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Abstract 

 

Landscape structure influences the spread of plant pathogens, primarily by affecting pathogen 

dispersal. Coffee leaf rust (Hemileia vastatrix), a fungal disease that causes heavy economic 

losses in the coffee industry, is likely to be affected by landscape structure via dispersal of its 

wind-borne spores. Previous studies have found positive associations between leaf rust 

incidence and the proportion of pasture cover, suggesting that deforestation may facilitate rust 

spore dispersal. We explored this idea by modeling the spread of rust transmission in simulated 

landscapes. Specifically, we modeled within-patch transmission using a probabilistic cellular 

automata model, and between-patch transmission using a random walk with spore movement 

inhibited by forest canopy cover. We used this model to understand how the spread of coffee 

rust is affected by: 1) clustering of coffee plants, 2) clustering of deforestation, and 3) 

proportion of landscape deforestation. We found that clustering of coffee plants is the primary 

driver of rust transmission, affecting the likelihood and severity of rust outbreak. Deforestation 

is important in landscapes with high clustering of coffee: rust outbreaks are more severe in 

landscapes with a higher proportion of deforested areas, and more variable in landscapes 

where deforested areas are more evenly dispersed throughout the landscape.  
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Introduction 1 

Many ecological systems are characterized by their landscape configuration, including natural 2 

or anthropogenic habitat fragmentation (Levin 1992; Fahrig 2003). Landscape structure 3 

includes the distribution and quality of habitat, which in turn affects the connectivity of habitat 4 

patches. Furthermore, landscape structure is known to affect various species through its effect 5 

on connectivity of high quality habitat patches, patch size and extinction risk, as well as edge 6 

effects (Wiegand et al. 2005; Gavish et al. 2012; Fahrig 2013; Haddad et al. 2015; White and 7 

Smith 2018). One area where landscape structure has been particularly relevant is in the spread 8 

of disease (White et al. 2018).  9 

The conversion of native habitat for agriculture and urban development is associated with an 10 

increase in infectious diseases (Ellwanger et al. 2020, Gibb et al. 2020). Although evidence 11 

remains mixed (Hagenaars et al. 2004; Tracey et al. 2014), a lot of work suggests that both 12 

habitat fragmentation and decreased habitat quality can increase the likelihood of disease 13 

spread (White et al. 2018). Plantagenest et al. (2007) suggest there are four landscape-level 14 

factors that influence plant pathogen dynamics: 1) landscape composition influences global 15 

inoculation pressure, 2) landscape heterogeneity impacts pathogen dynamics 3) landscape 16 

structure affects pathogen dispersal, and 4) landscape properties can induce the emergence of 17 

pathogens. Yet, there have been limited efforts to understand mechanistically how landscape 18 

structure affects plant populations (Cunniffe et al. 2015a).  19 

Here we use the plant disease, coffee leaf rust (Hemileia vastatrix), as a model system for 20 

understanding issues of fragmentation and disease spread. First recorded in 1879, coffee leaf 21 

rust is a fungal disease notably recognized for completely destroying the coffee industry in Sri 22 

Lanka, which used to be one of the largest coffee-producer countries in the world. Since the 23 

1970s, coffee rust has spread to the largest coffee-producing regions in the world including 24 

Brazil, Mexico, and Colombia. Reports of up to 30-50% losses due to coffee rust in Brazil and 25 

Costa Rica, 31% in Colombia, and 16% in Central America make this disease an urgent priority 26 

for the coffee-growing industry (Baker 2014; Avelino et al. 2015; McCook and Vandermeer 27 

2015; Zambolim 2016; Cerda et al. 2017). 28 

Hemileia vastatrix is an obligate fungal pathogen affecting cultivated coffee species including 29 

Coffea arabica and Coffea canephora. H. vastatrix primarily infects leaf tissues leading to 30 

defoliation and reductions in vegetative growth all of which reduce coffee berry yields (Waller 31 

1982). Infections are commonly recognized by the formation of orange pustules (uredina) 32 

underneath leaves that release between 300,000 to 400,000 spores into the environment 33 

(Kushalappa and Eskes 1989). The infection process is composed of three principal steps: 34 

germination, penetration, and colonization of spores, with germination and penetration 35 
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requiring the presence of running water (Kushalappa and Eskes 1989). Other factors influencing 36 

germination and penetration include leaf age and spore concentration and distribution at the 37 

infection site. Colonization of spores into the stomatal opening of the leaves is followed by the 38 

production of spores (sporulation). Within one to three weeks, pale yellow spots on the 39 

underside of leaves are the first signs of infection. Depending on the age of the leaves, spore 40 

production can begin anywhere from two weeks to months following infection (Kushalappa and 41 

Eskes 1989). At maturation, spores are released into the air and can travel as high 1000 meters 42 

above coffee canopies (Martinez et al. 1975). Disease severity has been associated with the 43 

number of visible spores per leaf, the duration of leaf wetness, rainfall, and minimum 44 

temperatures (Zambolim 2016).  At the canopy level, rainfall can facilitate the spread of spores 45 

via raindrops that splash between leaves (Kushalappa and Chaves 1980; Waller 1982). Thus, the 46 

spread and severity of coffee leaf rust are heavily determined by climatic conditions. 47 

In addition to rain, spore dispersal is primarily facilitated by strong wind patterns that 48 

potentially carry spores hundreds of miles from the origin (Waller, 1982). Earlier studies have 49 

provided evidence for the dispersal of airborne spores through trapping techniques above and 50 

within coffee tree canopies (Martinez et al. 1975, Becker et al. 1975). Under outbreak 51 

conditions, maximum wind speed and low relative humidity have been associated with 52 

increases in spore dispersal during late morning and afternoon (Becker et al. 1977a). 53 

Furthermore, wind speeds between 12-20 km/hr have been linked to high numbers of spores 54 

with moderate numbers at wind speeds as low as 7 km/hr  (Martinez et al. 1977). Wind gusts, in 55 

combination with rainfall, can indirectly affect the dispersal of spores by reducing the size of 56 

rain droplets that land on coffee plants under dense shade conditions (Boudrot et al. 2016). 57 

Conversely, under non-shade or open canopy conditions, wind gusts are an important driver for 58 

spore dispersal, highlighting the complexity of dispersal patterns across space (Boudrot et al. 59 

2016).  60 

Although there is a vast amount of knowledge on the epidemiology and environmental drivers 61 

of coffee rust, the impacts of landscape structure on coffee rust spread remain unknown. Local 62 

landscape context such as shade cover and proximity to pasture have been shown to be 63 

positively correlated with coffee rust incidence, highlighting the need to investigate how 64 

habitat fragmentation due to deforestation influences the spread of coffee rust (Avelino et al. 65 

2012). Yet, few studies have focused on how landscape patterns may influence the spread and 66 

infection rates of coffee rust. Therefore, here we use simulation models to investigate how 67 

landscape composition and configuration influence the spread of the coffee rust.  68 

We hypothesize that the windborne dispersal of rust spores is facilitated by landscape 69 

composition and configuration. Specifically, we examine the effects on disease transmission 70 

from the clustering of coffee plants, proportion of deforestation within the landscape, and the 71 
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degree to which deforested areas are scattered in space. We predict that rust spores will 72 

disperse more readily through landscapes with high coffee clustering and deforestation levels; 73 

resulting in a higher incidence of coffee rust in landscapes that exhibit these characteristics. 74 

 75 

Methods 76 

 77 

Landscape simulation. We modeled landscapes using two 100 x 100 grids constructed using the 78 

package NLMpy (Oliphant 2006) in Python 3.7.1 (Python Software Foundation 2018). 79 

Landscapes had reflective boundaries and two landscape characteristics. The first aspect in 80 

each landscape represents the presence or absence of coffee plants and was constructed using 81 

the NLMpy function randomClusterNN (Etherington et al. 2015) which is an adaptation of the 82 

modified random cluster algorithm (Saura and Martınez-Millan 2000). We controlled 83 

aggregation of the coffee plants by a parameter ranging from 0.1-0.3, with 0.3 being the most 84 

clustered (Table 1).  85 

 86 

The second landscape aspect represents the surrounding matrix and “mirrored” the coffee 87 

array (i.e. cells containing coffee were empty in the matrix array). Values in each matrix cell 88 

represented canopy density. The proportion of the array consisting of deforested cells, or cells 89 

with a canopy density less than 30%, ranged from 0.15-0.75. Clustering of deforested cells was 90 

controlled by a parameter taking values from 1-5, with 1 being the most clustered and 5 the 91 

most dispersed (Table 1).  92 

 93 

Table 1. Parameter values for simulated landscapes. 94 

Parameter Values 

Coffee clustering 0.1, 0.2, 0.3 

Proportion of deforestation 0.15, 0.3, 0.45, 0.6, 0.75 

Clustering of deforestation 1, 2, 3, 4, 5 

 95 

We generated 50 replicate landscapes for each combination of parameter values for a total of 96 

3,750 simulations. We initialized rust infection in one randomly selected coffee cell in each 97 

simulated landscape.  98 

  99 

Modeling rust transmission. We modeled transmission of coffee rust through the simulated 100 

landscapes using a two-step process linked by two transition processes (Figure 1). The two 101 

processes in our model reflect differences in rust dispersal mechanisms at the local (within-102 
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patch) and regional (between-patch) scale. Local transmission of spores can occur through wind 103 

(Kushalappa and Eskes 1989), the impact of raindrops of coffee leaves (Rayner 1961a, b; 104 

Boudrot et al. 2016), and leaf-to-leaf contact (Vandermeer et al. 2018). For all of these local 105 

mechanisms, transmission is thought to decline with increasing distance from the infected 106 

source (Vandermeer et al. 2018); therefore a coffee plant with more infected neighbors is more 107 

susceptible to infection than a plant with few or no infected neighbors. Regional transmission, 108 

by contrast, is primarily through wind (Kushalappa and Eskes 1989; Avelino et al. 2015) and 109 

dispersal at the landscape scale is more likely to be affected by regional wind patterns and 110 

barriers inhibiting wind movement. 111 

 112 

We modeled local transmission using a stochastic cellular automata model (Wolfram 2002), in 113 

which the probability of infection in the focal cell at time t+1 is determined by 𝑝 ∼ 𝐵𝑒𝑡𝑎(𝑁, 8 −114 

𝑁); where N is the number of infected cells in the focal cell’s Moore neighborhood. Because 115 

the model assumes that local spread only occurs via transmission between immediate 116 

neighbors, a cell with no infected neighbors had a probability of infection p = 0. 117 

 118 

 119 

Figure 1. Conceptual diagram of the two-step model and transition processes. 120 

 121 

After modeling local spread, the model transitioned to regional spread when all infected coffee 122 

plants at the edge of a patch released 1 spore into an adjacent, randomly selected landscape 123 

tile. After new spores were released, all spores moved throughout the landscape using a 124 

modified random walk. At the beginning of the walk, all spores were assigned equal 125 

“movement values” which determined how far the spore could move during the time interval. 126 

For each movement, the target landscape tile was randomly selected from the focal cell’s 127 

Moore neighborhood, and the spore moved into the target tile. We subtracted the canopy 128 

density in the target cell from the spore’s movement value. We repeated the process for all 129 
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spores with a positive movement value, until the movement value for all spores was less than 130 

or equal to 0. 131 

 132 

Upon completion of the simulated walk, each spore adjacent to an uninfected coffee plant 133 

infected the plant with a probability of success set at 0.5. If a spore was adjacent to multiple 134 

uninfected plants, the target plant was selected randomly. Spores which successfully infected a 135 

plant were removed from the simulation. We repeated this four-part process for 1000 time 136 

steps per simulated landscape.  137 

 138 

Analyses. We calculated landscape-level rust prevalence at the final time step of each 139 

simulation. Assuming the distribution of prevalence values followed a beta distribution, we 140 

estimated α and ꞵ using the R package fitdistrplus (Delignette-Muller and Dutang 2015; R Core 141 

Team 2020). Using the estimated values of these parameters, we calculated 1) the expected 142 

value of the distribution, 2) skewness, and 3) the concentration parameter κ, which describes 143 

the width of the distribution around the mode. We also compared the maximum prevalence of 144 

each distribution and performed these calculations with 1) all simulation replicates pooled, 2) 145 

replicates separated by clustering value, and 3) replicates separated by all parameter values. 146 

We evaluated associations between deforestation, dispersion, and the properties of the beta 147 

distribution using Spearman’s ρ. Correlations of ρ ≥ 0.4 and ρ ≤ -0.4 were considered strong 148 

associations. 149 

 150 

Results 151 

 152 

Final rust prevalence across all parameter values ranged from 0.1–55.0% (Figure 2). The 153 

estimated parameters of the full distribution were estimated at α = 0.855 and ꞵ = 10.564. These 154 

values correspond to an expected value E(x) = 0.075, a skewness of 1.697, and concentration 155 

parameter κ = 11.419. 156 

 157 
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 158 

Figure 2. Distribution of model outcomes across all parameter combinations. Assuming the data 159 

follow a beta distribution, the expected value is 0.075, the skewness 1.697, and the 160 

concentration parameter κ is 11.419. 161 

 162 

All four metrics varied among coffee clustering values. The expected value and maximum 163 

infection was greatest in landscapes with high clustering, but did not appear to differ between 164 

low and moderate clustering values (Figure 3A, 3B). Conversely, the distributions of outcomes 165 

at high clustering values were less skewed and had lower values of precision (κ) than 166 

distributions at low or moderate clustering values (Figure 3C, 3D). 167 

 168 
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 169 

Figure 3. Different values of coffee clustering yield distributions of rust prevalence that vary in 170 

shape. Simulations in which coffee was highly clustered resulted in distributions with a greater 171 

expected value (i.e. typical outbreak size, panel A) and a greater maximum value (B). High 172 

clustering of coffee also resulted in distributions that were less right-skewed (C) and had more 173 

variability (D). 174 

 175 

We did not find consistent effects of deforestation and dispersion within clustering values; and 176 

the strongest patterns were typically present at the highest value of coffee clustering. The 177 

expected value of infection tends to increase with deforestation (ρ = 0.510, Figure 4A). 178 

Maximum infection tends to decrease with dispersion, but this association is weak (ρ = -0.255, 179 

Figure 4B). Deforestation was also strongly associated with skew, with a greater degree of right 180 

skew at low values of deforestation (ρ = -0.514, Figure 4C). Finally, the concentration parameter 181 

tended to be highest at high values of dispersion (ρ = 0.455, Figure 4D). The concentration 182 

parameter was also strongly associated with dispersion at moderate values of coffee clustering 183 

(ρ = 0.412, Figure 5), a pattern which held even when outliers were removed (ρ = 0.402). 184 
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 185 

 186 

Figure 4: Effects of deforestation and dispersion appear at the highest value of coffee 187 

clustering. When a greater proportion of the landscape is deforested, the typical outbreak size 188 

tends to be larger (A) and the distribution less right-skewed (C). When deforested areas are 189 

dispersed more evenly throughout the landscape, maximum rust infection tends to be lower (B) 190 

and outbreak size more predictable (D). 191 
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 192 

Figure 5: At the moderate value of coffee clustering, the spread of the distribution tends to 193 

increase with increased dispersion of deforested cells (ρ = 0.412). This pattern remains when 194 

outliers are removed (ρ = 0.402). 195 

 196 

Discussion 197 

 198 

Generally, in our simulated landscapes rust outbreaks were fairly localized, with most outbreaks 199 

small in scale. Of the three landscape metrics that we manipulated (coffee clustering, 200 

deforestation, and dispersion of deforested cells), coffee clustering is the major driver of coffee 201 

rust spread (Figure 3). At the landscape level, coffee clustering leads to more coffee rust and 202 

higher variability in the outbreak size (Figure 3). The amount of forest and how the forest is 203 

distributed in the landscape become important predictors of coffee rust in landscapes with high 204 

degrees of coffee clustering. When coffee is highly clustered, coffee rust prevalence increases 205 

with deforestation (Figure 4A) and its variability decreases the more deforested areas are 206 

scattered throughout the landscape (Figure 4D).  207 

 208 

Deforestation and coffee rust management at the farm level 209 

 210 

Our simulation results suggest that clustered coffee plants may act as significant sources for 211 

rust spread in deforested areas. Conventional management practices mainly depend on the 212 

foliar and systemic application of fungicides, including copper oxides, copper hydroxides, 213 

triazoles, and strobilurin (Capucho et al. 2013; Zambolim 2016). The timing of chemical controls 214 

are typically determined by weather, calendar day, plant age or via disease monitoring-based 215 

methods (Capucho et al. 2013). The development of coffee rust resistant varieties also provides 216 

farmers with protection against outbreaks (Avelino et al. 2004). However, reductions in 217 
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resistance durability has arisen due to the appearance of highly virulent rust strains (Silva et al. 218 

2006).  219 

 220 

Crop management practices such as pruning, fertilizing, manipulation of crop density and the 221 

addition of shade trees can have complex effects on spore dispersal and germination (Avelino 222 

et al. 2004, 2006). For instance, when rainfall levels are low, shade trees protect coffee plants 223 

by reducing the amount of raindrops falling onto leaves, thus reducing the dispersal of spores 224 

(Jaramillo and Chaves 1998). On the other hand, when rainfall levels are high, shade trees can 225 

have opposite effects on dispersal by acting as “living gutters” that create large droplets that 226 

fall onto coffee trees and stimulate spore dispersal. Shading practices can also reduce wind 227 

speed, resulting in reductions in aerial spore dispersal (Jaramillo and Gomez 1989). More 228 

recently, Gagliardi et al. (2020) demonstrated the importance of shade tree leaf and canopy 229 

traits on wind speed dynamics and spore dispersal at the edges of coffee agroforestry systems. 230 

Shade tree traits such as leaf thickness, canopy base height, and canopy openness were found 231 

to be important for reducing throughflow wind speeds and for promoting spore settling at the 232 

interior edge of coffee plots. High density planting of coffee plants, which promotes self-233 

shading, protects coffee trees in the same manner as shade trees, but can be detrimental as 234 

increases in leaf area index can facilitate spore establishment (Arcila and Chaves 1995). These 235 

studies highlight the complex interactions between coffee management practices and 236 

microclimatic factors in driving or reducing the risk of coffee rust outbreaks at the farm level. To 237 

this end, the outcomes from our simulations may have direct implications for rust management 238 

practices as high clustering of coffee plants resulted in larger and less predictable outbreaks.  239 

 240 

Understanding the socio-ecological factors involved in local spatial configuration of crop plants 241 

is crucial to reduce susceptibility to plant disease dynamics. Hajian-Forooshani and Vandermeer 242 

(2020) compared simulated coffee rust spread at the farm-level following a simple null model 243 

to a network model from empirical data to understand the spatial structure of coffee rust 244 

dynamics. Complementary to our results, they found that shade reduction and uniform coffee 245 

plot arrangements likely increases the probability of coffee rust outbreaks. Thus, spatial 246 

arrangement of coffee plants is highly important to consider either when a new coffee crop is 247 

being established or when an individual coffee plant is replaced.  248 

 249 

As coffee plants age, they decrease their production and get replaced. When this opportunity 250 

to restructure a coffee plot arises, our study suggests that in addition to avoiding uniformity 251 

(Hajian-Forooshani and Vandermeer 2020), coffee plots should be less clustered to decrease 252 

the spread of coffee rust. This is in line with disease modeling of other systems, where 253 

clustering of individuals leads to more frequent and severe outbreaks (Lieu et al. 2015; 254 

Althouse et al. 2020). 255 
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 256 

One method to prevent coffee clustering is incorporating shade crops, an already commonly 257 

used strategy to manage coffee rust. Adding Musaceae species (banana and plantain) or 258 

Erythrina poeppigiana (also known as poró) to break the wind reduces spores dispersal, but it 259 

can also help reduce the clustering of coffee plants. Shade trees exhibit great variability and 260 

porós are regularly pruned as part of the management, but the most effective shade trees are 261 

dense porós with thick leaves. However, this reduction of wind speed comes with a trade-off as 262 

coffee rust spores settle more at the edges of a coffee plot (Gagliardi et al. 2020). Combined 263 

plot-level strategies can be beneficial and the investment of replacement of individual plants 264 

with coffee rust-resistant varieties placed at the edge of a coffee plot.  265 

 266 

Deforestation and coffee rust management at the landscape level  267 

 268 

The emergence of coffee rust in Brazil during the 1970's had a large impact on landscape 269 

management across Latin America, as farmers recognized the importance of shade trees as a 270 

means to control coffee rust outbreaks. The industrialization of coffee in combination with the 271 

appearance of coffee rust has transformed the landscape of many coffee growing regions, 272 

creating a “patchy” landscape composed of conventional and traditional “shade farms” (Rice 273 

1999). Moreover, the homogenization of coffee landscapes, primarily through the clearing of 274 

forested areas, has been previously linked to coffee rust outbreaks and continues present 275 

major challenges for disease control (Avelino et al. 2004, 2006; Boudrot et al. 2016; Perfecto et 276 

al. 2019). To this end, deforestation, and thus the loss of shade tree protection, can facilitate 277 

the dispersal of rust spores by allowing wind gusts to infiltrate coffee canopies (Perfecto et al. 278 

2019). Our results agree with these mechanistic explanations for the spread of coffee rust 279 

within a simplified-homogenous landscape as high levels of clustering and deforestation 280 

resulted in higher prevalence of coffee rust infections. Thus, efforts to undo the effects of 281 

landscape homogenization through conservation and reforestation practices may serve as an 282 

effective approach to manage coffee rust at the landscape level. 283 

 284 

Localized management strategies are insufficient for managing many fungal diseases due to the 285 

dispersal of windborne spores. Previous farm-scale management tactics, such as host removal 286 

through culling or planting resistant varieties, fail to contain epidemics because they 287 

underestimate the spatial scale of the outbreak (Gilligan et al. 2007). It is possible that high-288 

profile failures to contain plant disease outbreaks, such as sharka (Rimbaud et al. 2015) and 289 

citrus canker (Irey et al. 2006) are due to implementing local, reactive strategies rather than a 290 

landscape-level approach (Gilligan et al. 2007; Fabre et al. 2019). Our study suggests that 291 

localized strategies are particularly ineffective in highly connected landscapes (Figure 3), where 292 

coffee patches are large and clustered together. This finding reflects previous studies regarding 293 
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disease transmission and landscape modality (Macfadyen et al. 2011). Characteristics of the 294 

matrix surrounding farmland, specifically deforestation, can also facilitate or inhibit disease 295 

spread (Figure. 4). This demonstrates the need for management strategies that address 296 

processes occurring at multiple scales (Amico et al. 2020).  297 

 298 

The majority of the coffee in the world is produced in small farms of less than 10 hectares (Jha 299 

et al. 2014). Therefore, cooperation between farmers is critical for managing coffee rust 300 

outbreaks at the landscape level. For instance, communication among neighboring farmers may 301 

help minimize clustering of coffee plants and facilitate community-based reforestation efforts. 302 

Additionally, the exchange of disease monitoring and management information may help 303 

contain the spread of coffee rust at the landscape level. Examples of cooperation among 304 

farmers have been documented for the management of plant diseases such as cassava brown 305 

streak disease and Huanglongbing (Bassanezi et al. 2013; Legg et al. 2017). Coordinated 306 

management is thought to be most successful among farmers and their immediate neighbors, 307 

but at larger spatial scales, competing interests and values may hinder collective management 308 

strategies (Sherman et al. 2019). An integrative approach that incorporates on-farm,  309 

neighborhood, and landscape management strategies may serve as a productive way for 310 

farmers, land managers, and government officials to collectively manage coffee rust (Amico et 311 

al. 2020). 312 

 313 

 314 

Mathematical modeling and simulation of landscape processes 315 

 316 

The relative simplicity of our model allows us to focus on landscape effects without having to 317 

filter through “noise” created by other environmental processes. However, this simplicity 318 

comes with the disadvantage of omitting a handful of factors that may influence how well our 319 

model reflects reality. One such factor is the finite landscape boundaries present in our 320 

simulated landscapes. Finite boundaries are frequently a necessity in simulated landscapes due 321 

to limited computation time, but tend to bias movement-based simulations (Koen et al. 2010). 322 

This problem is most evident in cells adjacent to the landscape boundary, where moving agents 323 

have a more limited selection of cells they can potentially enter (Keane et al. 2006). While our 324 

simulation does not include measures to mitigate boundary effects, such as a buffer around the 325 

landscape (Koen et al. 2010), a visual inspection of the outcomes of our model suggests that 326 

simulations where rust infection starts near the edge do not yield unusually high or low values 327 

of rust prevalence.  328 

 329 

Our model does not include the effects of wind, sunlight, and humidity, all of which are known 330 

to affect rust transmission and germination (Kushalappa and Eskes 1989; Avelino et al. 2015). 331 
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Wind, in particular, is thought to be the primary mechanism driving landscape-level dispersal of 332 

rust spores. By omitting wind, it is likely our model 1) underestimates the importance of 333 

deforestation as a driver of landscape-level prevalence, and 2) fails to detect effects of starting 334 

conditions (i.e. location of initial infection) on final prevalence. Despite these faults, our model 335 

successfully outlines broad patterns of rust spread and the landscape factors influencing 336 

outbreaks.  337 

Modeling plant disease spread presents unique challenges (Cunniffe et al. 2015a). For instance, 338 

in contrast to human diseases, plants are sessile and data on the location and the disease state 339 

of individuals can be particularly difficult to obtain (Cunniffe et al. 2015a). However, simulations 340 

and mathematical modeling can play a major role in plant disease management because most 341 

issues regarding management are spatial in nature (Fabre et al. 2019). This is particularly true 342 

for pathogens that can disperse long distances because processes at local and landscape scales 343 

can influence their spread (Plantegenest et al. 2007; Gilligan 2008). In addition, mathematical 344 

models can be used to simulate the outcomes of different management options, allowing 345 

farmers and managers to optimize disease control strategies (Gilligan 2008; Cunniffe et al. 346 

2015b; Rimbaud et al. 2018; Fabre et al. 2019). While modeling is not a one-stop solution to the 347 

problem of emerging plant pathogens, using mathematical models in conjunction with adaptive 348 

management strategies and a robust disease surveillance network can result in more effective 349 

disease control. 350 

Conclusions and Future Directions 351 

 352 

Using a spatially-explicit model, we found that the spread of coffee rust is primarily affected by 353 

clustering of coffee plants (Figure 3). In addition, clustering interacts with deforestation and 354 

fragmentation to influence disease spread (Figures 4, 5). Overall, the models predict a general 355 

pattern of highly clustered coffee plots and deforestation leading to greater coffee rust 356 

prevalence, with dispersed deforestation increasing individual outbreaks’ predictability.  357 

 358 

Our results have important implications for local and regional management practices. Locally, 359 

the results of this study show that coffee farms should focus on decreasing the density of coffee 360 

plants per coffee plot to prevent coffee rust prevalence, reinforcing the common rust 361 

management practice of using shade crops between coffee lines. Regionally, reforestation 362 

projects or landscape management decisions should consider that landscapes with higher 363 

forest cover tend to have less prevalence of coffee rust and be more resilient against outbreaks. 364 

Also, land-use decision makers should consider that the exact degree and location of 365 

deforestation matters for disease outbreaks. Higher dispersion of deforestation seems to lead 366 

to less variability in rust prevalence,  increasing its predictability. Future work should examine 367 

how these results play out in real landscapes of coffee plants and forest habitat. In addition, 368 
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incorporating more biological mechanisms (e.g., wind) into our spatially-explicit model may 369 

yield additional insights.  370 

 371 

 372 

Code and Data Availability 373 

 374 

All code and model outputs are available at 375 

https://github.com/Beasley015/QuestCoffeeRustLandscape. 376 

 377 
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