of CS, CI, and CII activity per cell than any of the individual 

cell subtypes measured (see Figure 4), casting initial doubt on the validity of mitochondrial activity 

measures in PBMCs. This discrepancy could in part be attributable to contamination of PBMCs 

with platelets, or by the presence of other (unknown) cell types.  

Among cell subtypes, CS activity was highest in monocytes and B cells, and lowest in 

CD4+ naïve T cells, with other cell types exhibiting intermediate levels (Figure 4a). Regarding 

mitochondrial genome content, B cells had the highest mtDNAcn with an average 451 copies per 

cell compared to neutrophils and NK cells, which contained only an average of 128 (g=5.94, 

p<0.0001) and 205 copies (g=3.84, p<0.0001) per cell, respectively (Figure 4b). The low 

mtDNAcn in neutrophils relative to lymphocytes is in line with previous research8, 9. Naïve and 

memory CD4+ and CD8+ T lymphocytes had intermediate mtDNAcn levels of ~300 copies per 

cell, with the exception of CD8+ naïve cells (average of 427 copies per cell). Between cell types, 

we note that CS activity and mtDNAcn differed by up to 3.52-fold, providing initial evidence of 

strong effect size segregation of cell type-specific mitochondrial phenotypes among both innate 

and adaptive cell lineages.  

In relation to RC function, monocytes had the highest Complexes I, II, and IV activities. 

Consistent with their low mtDNAcn, neutrophils also had the lowest activities across complexes, 

whereas naïve and memory subtypes of T and B lymphocytes presented intermediate RC enzyme 

activities (Figure 4c-e).  

To understand the proportion of shared variance between mitochondrial content features 

(CS and mtDNA) and between RC complex enzymatic activities, we quantified their inter-

correlations among all cell types. Consistent with previous work in PBMCs27, CS activity and 

mtDNAcn were positively correlated with each other, as were RC complexes CI, CII, and CIV 

(Figure 4f). Interestingly among cell subtypes, CS and mtDNAcn were only weakly correlated with 

each other, and in some cases were negatively correlated. For RC complexes CI, CII, and CIV, 

which physically interact and whose function is synergistic within the inner mitochondrial 

membrane, correlations tended to be positive, as expected (Figure 4f). However, some of these 
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correlations were weak, and some were either not correlated or even negatively correlated within 

specific cell types. These relatively weak and absent inter-correlations between mitochondrial 

features in some cell types reveal that each metric provides relatively independent, rather than 

redundant, information about the immune cell mitochondrial phenotype. Moreover, we note that 

PBMCs consistently showed the highest inter-correlations among mitochondrial features (above 

all cell types), which is consistent with the amalgamation or “homogenization” of cell-specific 

features.  

Mitochondrial health index (MHI) among cell subtypes 

We use the composite MHI to further define how RC function relates to mitochondrial 

content (Figure 5a). There was a significant difference in MHI between cell types (p<0.0001). Of 

all cell types, monocytes had the highest MHI, which was 72% higher than B cells (g=3.78, 

p<0.0001) which had the lowest MHI (Figure 5b). On average, memory T cell subtypes exhibited 

a 6-18% higher MHI relative to their naïve precursors (CD4+: g=0.40, p=0.32; CD8+: g=1.02, 

p=0.019), consistent with the notion that naïve and activated immune cells have different 

bioenergetic requirements41, 42. The PBMCs MHI was intermediate between values of monocytes 

and lymphocytes. 

Mitochondrial features exhibit differential co-regulation across immune cell subtypes  

We next asked to what extent mitochondrial markers are correlated among different cell 

subtypes in the same person. For example, does the individual with the highest mtDNAcn in B 

cells also have the highest mtDNAcn in other cell types? Could having high mtDNAcn or low MHI 

activity constitute coherent properties of an individual that are expressed ubiquitously across cell 

types, or are these properties private to each cell subtype?  

To assess the extent to which mitochondrial features are correlated across cell subtypes 

(co-regulation), we generated Spearman correlation matrices, which revealed a general positive 

association (Figure 5c). Within a person, CS activity was moderately co-regulated across cell 

subtypes (average correlation rz’=0.63), albeit with some exceptions (i.e., cell pairs that were less 

correlated than average, such as CD4+ CM-EM T cells & B cells). Similarly, mtDNAcn was 

generally positively correlated between cell types (average correlation rz’=0.53). We note that 

compared to CM-EM subtypes, naïve T lymphocyte mtDNAcn values tended to be more strongly 

correlated with other cell subtypes (r=0.32-0.93), indicating that co-regulation of mtDNAcn differs 

between cell types. In comparison, RC enzymes showed markedly lower inter-correlations across 

cell types (Figure 5d) and some cell types showed no correlation with other cell types, revealing 
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a substantially lower degree of co-regulation among RC components than in mitochondrial 

content features. However, there was moderate and consistent positive co-regulation across cell 

types for MHI (average rz’=0.37). PBMCs exhibited moderate to no correlation with other cell 

subtypes (Figure 5c, Supplemental Figure 4a), further indicating their departure from purified 

subtypes. 

Together, these findings show that while immune cells exhibit markedly different 

mitochondrial content and RC activities (see Figure 4), there is consistent evidence for a person-

level factor. On the other hand, the absence of correlation among several cell types, particularly 

for RC enzymatic activities, suggests that the biology of immune cell subtypes could be relatively 

independently determined by cell-autonomous factors (e.g., stimulation of specific cell subtypes 

or subpopulations). These subtype-resolution results therefore provide a strong rationale for 

performing cell-type specific studies when examining the influence of external exposures and 

person-level factors on immune cells’ mitochondrial bioenergetics, including the influence of sex 

and age. 

Mitochondrial content and RC function differ between women and men 

To evaluate the added value of cell subtype specific studies when applied to real-world 

questions, we then systematically compared CS activity, mtDNAcn, RC activity, and MHI between 

women and men, asking to what extent the influence of sex on mitochondrial phenotypes can be 

detected in purified cell subtypes and PBMCs. Across all cell subtypes examined, compared to 

men, women had higher CS activity (range: 4-29%, g=0.20-1.52, Figure 6a) and higher CII activity 

(range:1-10%, g=0.03-0.56, Figure 6d). The consistency of this finding across all cell types 

suggests that these differences are stable, sexually dimorphic characteristics. Women also 

showed 29% higher CS activity in CD8+ memory subsets and 26% higher CI activity in monocytes, 

differences that were characterized by strong effect sizes (g=1.52 and 1.35, respectively, Figure 

6a and c).  

Compared to women, men exhibited higher mtDNAcn in monocytes and neutrophils 

(range: 5-12%, g=0.37-0.73, Figure 6b), higher CI activity in neutrophils and NK cells (range: 9-

13%, g=0.26-0.64, Figure 4c), and higher CIV activity specifically in B cells (20%, g=0.53, Figure 

6e). Cells exhibiting the largest degree of sexual dimorphism on the integrated MHI were 

neutrophils (17% higher in women, g=0.52) and B cells (12% higher in men, g=0.73) (Figure 6f). 

In contrast, none of these differences were detectable in PBMCs, illustrating the limitation of 
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mixed cells to examine sex differences in mitochondrial function. These data reveal cell subtype-

specific (and possibly lineage-specific) sex differences in human immune cell mitochondria.  

Age influences mitochondrial content and RC function 

We then quantified the association between the same mitochondrial features and age as 

correlations for each cell subtype, and in PBMCs. With increasing age, CS activity was relatively 

unaffected except in neutrophils, where it decreased ~7% per decade (r=-0.63, p=0.031) (Figure 

6g). In comparison, mtDNAcn increased with increasing age among all cell subtypes except CD8+ 

naïve T cells. Interestingly, CD8+ naïve T cells were the cell subtype exhibiting the strongest age-

related decline in circulatory abundance. CD4+ naïve T cells and monocytes showed the largest 

age-related change in mtDNAcn, marked by a ~10% increase in the number of mitochondrial 

genome copies per cell per decade of life (r=0.54 for both, p=0.022 and 0.023 respectively, Figure 

6h). The age-related increase in mtDNAcn in CD4+ T cells is consistent with the increase in 

mitochondrial respiratory chain proteins in this cell population24. Thus, in specific cell subtype 

preparations, aging is associated with a consistent increase in leukocyte mtDNAcn.  

For RC function, we observed an equal number of cell subtypes with either positive or 

negative correlations with age, with the exception of CII (Figures 6i-k). CII activity was positively 

correlated with age across all cell types, except for monocytes and NK cells where it was 

independent from age. In contrast, CI and CIV activities were only weakly associated with age, 

highlighting again differential regulation and partial “biological independence" of different RC 

components. Of all cell types, CD8+ CM-EM T cells showed the most consistent positive 

associations for all RC activities and age, most notably for CII where the enzymatic activity per 

cell increased a striking ~21% per decade (r=0.85, p=0.0004). CD4+ naïve T cells were the only 

cell type showing a consistent, albeit modest, increase of both mitochondrial content and function 

with age (range:1-10% increase per decade, r=0.08-0.54, Supplemental Figure 5). Similarly, MHI 

correlated positively with age in CD8+ CM-EM T cells, indicating that energy production capacity 

on a per-mitochondrion basis tends to increase with age in this cell type (r=0.56, p=0.052), 

possibly related to the acquisition or maintenance of memory characteristics. In contrast, MHI 

tended to correlate negatively with age in monocytes (r=-0.35, p=0.15) (Figure 6l).  

Overall, these data demonstrate that age-related changes in CS activity, mtDNAcn, and 

RC function are largely cell-type specific. This conclusion is further reinforced by analyses of 

PBMCs where mitochondrial features consistently did not significantly correlate with age (r=0.008-
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0.15, absolute values) (Figure 4g-l). Thus, PBMCs appear insensitive to robust cell-type specific 

mitochondrial recalibrations with age, again highlighting the value of cell-specific measurements. 

 Cell subtype distributions exhibit natural week-to-week variation 

 Whether and how much mitochondrial content/function change over time is not well 

defined, and to our knowledge has not been examined in circulating human immune cells. To 

examine this question, we repeated the same blood collection, cell sorting, and downstream 

mitochondrial enzymatic and molecular profiling described above on a healthy 34-year-old 

Caucasian man (author M.P.), weekly over 9 weeks (Figure 7a). To preclude external influences 

of cell subtype distributions and mitochondrial function, each blood draw occurred at the same 

time of day (9:00-9:30am), on the same day of the week, after a standardized breakfast and 

comparable physical activity. The 6 most abundant cell subtypes for this individual included: 

neutrophils, NK cells, monocytes, naïve and CM-EM subtypes of CD4+ T cells, and naïve CD8+ T 

cells. The resulting samples were processed on the mitochondrial phenotyping platform in parallel 

with the cohort samples, ensuring that results across the cohort and repeat participant are directly 

comparable. 

We first quantified the circulating proportions (% of total leukocytes by FACS) of 12 cell 

types to establish how much the abundance of each cell subtype naturally varies within a person 

(Supplemental Figure 6). Cell type distribution is known to exhibit natural diurnal variation6, 43 and 

can be altered with stress exposure in rats and humans44, 45. The cell subtype with the least week-

to-week variation in abundance was CD8+ EM (root mean square of successive differences 

[rMSSD]=0.22, coefficient of variation [C.V.]=19.5%), which varied between 6.3% (week 2, 

highest) to 3.3% of total cells (week 9, lowest). Thus, even the least variable cell type can 

decrease/increase in proportion by approximately half in the span of a few weeks. In contrast, 

other subtypes such as CD4+ TEMRA (min=0.02% to max=0.62%) and neutrophils (min=3.9% to 

max=31.8%) varied week-to-week by as much as an order of magnitude (i.e., 10-fold), similar in 

magnitude to between-person differences observed in the cohort (see Figure 1e and 

Supplemental Table 2). Antibody-producing B cells, which had the highest mtDNAcn, varied by 

up to 1.1-fold (min=0.86% to max=1.8%). Together, these time-course results illustrate the 

dynamic remodeling of circulating leukocyte populations within a single person. In addition, these 

data suggest that cell mixtures (e.g. PBMCs) are likely to be confounded by unequal abundance 

of different cell types on each occasion of sampling.  
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To ascertain this point, we repeated our analysis above to quantify the influence of 

circulating abundance on individual mitochondrial metrics in PBMCs within-person. Interestingly, 

the pattern of associations between mitochondrial features and PBMC mitochondrial function was 

markedly different between the cohort and repeat participant (Supplemental Figure 7a). Contrary 

to the cohort, at the within-person level B cell abundance did not correlate with PBMCs mtDNAcn 

or enzymatic activities, possibly because of the limited range in circulating B cell abundance (only 

0.95% week-to-week range in the repeat participant vs 15% range in the cohort). Within-person, 

the abundance of CD4+ naïve T cells was positively correlated with PBMCs mtDNAcn, CS and CI 

activity, similar in direction to what was observed at the group level. However, on average, 

compared to the cohort, the associations between the proportion of cell subtypes and PBMCs 

mitochondrial features tended to be stronger and more negative in direction, as noted by the 

abundance of strong negative correlations in Supplemental Figure 7b.  

In particular, on weeks when the participant had higher circulating levels of EM and 

TEMRA CD4+ and CD8+ lymphocytes, most mitochondrial features were considerably lower in 

PBMCs. Interestingly, the associations were in the opposite direction (positive) for CM subtypes, 

suggesting a potentially meaningful functional distinction between central and effector memory 

subtypes in relation to PBMCs cell composition and/or mitochondrial function.  

Similarly, the associations between CBC-derived cell proportions and PBMCs 

mitochondrial features tended to be weaker and in opposite direction at the within-person level 

compared to the cohort (Supplemental Figure 7c-d). Having established that PBMCs are 

confounded in several ways when examined in a cohort setting, one interpretation of this 

confounding pattern comparison at the between-person (i.e., cohort) vs within-person levels is 

that the nature of the confounds (ie., which cell types predominantly influence PBMCs 

mitochondrial features) may in fact vary from one individual to the next. But regardless of the 

interpretation, these data reinforce the notion that PBMCs mitochondrial features are heavily 

skewed by variable cell type distributions. 

Mitochondrial content, mtDNAcn and RC activity exhibit natural week-to-week variation 

We then analyzed mitochondrial features reflecting content and RC function in each 

available cell type across the 9 time points. The first observation was that the robust cell type 

differences reported above in our cohort were conserved in the repeat participant. Monocytes had 

the highest RC activity, neutrophils the lowest, and CD4+ and CD8+ T lymphocytes showed 

intermediate activities. Similarly, the available cell subtype with the highest mtDNAcn was CD8+ 
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naïve T cells (average across 9 weeks=400 copies/cell, 427 in the cohort) and neutrophils 

exhibited the lowest mtDNAcn in both the repeat participant and the cohort (average=123 

copies/cell, 128 in the cohort). We note that B cells were of too low abundance to be included in 

the repeat participant. 

We next focused on variation over time. Within specific cell subtypes, we found that all 

mitochondrial metrics exhibited substantial weekly variation. Within the same person, different 

cell types showed week-to-week variation ranging from 7.3 to 21.9% for CS activity, 4.1 to 18.3% 

for mtDNAcn, 8.4 to 37.5% for CI, 4.1 to 15.3% for CII, and 15.2 to 64.4% for CIV (Figure 7b-f). 

Similarly, MHI in each subtype varied by 8.3 to 20.6%, with the naïve subsets of CD4+ and CD8+ 

T lymphocytes exhibiting the largest week-to-week changes (rMSSD=0.28 and 0.22, respectively) 

(Figure 7g). In most cases, the observed variation was significantly greater than the established 

technical variation in our assays (see Supplemental Table 3), providing confidence that these 

changes in mitochondrial content and function over time reflect real biological changes rather than 

technical variability. 

 To put this natural biological variation in perspective, we directly compared the inter- and 

intra- individual variation of mitochondrial metrics. Specifically, we asked: relative to differences 

observed among a heterogeneous cohort of women and men spanning 4 decades of life, how 

much do the same metrics naturally vary within a single person. Remarkably, for several 

mitochondrial metrics, the 9-week range of natural variation within the same person was similar 

to the between-person differences among our 21-participant cohort. Figure 7h provides a side-

by-side comparison of the cohort and repeat participant CS activity on the same scale. The C.V. 

of CS in monocytes was 17.0% for the cohort and 20.2% in the repeat participant. Similarly, in 

CD4+ naïve T cells, the dynamic range for CS activity among both the cohort and repeat 

participant was similar. Supplemental Figure 8 shows side-by-side comparisons of between- and 

within-person variation for other mitochondrial features (mtDNAcn, CI, CII, CIV, and MHI). The 

similar degree of variation in the repeat participant as in the heterogenous cohort indicates that 

dynamic variation in mitochondrial function is a generalizable property across all mitochondrial 

features examined. This also suggests that to ensure the reliability of mitochondrial content and 

function features, future research may need to incorporate repeated, within-person measures.  

When evaluating the stability of PBMCs mitochondrial metrics, we found that PBMCs CS 

activity, mtDNAcn, and RC activity varied by 9.8-61.9%, similar to the variation observed in 

isolated subtypes (Figure 7b-g). For mtDNAcn, CI, and CII activities, PBMCs showed either 
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similar or higher week-to-week variation than neutrophils, the cell subtype with the greatest 

dynamic variation on these mitochondrial features (despite the absence of neutrophils in PBMCs). 

Thus, PBMCs exhibit at least an equivalent degree of dynamic variation over time as individual 

cell subtypes, although again this variation is driven in large part by variation in cell distribution. 

Co-regulation of mitochondrial features across cell types 

Next, we assessed the co-regulation of mitochondrial content and RC activity across cell 

subtypes and PBMCs within the same person over time. Despite the small number of timepoints 

for these comparisons, similar to our cohort findings, CS and mtDNAcn were most highly 

correlated across cell types (average rz’=0.55-0.70) (Figure 7i-j). Again, RC activities were only 

moderately correlated, indicating partial co-regulation of mitochondrial energetics across some 

cell subtypes. Of the RC complexes, CI was the most consistent across cell subtypes (average 

rz’=0.39), whereas CIV showed the least co-regulation (average rz’=0.06) including several 

negative correlations (Figure 7j). For example, on weeks when CIV activity for this individual 

increased in monocytes, CIV activity tended to similarly increase in CD4+ CM-EM T cells (r=0.71, 

p=0.088), but tended to decrease in CD8+ naïve T cells (r=-0.68, p=0.11). Altogether, these within-

person data were consistent with our cohort findings (between individuals), indicating partial co-

regulation of mitochondrial features across cell subtypes, including some negative associations 

that remain unexplained.  

Cell type-to-PBMCs associations tended to be stronger in the repeat participant compared 

to the cohort (Figure 7i, Supplemental Figure 7e-f). In particular, CS activity and mtDNAcn were 

highly correlated between PBMCs and innate immune cells, even if those cells are only partially 

contained in PBMCs. In contrast, the associations of mitochondrial features in PBMCs with naïve 

and memory lymphocytes were more modest, even though lymphocytes are expected to 

constitute the largest cellular fraction in PBMCs. Thus, PBMCs exhibit substantial dynamic 

changes among several mitochondrial features that appear relatively independent from those 

same features in lymphocyte populations, again suggesting a substantial influence of cell 

distribution and possibly other unknown factors. 

Compiling all cell subtype pairs for each mitochondrial feature, we then systematically 

evaluated the level of agreement between the cohort and the repeat participant. In other words, 

we asked if two cell subtypes (e.g., CD4+ and CD8+ naïve) are highly correlated for a given 

mitochondrial feature (e.g., CS) among the cohort, do these cell subtypes also show high 

correlation within a single person over time? The presence of most datapoints in the upper right 
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quadrants of Figure 7k supports the general conclusion that mitochondrial features – particularly 

CS and mtDNAcn – are generally co-regulated across cell types within both the cohort and a 

single person over time. However, the level of agreement between the cohort and repeat 

participant was generally weak to medium (r=0.08-0.35, absolute values), possibly pointing to 

person-level differences in how mitochondrial behavior among different cell types relate to each 

other.  

These and previous results differed by mitochondrial feature, and each feature reflects a 

slightly different aspect of mitochondrial biology. In previous work27, 46, combining multiple 

mitochondrial features into multivariate indices also showed potential to more reliably detect 

meaningful treatment or group differences. Therefore, in keeping with the concept of 

mitochondrial functional specialization, we then performed exploratory analyses of cell subtype-

specific mitochondrial phenotypes, or mitotypes, by mathematically combining multiple 

mitochondrial features in graphical representation. 

Mitotypes differ between immune cell subtypes 

 As in other complex biological systems, the function and behavior of mitochondria require 

synergy among multiple features. Therefore, the functional characteristics of mitochondria can be 

expressed by multivariate indices reflecting the inter-relations of multiple mitochondrial features. 

This logic is similar to body mass index (BMI), which integrates height and weight into a BMI ratio 

that is more easily interpretable and meaningful than either height or weight features alone. In 

relation to mitochondria, in human tissues the ratio of CIV and CII activities (also known as 

COX/SDH ratio) is used in diagnoses of mitochondrial dysfunction, whereas alone either CIV or 

CII activities are less easily interpretable47. Thus, integrating primary features of mitochondrial 

content, genome abundance, and RC function could produce integrated mitotypes, which reflect 

the functional specialization of mitochondria among different cell subtypes, or among dynamic 

cellular states.  

Similar to BMI, the mitotypes analyzed (listed and defined in Supplemental Figure 9) are 

computed from the ratio of two or more mitochondrial features. Each mitotype can be visualized 

as a scatterplot with two variables of interest as the x and y axes (Figure 8a). In the example in 

Figure 8a, the hypothetical cell type A has a higher value for feature 2 relative to feature 1 

(Mitotype A), while cell type B has a higher value for feature 1 relative to feature 2 (Mitotype B). 

Note that if both features increase or decrease following the same proportions, the ratio is the 

same and follows a diagonal on the mitotype graph, reflecting an invariant mitotype. Thus, similar 
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to BMI, changes in mitotypes are reflected by perpendicular movement relative to the diagonal in 

the mitotype space.  

Given that leukocyte subtypes differ widely in their bioenergetic properties, we asked in 

our cohort (n=21 individuals) if different cell subtypes have different mitotypes. The first mitotype 

examined puts in relation mtDNA copies per cell (mtDNAcn) relative to mitochondrial content per 

cell (CS activity), creating a mitotype (mtDNAcn/CS) reflecting mtDNA density per mitochondrion 

(Figure 8b). Alone, this mtDNA density mitotype provided remarkable separation of cell subtypes. 

Neutrophils and NK cells were low on both metrics, B cells were high on both metrics, monocytes 

had the lowest mtDNA density, whereas CD8+ naïve T cells exhibited the highest mtDNA density 

of all cell subtypes tested. Figures 8c-e illustrate other mitotypes including i) CII activity per unit 

of mitochondrial genome (CII/mtDNAcn), as well as more complex combinations of variables such 

as ii) CI activity per mtDNA (CI/mtDNAcn ratio on y axis) in relation to mtDNA density 

(mtDNAcn/CS activity on x axis), and iii) CI activity per mitochondrial content (CI/CS, y axis) in 

relation to mtDNA density (mtDNAcn/CS, x axis). As Figure 8b-e shows, PBMCs generally exhibit 

a similar mitotype (diagonal line from the origin of the plot) as innate immune cell subtypes 

(monocytes, NK cells, and neutrophils), appearing relatively distinct from lymphocyte 

subpopulations. We understand these mitotype combinations to reflect the well-known principles 

of mitochondrial functional specialization17, 48 and to represent individual mitochondrial 

“personality types'' tailored to subserve specific bioenergetic and biosynthetic requirements within 

immune cell subtypes. 

This mitotype-based analysis of mitochondrial characteristics revealed two main points. 

First, cells of the innate and adaptive immune subdivisions contain mitochondria that differ not 

only quantitatively in their individual metrics of mitochondrial content and RC activity, but that 

exhibit marked qualitative differences. This is illustrated by the distinct clustering of neutrophils, 

monocytes and NK cells (innate) within similar mitotype spaces, and the clustering of all 

lymphocyte subtypes together in a different space. Compared to cells of the innate immune 

compartment, lymphocytes (adaptive) had higher mtDNAcn and lower respiratory chain activity. 

A second insight from this analysis is that compared to naïve subsets of CD4+ and CD8+ T cells, 

which themselves have relatively distinct mitotypes (e.g., CII/mtDNAcn, Figure 8c), both memory 

CD4+ and CD8+ subtypes converged to similar mitotype spaces. Functionally, this naïve-to-

memory transition is well known to involve a metabolic shift including changes in spare respiratory 

capacity, mitochondrial content, glucose and fatty acid uptake41, 49. The mitotype analysis showed 

that compared to naïve cell subtypes, memory subtypes exhibit 26-29% lower mtDNA density per 
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mitochondrion, but an 8-23% increase in RC activity per mitochondrion in CD4+ T cells, although 

not in CD8+ T cells (Figure 8f).  

Stability of mitotypes 

 Next, we examined how stable these cell-type specific mitotypes were in the independent 

repeat participant dataset. We plotted matching cell types for the cohort and for the repeat 

participant on the same mitotype plots. As for the cohort, cell types belonging to the innate and 

adaptive immune subdivisions similarly clustered together, and naïve and memory subtype 

differences were also validated at the within-person level (Figure 8g-i), demonstrating the 

conserved nature of immune cell mitotypes.  

To examine the biological stability of mitotypes across individuals, we determined the 

effect sizes between cell subtypes for selected mitotypes in our cohort, and then compared these 

to the magnitude of the differences between the cohort and the repeat participant for specific cell 

subtypes (Figure 8j). First, consistent with the results for individual mitochondrial features (see 

Figure 4), the effect sizes comparing mitotypes between cell subtypes ranged from moderate to 

very large. For example, mitotype differences between monocytes and CD8+ naïve T lymphocytes 

had effect sizes ranging from g=2.5 to 3.5. Neutrophils and NK cells, which were among the most 

similar cell types on most mitotype plots, had Hedges’ g values ranging from 0.2 (small) to 1.2 

(very large), reflecting some considerable mitotype differences even among these cell types. In 

comparison, inter-individual variation (cohort n=21 vs repeat n=9) across different mitotypes was 

over an order of magnitude smaller, with pooled effects sizes being on average 12.5-fold smaller 

than were cell type differences. Overall, these data across both the mixed cohort of women and 

men, and the within-person repeated-measures, reveal that immune cell subtypes have distinct 

and robust mitotypes consistent with their divergent bioenergetic requirements.  

Evidence for a sex and age bias in mitotypes 

We next sought to systematically examine if mitotypes differ between women and men. 

Mitotypes were organized into five categories of indices based upon their features, yielding a total 

of 16 mathematically-distinct mitotypes (see Supplemental Figure 9). For each mitotype, we 

quantified the magnitude of the difference between women and men by the effect size (g), ranked 

all mitotype x cell subtype combinations (16 mitotypes x 9 cell subtypes), and analyzed the 

distribution of these indices by sex. The majority of mitotypes reflecting mitochondrial RC activities 

per CS activity were higher in men (p<0.0001, Chi-square), while RC activity per mtDNA density 

(p<0.001) and RC activity per genome in relation to mtDNA density mitotypes (p<0.01) were 
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predominantly higher in women (Figure 9a). The magnitude of sex differences ranged from 17% 

higher in men (CI/CS in CD4+ CM-EM T cells, g=1.14) to 38% higher in women (CII/mtDNA 

density in neutrophils, g=1.37) (Figure 9b). The direction of sex differences for all mitotypes (e.g. 

higher in women or in men) with effect sizes is illustrated in Figure 9c. The average effect size 

across all mitotypes was 0.31 (small) in CD4+ naïve T cells, compared to monocytes where the 

average effect size was 0.71 (medium). Compared to purified cell subtypes, the magnitude of sex 

differences in the PBMCs cell mixture appeared blunted. 

Using the same approach, we then systematically quantified the relationship between 

mitotypes and age. Mitotypes reflecting RC activity per CS activity were predominantly positively 

correlated with age (p=0.046), while RC activities per genome in relation to mtDNA density were 

generally negatively correlated with age (p=0.012) (Figure 9d). This finding is consistent with the 

overall age-related increase in mtDNAcn across cell subtypes, and could indicate a general 

decrease in the RC output per unit of mitochondrial genome with aging in immune cells. The 

strength of these correlations ranged from r=-0.67 to 0.75 (Figure 9e). The correlations of 

individual mitotypes with age for each cell subtype are shown in Figure 9f. Again, PBMCs showed 

among the weakest associations with either sex or age (Figure 9c and f). Thus, even if specific 

cell subtypes reveal consistent sex- and age-related differences, PBMCs offer modest to no 

sensitivity to detect these associations. 

Overall, these findings reveal consistent patterns of differences in immune cell mitotypes 

between women and men, and to a lesser extent with aging. Importantly, these data also indicate 

that the observed differences vary considerably by cell subtype. Whereas innate immune cells 

exhibited the strongest sex differences, B cells exhibited the largest age-related mitotype 

changes.  

Associations of blood biomarkers with subtype-specific mitochondrial features 

 To explore the source of inter-individual differences and within-person dynamics over time 

described above, we asked to what extent subtype-specific mitochondrial features were 

correlated with blood biomarkers. We examined a panel of sex hormones, inflammatory markers, 

metabolic markers, and standard clinical blood biochemistry in relation to subtype-specific 

mitochondrial features (Figure 10a). Because mitochondrial features in specific cell types, as well 

as blood biomarkers, were both associated with sex and age, we examined sex- and age- 

adjusted partial correlations. At the cohort level, associations between blood biomarkers and cell 

subtype mitochondrial phenotypes were relatively weak (Figure 10b), indicating that circulating 

neuroendocrine, metabolic and inflammatory factors are unlikely to explain a large fraction of the 
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variance in inter-individual differences in mitochondrial biology, pointing instead to behavioral, 

genetic and other influences as the source of inter-individual variation. 

We then examined this question at the within-person level where week-to-week variation 

is independent of constitutional and genetic influences, and where behavior (e.g., levels of 

physical activity, sleep patterns, etc.) is more stable relative to the behavioral differences between 

women and men of different ages. Compared to the cohort, the strength of associations between 

biomarkers and mitochondrial metrics across cell types was on average 0.7-fold larger in the 

repeat participant (average absolute values, rz’=0.39 for the repeat participant vs 0.23 for the 

cohort) (Figure 10c). Another notable finding was the difference in the correlation patterns 

between biomarkers and different cell subtypes. These cell-type specific correlation patterns are 

consistent with differences either in mitochondria themselves, or in other properties of the cells 

that host them, which may exhibit different sensitivities to circulating neuroendocrine, metabolic, 

or biochemical factors. 

Notable patterns of associations between circulating biomarkers and mitochondrial 

features emerged at the within-person level. For instance, lipid levels including triglycerides, total 

cholesterol, and low- and high-density lipoproteins (LDL, HDL) were positively correlated with 

markers of mitochondrial content (CS activity and mtDNAcn), with the largest effect sizes 

observed among innate immune cells: neutrophils, NK cells, and monocytes (Figure 10c, red area 

on the heatmap). In these cells, lipid levels accounted on average for 53% of the variance (r2) in 

CS activity and 47% in mtDNAcn. We note that some of these estimates are likely overestimated 

due to the small number of repeated measures. Compared to CS and mtDNAcn, these 

associations were less consistent for RC enzyme activities and MHI. We speculate that the 

positive association of lipid levels and mitochondrial content features in innate immune cells could 

reflect the action of lipid signaling pathways well known to stimulate mitochondrial biogenesis in 

various tissue types47, 50, 51, 52.  

We finally examined potential divergences in the associations among the cohort compared 

to the repeat participant. It is established that different individuals show remarkably different 

baseline levels of both mitochondrial features and blood biochemistry measures (e.g., some 

people have higher blood cholesterol than others). Moreover, our data shows that within a person, 

there is also extensive physiological variation in mitochondrial features and in blood biochemistry 

over time. Therefore, we reasoned that even if each participant in our cohort was to exhibit a 

strong positive correlation between LDL and CS activity over time, sampling each person on a 
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single randomly selected occasion (where LDL could substantially differ) would not reveal this 

positive correlation at the cohort or group level. As an illustration of this point, in the repeat 

participant we found a strong association between lipids and mitochondrial content (LDL and 

neutrophil CS activity, r=0.90, p<0.01) that was not observed in the cohort, where each datapoint 

represents a single time point for a given person (panel 1 of Figure 10d). The lack of association 

in the cohort was apparent despite a substantially larger dynamic range in LDL in the cohort 

relative to the repeat participant (43-180 vs 105-134 mg/dL, respectively). On the other hand, 

between-person comparisons in the cohort also revealed apparent associations that were not 

observed in the repeat participant (Figure 10d, panels 3 and 4). 

Altogether, although suggestive and not definitive, the divergence in the correlation 

strengths and patterns between the cohort and repeat participant (Figure 10e) again highlight the 

potential value of repeated-measures designs to examine the influence of humoral factors on 

immune mitochondrial biology.  

 

Discussion 

Mapping the naturally occurring bioenergetic differences among various tissues and cell 

types is critical to further our understanding of the role of mitochondria in human health and 

disease. Here we have used the immune system as a model to examine this question, isolating 

and phenotyping multiple immune cell subtypes and mixed PBMCs among a diverse cohort of 

women and men, and in repeated weekly measures in the same participant. Our study first 

described wide variation in the proportions of circulating innate and adaptive cell subtypes, both 

between and within-person. Using a high-throughput mitochondrial phenotyping platform, we 

define large functional differences between immune cell subtypes in mitochondrial features 

reflecting both mitochondrial content and respiratory chain function. These mitochondrial features 

also vary moderately by age and sex, but only when examined in purified cell populations. 

Importantly, our results show that PBMCs mitochondrial measurements are confounded in 

multiple ways including i) cell type composition, ii) platelet contamination, iii) mitochondrial 

properties across different cell subtypes, and iv) the dynamic remodeling of cell type composition 

and bioenergetics over time. As a result, PBMCs largely mask age- and sex-related changes in 

immune mitochondrial biology. In addition, we uncover large week-to-week within-person 

variation in both cell subtype proportions and mitochondrial behavior, pointing to heretofore 

underappreciated dynamic regulation of mitochondrial content and function over time. Finally, as 
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a first step towards identifying stable cell-type specific bioenergetic profiles for future research, 

we also introduce multivariate mitotypes. These data in specific leukocyte populations provide 

foundational knowledge of mitochondrial phenotypes in human immune cells, their sensitivity to 

inter-individual variables such as age and sex, and highlight the value of repeated-measures 

designs to examine the mechanisms of dynamic mitochondrial variation in humans.  

Because PBMCs are widely used across fields, mostly due to their ease of collection, we 

wanted to examine whether they would reflect or mask observations in specific cell subtypes. In 

many cases, associations with moderate to large effect sizes in specific cell subtypes were either 

not observed or blunted in PBMCs. For example, there was no correlation between age and 

PBMCs MHI either in this study or previously53, but correlations were present in purified cell 

subtypes. Interestingly, the mitotype analysis revealed similar mitotypes between total PBMCs 

and cells of the innate subdivision, namely neutrophils, NK cells, and monocytes (often aligned 

along the same mitotype diagonal space on mitotype plots). In the mitotype plots, if PBMCs were 

composed uniquely of a mixture of lymphocytes and monocytes, the natural expectation is that 

PBMCs would lie somewhere between the specific subsets that compose it. Instead, PBMCs 

occupy an entirely different and unexpected mitotype space, indicating the presence of one or 

more contaminating factors. Our platelet depletion experiment, even if we started with platelet-

depleted PBMCs (Ficoll plus two low spin centrifugation steps) leaves little doubt that platelet 

contamination skews the measurements of several mitochondrial features in PBMCs, with some 

features being apparently more affected than others. This could explain the discrepancies 

between PBMCs and purified cell types, including why PBMCs have higher CS activity values 

than any of its constituent cells. Although we cannot entirely rule out potential contamination of 

individual cell types with residual platelets, the FACS labeling, washing, and sorting procedures 

must produce the purest sample with the highest degree of biological specificity.  

 However, a major frontier for the human immunometabolism field consists in defining 

temporal trajectories of change over time in specific cell types54. Achieving this goal promises to 

transform our knowledge of immune and mitochondrial biology, and allow for the rational design 

of therapeutic approaches54. A primary finding of our work is a natural within-person variation of 

mitochondrial features, providing initial insight into the temporal dynamics of immunometabolism 

in specific human cell subtype populations. Sorting of immunologically-defined cell subtypes 

removes the potential confound of week-to-week changes in cell type distributions, an inherent 

confounding variable in PBMCs, and therefore adds confidence in the robustness of the reported 

temporal mitochondrial variation. This within-person analysis revealed that mitochondrial features 
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within immune cells exhibit state-like properties that vary by >20-30% week-to-week. These 

findings warrant future studies investigating the factors that drive these changes. We had 

previously observed in PBMCs that up to 12% of the inter-individual variation in MHI was 

attributable to positive mood (ratings of positive experiences such as excited, hopeful, inspired, 

love) the night prior blood draw27, implying that psychosocial factors could in part contribute to a 

substantial portion of the dynamic variation in leukocyte mitochondrial function over 24 hours. 

However, limitations in this prior study – including the use of PBMCs and a single measurement 

time point for MHI – call for additional work to disentangle the independent contributions of 

behavioral, psychosocial, nutritional, and other factors on mitochondrial features in humans. 

Importantly, our results demonstrate that mitochondrial changes are taking place within less than 

one week. Therefore, we posit that establishing the exact temporal dynamics of leukocyte 

mitochondrial variations and immunometabolism in general will require repeated assessments 

with even greater temporal resolution.  

A particularly striking observation is that the dynamic changes in cell subtype-specific 

mitochondrial features within a person can, in some cell types, be of similar magnitude to the 

biological variation observed among a heterogenous reference cohort of 21 individuals composed 

of women and men spanning four decades of life. Thus, a single measure of mitochondrial 

function may not accurately reflect a given person’s average mitochondrial functional capacity. 

Therefore, as for other biological markers with high intra-person variation (e.g., cortisol55), our 

results highlight the importance of repeated-measures designs to capture statistically stable inter-

individual differences in future research.   

Our mitotype approach, while exploratory, also provided further insight on the 

mitochondrial functional specialization among circulating human immune cell subtypes. Most 

notably, the innate and adaptive subdivisions, as well as the metabolic transition from naïve T 

lymphocytes to memory states, both harbored distinct mitotypes. Here also, we found mitotypes 

of specific cell subtypes to be relatively conserved between our heterogenous cohort and repeat 

participant. Moreover, the mitotype analysis revealed potentially generalizable sex- and age-

related differences in mitochondrial features. Thus, the mitotype approach may help to achieve 

an understanding of both quantitative and qualitative differences in mitochondrial phenotypes.  

In relation to sex differences, animal studies have consistently identified sexually 

dimorphic mitochondrial features, including greater mitochondrial content in females (reviewed in 
56). Likewise, a study in humans showed that PBMCs from women have greater CS activity, and 
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greater CI and CII-mediated respiration57. Consistent with previous findings, our data show similar 

changes in enzymatic activities for most, but not all cell types, suggesting that the magnitude of 

sex differences is likely cell-type specific. Therefore, the use of methods offering a sufficient level 

of biological specificity appear warranted to reproducibly and accurately quantify these sex 

differences in different contexts.  

In relation to age, previous studies in whole blood38, 39, PBMCs40, and skeletal muscle 

tissue58, 59, but not liver60, have consistently reported an age-related decline in mtDNAcn. 

However, these studies, particularly those in blood, are confounded by the existence of cell 

mixtures and platelet contamination12, 13. For example, in a study of 672 adults, accounting for cell 

type distribution and platelet count through measurement and statistical adjustments eliminated 

initial associations between mtDNAcn and age61. Our data, like previous studies11, 12, 13, 14, 

demonstrate how platelets inflate mtDNAcn, as well as other mitochondrial features. Integration 

of data across two population-based studies and our cohort show that platelet number 

consistently decreases with age, which could account for the apparent decline in blood or PBMCs 

mtDNAcn when sampling individuals across the lifespan – older individuals have fewer platelets, 

and therefore appear to have less mtDNA copies per cell, even if cellular mtDNAcn is actually 

unchanged. In fact, our cell-specific data shows that cellular mtDNAcn is positively correlated with 

age – increasing by as much as 10% per decade between ages 20 to 60. Given the accumulation 

of mtDNA mutations and deletions with age (e.g.,40, 62), and that mtDNA defects can trigger the 

compensatory upregulation of mtDNAcn to counteract the loss of intact mitochondria associated 

with age63, 64, the observed positive correlation of mtDNAcn with age could reflect compensatory 

upregulation of mtDNA replication. Alternatively, this could reflect impaired autophagic removal in 

aging cells, an interpretation consistent with recent results in CD4+ T cells24. The only cell type 

examined that did not exhibit an age-related positive association with mtDNAcn are CD8+ naïve 

T cells, which, interestingly, is the only cell type whose abundance in circulation significantly 

declines with advancing age. The basis for the direction of this association requires further 

investigation.  

This study presents limitations that should be noted. First, although this represents, to our 

knowledge, the largest available study of mitochondrial biochemistry and qPCR in hundreds of 

samples, the cohort is of relatively small size and the exhaustive repeated-measures was carried 

out in only one participant. We included an equal representation of women and men in the cohort, 

but the sample size precluded stratification of all analyzes by sex. Additionally, because our 

mitochondrial phenotyping platform currently requires ~5 million cells per sample, we only 
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collected the six most abundant cell subtypes from each participant, which in some instances 

reduced the final sample size for different cell subtypes. The variable proportions of cell subtypes 

from person-to-person are provided in Supplemental Table 2, which determined which cell 

subtypes were collected from each participant. In order to accommodate the minimum cell number 

per sample, CM and EM subtypes were grouped, although they may exhibit differences not 

examined here. Furthermore, we recognize that additional cell surface markers may be useful to 

identify cell populations not included here (e.g., activated or adaptive lymphocyte subtypes). 

Finally, we did not test participants for CMV status, which could contribute to the age-related 

effects on immune cell subtypes. 

Altogether, these mitochondrial profiling results in circulating human immune cells fill three 

main knowledge gaps. (1) They define confounds for PBMCs and show how PBMCs fail to capture 

age- and sex-related mitochondrial recalibrations that exist in specific immune cell populations, 

an important finding for the design of future studies. (2) They precisely document large-scale, 

quantitative differences in CS activity, mtDNAcn, and RC function between immune cell subtypes, 

which represent foundational knowledge of the metabolic characteristics in key cell types in the 

human immune system. Additionally, our mitotype approach identifies conserved multivariate 

phenotypic distinctions between lymphoid and myeloid cells, and naïve-to-memory lymphocyte 

states. Finally, (3) this work reveals dynamic variation in mitochondrial function, providing initial 

evidence of the natural within-person variation of cell subtypes and dynamic mitochondrial profiles 

over days to weeks. These results provide the required foundational knowledge to develop 

interpretable blood-based assays of mitochondrial health.   
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Methods 

Participants 

The study was approved by New York State Psychiatric Institute (Protocol #7618). All 

participants provided written informed consent. Healthy adults between 20 and 60 years willing to 

donate blood were eligible for inclusion. Exclusion criteria included severe cognitive deficit, 

symptoms of flu or other seasonal infection four weeks preceding the visit, involvement in other 

clinical trials, malignancy or other clinical condition, and diagnosis of mitochondrial disease. 

Participants were recruited via flyers posted in the Columbia University Irving Medical Center 

(CUIMC) community. Participants completed a short demographic questionnaire, anthropometric 

measurements (weight, height, heart rate, and blood pressure), and a blood draw. The main study 

cohort included twenty-one individuals (11 women, 10 men), mean age 36 ±11 (SD, range: 23-

57), were recruited. The ethnic breakdown of our sample was: 2 African Americans, 7 Asians, 

and 12 Caucasians. All blood draws took place in the morning between 9-10am. Additionally, 

repeated weekly measures were collected across 9 weeks from one healthy Caucasian man 

(author M.P., 34 years old) to assess within-person variability in mitochondrial measures and 

immune cell type distribution. To standardize and minimize the influence of nutritional and 

behavioral factors in the repeat participant, repeated measures were collected at the same time 

(9:00am), on the same day of the week (Fridays), after a standardized breakfast (chocolate 

crepe), ~30-60 minutes after a regular bicycle commute to study site. 

Blood Collection 

A total of 100 ml of blood was drawn from the antecubital vein for each participant and 

included one EDTA tube (Cat# BD367841, 2 ml) for complete blood count (CBC), two SST coated 

tubes (Cat#BD367986, 5 ml) for hormonal measures and blood biochemistry in serum, and 11 

Acid Dextrose A (ACD-A) tubes (Cat# BD364606, 8.5 ml) for leukocyte isolation and mitochondrial 

analyses, in order of collection. All tubes were gently inverted 10-12 times immediately after draw 

to ensure proper mixing. The EDTA and SST tubes for hematological and blood biochemistry 

were processed by the Center for Advanced Laboratory Medicine (CALM) Lab, and the ACD-A 

tubes were further processed for cell isolation. 

PBMCs and leukocyte isolation 

Ficoll 1077 and 1119 (Sigma), Hanks Balanced Salt Sodium (HBSS) without phenol red, 

calcium and magnesium (Life Technologies, Cat# 14175103) supplemented with 2% BSA (Sigma, 

Cat# A9576) (HBSS/BSA), HBSS/BSA supplemented with 1 mM of EDTA (Sigma, Cat# E9884) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2020.10.16.342923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

(HBSS/BSA/EDTA), and FBS (Thermofisher, cat# 10437036) were brought to room temperature 

overnight. PBMCs were isolated on 15 ml of low density Ficoll 1077 in a 50 ml conical tube, and 

total leukocytes were separated on 15ml of higher density Ficoll 1119 distributed across 7 conical 

tubes. Blood was first pooled and diluted with HBSS/BSA in a 1:1 ratio, and 25 ml of diluted blood 

was carefully layered on Ficoll and then centrifuged immediately at 700 x g for 30 minutes (no 

brake) in a horizontal rotor (swing-out head) tabletop centrifuge, at room temperature. 

Immediately after centrifugation, cells at the interface were collected and washed in 50 ml 

HBSS/BSA and centrifuged at 700 x g for 10 minutes. Supernatants were discarded and leukocyte 

pellets washed again in HBSS/BSA/EDTA and centrifuged at 700 x g for 10 minutes to limit 

platelet contamination. Low concentration EDTA (1mM) was used to prevent cell-cell adhesion or 

platelet activation, but a higher concentration was not used to avoid perturbing downstream 

mitochondrial assays. 

To perform cell count, both i) PBMCs (1:10 dilution) and ii) total leukocytes (1:100 dilution) 

were resuspended in 1 ml of HBSS/BSA/EDTA and counted on the Countess II FL Automated 

Cell Counter (Thermo Fisher Scientific, Cat# AMQAF1000) in a 1:1 dilution with trypan blue. 

Counts were performed in duplicates. If the difference between duplicates >10%, the count was 

repeated and the grand mean of the cell counts taken. Pellets of 5 million PBMCs were aliquoted 

and frozen at -80oC for mitochondrial assays. 

Immunolabeling of cell surface markers 

Two antibody cocktails meant for i) cell counting (Cocktail 1) and ii) cell sorting (Cocktail 

2), were prepared for fluorescence-activated cell sorting (FACS) (see Supplemental Table 4 for 

details). Antibodies were gently mixed, kept at 4°C, and shielded from light to avoid bleaching. 

Cocktail 1 (containing cell surface markers for activated T lymphocytes) was prepared with 17.5 

ul HBSS/BSA/EDTA and 2.5 ul per antibody (13 markers, 32.5 ul total antibody mix), for a total of 

50 ul. Cocktail 2 was prepared with 200 ul HBSS/BSA/EDTA and 25 ul per antibody (12 markers, 

300 ul total sorting antibody mix), for a total of 500 ul. 

Prior to each study visit, cell collection tubes (Cat#: 352063, polypropylene, 5 ml) were 

coated with 4.5ml of DMEM/10% FBS media to minimize cell-tube adhesion and maximize the 

recovery of sorted cells. Tubes were incubated for 24 hours at room temperature and stored at 

4°C until use, and decanted prior to use. Two coated polypropylene tubes were used for the 

FACS-ready antibody-labeled leukocytes, and an additional 60 coated polypropylene falcon tubes 

were decanted and 500 ul of media (DMEM/10% FBS) was added to receive sorted cells. 
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Prior to immunolabeling, total leukocytes were incubated with blocking buffer (to block 

non-specific binding to FC receptors) at a 1:10 dilution and incubated at room temperature for 10 

minutes. A 2 million cell aliquot was diluted to a final volume of 100 ul with HBSS/BSA/EDTA and 

combined with 50 ul of Cocktail 1. The remainder of total leukocytes (~100M cells) were incubated 

with 500 ul of Cocktail 2 for 20 minutes in the dark, at room temperature. Both cell preparations 

were then washed with 5 ml of HBSS/BSA/EDTA and centrifuged at 700 x g for 5 minutes. Using 

the propylene tubes, Cocktail 1 cells were resuspended in 200 ul of HBSS/BSA/EDTA, and total 

leukocytes for FACS were resuspended to final concentration of 20 million cells/ml with 

HBSS/BSA/EDTA.  

Fluorescence-activated cell sorting (FACS) 

Cells labeled with the Cocktail 1 (counting) panel was only used for data acquisition and 

phenotype analysis. Cells labeled with the Cocktail 2 (sorting) panel was FACS sorted using a 

BD™ Influx cell sorter to isolate the subpopulations from peripheral blood. The sorter was 

controlled using BD FACS Sortware. Cells were sorted using 100 um size nozzle and under the 

sheath pressure of 20 psi. Sorting speed was kept around 11,000-12,000 events/second. Cell 

concentration for sorting was measured at about 15x106 cells per ml. Cell sorter drop frequency 

was 37 KHz, stream focus was 10%, maximum drop charge was 110 Volts. A six-way sorting, 1.0 

drop pure sort mode was used to sort the cell subpopulations. Stream deflections were -84, -65, 

-32, 32, 65, and 84 for six-way sort from left to right. For each participant, 1 million cells (Cocktail 

1 panel) were run first to calculate the potential yield of each subpopulation, including neutrophils, 

B cells monocytes, NK cells, naïve CD4+ and CD8+, CM CD4+ and CD8+, EM CD4+ and CD8+, 

and TEMRA CD4+ and CD8+ (total cell number x percentage of each subpopulation). The six most 

abundant subpopulations were sorted. Purity checks were performed on all sorted subpopulations 

to ensure the instrument performance was good enough to reach the sorted population purity 

>95%. Raw data (.fcs file) was exported for further analysis on FCS Express 7 research version.  

Processing and storage of sorted cells 

Following flow cytometry, sorted cell subtypes were transferred and pooled by pipetting 

about half of each collection tube (2.5 ml) into larger falcon tubes, gently vortexing to liberate cells 

that may have adhered to the tube wall, and the remaining volume pipetted into the transfer tube. 

HBSS/2% BSA was used as necessary to equilibrate and cells were centrifuged at 1,000 x g for 

5 minutes. Following centrifugation, each cell pellet was isolated by gently decanting the 

supernatant and re-suspended into 1ml of HBSS/2% BSA. The resulting purified cell suspensions 

were transferred to a 1.5 ml Eppendorf tube for each cell type, centrifuged at 2,000 x g for 2 
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minutes at 4°C, and the supernatant carefully removed to leave a dry cell pellet. Samples were 

stored in liquid nitrogen for 4-12 months (-170°C) until mitochondrial biochemistry and mtDNAcn 

analyses were performed as a single batch. 

Mitochondrial enzymatic activities 

Samples were thawed and homogenized in preparation for enzymatic activity 

measurements with one tungsten bead and 500 ul of homogenization buffer (1 mM EDTA, 50 mM 

Triethanolamine). Tubes were transferred to a pre-chilled rack and homogenized using a Tissue 

Lyser (Qiagen cat# 85300) at 30 cycles/second for 1 minute. Samples were then incubated for 5 

minutes at 4°C, and homogenization was repeated for 1 minute and the samples were returned 

to ice ready for enzymatic assays. 

Mitochondrial enzyme activities were quantified spectrophotometrically for citrate 

synthase (CS), cytochrome c oxidase (COX, Complex IV), succinate dehydrogenase (SDH, 

Complex II), and NADH dehydrogenase (Complex I) as described previously27 with minor 

modifications. Each sample was measured in triplicates for each enzymatic assay (3 wells for 

total activity and 3 wells for non-specific activity, except for the COX assay where a single non-

specific activity value is determined across 30 wells). Homogenate volumes used for each 

reaction were: CS: 10 ul, COX and SDH: 20 ul, Complex I: 15 ul.  

CS activity was measured by detecting the increase in absorbance at 412 nm, in a reaction 

buffer (200 mM Tris, pH 7.4) containing acetyl-CoA 0.2 mM, 0.2 mM 5,5’- dithiobis-(2-nitrobenzoic 

acid) (DTNB), 0.55 mM oxaloacetic acid, and 0.1% Triton X-100. Final CS activity was obtained 

by integrating OD412 change from 150-480 sec, and by subtracting the non-specific activity 

measured in the absence of oxaloacetate. COX activity was measured by detecting the decrease 

in absorbance at 550 nm, in a 100 mM potassium phosphate reaction buffer (pH 7.5) containing 

0.1% n-dodecylmaltoside and 100 μM of purified reduced cytochrome c. Final COX activity was 

obtained by integrating OD550 change over 200-600 sec and by subtracting spontaneous cyt c 

oxidation without cell lysate. SDH activity was measured by detecting the decrease in absorbance 

at 600 nm, in potassium phosphate 100 mM reaction buffer (pH 7.5) containing 2 mM EDTA, 1 

mg/ml bovine serum albumin (BSA), 4 μM rotenone, 10 mM succinate, 0.25 mM potassium 

cyanide, 100 μM decylubuquinone, 100 μM DCIP, 200 μM ATP, 0.4 μM antimycin A. Final SDH 

activity was obtained by integrating OD600 change over 200-900 sec and by subtracting activity 

detected in the presence of malonate (5 mM), a specific inhibitor of SDH. Complex I activity was 

measured by detecting the decrease in absorbance at 600 nm, in potassium phosphate 100 mM 
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reaction buffer (pH 7.5) containing 2 mM EDTA, 3.5 mg/ml bovine serum albumin (BSA), 0.25 

mM potassium cyanide, 100 μM decylubuquinone, 100 μM DCIP, 200 μM NADH, 0.4 μM 

antimycin A. Final Complex I activity was obtained by integrating OD600 change over 120-600 sec 

and by subtracting activity detected in the presence of rotenone (500 μM) and piericidin A (200 

μM), specific inhibitors of Complex I. All assays were performed at 30oC. The molar extinction 

coefficients used were 13.6 L mol-1cm-1 for DTNB, 29.5 L mol-1cm-1 for reduced cytochrome c, and 

16.3 L mol-1cm-1 for DCIP to transform change in OD into enzyme activity.  

Mitochondrial enzymatic activities were measured on a total of 340 samples, including 136 

replicates of the same cell type for the same person. This provided more stable estimates of 

enzymatic activities than single measures would for a total of 204 individual person-cell 

combinations. The technical variation for each enzyme varied according to cell type, with cell 

types with lower enzymatic activities generally showing the highest coefficient of variation (C.V.). 

C.V. averaged across all cell types were: CS = 6.3%, Complex I = 16.6%, SDH = 9.3%, COX = 

23.4% (Supplemental Table 3).  

Mitochondrial DNA copy number 

mtDNAcn was determined as described previously27 with minor modifications. The same 

homogenate used for enzymatic measurements (20 ul) was lysed in lysis buffer (100 mM Tris HCl 

pH 8.5, 0.5% Tween 20, and 200 ug/ml proteinase K) for 10 hours at 55oC followed by inactivation 

at 95oC for 10 minutes. Five ul of the lysate was directly used as template DNA for measurements 

of mtDNA copy number. qPCR reactions were set up in triplicates using a liquid handling station 

(ep-Motion5073, Eppendorf) in 384 well qPCR plates. Duplex qPCR reactions with Taqman 

chemistry were used to simultaneously quantify mitochondrial and nuclear amplicons in the same 

reactions. Master Mix1 for ND1 (mtDNA) and B2M (nDNA) included: TaqMan Universal Master 

mix fast (life technologies #4444964), 300 nM of primers and 100 nM probe (ND1-Fwd: 

GAGCGATGGTGAGAGCTAAGGT, ND1-Rev: CCCTAAAACCCGCCACATCT, Probe:HEX-

CCATCACCCTCTACATCACCGCCC-3IABkFQ.B2M-

Fwd:CCAGCAGAGAATGGAAAGTCAA,B2M-Rev: TCTCTCTCCATTCTTCAGTAAGTCAACT, 

Probe:FAM-ATGTGTCTGGGTTTCATCCATCCGACA-3IABkFQ). Master Mix2 for COX1 

(mtDNA) and RnaseP (nDNA) included: TaqMan Universal Master Mix fast, 300 nM of primers 

and 100 nM probe (COX1-Fwd: CTAGCAGGTGTCTCCTCTATCT, COX1-Rev: 

GAGAAGTAGGACTGCTGTGATTAG, Probe: FAM-TGCCATAACCCAATACCAAACGCC-

3IABkFQ. RnaseP-Fwd: AGATTTGGACCTGCGAGCG, RnaseP-Rev: 

GAGCGGCTGTCTCCACAAGT, Probe: FAM-TTCTGACCTGAAGGCTCTGCGCG-3IABkFQ. 
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The samples were then cycled in a QuantStudio 7 flex qPCR instrument (Applied Biosystems 

Cat# 4485701) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1 min, 60°C for 20 sec for 40x cycles. 

Reaction volumes were 20 ul. To ensure comparable Ct values across plates and assays, 

thresholds for fluorescence detection for both mitochondrial and nuclear amplicons were set to 

0.08. 

mtDNAcn was calculated using the ΔCt method. The ΔCt was obtained by subtracting the 

average mtDNA Ct values from the average nDNA Ct values for each pair ND1/B2M and 

COX1/RNaseP. Relative mitochondrial DNA copies are calculated by raising 2 to the power of 

the ΔCt and then multiplying by 2 to account for the diploid nature of the nuclear genome 

(mtDNAcn = 2ΔCt x 2). Both ND1 and COX1 yielded highly correlated mtDNAcn and the average 

of both amplicon pairs was used as mtDNAcn value for each sample. The overall CV across all 

cell subtypes was 5.1% for mtDNAcn. 

Platelet depletion in PBMCs 

For this experiment, participants were 9 community-dwelling older adults (mean age = 79, 

range: 64-89, 4 women and 5 men). The sample included 7 White and 2 African American 

participants. Exclusion criteria included diseases or disorders affecting the immune system 

including autoimmune diseases, cancers, immunosuppressive disorders, or chronic, severe 

infections; chemotherapy or radiation treatment in the 5 years prior to enrollment; unwillingness 

to undergo venipuncture; immunomodulatory medications including opioids and steroids; or more 

than two of the following classes of medications: psychotropics, anti-hypertensives, hormones 

replacement, or thyroid supplements. Participants were recruited from a volunteer subject pool 

maintained by the University of Kentucky Sanders-Brown Center on Aging. The study was 

conducted with the approval of the University of Kentucky Institutional Review Board. Blood (20 

mL) was collected by venipuncture into heparinized tubes in the morning hours to control for 

potential circadian variation. PBMCs were isolated from diluted blood by density gradient 

centrifugation (20 min at 800 x g, brake off) using Histopaque (Sigma, St. Louis, MO). Buffy coats 

were washed once, and cells were counted using a hemocytometer. PBMCs (20-30M) were 

cryopreserved in liquid nitrogen in RPMI-1640 (Lonza) + 10% fetal bovine serum (Hyclone) + 10% 

DMSO (Fisher), until further processing.  

For platelet depletion, PBMCs were first thawed at room temperature and centrifuged at 

500 x g for 10 minutes. The supernatant was discarded and the cells were resuspended in 2 ml 

of Hank's Balanced Salt Sodium (HBSS) without phenol red, calcium and magnesium (Life 
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Technologies, Cat#14175103). Cells were then counted on the Countess II FL Automated Cell 

Counter (Thermo Fisher Scientific, Cat# AMQAF1000) in a 1:1 dilution with trypan blue. Cells 

were then divided into 2 aliquots: 1) 10 million cells for total PBMCs; 2) 11 million cells for platelet 

depletion. The total PBMCs were centrifuged at 2,000 x g for 2 min at 4oC and subsequently 

frozen as a dry pellet at -80oC until processing for enzymatic assays and qPCR. The PBMCs 

destined for platelet deletion cells were processed immediately. 

The total PBMCs cell preparation was first immunolabeled with magnetically-coupled 

antibodies against the platelet marker CD61. The 11 million platelet-depleted PBMCs were then 

centrifuged at 300 x g for 10 minutes. After spin, the supernatant was aspirated and cells were 

resuspended in 80 ul of HBSS. Then 20 ul of the CD61 MicroBeads (Miltenyi Biotec, Cat# 130-

051-101) were added to the cells and incubated for 15 minutes at 4oC to magnetically label 

platelets. Cells were washed with 2 ml of HBSS and centrifuged at 300 x g for 10 minutes. The 

LS column (Miltenyi Biotec, Cat# 130-042-401) was placed in the magnetic field of the MACS 

Separator (Miltenyi Biotec, Cat# 130-091-051). The LS column was equilibrated with HBSS, cells 

resuspended in 500 ul of HBSS were applied to the LS column, and the CD61- cells were flown 

through the column and collected in a 15 ml collection tube. The LS column was then washed 3x 

with 500 ul of HBSS. The flow through was then spun at 500 x g for 10 minutes, the cell pellet 

was resuspended in 2 ml of HBSS and re-counted to isolate 10 M platelet-depleted cells. These 

cells were pelleted at 2,000 x g for 10 minutes at 4oC, the supernatant removed, and cell pellet 

stored at -80oC. The platelets (CD61+) were recovered by flushing 1 ml of HBSS though the LS 

column with the plunger in a new tube, centrifuged at 3,000 x g for 10 minutes, the supernatant 

removed, and the cell pellet stored at -80oC until all samples could be processed for enzymatic 

activity assays as a single batch. For each participant, this experiment yielded three samples: 1) 

total PBMCs, 2) platelet depleted PBMCs, and 3) enriched platelets. Each sample was processed 

in parallel for RC enzymatic activity assays and mtDNAcn as described above.  

Statistical analyses 

To adjust for potential order effects across the 340 samples (31 samples per 96-well plate, 

17 plates total) a linear adjustment was applied to raw values enzymatic activity measures, which 

adjusts for potential storage and batch effects, ensuring consistency between the first and last 

samples assayed. Samples from both the cohort and repeat participant were processed and 

analyzed as a single batch.  
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Mann-Whitney T tests were used to compare sex differences in cell type proportions and 

mitochondrial measures. Throughout, effect sizes between groups were computed as Hedges’ g 

(g) to quantify the magnitude of group differences in cell type proportions and mitochondrial 

measures (by sex, mitotype cell subtype and inter-individual differences). Spearman’s r (r) was 

used to assess strength of associations between continuous variables such as age and cell 

proportion or age and mitochondrial measures. To assess to what extent mitochondrial features 

are correlated across cell subtypes (co-regulation) and to calculate the average correlation across 

mitotypes, Spearman’s r matrixes were first computed and transformed to Fisher’s Z’, and then 

averaged before transforming back to Spearman’s r (rz’). One-way non-parametric ANOVA 

Kruskal-Wallis with post-hoc Dunn’s multiple comparison tests were used to compare cell type 

mitochondrial measures in different cell subtypes and PBMCs. Between- and within-person 

variation were characterized using coefficients of variation (C.V.). The root mean square of 

successive differences (rMSSD) was computed to quantify the magnitude of variability between 

successive weeks for repeated measures. Chi-square tests were computed to compare 

proportion of mitotype indices categories (enzyme activity per CS, enzyme ratios, enzyme per 

mtDNA, enzyme per mtDNA density, and enzyme per mtDNA relative to mtDNA density) by age 

(lower vs higher with increased age) and sex (lower vs higher in men). Finally, one-way non-

parametric Friedman tests with post hoc Dunn’s multiple comparisons were used to compare 

mitochondrial measures in platelet-depleted PBMCs, enriched platelets PBMCs, and total 

PBMCs. Statistical analyses were performed with Prism 8 (GraphPad, CA), R version 4.0.2 and 

RStudio version 1.3.1056. Statistical significance was set at p<0.05. 

 

Data Availability 

Further information and requests for resources should be directed to and will be fulfilled by the 

corresponding author. The raw datasets generated and analyzed in this study are available upon 

reasonable request. 
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Figure Legends 

Figure 1 – Immune cell subtype distribution in adult women and men.  
(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. 

Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 1077. The 

five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) 

Stacked histogram showing the leukocytes distribution derived from the complete blood count 

(CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all 

detected cells) quantified by flow cytometry from total peripheral blood leukocytes. Cell surface 

markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect 

sizes for cell subtype distribution differences between women (n=11) and men (n=10). P-values 

from non-parametric Mann-Whitney T test. The fold change comparing raw counts between 

women and men and shown on the right. Error bars reflect the 95% confidence interval (C.I.) on 

the effect size. (e) Distribution of cell types proportions in women and men illustrating the range 

of CD4+ and CD8+ naïve cells, B cells, and monocytes, highlighting the natural variation among 

our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age 

and cell types proportion. n=21, p<0.05*, p<0.01**. 

Figure 2 – Influence of cell subtypes on mitochondrial features in total PBMCs.  
(a) Pairwise correlations of cell subtype proportions obtained from cell sorting with mitochondrial 

features measured in PBMCs for the cohort (n=20). Aggregate correlations are shown as a 

heatmap (top) and (b) individual scatterplots (bottom). 

Figure 3 – Influence of platelet contamination on mitochondrial features in total PBMCs.  
(a) Schematic of the natural state of Ficoll-isolated PBMCs associated with contaminating 

platelets. (b) Association of age and circulating platelet abundance (i.e., count) in our cohort 

(Spearman’s r). (c) Change in platelet abundance as a function of age. The magnitude of the 

association (slope of the regression: 109 platelets/L per year) from two large epidemiological 

studies and our cohort. The inset shows the actual regressions (n=21 to 22,351). (d) Effect sizes 

of the association between platelet count and PBMCs mitochondrial features in our cohort (n=20). 

(e) Overview of the experimental PBMC platelet depletion study, yielding three different samples 

subjected to mitochondrial phenotyping. (f) Fold change in mitochondrial parameters between i) 

platelet-depleted PBMCs and ii) enriched platelets (with contaminating PBMCs) relative iii) total 

PBMCs. P-values from One-Way non-parametric ANOVA Friedman test, post-hoc Dunn’s 
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multiple comparisons relative to total PBMCs. (g) Percent change of platelet-depleted PBMCs 

mitochondrial features from total PBMCs. n=9, p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

Figure 4 – Cell subtype differences in mitochondrial content and RC function.  
(a-e) Violin plots illustrating immune cell type differences in mitochondrial features across cell 

subtypes and total PBMCs. For each individual, only the 6 most abundant cell types were 

analyzed (n=21 individuals, 12-18 per cell subtype). Dashed lines are median (thick) and 25th 

and 75th quartiles (thin). P-values from One-Way non-parametric ANOVA Kruskal-Wallis test, 

post-hoc Dunn’s multiple comparisons relative to PBMCs. (f) Spearman’s r inter-correlations of 

mitochondrial features across subtypes. Insets show the scatterplots for selected correlations. 

p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

Figure 5 – Mitochondrial health index (MHI) and coherence of mitochondrial features 
across cell subtypes.  
(a) Schematic of the MHI equation reflecting respiratory chain function as the numerator, and 

markers of mitochondrial content as the denominator, producing a metric of energy production 

capacity on a per-mitochondrion basis. (b) MHI across immune cell subtypes. Dashed lines are 

median (thick) and 25th and 75th quartiles (thin). P-values from One-Way non-parametric ANOVA 

Kruskal-Wallis test with Dunn’s multiple comparison test of subtypes relative to PBMCs, n=12-18 

per cell subtype. (c) Correlation matrices showing the association between cell subtypes in 

mitochondrial features. Correlations were not computed for cell subtype pairs with fewer than n=6 

observations (gray cell). (d) Average effect sizes reflecting the within-person coherence of 

mitochondrial features across cell types (calculated using Fisher z-transformation). p<0.05*, 

p<0.001***.  

Figure 6 – Associations of mitochondrial features with sex and age across cell subtypes.  
(a-f) Effect size of sex differences in mitochondrial activity across cell subtypes quantified by 

Hedges’ g. The fold change computed from raw values is shown on the right. P-values from Mann-

Whitney test. Error bars reflect the 95% C.I. on the effect size. (g-l) Association of age and 

mitochondrial features across cell subtypes. P-values from Spearman’s r correlations, not 

adjusted for multiple comparisons. n=21 (11 women, 10 men), p<0.05*, p<0.01**, p<0.001***.  

Figure 7 – Within-person variability of mitochondrial features across cell subtypes.  
(a) Overview of the repeat participant design, including blood collection, processing, and analysis. 

All samples were collected, stored, and processed as a single batch with samples from the cohort. 

(b-g) Natural weekly variation for each mitochondrial feature across cell subtypes in the same 
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person across 9 weeks represented as scaled centered data where 1 unit change represents a 

one-standard deviation (S.D.) difference. Root mean square of the successive differences 

(rMSSDs) quantify the magnitude of variability between successive weeks. The coefficients of 

variation (C.V.) quantify the magnitude of variability across the total 9 weeks. Monocytes and 

CD4+ CM-EM were not collected on weeks 1 and 2. (h) Side-by-side comparison of CS activity 

between the cohort (n=12-18 per cell subtype) and the repeat participant (n=7-9 time points) 

across cell subtypes. The dynamic range of two cell subtypes are represented: monocytes and 

CD4+ naïve T cells. (i) Within-person correlation matrices between cell subtypes for each 

mitochondrial feature over 9 weeks, illustrating to what extent cell subtypes are correlated with 

each other (co-regulation). (j) Average inter-correlation across all cell subtypes by mitochondrial 

feature (calculated using Fisher z-transformation) indicating the degree of coherence within 

person. (k) Comparison of co-regulation patterns among mitochondrial features between the 

cohort and the repeat participant. Each datapoint represents a cell subtype pair. 

Figure 8 – Mitotypes in purified leukocyte populations from the cohort and repeated-
measures.  
(a) Schematic illustrating the multivariate approach to generate and visualize mitotypes by putting 

into relation two or more mitochondrial features. Notice the similarity and added insight relative to 

single metrics, similar to the integration of height and weight into body mass index (BMI). (b-e) 

Mitotypes plotted for each cell subtype among the cohort. Data are means and SEM. Overlaid 

shaded areas denote general leukocyte categories. (f) Summary of mitotype differences between 

(i) innate and adaptive subdivisions and (ii) naïve and memory T cells. (g-i) Validation of subtype-

specific mitotype differences in the repeat participant, illustrating the conserved nature of 

mitotypes across individuals. Only the six cell subtypes analyzed in the repeat participant are 

plotted. (j) Comparison of the magnitude of the difference (Hedges’ g) in mitotypes between cell 

types, and between individuals. Dark blue bars indicate the magnitude of the dominant difference 

in mitotypes between cell subtypes. Light blue bars indicate the magnitude of the difference in 

mitotypes between the cohort and the repeat participant within a cell type. Error bars reflect the 

95% C.I. on the effect size. 

Figure 9 – Mitotype distribution and strength of difference across sex and age.  
(a) Ranking of mitotype indices by their difference between women and men, quantified as the 

effect size (Hedges’ g) between women and men. A total of 16 mitotype indices were generated, 

subdivided into 5 main color-coded categories (see Supplemental Figure 7). Pie charts illustrate 

the proportion mitotypes belonging to each category that are either higher in women (left) or in 
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men (right). P-values for enrichment of sexually dimorphic mitotypes are derived from Chi-square 

test. (b) Violin plots illustrating the two mitotypes with the largest opposite sex differences, both 

showing large effect sizes (g). (c) Heatmap of sex differences (Hedges’ g) for primary measures 

of mitochondrial function (top) and multivariate mitotypes (bottom) across cell subtypes. The 

histogram at the bottom shows the average absolute effect size across all mitotypes (calculated 

from absolute values). (d) Ranking of mitotype indices by the strength and direction of their 

association with age, with enrichment analysis analyzed as for sex (Chi-square test). (e) 

Spearman’s r correlations of mitotypes/cell type combinations with the strongest positive and 

negative associations with age. (f) Heatmap of the age correlations (Spearman’s r) for primary 

features and composite mitotypes across cell subtypes. The histogram at the bottom shows the 

average effect size (r) for each cell subtype (calculated using absolute values and Fisher z-

transformation). p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

Figure 10 – Association of blood biomarkers with mitochondrial parameters across cell 
subtypes and primary mitochondrial features.  
(a) Overview of blood biochemistry, hormonal, and metabolic biomarkers collected for each 

participant. (b) Sex- and age-adjusted correlations between blood biomarkers and mitochondrial 

features across cell subtypes for the cohort (n=10-20 per mito-biomarker combinations) shown 

as a heatmap. (c) Same as (b) but using repeated-measures of mitochondrial features and 

biomarkers in the repeat participant. (d) Scatterplots of the indicated correlations between 

Neutrophils CS activity and LDL cholesterol (left), and CD4+ CM-EM mtDNAcn and potassium 

(K+) (right) for the cohort (top row) and the repeat participant (bottom row). (e) Frequency 

distributions of the aggregated effect sizes between biomarkers and mitochondrial features across 

cell subtypes for the cohort (total correlation pairs=1,080) and the repeat participant (total 

correlation pairs=882).  
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SUPPLEMENTAL MATERIAL 

Supplemental Figure 1 – Diagram of leukocyte cell lineages.  
Cells analyzed in this study are circled in red. The cell surface markers used to define sub-

populations are indicated below each cell subtype. Diagram adapted from: 

https://oerpub.github.io/epubjs-demo-book/content/m46036.xhtml#fig-ch03_06_01. 

Supplemental Figure 2 – Gating strategy to quantify all cell subtypes and sorting major 
cell subtypes for mitochondrial phenotyping.  
See the methods section for details of labeling cocktails and cell sorter parameters. An initial run 

of 2M cells was used to establish the six most abundant cell subtypes (targets) for each 

participant, followed by FACS to obtain at least one 5M aliquot of each target cell subtype. Up to 

five 5M aliquots were collected per cell subtype, per participant, to establish technical variability 

in downstream assays. 

Supplemental Figure 3 – Sex differences and age correlations with leukocyte abundance 
measured by complete blood count.  
(a) Forest plot illustrating the effect size (g) of the sex differences in cell proportion derived from 

the complete blood count (CBC) results (n=21). Fold changes in the raw values are also shown. 

P-values from non-parametric Mann-Whitney T test. Error bars reflect the 95% C.I. on the effect 

size. (b) Correlation (Spearman’s r) between age and cell proportion derived from the complete 

blood count. n=21, p<0.05*. 

Supplemental Figure 4 – Associations between CBC cell proportions and subtype-specific 
enzymatic activities with mitochondrial features measured in PBMCs. 

(a) Correlations between CBC-based cell type abundance (% of total leukocytes) and PBMCs 

mitochondrial features for the cohort (n=20). (b) Correlations of the mitochondrial features 

measured in each cell subtype and the same mitochondrial feature measured in PBMCs for the 

cohort (n=12-20). Heatmaps for the cohort show to what extent PBMCs-based measures reflect 

activities in various immunologically-defined cell subtypes. This data integrates data presented in 

Figure 5, here focused on PBMCs. 

Supplemental Figure 5 – Association between age and cell subtype mitochondrial features.  
(a-i) Correlations between mitochondria features and age. This figure presents the same data as 

main Figure 4, but organized by cell subtypes rather than mitochondrial feature to facilitate the 

visualization of subtype-level effects. Spearman’s r, p<0.05*, p<0.01**, p<0.001***.  
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Supplemental Figure 6 – Within-person variability of cell subtype proportions overtime.  
(a) Within-person variation of cell type proportions across 9 weeks. The FACS-derived raw cell 

proportions (% of total cells) are shown on the left. Root mean square of successive differences 

(rMSSD) illustrating the magnitude of variability between successive weeks, and C.V. illustrating 

the magnitude of variability across the total 9 weeks are provided on the right for each cell 

subtype, by mitochondrial feature. (b) Same as a, but based on CBC results. 

Supplemental Figure 7 – Associations between subtype-specific and CBC cell proportions, 
and subtype-specific enzymatic activities with mitochondrial features measured in 
PBMCs.  
(a) Pairwise correlations of cell subtype proportions obtained from cell sorting with mitochondrial 

features measured in PBMCs for the repeat participant (n=1 x 9 timepoints). Aggregate 

correlations are shown as a heatmap (top) and individual scatterplots (bottom). (b) Frequency 

distributions of the effect sizes between PBMC mitochondrial features and cell subtypes 

proportions for the cohort (Figure 2) and the repeat participant (total correlation pairs=72, for 

both). (c) Correlations between CBC-based cell type abundance (% of total leukocytes) and 

PBMCs mitochondrial features for the repeat participant (n=1 x 9 timepoints). (d) Frequency 

distribution of effect sizes. (e) Correlations of the mitochondrial features measured in each cell 

subtype and the same mitochondrial feature measured in PBMCs for the repeat participant. 

Heatmaps for the repeat participant (n=1 x 9 timepoints) show to what extent PBMCs-based 

measures reflect activities in various immunologically-defined cell subtypes. This data integrates 

data presented in Figure 7, here focused on PBMCs. (f) Frequency distributions of effect sizes 

for association between PBMC and cell subtype mitochondrial features for the cohort and the 

repeat participant (total correlation pairs=36, for both), showing a predominance of positive 

correlations. 

Supplemental Figure 8 – Variability of mitochondrial features across cell subtypes between 
the cohort and the repeat participant.  
(a-e) Side-by-side comparison of mitochondrial features between the cohort (n=12-18 per cell 

type) and the repeat participant (n=1 x 9 timepoints) across cell subtypes. This figure shows the 

same data as in main Figure 5h, but for all mitochondrial features. (f) Summary of a-e illustrated 

by a bar graph showing observed variation (C.V.) of mitochondrial features between the cohort 

and the repeat participant. The technical variation established on a subset of samples and likely 

represents a conservative overestimation of noise is shown by red lines. 
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Supplemental Figure 9 – Operationalization and categorization of mitotypes.  
Chart illustrating mitotype ratios and their simple interpretations. 

Supplemental Table 1 – Leukocyte subtypes included in the study. 
Immune cell subtypes included in this study, including a brief summary of their functions and cell 

surface markers used for immunolabeling and FACS. 

Additional references to Supplemental Table 1:  
Chiu, S. and A. Bharat (2016). "Role of monocytes and macrophages in regulating immune response 
following lung transplantation." Current opinion in organ transplantation 21(3): 239-245. 

Gasper, D. J., M. M. Tejera and M. Suresh (2014). "CD4 T-cell memory generation and maintenance." 
Critical reviews in immunology 34(2): 121-146. 

Hoffman, W., F. G. Lakkis and G. Chalasani (2016). "B Cells, Antibodies, and More." Clinical journal of the 
American Society of Nephrology : CJASN 11(1): 137-154. 

Luckheeram, R. V., R. Zhou, A. D. Verma and B. Xia (2012). "CD4⁺T cells: differentiation and functions." 
Clinical & developmental immunology 2012: 925135-925135. 

Mahnke, Y. D., T. M. Brodie, F. Sallusto, M. Roederer and E. Lugli (2013). "The who's who of T-cell 
differentiation: Human memory T-cell subsets." European Journal of Immunology 43(11): 2797-2809. 

Martin, M. D. and V. P. Badovinac (2018). "Defining Memory CD8 T Cell." Frontiers in Immunology 9(2692). 

Mayadas, T. N., X. Cullere and C. A. Lowell (2014). "The Multifaceted Functions of Neutrophils." Annual 
Review of Pathology: Mechanisms of Disease 9(1): 181-218. 

Stubbe, M., N. Vanderheyde, M. Goldman and A. Marchant (2006). "Antigen-specific central memory CD4+ 
T lymphocytes produce multiple cytokines and proliferate in vivo in humans." J Immunol 177(11): 8185-
8190. 

Tian, Y., M. Babor, J. Lane, V. Schulten, V. S. Patil, G. Seumois, S. L. Rosales, Z. Fu, G. Picarda, J. Burel, 
J. Zapardiel-Gonzalo, R. N. Tennekoon, A. D. De Silva, S. Premawansa, G. Premawansa, A. Wijewickrama, 
J. A. Greenbaum, P. Vijayanand, D. Weiskopf, A. Sette and B. Peters (2017). "Unique phenotypes and 
clonal expansions of human CD4 effector memory T cells re-expressing CD45RA." Nature Communications 
8(1): 1473. 

Vivier, E., E. Tomasello, M. Baratin, T. Walzer and S. Ugolini (2008). "Functions of natural killer cells." 
Nature Immunology 9: 503-510. 

Zhang, N. and M. J. Bevan (2011). "CD8(+) T cells: foot soldiers of the immune system." Immunity 35(2): 
161-168. 

Supplemental Table 2 – CBC- and FACS-based cell proportions for all study participants 
and time points.  
Participants are ordered by age. CBC measurements were performed using a Sysmex XN-9000™ 

instrument, and FACS-based cell proportions were determined using a BD™ Influx cell sorter. 

(See methods for details). 

Supplemental Table 3 – Technical variation for each mitochondrial assay and calculated 
MHI by cell type.  
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Coefficients of variation (C.V.s) across 2-5 biological replicates (different 5M cell pellet isolated 

from the same blood draw) for each cell subtype and PBMCs (See Methods for details).  

Supplemental Table 4 – Recipes for antibody cocktails used to detect cell surface markers 
for FACS-based cell proportions and sorting. 
(See Methods for details). 
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Figure 2 – Influence of cell subtypes on mitochondrial features in total PBMCs.  
(a) Pairwise correlations of cell subtype proportions obtained from cell sorting with mitochondrial features measured in PBMCs for the cohort (n=20). Aggregate correlations are 
shown as a heatmap (top) and (b) individual scatterplots (bottom).
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Figure 4 – Cell subtype differences in mitochondrial content and RC function. 

(a-e) Violin plots illustrating immune cell type differences in mitochondrial features across cell subtypes and total PBMCs. For each individual, only the 6 most abundant cell types 
were analyzed (n=21 individuals, 12-18 per cell subtype). Dashed lines are median (thick) and 25th and 75th quartiles (thin). P-values from One-Way non-parametric ANOVA 
Kruskal-Wallis test, post-hoc Dunn’s multiple comparisons relative to PBMCs. (f) Spearman’s r inter-correlations of mitochondrial features across subtypes. Insets show the 
scatterplots for selected correlations. p<0.05*, p<0.01**, p<0.001***, p<0.0001****.
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Figure 5 – Mitochondrial health index (MHI) and coherence of mitochondrial features across cell subtypes. 

(a) Schematic of the MHI equation reflecting respiratory chain function as the numerator, and markers of mitochondrial content as the denominator, producing a metric of energy 
production capacity on a per-mitochondrion basis. (b) MHI across immune cell subtypes. Dashed lines are median (thick) and 25th and 75th quartiles (thin). P-values from One-Way 
non-parametric ANOVA Kruskal-Wallis test with Dunn’s multiple comparison test of subtypes relative to PBMCs, n=12-18 per cell subtype. (c) Correlation matrices showing the 
association between cell subtypes in mitochondrial features. Correlations were not computed for cell subtype pairs with fewer than n=6 observations (gray cell). (d) Average effect 
sizes reflecting the within-person coherence of mitochondrial features across cell types (calculated using Fisher z-transformation). p<0.05*, p<0.001***.
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Figure 6 – Associations of mitochondrial features with sex and age across cell subtypes. 

(a-f) Effect size of sex differences in mitochondrial activity across cell subtypes quantified by Hedges’ g. The fold change computed from raw values is shown on the right. P-
values from Mann-Whitney test. Error bars reflect the 95% C.I. on the effect size. (g-l) Association of age and mitochondrial features across cell subtypes. P-values from 
Spearman’s r correlations, not adjusted for multiple comparisons. n=21 (11 women, 10 men), p<0.05*, p<0.01**, p<0.001***.
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Figure 9

Figure 9 – Mitotype distribution and strength of difference across sex and age. 

(a) Ranking of mitotype indices by their difference between women and men, quantified as the effect size (Hedges’ g) between women and men. A total of 16 mitotype indices 
were generated, subdivided into 5 main color-coded categories (see Supplemental Figure 7). Pie charts illustrate the proportion mitotypes belonging to each category that are 
either higher in women (left) or in men (right). P-values for enrichment of sexually dimorphic mitotypes are derived from Chi-square test. (b) Violin plots illustrating the two 
mitotypes with the largest opposite sex differences, both showing large effect sizes (g). (c) Heatmap of sex differences (Hedges’ g) for primary measures of mitochondrial function 
(top) and multivariate mitotypes (bottom) across cell subtypes. The histogram at the bottom shows the average absolute effect size across all mitotypes (calculated from absolute 
values). (d) Ranking of mitotype indices by the strength and direction of their association with age, with enrichment analysis analyzed as for sex (Chi-square test). (e) Spearman’s r 
correlations of mitotypes/cell type combinations with the strongest positive and negative associations with age. (f) Heatmap of the age correlations (Spearman’s r) for primary 
features and composite mitotypes across cell subtypes. The histogram at the bottom shows the average effect size (r) for each cell subtype (calculated using absolute values and 
Fisher z-transformation). p<0.05*, p<0.01**, p<0.001***, p<0.0001****.
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Figure 10 – Association of blood biomarkers with mitochondrial parameters across cell subtypes and primary mitochondrial features.  
(a) Overview of blood biochemistry, hormonal, and metabolic biomarkers collected for each participant. (b) Sex- and age-adjusted correlations between blood biomarkers and 
mitochondrial features across cell subtypes for the cohort (n=10-20 per mito-biomarker combinations) shown as a heatmap. (c) Same as (b) but using repeated-measures of 
mitochondrial features and biomarkers in the repeat participant. (d) Scatterplots of the indicated correlations between Neutrophils CS activity and LDL cholesterol (left), and CD4+ 
CM-EM mtDNAcn and potassium (K+) (right) for the cohort (top row) and the repeat participant (bottom row). (e) Frequency distributions of the aggregated effect sizes between 
biomarkers and mitochondrial features across cell subtypes for the cohort (total correlation pairs=1,080) and the repeat participant (total correlation pairs=882).
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