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Abstract 1 

Assessing the phylogenetic compatibility between individual gene families is a crucial and often 2 

computationally demanding step in many phylogenomics analyses. Here we describe the Evolutionary 3 

Similarity Index (𝐼!") to assess shared evolution between gene families using a weighted Orthogonal 4 

Distance Regression applied to sequence distances. This approach allows for straightforward pairing of 5 

paralogs between co-evolving gene families without resorting to multiple tests, or a priori assumptions of 6 

molecular interactions between protein products from assessed genes. The utilization of pairwise distance 7 

matrices, while less informative than phylogenetic trees, circumvents error-prone comparisons between 8 

trees whose topologies are inherently uncertain. Analyses of simulated gene family evolution datasets 9 

showed that 𝐼!" was more accurate and less susceptible to noise than popular tree-based methods 10 

(Robinson-Foulds and geodesic distance) for assessing evolutionary signal compatibility, since it 11 

bypasses phylogenetic reconstruction and its inherent uncertainty. Applying 𝐼!" to a real dataset of 1,322 12 

genes from 42 archaeal genomes identified eight major clusters of gene families with compatible 13 

evolutionary trends. Four of these clusters included genes with a taxonomic distribution across all 14 

archaeal phyla, while other clusters included a subset of taxa that do not map to generally accepted 15 

archaeal clades, indicating possible shared horizontal transfers by clustered gene families. We identify 16 

one strongly connected set of 62 genes from the same cluster, occurring as both single-copy and multiple 17 

homologs per genome, with compatible phylogenetic reconstructions closely matching previously 18 

published species trees for Archaea. An 𝐼!" implementation is available at 19 

https://github.com/lthiberiol/evolSimIndex. 20 

Introduction 21 

 Phylogenies reconstructed from single genes are known to poorly reflect the underlying history of 22 

whole genomes, as the detectable phylogenetic signal from an isolated locus cannot be extrapolated to 23 

represent whole genomes (Dagan and Martin 2006; Bapteste et al. 2009; Koonin et al. 2009). To 24 

ameliorate this effect, it has become common practice to estimate species’ evolutionary histories by 25 

concatenating multiple sequence alignments of genes from the core genome, i.e., single copy and widely 26 

conserved across sampled genomes, which greatly increases the number of sites available for 27 

phylogenetic inference. The preference towards using core genome sequences is due their expected 28 

resistance to horizontal gene transfer (HGT) (Thomas and Nielsen 2005; Sorek et al. 2007; Popa and 29 

Dagan 2011); however, despite the lower frequency of HGT among some gene families, it has been 30 

shown that horizontal exchange also affects genes from the core genome. In fact, the slow substitution 31 

rate and corresponding high sequence conservation of the core genome may even favor HGT, permitting 32 
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increases in neutral and nearly-neutral HGT at the genus and species levels (Papke and Gogarten 2012; 1 

Shapiro et al. 2012). 2 

Given this context, it is clear that more rigorous methods are needed to identify genes best 3 

reflecting the underlying vertical evolutionary signal in a group of species; such methods should seek to 4 

maximize the compatibility between evolutionary trends of the chosen gene families in order to provide a 5 

more robust basis for phylogenomic reconstruction. Many strategies have been proposed to assess 6 

similarities between the phylogenetic signals obtained by individual gene trees - e.g., Robinson-Foulds 7 

bipartition compatibility (RF) (Robinson and Foulds 1981) and geodesic distance (𝐷#$%) (Kimmel and 8 

Sethian 1998; Kupczok et al. 2008; Owen and Provan 2011) - as well as other methods that assess 9 

similarities between phylogenetic profiles (Pellegrini et al. 1999; Vert 2002; Barker and Pagel 2005; Liu 10 

et al. 2018). The majority of tree-based methods are based on straightforward comparisons between tree 11 

topologies (Kunin et al. 2005; Leigh et al. 2008; Puigbò et al. 2009; Mirarab et al. 2014; Gori et al. 2016). 12 

However, while an intuitive solution, comparisons between tree topologies require phylogenetic trees of 13 

all assessed gene families to be accurately reconstructed, adding a substantial computational cost to an 14 

already computationally demanding task. Furthermore, the vastness of tree space, combined with the 15 

inherent uncertainty of phylogenetic reconstruction, provides multiple sources of errors in tree-based 16 

evolutionary similarity assessments.  Another method to assess the evolutionary compatibility of genes  is 17 

based on  similarities between patterns of presence and absence (phylogenetic profiles) of such genes 18 

among genomes of interest . While recent implementations displayed substantial improvements (Liu et al. 19 

2018) when compared to the early ones, reliance on an initial reference tree hamper general applicability. 20 

Phylogenetic profile-based methods also do not assess divergencies between sequences of homologous 21 

genes, which limits the resolution of their results. 22 

Accounting for uncertainty-based variations in tree topology (i.e., bipartition support) further 23 

increases the computational burden and decreases the resolution of the evaluated phylogenetic signal 24 

(e.g., collapsing low support bipartitions or weighing them based on support). A proposed solution to 25 

bypass the computational cost of tree similarity assessments is Pearson’s correlation coefficient (r) 26 

between evolutionary distance matrices (Goh et al. 2000; Pazos and Valencia 2001; Novichkov et al. 27 

2004; Rangel et al. 2019). Unlike tree-based comparisons, methods based on Pearson’s r enable simple 28 

implementations to detect similar evolutionary signals between gene families with histories complicated 29 

by multiple homologs within genomes by estimating correlation coefficients using all possible pairings of 30 

paralogs between gene families (Gertz et al. 2003; Ramani and Marcotte 2003). Despite its application in 31 

protein-protein interaction studies, the sensitivity of Pearson’s r to noise in evolutionary distances and the 32 

granularity of its estimates have yet to be compared to those of tree-based metrics. Direct Coupling 33 

Analysis (DCA) has also been used to pair gene copies between possibly co-evolving gene families 34 
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(Gueudré et al. 2016), but despite positive results the assumption that protein products of co-evolving 1 

genes must be directly interacting hampers its general applicability. 2 

New approaches 3 

 Given the shortcomings pointed out above, we propose the Evolutionary Similarity Index (𝐼!") as 4 

a metric for similarities between evolutionary histories based on weighted Orthogonal Distance 5 

Regression (wODR) between evolutionary pairwise distance matrices. We show that evolutionary 6 

similarity estimates from wODR display a linear correlation with performed stepwise perturbations 7 

simulated tree topologies. More common tree-based evolutionary similarity estimates, such as RF and 8 

𝐷#$%, tend to overestimate the impact of simulated topology changes, and consequently are significantly 9 

more susceptible to errors in evolutionary history reconstruction. As a case study of this new method, we 10 

assessed evolutionary similarities across 1,322 archaeal gene families and detected significant 11 

evolutionary incompatibilities between conserved single-copy genes, as well as a clear central 12 

evolutionary tendency involving 62 gene families that occur as both single and multiple-copies across 13 

genomes. 14 

Methodology 15 

 Orthogonal Distance Regression (ODR) is an errors-in-variables regression method that accounts 16 

for measurement errors in both explanatory and response variables (Boggs et al. 1987), instead of 17 

attributing all errors in the expected values exclusively to the response variable, as performed by Ordinary 18 

Least Squares (OLS). While OLS regressions seek to minimize the sum of squared residuals of the 19 

response variable, ODR minimizes the sum of squared residuals from each data point obtained by the 20 

combination of explanatory and response variables. Novichkov et al. (Novichkov et al. 2004) assessed the 21 

compatibility between the evolutionary history of genes with a reference genomic evolutionary history 22 

using Pearson’s r and estimates of an OLS regression’s intercept. The latter extra step when compared to 23 

other implementations using Pearson’s r (Ramani and Marcotte 2003; Izarzugaza et al. 2008; Gueudré et 24 

al. 2016) is required to infer that datapoints not fitting a regression line through zero are caused by HGT. 25 

The approach proposed by Novichkov et al. requires two key assumptions that restrict the general 26 

applicability of evolutionary assessments of empirical datasets: 1) there must exist a reference history to 27 

which gene histories are compared; and 2) there are no errors in reference distances between genomes.  28 

 The approach described here is based on ODR. Its modelling of errors within both assessed 29 

variables decreases the necessity of comparing gene family pairwise distances against a well-established 30 

reference. Where a priori there is no clear separation between explanatory and response variables, errors-31 

in-variables approaches (e.g., ODR) are better suited to compare pairwise evolutionary distances between 32 
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two gene families. Independently weighing datapoints based on their residuals from an initial regression 1 

line provides a framework less susceptible to underestimating overall evolutionary similarities due to few 2 

homologs with strong signal incompatibility. Our implementation uses a wODR model with regression 3 

line through the origin by setting the Y-axis intercept to zero, which avoids overfitting the linear 4 

regression model to the detriment of coherent evolutionary assumptions. 5 

Algorithm explanation 6 

 Our 𝐼!" implementation performs an initial wODR with pairwise comparisons including all gene 7 

family representatives within each genome. For each genome, all pairs containing one homolog from each 8 

assessed gene family are evaluated, and unique pairs that minimize the sum of squared residuals are 9 

reported. As exemplified in Fig. 1, a hypothetical gene1 occurs exclusively as single copy across 10 10 

genomes (Fig. 1, tree1), while gene2 has an extra copy within genome J (Fig. 1, tree2). To identify which 11 

copy of gene2 in J (i.e., j1 or j2) better represents their shared evolution we compare gene1 pairwise 12 

distances involving j with gene2 pairwise distances involving j1 and j2. Consequently, to do that we must 13 

duplicate J’s rows and columns in matrix1 to match matrix2 dimensions (Fig. 1, matrix1). The scatter plot 14 

in Fig. 1 highlights pairwise distances involving j1 in blue and j2 in red, and as shown by the fitted wODR 15 

regression, gene2 pairwise distances involving j1 fits better to the expected linear association between 16 

matrix1 and matrix2 than pairwise distances involving j2. The smallest sum of residuals obtained by the j1 17 

homolog of gene2 correctly pairs it with J’s gene1 homolog, while j2’s gene2 homolog is likely a product 18 

of HGT from a shared common ancestor of A and B. When both gene families occur in multiples within 19 

the same genome, all pairs of unique loci are reported. Once best matching genes from each gene family 20 

are paired, or if both occur exclusively as single copy, a final wODR is performed using paired homologs 21 

from each gene family and Y-axis intercept equal to zero. wODR is performed through the SciPy 22 

(Virtanen et al. 2020) API of ODRPACK (Boggs et al. 1989). Initial weights of pairwise distance are 23 

estimated as the inverse of residuals obtained from geometric distance regression with intercept equal to 24 

zero and slope equal to 𝑠& 𝑠'⁄ , where 𝑠& and 𝑠' are standard deviations from the regressed distance 25 

matrices. Our method’s capability to automatically pair copies of duplicated genes who best reflect the 26 

shared history between two gene families vastly expands the scope of datasets fit to general evaluation of 27 

evolutionary signal compatibilities.  The presence of multiple gene copies within a genome constitutes a 28 

key bottleneck to methods commonly used to assess the similarity of evolutionary histories. Tree-based 29 

evolutionary distance assessment algorithms are not generally capable of pairing genes between two gene 30 

families when at least one family contains multiple gene copies within genomes (Stamatakis 2006; 31 

Nguyen et al. 2015; Gori et al. 2016; Huerta-Cepas et al. 2016). While Pearson r implementations either 32 

rely on multiple tests (Gertz et al. 2003; Ramani and Marcotte 2003; Izarzugaza et al. 2008) or on 33 

predicting structural interaction between gene products (Gueudré et al. 2016).  34 
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 1 
Fig. 1 Steps for 𝐼!" estimation between gene families containing multiple gene copies. tree1 and tree2 are phylogenetic trees of 2 
two hypothetical gene families, gene1 and gene2, respectively. matrix1 and matrix2 contain pairwise evolutionary distances 3 
between taxa from their respective gene families. The red arrows in matrix1 highlight the duplication of pairwise distances 4 
involving the j homolog of gene1 necessary to match dimensions of the two matrices. The wODR scatterplot displays the linear 5 
relationships between distances from both gene families, and highlights distances related to the j1 homolog of gene2 in blue and 6 
related to the j2 homolog in red. Arrows also highlight pairwise distances homologs in genomes J and I from both gene families. 7 

Given that regression models only account for data points equally represented in both assessed 8 

variables, gene losses and duplications are not directly accounted for when comparing evolutionary 9 

histories through wODR. To incorporate unequal genomic occurrence between gene families to our 10 

proposed measurement of evolutionary similarity, the wODR Coefficient of Determination, i.e. 𝑅(, is 11 

adjusted by the Bray-Curtis Index (𝐼)*). 𝐼)*  is defined as 1 − 𝐷)* , where is the 𝐷)*  is Bray-Curtis 12 

Dissimilarity (Bray and Curtis 1957) calculated from absolute genome counts in each gene family. From 13 

hereon we will refer to the wODR 𝑅( 	× 𝐼)*  product as 𝐼!". Supplementary Fig. S12 demonstrates wODR 14 

𝑅( overestimation caused by the decrease in taxa overlap between two gene families, as well as the 15 

importance of 𝐼)*  adjustment. One random taxon was removed from each of two simulated gene families 16 

whose evolutions diverge by five Subtree Prune and Regraft (SPR) transformations. As the set of taxa 17 
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 7 

used during the regression becomes unrepresentative of underlying evolutionary processes, estimates 1 

based on wODR 𝑅( tend to artificially increase. 2 

Continuing with the example depicted in Fig. 1, despite gene1 and gene2 identical genomic 3 

occurrence, their copy numbers diverge within genome J, which as mentioned before, arose from a 4 

horizontal exchange of gene2. To reflect this difference in evolutionary events within gene family 5 

histories in the proposed 𝐼!", the resulting wODR 𝑅( = 1 is adjusted using an 𝐼)* = 0.95. 6 

Statistics and data analysis 7 

 Pandas Python library (McKinney 2010) was used to manipulate pairwise distance matrices and 8 

for generating condensed versions of the matrices submitted to wODR model. Effect size (f) hypothesis 9 

tests of differences between distributions were obtained using Common Language statistics (McGraw and 10 

Wong 1992), and p-value correction for multiple tests was performed using False Discovery Rate 11 

implementation in StatsModels Python library (Seabold and Perktold 2010).  12 

 Enrichment of gene families within sets of genomes were assessed using hypergeometric tests 13 

and p-values corrected with Benjamini-Hochberg’s False Discovery Rate and expressed as q-values.  14 

Data Simulation 15 

 We constructed ten simulated datasets, each one containing 50 trees generated from stepwise 16 

random SPR transformations. These datasets were designed to represent sets of trees with similar 17 

topologies reflecting a shared evolutionary history, perturbed by both phylogenetic noise and HGT. Each 18 

dataset contains one initial random rooted tree with 50 taxa generated by ETE3 (Huerta-Cepas et al. 19 

2016). To obtain the remaining 49 trees, the initial tree (tree_1) undergoes a series of 49 consecutive SPR 20 

transformations in such a way that tree_1 differs from tree_2, tree_3, and tree_n by 1, 2, and n SPR 21 

transformations, respectively. At each SPR the branch leading to the regrafted clade undergoes two 22 

transformations to simulate changes in substitution rate after an HGT event. The first transformation 23 

multiplies the branch length by a random uniform variable ranging from 0 to 1, simulating at which point 24 

during the branch’s history the transfer occurred. The second transformation multiplies by a random 25 

gamma distributed variable (𝛼 = 𝛽 = 100), simulating changes in substitution rates in the recipient clade 26 

after said transfer. All simulated trees are available in Supplementary Material. 27 

 All simulated trees were also used to generate sequence simulations using INDELible (Fletcher 28 

and Yang 2009) (Supplementary Material). Phylogenetic trees and pairwise distance matrices were 29 

reconstructed using IQTree (Nguyen et al. 2015) using the LG+G model. 30 

Archaeal empirical dataset 31 

 Complete genome sequences of 42 Archaea from the Euryarchaeota phylum and from TACK, 32 

DPANN, and Asgardarchaeota groups were downloaded from NCBI GenBank (Supplementary Table 33 
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S1). Other candidate phyla known from metagenomic as well as remaining members of the DPANN 1 

group were not included, as their expected phylogenetic relationships are not as well understood.  2 

Clustering of homologous proteins was performed using the orthoMCL (Li et al. 2003) implementation 3 

available in the GET_HOMOLOGUES package (Contreras-Moreira and Vinuesa 2013; Vinuesa and 4 

Contreras-Moreira 2015). Archaea were selected as the test dataset since the evolutionary relationships 5 

between some major groups are well-established, while others remain contested. Furthermore, many sets 6 

of archaeal metabolic genes have a strong phyletic dependence (e.g., methanogenesis among 7 

Euryarchaeota (Borrel et al. 2013)), therefore facilitating a clear assessment of similarities between 8 

evolutionary signals of genes at different phylogenetic distances. Evolutionary similarity comparisons 9 

were restricted to homologous groups present in at least 10 genomes. 10 

Pairwise maximum likelihood distances between homologous proteins were generated using 11 

IQTree under the LG+G evolutionary model. Phylogenetic trees from clusters of gene families with 12 

compatible evolutionary signal (CES) and extended core genome (i.e., single copy and present in at least 13 

35 out of the 42 sampled Archaea genomes) were reconstructed from concatenated multiple sequence 14 

alignments using the LG+C60+F+G and individual partitions corresponding to each concatenated gene. 15 

 Enrichment of gene functions among CES clusters were performed using StringDB API 16 

(Szklarczyk et al. 2019). For each genome, homologs from CES gene families were submitted 17 

independently for enrichment assessment. Retrieved protein annotations are available in the 18 

Supplementary Material. 19 

Geodesic and Robinson-Foulds distance calculations 20 

 𝐷#$% between single copy gene families (both simulated and real datasets) were calculated using 21 

the treeCl Python package (Gori et al. 2016). RF distances between single copy gene families were 22 

calculated by ETE3. 23 

Results and Discussion 24 

Simulated dataset 25 

Evolutionary histories between simulated gene families were compared to each other using three 26 

distinct metrics: RF, 𝐷#$%, and 𝐼!". Results reported by all three approaches successfully identified the 27 

monotonic increase in SPR operations from a starting tree (Fig. 2 and Supplementary Fig. S1). 28 

Measurements obtained from RF and 𝐷#$% approaches, however, frequently overestimated the impact of 29 

SPR transformations between two gene families, leading to a fast saturation of dissimilarities between 30 

evolutionary histories (Fig. 2B and Fig. 2C). The dissimilarity saturations detected by RF and 𝐷#$% 31 

measurements occur as they fail to identify the decreasing similarity between two trees separated by more 32 
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than 15 to 20 SPR transformations, or even 10 SPR in some replicates (simulation replicate #1, 1 

Supplementary Fig. S1). Both of these approaches rely on the proportion of compatible bipartitions 2 

shared by two trees, which is very susceptible to small changes at deep bipartitions, where changing one 3 

single leaf can potentially create fully incompatible bipartition tables. 4 

 5 
Fig. 2 Scatter plot of evolutionary similarity metrics against number of SPR transformations between simulated gene families 6 
from all ten replicates. Solid black lines are estimated from OLS regressions between number of SPR transformations and 7 
evolutionary similarity metrics. All three scatter plots display the number of SPR transformations between two trees in the X-8 
axis, while varying the evolution similarity metric displayed in the Y-axis. A) displays wODR 𝑅# between distance matrices of 9 
simulated gene families in the Y-axis, B) displays geodesic distances between trees reconstructed from each simulated alignment, 10 
and C) displays RF distances estimated from the same trees. 11 

In contrast, 𝐼!" estimates are less susceptible to overestimating the impact of shifts in topology of 12 

an underlying tree, displaying a robust linear correlation with the number of SPR transformations between 13 

gene families (�̅� = −0.87, Fig. 2A). The lower level of information assessed by 𝐼!", pairwise distance 14 

matrices instead of dichotomic trees, is less susceptible to dissimilarity saturation, corresponding to a 15 

more linear relation between expected and observed changes in evolutionary histories. Furthermore,  𝐼!" 16 

is much more efficient, computationally. Tree reconstruction of the alignment simulated from tree_1 of 17 

the first simulation replicate (50 taxa and 500 sites with no indels) under LG+G model by IQTree took 80 18 

seconds in a single thread, while the computation of the pairwise distance matrix for the same alignment 19 

took 1.713 seconds. Both computations were performed on a 3 GHz Intel Xeon W processor. The 20 

difference in computing time of almost 50x, without bipartition support assessment, shows another, 21 

practical advantage for assessing evolutionary similarity through 𝐼!" in large datasets. 22 

Robustness assessment between approaches 23 

The dichotomic pattern in a cladogram is extremely susceptible to uncertainties in phylogenetic 24 

reconstruction, combined with the vast tree space available for 50 taxa, causing noise-induced topological 25 

variations to be not directly distinguishable from real deviations in evolutionary history (Szöllosi et al. 26 

2013). The simpler information used to estimate 𝐼!" (i.e., pairwise Maximum Likelihood distances) is less 27 

prone to such uncertainty, as it bypasses forming hypotheses about the evolutionary relationships between 28 

taxa. This assumption is corroborated by pairwise comparisons within bootstrap replicates, where 𝐼!" 29 
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correctly detected replicates as such, i.e., virtually identical to each other, while RF and 𝐷#$% measures 1 

failed to identify the common nature of bootstrap replicates. In addition to its accurate predictions, 𝐼!" 2 

consistently displayed very little variance within its estimates between bootstrap replicates.  3 

Each alignment of simulated sequences was used to generate 10 bootstrap replicates. Pairwise 4 

comparisons between 10 bootstrap replicates summed up to 45 comparisons within a single alignment. 5 

Given that we simulated a total of 500 alignments, we assessed 22,500 pairwise comparisons between 6 

bootstrap replicates across all simulated datasets. 𝐼!" values correctly identified bootstrap replicates as 7 

sharing virtually identical evolutionary histories, 𝐼!"6666 = 0.96, and did so very consistently (CV = 1.39%, 8 

where CV stands for Coefficient of Variation). Despite successfully identifying increasing evolutionary 9 

changes between simulated trees, RF distances inconsistently predicted similarities between histories of 10 

bootstrapped trees (𝑅𝐹6666 = 18% and CV = 57.45%), as variations in bootstrapped alignments caused small 11 

perturbations in reconstructed tree topologies, and subsequent underestimation of evolutionary similarity 12 

between bootstrap replicates. While 𝐷#$% estimates are more likely to overestimate small differences 13 

between trees than RF, and consequently are more prone to saturation, geodesic distance estimates 14 

displayed substantially less variation than RF (𝐷#$%666666 = 1.25 and CV = 14.97%). 𝐷#$% cannot be directly 15 

normalized or translated to a proportion of incompatibility between trees. 16 

Evolutionary similarities within archaeal gene families 17 

 In order to test 𝐼!" performance when estimating shared phylogenetic signal in an empirical set of 18 

gene families, we evaluated 1,322 families of homologous proteins assembled from annotated CDSs 19 

extracted from 42 archaeal genomes (Supplementary Table S1). This empirical dataset contains conserved 20 

and accessory gene families with different sizes due to gene losses, duplications, and transfers. 21 

𝐼!" was estimated for all pairwise combinations of gene families present in at least 10 genomes, 22 

with 2,142 out of 748,712 comparisons having 𝐼!" values of at least 0.7. Pairs of gene families with an 23 

𝐼!" ≥ 0.7 were added as nodes to a weighted network with its estimated 𝐼!" value as an edge connecting 24 

both gene families. In total 419 unique archaeal gene families were added to the network, while the 25 

remaining 903 gene families did not display any 𝐼!" ≥ 0.7 with other gene families. A 0.7 threshold was 26 

selected based on early applications of Pearson’s r to evolutionary distances (Goh et al. 2000; Pazos and 27 

Valencia 2001). The resulting evolutionary similarity network (Fig. 3) is heavily imbalanced, with just 28 

11% of nodes involved in 50% of network edges. The majority of gene families (68%) did not display any 29 

𝐼!" above the 0.7 threshold with other gene families, suggesting a general incompatibility between 30 

evolutionary signals, or lack thereof to detect its compatibility with others. However, the high edge 31 

concentration within just a few nodes suggests a strong central signal (Puigbò et al. 2009) present among 32 

few gene families, from which the evolutionary trajectories of others have diverged. Similarities between 33 
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evolutionary signals, as estimated by 𝐼!", are strongly associated with genomic linkage (𝑝 = 6.18𝑒+,- 1 

and 𝑓 = 0.86). Gene families frequently occurring in each other’s genomic vicinity (i.e., fewer than 2 

10,000 bp apart in at least 21 genomes) displayed significantly greater 𝐼!" relative to pairs of gene 3 

families that were further apart (i.e., more than 100,000 bp apart in at least 21 genomes) (Fig. 4a). 4 

 5 
Fig. 3 Compatible evolutionary signal network, each node represents a gene family, and edges connecting nodes represent shared 6 
evolutionary history (𝐼!" ≥ 0.7). Nodes in the same colors are identified as undergoing similar evolutionary trends by Louvain 7 
community detection. Triangular nodes represent single-copy genes, and circular ones are gene families containing gene 8 
duplications. Clusters of CES gene families with less than ten members are not represented. 9 
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 1 
Fig. 4 A) distributions of 𝐼!" between pairs of genes within 10,000 bp of each other in blue and between pairs of genes apart by at 2 
least 100,000 bp in orange. Neighboring gene pairs displayed significantly more similar evolutionary signals than non-3 
neighboring gene pairs. B) ratio between the proportion of gene pairs intra and inter CES clusters, Y-axis, occurring within 4 
genomic windows, X-axis. 100 window sizes were assessed ranging from 1,000 bp to 1,000,000 bp.  5 

Clusters of gene families with compatible evolutionary signal 6 

Evolutionary trends shared across gene families were assessed using Louvain community 7 

detection (Blondel et al. 2008), reporting 41 CES clusters, of which 25 comprise only two gene families 8 

and eight major clusters contain ten or more similarly evolving gene families (Fig. 6). Although the 9 

assumption of compatibility between evolutionary signals based on 𝐼!" estimates and the clustering 10 

process are agnostic of specific shared evolutionary events or their causes, each of these clusters is 11 

expected to comprise gene families sharing common evolutionary trends and paths. These shared 12 

evolutionary trends are corroborated by the very pronounced association between genomic linkage and 13 

estimated compatibility between evolutionary signals. Across small nucleotide distances between loci, 14 

linkage is a strong predictor of CES relations between genes, but its predictive power rapidly decreases as 15 

the number of nucleotides between two given loci increase (Fig. 4b), displaying a linear log-log 16 

relationship (Supplementary Fig. S2). Comparisons between intra- and inter-cluster genomic linkage 17 

showed that the proportion of CES genes within 1,000 bp of each other is three times the proportion of 18 

non-CES genes within the same window. Increasing the surveilled genomic window decreases the 19 

difference between proportions; within a 10,000 bp window, the ratio of CES genes is reduced to 1.8 the 20 

ratio of non-CES, and at a 100,000 bp window this difference in proportions falls to 1.2 (Fig. 4b). 21 

Among the eight CES clusters with ten or more gene families, four are comprised of mostly core 22 

genes, and four are composed of mostly accessory genes (Fig. 6). The four CES clusters of core genes 23 
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(cluster#2, cluster#3, cluster#4, and cluster#5) are promising candidates for reconstructing the average 1 

phylogenetic signal present within sampled Archaea. These four core CES clusters are composed of 102 2 

extended core genes (single copy and present in at least 35 genomes) and 146 broadly distributed gene 3 

families present on average in 33 genomes, both as single and multiple copies. CES clusters of accessory 4 

genes (cluster#0, cluster#1, cluster#8, and cluster#15 in Fig. 6) include specific archaeal clades, but do 5 

not map to well-established phylogenetic relationships; rather, they show polyphyletic gene distributions, 6 

likely caused by HGTs and/or gene losses shared by CES gene families. For example, cluster#0 is well 7 

represented amongst Euryarchaeota and hyperthermophilic TACK; cluster#15 comprises gene families 8 

with shared evolutionary trends mainly occurring within Crenarachaeota and hyperthermophilic 9 

Euryarchaeota; CES accessory gene families in cluster#1 and cluster#8 display congruent signals tying 10 

methanogenic Euryarchaeota with Thaumarchaeota and Asgardarchaeota, respectively. Besides the eight 11 

CES clusters with ten or more gene families, the CES network community detection yielded 34 other 12 

clusters containing between two and nine gene families (Supplementary Material). These 34 CES clusters 13 

contain a total of 88 gene families, whose degree centralities are much smaller than the 331 gene families 14 

within the eight major CES clusters (averages of 1.36 and 17.79, respectively).15 

 16 
Fig. 5 Heatmap of enriched KEGG Pathways, columns, within CES clusters of gene families, rows. Shades of red represent the 17 
proportion of genomes with detected KEGG Pathway enrichment within its homologs of CES gene families. Columns and rows 18 
were clustered using complete linkage and correlation coefficients. KEGG Pathways enriched in less than 10% of genomes in 19 
which CES genes occur are not reported. Cluster#15 did not report significant enrichment of KEGG Pathways. 20 
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CDSs from 21 out of 42 sampled genomes have functional annotation available in StringDB 1 

(Supplementary Material), and through its API we identified annotated KEGG Pathways enriched within 2 

homologs of CES gene families from each genome. In the dendrogram and heatmap depicted in Fig. 5 we 3 

clearly identify two sets of opposing CES clusters of gene families: accessories (top three rows) and core 4 

(bottom four rows), and their associations with genetic information processing and metabolism KEGG 5 

Pathways (indicated by column color in the top row). All four CES clusters of core gene families are 6 

enriched with KEGG Pathways related to genetic information processing (e.g., Ribosome, DNA 7 

replication, and Aminoacyl-tRNA biosynthesis). CES clusters of accessory gene families on the other 8 

hand tend to be enriched with KEGG Pathways related to metabolism (e.g., Methane metabolism, 9 

Microbial metabolism in diverse environments, and Biosynthesis of antibiotics in Fig. 5). It is also 10 

important to emphasize the opposite pattern of enrichment and depletion of KEGG Pathways between 11 

clusters of core and accessory genes. KEGG Pathways related to metabolism display minor enrichment 12 

signal within CES clusters of core gene families, and KEGG Pathways related to genetic information 13 

processing are not enriched within clusters of accessory genes (Fig. 5). CES clusters of accessory genes 14 

comprised within cluster#1, whose occurrence is restricted to methanogenic Euryarchaeota and 15 

Thaumarchaeota, are enriched for methane metabolism within six genomes. Similarly, gene families from 16 

cluster#8, restricted to methanogenic Euryarchaeota and Asgardarchaeota, are also enriched in methane 17 

metabolism in five genomes (Fig. 5). 18 

Compatible evolutionary signal clusters and possible vertical evolutionary signals 19 

Phylogenies generated from extended core genomes are generally used as reasonable proxies of 20 

the species-tree phylogeny, given the assumption that these genes are less likely to undergo HGT between 21 

distantly related groups. However, an extended core phylogeny may not represent the species tree for 22 

several reasons, including systematic biases in phylogenetic reconstruction due to shared compositional 23 

bias, or strong biases in HGT partners among sets of genes.  Nevertheless, the extended core tree can still 24 

be used as an adequate representation of the consensus evolutionary signal detected in the sampled 25 

archaeal genomes, the closest thing we have to the simple “null hypothesis” of a shared history due to 26 

vertical inheritance. The 102 genes composing the extended core genome are not equally distributed 27 

across CES clusters (Fig. 3), e.g., cluster#4 contains the greatest number of extended core genes, 44 out of 28 

62 gene families, followed by cluster#3 with 27 among its 111 gene families. The split of the extended 29 

core genome into four distinct major CES clusters (Fig. 3) suggests differing sets of HGTs among core 30 

genes, creating conflicting evolutionary histories between genes from different clusters (Fig. 7). 31 

Closeness centrality measures (𝐶D = 0.56) and node strength corrected by cluster size (𝑆D = 0.19) suggest 32 

that cluster#4 gene families share stronger and more cohesive evolutionary trends than gene families from 33 

other clusters (Supplemental Fig S3). Therefore, cluster#4 contains the set of genes that may be best able 34 
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to approximate the average evolutionary signal detected among sampled Archaea as well the most 1 

compatible to each other. Cluster #4’s evolutionary history is also the most similar to that inferred from 2 

the extended core genome (Fig. 6 and Fig. 7).  3 

While binning genes with distinct evolutionary histories permits phylogenetic reconstructions less 4 

likely to be subject to spurious signals arising from the averaging of conflicting evolutionary signals, the 5 

resulting phylogenies remain susceptible to phylogenetic reconstruction artefacts. For example, since 𝐼!" 6 

is not estimated from phylogenies but from pairwise evolutionary distances, we do not expect it to be 7 

subject to Long Branch Attraction (LBA) artefacts. Nevertheless, phylogenies reconstructed from sets of 8 

genes with high 𝐼!" between each other are as susceptible to LBA as any other dataset. By clustering gene 9 

families with high 𝐼!" we are able to minimize conflicting evolutionary signals between concatenated 10 

genes, improving the robustness of the phylogenetic signal. Despite its robustness to phylogenetic 11 

artifacts, 𝐼!" estimates are still affected by sampling biases. The overrepresentation of specific taxonomic 12 

groups can lead to underestimating deviations in the evolutionary history of less represented groups.  13 

LBA is a frequently invoked in discussions of archaeal phylogeny, specifically with regard to the 14 

phyletic status of the DPANN group (Brochier-Armanet et al. 2011; Raymann et al. 2014; Petitjean et al. 15 

2015; Williams et al. 2015; Feng et al. 2019). Regardless of the set of genes used for phylogenetic 16 

reconstruction, extended core genome or any of the four CES clusters of core genes, all resulting trees 17 

depicted a well-supported DPANN clade composed of Nanohaloarchaea archaeon, Ca. Woesearchaeota 18 

archaeon, Nanoarchaeum equitans, and Ca. Diapherotrites archaeon. To assess the impact of LBA in 19 

reconstructing DPANN, we generated phylogenies from the CES clusters of core genes while using a 20 

single DPANN taxon at a time. Each DPANN taxon showed distinct evolutionary trends across all CES 21 

clusters of genes, suggesting both a more complex extended core gene history for these genomes, and that 22 

the initial monophyletic grouping of DPANN in each case was, in fact, artifactual (Supplementary 23 

Material). 24 

Cluster#4 phylogenies individually testing the position of each DPANN taxa placed 25 

Nanohaloarchaea sister to Halobacteria, with Nanohaloarchaea+Halobacteria being sister to 26 

Methanomicrobia. Cluster#3 also reported Nanohaloarchaea sister to Halobacteria, but with both nested 27 

within Methanomicrobia, rendering this group paraphyletic. This placement for Nanohaloarchaea has 28 

been previously proposed by Narasingarao et al. 2012; Zhaxybayeva et al. 2013; Petitjean et al. 2015; and 29 

Feng et al. 2019. The uncertain placement of Nanoarchaea has also been topic of investigation (Huber et 30 

al. 2002; Brochier et al. 2005). Interestingly, each CES cluster recovered a different placement for 31 

Nanoarchaea: sister to Euryarchaeota (cluster#2), sister to Korarchaeota+Crenarchaeota (cluster#3), sister 32 

to Korarchaeota (cluster#4), and sister to Thermococcales (cluster#5).  One of the most accepted 33 
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Nanoarchaea placements is as sister to Thermococccales (Brochier et al. 2005; Urbonavičius et al. 2007; 1 

Dutilh et al. 2014), which in our analyses was recovered only by cluster#5 (Supplementary Material). 2 

While our tests further support that the monophyly of DPANN is likely due to LBA, we did not 3 

detect a significant LBA effect for Woesearchaeota and Diapherotrites. Except for Diapherotrites placing 4 

between Class I and II methanogens in cluster#2, phylogenies from all four clusters proposed both taxa 5 

grouping together as sister to Euryarchaeota, assuming an archaeal root between TACK+Asgard and 6 

Euryarchaeota (Supplementary Material). The disparate placements of DPANN members within trees 7 

from CES clusters also suggests that, in addition to LBA, the DPANN clade from the extended core 8 

genome phylogeny is further impacted by the heterogeneity of the phylogenetic signal. This may not only 9 

produce a "signal averaging" effect favoring a monophyletic DPANN deeper in the archaeal tree, but may 10 

also be a contributing factor to the LBA artifact itself.  Heterogeneity among combined phylogenetic 11 

signals is likely to increase the estimated branch length, as the incorrect assumption of a single underlying 12 

phylogeny will lead to more homoplastic sites. 13 

Assuming that a given set of genomes constitutes a monophyletic clade, it is also reasonable to 14 

expect a certain number of gene families to be overly represented within the clade and not readily 15 

available to genomes outside the clade. Regardless of the driving force behind the enrichment of gene 16 

families within a clade, inheritance from a common ancestor or biased HGT (Andam et al. 2010; Andam 17 

and Gogarten 2011), we identified 80 gene families enriched within TACK genomes and 111 within 18 

Euryarchaeota (𝑞 ≤ 0.05). In contrast to the well accepted TACK and Euryarchaeota clades, we did not 19 

detect any number of genes enriched within the four sampled DPANN genomes, providing phylogenetic 20 

independent evidence against its monophyly. Complementarily, and in support of a 21 

Nanohaloarchaea+Halobacteria clade, we identified 78 genes present in Nanohaloarchaea archaeon 22 

enriched within the three Nanohaloarchaea and Halobacteria genomes. When compared to well accepted 23 

clades containing a similar number of sampled genomes to DPANN, 456 gene families are enriched 24 

within the five genomes within Thaumarchaeota.  While the differing degrees of physiological, metabolic, 25 

and genetic diversity within these groups certainly influence the number of shared gene families, it 26 

remains striking that this particular signal of shared ancestry is conspicuously lacking in DPANN. 27 

Common and distinct evolutionary trends between CES clusters 28 

 Among CES clusters of core gene families, cluster#4 and cluster#5 are most evenly represented 29 

across archaeal groups, while cluster#2 and cluster#3 are poorly distributed among DPANN (Fig. 6). All 30 

four CES clusters of core gene families have low frequency within Thaumarchaeota archaeon SCGC AB-31 

539-E09, and only gene families from cluster#2 and cluster#4 are present in any substance in 32 

Thermoplasmatales archaeon SCGC AB-539-N05. All four clusters display very similar overall 33 

phylogenies calculated from concatenations of genes within each cluster, varying mainly within the 34 
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organization of Euryarchaeota (Fig. 6 and Supplementary Material). All four CES clusters of core genes 1 

reconstructed the monophyly of Euryarchaeota, with the exception of cluster#2, which placed Pyrococcus 2 

furiosus, Thermococcus kodakarensis, Methanocaldococcus jannaschii, Methanothermobacter 3 

thermautotrophicus, and Methanopyruus kandleri together as sister to Asgardarchaeota+TACK. Only 4 

cluster#4 recovered the monophyly of Methanomicrobia as sister to Halobacteria, with the other three 5 

CES clusters placing Halobacteria within Methanomicrobia. 6 

 All four core CES clusters robustly identified Asgardarchaeota as sister to TACK (Fig. 6), with 7 

small variation in the Asgardarchaeota phylogeny, and cluster#5 placed Korarchaeota at the base of the 8 

TACK super-phylum. When assessing all-versus-all 𝐼!"between CES clusters of core genes, the 9 

evolutionary signal detected from cluster#4 is the least dissimilar to the other three (Fig. 7). This shortest 10 

path from cluster#4’s evolutionary trajectory to others suggests that cluster#4 best approximates the 11 

average archaeal evolutionary history (Fig. 7). In general, the overall high 𝐼!" estimates between core 12 

CES clusters suggest that despite composing distinct clusters, gene histories between clusters are 13 

generally congruent, with deviations reflecting small divergences potentially representing genes with 14 

specific sets of reticulate histories. 15 

 Phylogenetic trees obtained from accessory gene families in cluster#0, cluster#1, cluster#8, and 16 

cluster#15 reconstructed all represented archaeal phyla as monophyletic (except for P. furiosus in 17 

Euryarchaeota in cluster#0, Supplementary Fig. S5), suggesting a shared common origin of accessory 18 

genes from each CES cluster by all genomes from the same phylum. Although the monophyly of archaeal 19 

phyla within trees of CES clusters of accessory genes does not permit an accurate prediction of the 20 

directionality of possible inter-phyla HGTs, intra-phylum distances congruent to the supposed vertical 21 

inheritance signal can be used to evaluate inter-phylum distances under a wODR model (Supplemental 22 

Fig. S6, S8, S10, and S11). When compared to pairwise distances expected from vertical inheritance, 23 

inter-phylum distances that are significantly shorter than estimates obtained from intra-phylum distances 24 

may be attributed to HGT acquisition by one of the phyla in question. For each CES cluster of accessory 25 

genes, we assessed wODR of its pairwise distances against the vertical evolution estimated from 26 

cluster#4. 27 

 When comparing pairwise distances obtained from cluster#1 against cluster#4, distances between 28 

Euryarchaeota and Thaumarchaeota are consistently placed below the estimated regression line 29 

(Supplementary Fig. S6 and S7). This suggests that cluster#1 genes were horizontally transferred between 30 

ancestors of both phyla, causing shorter evolutionary distances between phyla than expected if their 31 

homologs diverged exclusively by vertical inheritance.  32 

Inter-phyla distances between Euryarchaeota and Crenarchaeota obtained from cluster#0 fit the 33 

evolutionary rate expected using intra-phylum distances for this CES cluster (Supplementary Fig. S8), 34 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.10.16.343293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.343293
http://creativecommons.org/licenses/by-nc/4.0/


 18 

suggesting that homologs from both phyla were vertically inherited from a common ancestor. On the 1 

other hand, cluster#0 inter-phyla distances involving Thaumarchaeota (Crenarchaeota to Thaumarchaeota 2 

and Euryarchaeota to Thaumarchaeota) are shorter than expected from the wODR using intra-phylum 3 

distances (Supplementary Fig. S8) and display significantly greater residuals than distances between 4 

Crenarchaeota and Euryarchaeota (Supplementary Fig. S9). The absence of cluster#0 genes among 5 

Asgardarchaeota and Korarchaeota and the short inter-phyla distances to Thaumarchaeota homologs 6 

suggest an extensive loss among missing clades and horizontal acquisition by the thaumarchaeal ancestor 7 

from either crenarchaeal or euryarchaeal donors. 8 

Despite the occurrence of accessory genes from cluster#1 and cluster#8 in methanogenic 9 

Euryarchaeota (Fig. 6) and the enrichment of methane metabolism pathways (Fig. 5), evolutionary 10 

histories of both CES clusters are not related (Fig. 3). Gene families in CES cluster#8 did not display 11 

𝐼!" ≥ 0.7 outside its own cluster, constituting a separate connected component in the CES network 12 

depicted in Fig. 3. That said, cluster#8 gene families display shorter Euryarchaeota-Asgardarchaeota 13 

distances when compared to cluster#4 distances, but unlike cluster#0 and cluster#1, intra-14 

Asgardarchaeota and intra-Euryarchaeota pairwise distances are not mutually compatible under a single 15 

linear regression (Supplemental Fig. S10). The lack of a strong wODR anchor in the form of intra-phyla 16 

distances suggests a more complex horizontal exchange history of cluster#8 genes, possibly involving 17 

intra-phylum HGTs, which we cannot accurately assess with the dataset used in this study. CES 18 

cluster#15 of accessory genes is well distributed among Crenarchaeota, and its intra-phylum pairwise 19 

distances are congruent to cluster#4 distances, but their patchy occurrence among Euryarchaeota and 20 

Korarchaeota (Fig. 6) does not permit a confident assessment of this cluster’s evolutionary history 21 

(Supplementary Fig. S5). 22 

 23 
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 1 
Fig. 6 Phylogenetic tree of Archaea reconstructed from 62 genes within CES cluster#4. The phylogeny was obtained using 2 
LG+F+G+C60 evolutionary model from IQTree and each gene had its parameters independently estimated according to 3 
parameter “-sp”. Bipartition supports were estimated using UFBoot and aLRT, each with 1,000 replicates, and bipartitions well 4 
supported by both methods are colored in green (UFBoot ≥ 95% and aLRT ≥ 80%), while bipartitions well supported by a 5 
single method are colored in yellow. Red dotted lines indicate Nanohaloarchaea (1) and Nanoarchaea (2 and 3) placements 6 
reconstructed within phylogenies containing a single DPANN genome at a time. Despite the lack of outgroups to Archaea within 7 
our sample the tree is rooted in DPANN for the sake of visualization. The associated heatmap reflects the representation of gene 8 
families within CES clusters amongst archaeal genomes. 9 
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  1 

  2 
Fig. 7 Scatter plots of pairwise evolutionary distances reconstructed from each widely distributed gene family versus each other 3 
in blue. And in red, scatter plots of pairwise evolutionary distances reconstructed from each widely distributed gene family versus 4 
pairwise evolutionary distances reconstructed from 102 extended core gene families. Similarities between evolutionary histories 5 
of pairs of CES clusters, and between CES clusters and extended core genes were estimated by 𝐼!".  6 

Conclusions 7 

 We have presented 𝐼!" , a new, robust, and efficient method to determine gene families with 8 

compatible evolutionary histories that are good candidates to be used in phylogenetic tree reconstructions 9 

of a set of organisms. The distance regression basis of our proposed method does not require hypotheses 10 

regarding evolutionary relationships between extant and ancestral taxa represented by the branching 11 

pattern of phylogenetic trees. Besides significant gains in accuracy of its estimates and computing 12 

efficiency, 𝐼!" introduces a new and robust approach to pair members of gene families that best represent 13 

their shared evolutionary trends.  The strong association between genomic linkage and 𝐼!" estimates 14 
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within archaeal genomes constitutes independent evidence of the ability of 𝐼!" to recover shared 1 

evolutionary histories within empirical datasets.  2 

One major consequence of shared evolutionary trends by gene families is that the set of genomes 3 

in which a given gene family occurs should be similar to genomes in which genes of other families with 4 

compatible signals occur. Despite similar performances of Pearson’s r and wODR 𝑅( in detecting these 5 

trends, 𝐼!" achieves the same result in a more efficient way. The utilization of wODR also imparts more 6 

robust statistical support not directly available to previous Pearson’s r implementations, whereas the 7 

assessment of pairwise distances between taxa provides robustness in the presence of artefacts associated 8 

to phylogenetic inference (e.g., Long Branch Attraction). The ability to assess residuals of each datapoint 9 

independently also allows for evaluations of specific homologs, a useful tool for HGT detection. 𝐼!" can 10 

thus be incorporated into phylogenomics pipelines and used to guide the selection of gene families for 11 

more accurate and robust species-tree inference, as well as the detection of meaningful clusters of gene 12 

families evolved in shared, yet reticulate, patterns. 13 

 By assessing similarities of evolutionary signal between archaeal gene families using 𝐼!" we were 14 

able to detect several clusters of shared, distinct gene histories.  Phylogenetic reconstruction using 15 

concatenated sequences from each of the four major CES clusters of core genes confirmed these distinct 16 

evolutionary histories.  The phylogeny resulting from CES cluster#4, in particular, recovers a species tree 17 

hypothesis consistent with that proposed in several other studies, while using a more empirically-18 

supported selection of gene families that does not presuppose vertical inheritance, an improved alternative 19 

to analyses limited to conserved single-copy core genes. 20 

 Besides its impact in improving the reconstruction of the Archaeal Tree of Life, CES clusters 21 

obtained from 𝐼!" provided key evidence about horizontal exchange between phyla of functionally related 22 

genes (Supplementary Fig. S5). For example, given the almost exclusive occurrence of genes from CES 23 

cluster#1 among methanogenic Euryarchaeota and Thaumarchaeota, tree-based approaches are not 24 

capable to report the possible HGT between both phyla. Separately, intra- and inter-phyla distances 25 

obtained from CES cluster#1 are strongly correlated to distances described in CES cluster#4, however the 26 

significant placement of inter-phyla distances bellow the wODR line strongly suggests an HGT between 27 

ancestors of both phyla.   28 

The method we used to analyze the archaeal gene sets is general and can thus be applied to any 29 

other set of genomes.  Furthermore, the 𝐼!" implementation described provides a straightforward 30 

framework for future improvements and a possible alternative to phylogenetic reconciliation approaches 31 

to identify HGT events, as described in Supplementary Figs. S5-S11.  32 
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