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ON THE GLOBAL ATTRACTORS IN ONE MATHEMATICAL MODEL
OF ANTIVIRAL IMMUNITY

ALEXEI TSYGVINTSEV

Abstract. We consider the mathematical model introduced by Batholdy et al. [1]

describing the interaction between viral pathogens and immune system. We prove the

global asymptotic stability of the infection steady-state if the basic reproductive ratio

R0 is greater than unity. That solves the conjecture announced in [7].

1. Introduction

Our immune system is a complex multifunctional mechanism aimed to protect the

host from various external infectious pathogens (viruses, bacteria etc). It is well known

that the emergence and development of numerous diseases is largely controlled by the

immune defence factors, and therefore their study and modelling is of great biological and

medical interest. The most important players in our adaptive immune system are the B-

lymphocytes [4]. These are white blood cells whose function is to produce antibodies - the

Y -shaped special proteins that bind to specific antigens tagging them to be eliminated.

The role of T-lymphocytes is very different [4]. They directly eliminate pathogenic micro-

organisms.

The human immune defence has been developed over thousands of years and we are

still far from complete understanding all the complex mechanisms involved.

As we explore the mechanisms of pathogen interactions with the immune system, a

number of important simplifications have to be employed. In the mathematical modelling

it is often necessary to consider as a single group the different immune system participants.

At the same time, the known mechanisms of cellular interactions should be simplified in

the hope that the most important biological features are satisfactory reflected.

Last years, various models have been proposed in attempts to understand better the

interaction between the immune system and viral pathogens [10]. Two principal types

of immune response to viral intrusion can be underlined: lytic (destroying directly in-

fected cells) and nonlytic (inhibiting the viral replication by slowing it down) [9]. In the
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next section we will consider one of such models describing the interaction of immune

lytic/nonlytic factors with viral pathogens.

2. The model of antiviral immunity

In 2000 Bartholdy et al. [1] proposed a mathematical model consisting of 3 ordinary

differential equations to describe the outcome of the competition between the virus and

the human immune system. Below we describe briefly these equations.

Let x(t) be the number of uninfected host cells, y(t) is the number of cells infected by

the virus at the moment t and z(t) is the number of immune cells population. Usually,

the values x(t), y(t), z(t) are considered as concentrations, i.e. the number of cells per

unit of volume.

To simplify the model it is assumed that the dynamics of the free virus circulating in the

blood is not directly taken into account i.e. only already infected cells y(t) are considered.

This is based on the realistic assumption that the rate of the free virus evolution is much

faster than that of already infected cells [9]. The case where the free virus dynamics is

taken into account has been considered in the work [6].

The first equation of the model describes the evolution of uninfected host cells:

dx

dt
= λ− δx− βxy

qz + 1
. (2.1)

Here λ is the production rate of host cells, δx is the death rate and βxy is the infection

rate once the immune system is not active. The term qz + 1 is the nonlytic inhibition

rate.

The second equation controls the dynamics of the population of infected cells:

dy

dt
=

βxy

qz + 1
− ay − pyz . (2.2)

The infected cells die naturally with the rate a and are killed by the lytic immune response

with the rate pyz. Finally, the third equation governs the evolution of immune cells

population:

dz

dt
= cy − bz . (2.3)

The immune cells are produced with the rate cy and naturally disappear with the decay

rate bz. We assume in this paper that all parameters of the model (2.1)-(2.3) are strictly

positive real numbers.

As shown in [7], every solution of the differential equations (2.1)-(2.3) with initial

conditions x(0), y(0), z(0) ≥ 0 is bounded and verifies x(t), y(t), z(t) ≥ 0 for all t ≥ 0.
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3. Steady states and their stability

The asymptotic behaviour of solutions of the model (2.1)-(2.3) is of great interest. In

biology and medicine, processes often go through an intermediate stage before reaching

the established state called an attractor. In the simplest case, the attractor can be a

steady-state i.e. the equilibrium point (x0, y0, a0) at which the velocity vector vanishes:

dx/dt = dy/dt = dz/dt = 0. In a general situation, it can be a periodic solution or a set

with a very complex internal structure, as in the Lorenz case [8].

The steady-state can be stable or unstable. In the stable case, all neighbourhood

trajectories converge to it asymptotically and in the unstable case some of them can be

repelled. More precisely, the following definition of global asymptotic stability will be

used in this paper (see [2]):

Definition 3.1. Let U ⊂ Rn be an open set and X ′ = V (X), X ∈ U be a system of

n differential equations where the corresponding vector field V is continuous and such

that all its solutions t 7→ X(t) extend ∀t ∈ R+. The equilibrium X0 ∈ U is globally

asymptotically stable iff ||X(t) − X0|| → 0 as t → +∞ for any solution with X(0) ∈ U
i.e. the basin of attraction of X0 is the whole set U .

As already noticed in works [1], [9], the asymptotic behaviour of solutions of the system

(2.1)-(2.3) largely depends on the value of the basic reproductive ratio R0 = λβ
δa

. By

definition, this key biological parameter describes the average number of newly infected

cells generated from one infected cell at the beginning of the infectious process. This is

a fundamental characteristic that determines whether a virus develops within the host or

it is eliminated finally by the immune response.

Depending on the value of R0, the model (2.1)-(2.3) can exhibit two different kinds of

steady-states described below.

The infection-free state is characterised by the property that y = 0 i.e. the virus was

completely cleared by the immune system. The following result was shown in [7] using

the Lyapunov’s method [5]:

Theorem 3.1. Let R0 ≤ 1, then the only equilibrium of the equations (2.1)-(2.3) con-

tained in the domain x, y, z ≥ 0 is infection-free and given by

E0 = (λ/δ, 0, 0) . (3.1)

Moreover it is globally asymptotically stable in the domain x, y, z ≥ 0.

We provide below an independent simple argument to show that y(t)→ 0 as t→ +∞
if R0 < 1.
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Using the equations (2.1)-(2.3) one finds by derivation:

β
d(x+ y)

dt
+ δ

d ln(y)

dt
= βλ− (a+ pz)(βy + δ)− δqβ xz

qz + 1
. (3.2)

Since all quantities x,y,z are positive, the last equality implies that

d

dt
(β(x+ y) + δ ln(y)) ≤ βλ− aδ = aδ(R0 − 1) ≤ 0 (3.3)

Let us assume that R0 < 1. Then, integrating the previous inequality over the interval

[0, t], t > 0, we find

β(x(t)− x(0) + y(t)− y(0)) + δ(ln(y(t)− ln(y(0)) ≤ −gt ,
g = aδ(1−R0) > 0 .

(3.4)

Thus ln(y(t))→ −∞ as t→ +∞ since x(t), y(t) ≥ 0, ∀ t ≥ 0. But it yields immediately

that

lim
t→+∞

y(t) = 0 . (3.5)

Now let us turn our attention to the situation R0 > 1. Here, the disease can finally

develop within the host since the strength of immune response is not strong enough to clear

the infection. The next proposition shows that in this case there exits unique infection

steady-state (x1, y1, z1) with y1 > 0 and provides its simple rational parametrisation which

is new and was not considered previously to the best of our knowledge.

Proposition 3.1. Let R0 > 1, then the only infection steady-state of the model (2.1)-

(2.3), contained in the domain x, y, z ≥ 0, is given by

E1 = (x1, y1, z1) =

(
−bpθ

2 + baθ − cλ
δc

,
b

c
θ, θ

)
, (3.6)

where θ ∈ (0, θ0), θ0 =
−ba+
√
b2a2+4bpcλ

bp
> 0 is the parameter defined (uniquely) from the

following equation:

β = −δc(a+ pθ)(qθ + 1)

bpθ2 + baθ − cλ
. (3.7)

Proof. The proof is straightforward and uses the definition of the equilibrium point

dx/dt = dy/dt = dz/dt = 0. �

Remark 3.1. Once R0 crosses the critical value R0 = 1 (on the left), the equilibrium

point E0 interchanges its local stability with E1 which appears through the transcritical

bifurcation. That can be derived from the results of the work [7] where the local stability

of E0,1 was analysed and the corresponding eigenvalues were calculated.
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Early attempts (see [7]) to prove the global asymptotic stability of E1 succeeded only for

some special parameters of the system (2.1)-(2.3), namely for q = 0 or if R0 is sufficiently

close to unity. Nevertheless, it was conjectured by the same authors that the global

asymptotic stability of E1 holds for arbitrary parameter values provided that R0 > 1.

Our result below solves this conjecture.

Theorem 3.2. The infection steady state E1 is globally asymptotically stable if R0 > 1.

Proof. The proof is based on the Lyapunov’s method [5]. We will try to give a clear idea

of how the suitable Lyapunov function can be found and we hope this construction will be

useful in other similar problems. Let D be the Lie derivative operator associated to the

differential equations (2.1)-(2.3). We are looking for 3 differentiable functions I : U → R,

U = R3+∗ those derivatives D(I) are constant on leaves of some codimension-1 foliation

of U . Such functions can be easily found from the system (2.1)-(2.3):

I1 = c(x+ y) + az + pz2

2
, D(I1) = c(λ− δx)− bz(a+ pz) = φ1(x, z)

I2 = ln(y), D(I2) = βx
qz+1
− a− pz = φ2(x, z)

I3 = ln(x) + β
qc

ln(qz + 1), D(I3) = λ−δx
x
− bβ

c
z

qz+1
= φ3(x, z)

(3.8)

As seen from these formulas, D(Ik), k = 1, 2, 3 do not depend on the variable y i.e. satisfy

our requirement. At the same time, φk(x1, z1) = 0, k = 1, 2, 3 since E1 = (x1, y1, z1) is

the equilibrium point. We determine now the real constants a1, a2, a3 in such a way that

E1 is a critical point of the Lie derivative L∗ = D(L) where L is defined by

L = a1I1 + a2I2 + a3I3 . (3.9)

As shown later, L will be our Lyapunov function.

The equation grad(L∗)(x1, z1) = 0, up to a certain multiplier, has the unique solution

for a1, a2, a3 given by a1 = −1/c, a2 = y1, a3 = x1. It is straightforward to check that L

possesses E1 as the unique extremum in U which is the global maximum.

Let U1 = R2+∗. The next lemma guarantees the positiveness of L∗ in U1.

Lemma 3.1. The point (x1, z1) is the global minimum of L∗ in U1 such that L∗(x1, y1) = 0

and L∗(x, z) > 0 for all (x, z) ∈ U1 \ {(x1, z1}.

Thus, L is a Lyapunov function of (2.1)-(2.3) with D(L) ≥ 0 in U and D(L) = 0

along the line I = {(x, y, z) ∈ U : x = x1, z = z1, y ∈ R+∗}. By the unicity, E1 is the

only invariant set contained in I. All solutions of (2.1)-(2.3) are bounded for t ≥ 0 as
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shown in [7]. So, according to the LaSalle’s theorem (see [3], p. 524, Theorem 3, [5]) the

equilibrium point E1 is globally asymptotically stable in U .

Below we sketch the main lines of the proof of Lemma 3.1.

All algebraic computations are greatly simplified by the fact that L∗ is a function of

x, z only and its sign can be easily controlled. That was the main underlaying idea of

how the function L was designed. The elementary calculation show that (x1, z1) is a local

minimum of L∗.

The function L∗ can be written as the ratio of two rational functions f , f1 depending

each on x and z only:

L∗ = D(L) =
f(z, x)

f1(z, x)
, (3.10)

where f1(z, x) = c(qz + 1) > 0 in U1 and the numerator f can be written as

f(z, x) = A3z
3 + A2z

2 + A1z + A0 + (B1 +B2z)x+ (C1 + C2z)
1

x
, (3.11)

with known constants Ai, Bj, Ck given in Appendix and depending on the parameters of

the system (2.1)-(2.3). In particular, A3, Bj, Ck > 0.

Fixing z ∈ R+ and varying x in R+∗, one can compute the global minimum of f as a

function of z only. It is given by

g(z) = min
x>0

f(z, x) = A3z
3 + A2z

2 + A1z + A0 +
√

(B1 +B2z)(C1 + C2z) . (3.12)

One verifies that g(0) > 0 using the known expressions for A0, B1 and C1. Now, finding

the minimum of L∗ in U1 can be replaced by the similar problem for g in R+.

Since (x1, z1) is a critical point of L∗ in U1 and L∗(x1, z1) = 0 we have g(z1) = g′(z1) = 0

where z1 = θ > 0 according to (3.6). One checks directly that g′′(z1) > 0 and so z = z1 is

a local minimum of g. Using A3 > 0, by derivation with help of (3.12), one verifies that

g
′′′

(z) > 0 for all z ∈ R+ i.e. g′ is strictly convex and therefore it has at most 2 zeros for

z ≥ 0. This argument, together with g(0) > 0 and lim
z→+∞

g(z) = +∞, shows that g attains

the global minimum at z = z1, L
∗(z1) = 0 and L∗(z) > 0 for z ∈ R+ \ {z1}. That finishes

the proof of Lemma 3.1. �

4. Conclusion and numerical simulations

Mathematical modelling of infectious diseases is an important tool in the development of

new treatments and is necessary for a better understanding of all underlaying mechanisms

of the immune defence. Our work contributes to understanding the asymptotic behaviour

of solutions in one particular model (2.1)-(2.3) introduced in [1] describing the competition

between lytic/nonlytic immune system and the viral pathogens. Completing the results
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already obtained in [7], we can finally state the existence of the sharp threshold depending

on the value of the basic reproductive ratio R0. If R0 ≤ 1 then the immune system finally

clears the infection i.e the steady-state where no infected cells are present is attained. If

R0 > 1, as stated by Theorem 3.2, the infection develops and converges finally to the

steady-state where it stays permanently controlled by the immune system. In particular,

our result excludes existence of any periodic behaviour.

The system of differential equations (2.1)-(2.3) was solved numerically for the parameter

values λ = 1, δ = 0.8, q = 10, a = 0.1, p = 5, c = 0.01, b = 1, β = 0.15 with the

corresponding basic reproductive ratio R0 = 1.94 and θ = 0.01. The infection steady-state

in this case, as given by formulas (3.6), is E1 = (1.06, 1, 0.01). On Figure 1 the solution

x(t), y(t), z(t) with initial conditions x(0) = 10, y(0) = 30, z(0) = 30 is represented for the

period of 10 days. The Figure 2 contains the different sections of the surface levels of the

Lyapunov function L by the plane z = 0.01.

In conclusion, we will mention a number of open questions concerning the model (2.1)-

(2.3). First of all, for each specific type of infectious pathogens it is necessary to develop

an effective method of evaluating its parameters using experimental data.

Secondly, it is necessary to obtain accurate estimates of the time of convergence to

steady states E1,2, as well as to study in more detail the qualitative behaviour of solutions

during the stabilization period.
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Appendix

A3 = bpq > 0, A2 = bp− y1cpq + baq, A1 = −x1cδq − cλq + ba− x1bβ − y1caq − y1cp,

A0 = −c(y1a+ λ+ δx1) < 0,

B1 = c(y1β + δ) > 0, B2 = cδq > 0, C1 = x1cλ > 0, C2 = x0cλq > 0
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Figure 1. Concentration w of uninfected host cells x (solid), infected cells

y(t) (dash) and the immune cells z(t) (dot) for the period of 10 days.

Figure 2. Sections by the plane z = 0.01 of level surfaces L = const for

−L = 4.96, 4.76, 4.46, 4.36, 4.26. The corresponding value L(x1, y1, z1) is

−1.96.
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