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Figure 4:

Figure 4. Example MGDrivE 2 simulations for a population replacement gene drive system designed to
drive a malaria-refractory gene into an An. gambiae s.l. mosquito population with seasonal population
dynamics and transmission intensity calibrated to a setting resembling the island of Grand Comore,
Union of the Comoros. The gene drive system resembles one recently engineered in An. stephensi
(Adolfi et al., 2020) for which four alleles are considered: an intact homing allele and malaria-refractory
gene (denoted by “H”), a wild-type allele (denoted by “W”), a functional, cost-free resistant allele
(denoted by “R”), and a non-functional or otherwise costly resistant allele (denoted by “B’’). Model
parameters describing the construct, mosquito bionomics and malaria transmission are summarized in
Table S1. (A) Climatological time-series data - temperature in red and rainfall in purple - that were used
to calculate time-varying adult mosquito mortality rate and larval carrying capacity, respectively. The
resulting adult female population size is shown in green. (B) Allele frequencies for adult female
mosquitoes over the simulation period. Grey vertical bars beginning at year three denote eight
consecutive weekly releases of 10,000 male mosquitoes homozygous for the drive allele (HH). (C)
Spread of the malaria-refractory trait through the female mosquito population, and consequences for
mosquito and human infection status. Following the release of the drive system at year three, the
proportion of refractory female mosquitoes (dotted light purple line) increases and the proportion of
infectious mosquitoes (dotted dark purple line) declines. As humans recover from infection and less
develop new infections, the P. falciparum parasite rate (solid red line) declines until it reaches near
undetectable levels by year five. (D) Human malaria incidence is halted by the beginning of year four.
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Table S1. Model parameters describing the gene drive construct, mosquito bionomics and malaria
epidemiology for simulations resembling releases on Grand Comore, Union of the Comoros.

Parameter: Symbol: Value: Reference:

Gene drive construct:

Cleavage rate c 1 (Adolfi et al., 2020)
Proportion of cleaved alleles subject to DHDR.F 0.99 (Adolfi et al., 2020)
accurate homology-directed repair

(HDR) in females

Proportion of cleaved alleles subject to DHDRM 1 (Adolfi et al., 2020)
accurate HDR in males

Proportion of resistant alleles that are in- | pres 0.17 (Adolfi et al., 2020)

frame, functional

Cleavage rate due to maternal deposition | puc 0.937 (Adolfi et al., 2020)

of Cas9

Proportion of resistant alleles due to DPMR 0.17 (Adolfi et al., 2020)
maternal deposition of Cas9 that are in-

frame, functional

Female fecundity cost due to BB SBB,F 0.998 (Adolfi et al., 2020)
genotype

Mosquito bionomics:

Egg production per adult female (day™') | B 32 (Depinay et al., 2004)
Mean duration of egg stage (days) Tk 3 (Yaro et al., 2006)

Mean duration of larval stage (days) Tr 7 (Yaro et al., 2006)

Mean duration of pupa stage (days) Tp 2 (Yaro et al., 2006)
Coefficient of variation (duration of egg | CV(7k) 0.2 (Bayoh and Lindsay, 2003)
stage)

Coefficient of variation (duration of CV(T1) 0.3 (Bayoh and Lindsay, 2003)
larval stage)

Coefficient of variation (duration of pupa | CV(7p) 0.2 (Bayoh and Lindsay, 2003)
stage)

Carrying capacity of environment K (time- Data: ERAS, Method: (White
(larvae) varying) etal.,2011)
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Mortality rate of adult mosquitoes (day™!) | ur, um (time- Data: ERAS, Method:
varying) (Mordecai et al., 2019)

Malaria transmission:

Blood feeding rate f 1/3 (Smith and McKenzie, 2004)
Human blood index 0 0.9 (Smith and McKenzie, 2004)
Transmission efficiency: infected b 0.55 (Smith and McKenzie, 2004)

mosquito to human

Transmission efficiency: infected human | ¢ 0.15 (Smith and McKenzie, 2004)
to mosquito

Mean duration of extrinsic incubation EIP (1/yy) |10 (Smith, Dushoff and

period (days) McKenzie, 2004)

Coefficient of variation of extrinsic CV(EIP) 0.4 (Huber et al., 2016)

incubation period

Human infectious period (days) 1/r 200 (Smith and McKenzie, 2004)

Human lifespan (years) V/pn 62 (INSEED, 2015)

Human population size Nu 350,998 (INSEED, 2015)
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1 Lifecycle Model

The lifecycle model is similar to the discrete time ecology module used in MGDrivE (Sdnchez C. et al. 2019).
Major differences include the switch to continuous time and replacement of fixed, constant delays with Erlang
distributed delays in aquatic life stages. This change means that, whereas MGDrivE’s deterministic model
was formulated as a set of delay difference equations, MGDrivE 2’s deterministic model is a set of ordinary
differential equations (ODEs) (using the “linear chain trick” to simulate Erlang-distributed delays, (Hurtado
and Kirosingh 2019)).

Similar to MGDrivE, the lifecycle model includes egg (E), larval (L), and pupal (P) aquatic stages. Upon
emergence from P, adult mosquitoes are assigned a sex, the probability of which may depend on genotype.
Upon emergence, females (F) become mated in the presence of male mosquitoes (M), and oviposit at an
age-independent (though possibly time-dependent) rate until they die. If there are no adult males, newly
emerging females transfer to an unmated adult female (U) compartment, where they remain until death or
successful mating if males become available.

The system of ODEs describing the deterministic lifecycle model are solved at their non-trivial equilbrium
to provide initial conditions for simulations in MGDrivE 2. These ODEs are a limiting case of the stochastic
continuous-time Markov chain (CTMC) model, when populations are large (for technical conditions, see
(Kurtz 1970)). In our presentation of the ODEs and their equilibrium solutions, we ignore indexing by
genotype because, for most simulations, the equilibrium solution corresponds to a baseline scenario prior
to releases of modified mosquitoes, where mosquito populations are composed solely of wild-types. These
equations also ignore indexing by node. We use (ng,nr,np) to denote the number of sub-stages in each
aquatic stage (the Erlang shape parameter). Subscript ¢ refers to any particular sub-stage, such that eggs are
denoted E;, larvae as L;, pupae as P;, and Ng, N, the mated adult female and male populations, respectively.
Because the non-trivial equilibrium will have zero unmated females, there is no Ny compartment.

Shape and rate parameters for the Erlang-distributed delays can be constructed as follows. Consider a
random delay with mean % and variance #7 where n is an integer. Such a random delay can be assumed
to follow an Erlang distribution, and one way to construct a model of this system is to build a linear system
of n bins, where the rate of transfer from the i — 1** to i*” bin is given by gn. In a deterministic model, this
will be a linear system of ODEs and, for a stochastic model, a CTMC.
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We present the life history model with two different parameterizations of larval density dependence, which
we call the “Lotka-Volterra” and “Logistic” versions, in reference to ecological theory. Both sets of equations
are available in the code, and are provided as an example of how to use different functional forms of rate
equations with the same Petri net structure.

1.0.1 Lotka-Volterra Density-Dependent Equations

This set of equations uses a linear form of per-capita density-dependent mortality for the larval instar stages
that corresponds to the functional form assumed by (Hancock and Godfray 2007).

d
%El = (BNr) — (pe + qenE) By
d )
%Ei =qpngBi_1 — (ug +qeng) By i =(2,..,ng)
d
%Ll =genpl,, — | pr + Oézj: Li+qing | In
iL,_ L + ZL'_F Lisi=(2 )
T qrnplsg—i pr — o e j T 4qLnL iy L= \4 ..., UL (1)
d
ﬁpl =qrnpln, — (pp +qpnp) P
d )
%Pi =qpnpPi_1 — (up +qpnp) P i = (2,...,np)
d
&NF = ¢gpnpP,, — urNp
d

@NM =(1—-¢)gpnpPn, — pmNum

In this set of equations, the parameter « represents increased mortality rates that occur as a function of
1 2

crowding, and has units of time™ " area“.
To solve the model with linear density-dependence at equilibrium, we assume that the equilibrium number
of adult female mosquitoes, N is known, and that all rate constants, with the exception of a are also fixed;

we then solve for all remaining state variables plus «, giving a system of 2+ ng +ny, +np equations and the
same number of unknowns.
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1.0.2 Logistic Density-Dependent Equations

This set of equations uses a rational form of per-capita density-dependent mortality for the larval instar
stages that uses a carrying capacity K parameterization (equivalent to the logistic model in ecology).
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In this parameterization of density-dependent mortality, p, is the natural mortality rate of larvae without
any effects of resource depletion or competition (because when > ;Ljis small, the mortality is approximately
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KL)-

~_To solve the model at equilibrium, we assume that the equilibrium number of adult female mosquitoes,
Np is known, and that all rate constants, with the exception of K, are also fixed; we then solve for all
remaining state variables plus K, giving a system of 2 + ng + ny, + np equations and the same number of
unknowns.
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In fact, because both of these per-capita density dependent rates of mortality are linear functions in the
number of larvae present (such that the overall mortality is quadratic in the number of larvae), at equilibrium
the parameters o and K are related by the simple expression:

H=a (5)

1.1 Parameters

Due to the continuous-time model structure as well as reformulating the fixed delays of MGDrivE as Erlang-
distributed random delays, parameters used in MGDrivE cannot be directly “plugged-in” to MGDrivE
2 simulations. In this section we discuss how to parameterize MGDrivE 2, and discuss similarities and
differences with those in (Marshall, Buchman, Akbari, et al. 2017; Sdnchez C. et al. 2019). We note that
there will be certain mathematical artifacts which prevent a one-to-one mapping between the two models
due to the change between a lagged discrete-time Markov chain (DTMC) to continuous-time Markov chain
(CTMC) model formulation. For more details on how these arise and their effects, please consult (Fennell,
Melnik, and Gleeson 2016; Allen 1994).
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1.1.1 Aquatic Survival

Let the probability to survive any aquatic state x € {E, L, P} be 6,. In MGDrivE, these were given as:

0 = (1 - ,U:E)Tz (6)

In MGDrivE 2, the aquatic state is broken in n, substages to produce an overall Erlang-distributed

dwell time, 7. The Erlang distribution has shape parameter n, and rate parameter n,q,, where q, = %v
therefore E[r] = qi =T, and Var[r] = n’1q2. Because the dwell time 7 is a random variable the probability
of survival is expressed :
o0
0, :/ e =T Erlang(T; ng, gzng ) dT
0
oo nnz
0, = / ehem _B2Me no—1o—gumet gy (7)
Nz
_ < qaMy )

If we wanted to match survival probabilities between the two models, we just consider p, in equation 7
to be an unknown and solve for it:

_ QaNg

T — — Yxllx 3
s (8)

Note that we can arrive at the solution from equation 7 by considering not a single random variable 7
but rather the random variables X, Y, where the latter is the time to death, if death were to occur, and the
former is time to advancement out of stage x, were advancement to occur. Then we want the probability
that X <Y:

PX<Y)= / / pge =7 Erlang(1'; g, gung ) drdr’
o Jo

N 9)
B (anr + um>

Intuition behind the solution may be acquired if we take literally the interpretation of the Erlang dis-
tribution as being used in the “linear chain trick”; in this case at each substage the overall probability of

dans

survival is
[ B o

). Because there are n, substages, the total survival probability is the product of the
n, stages.

1.1.2 Population Growth Rate

In MGDrivE, the intrinsic population growth rate R,, was defined as “equal to the rate of female egg
production multiplied by the life expectancy of an adult mosquito multiplied by the proportion of eggs that
will survive through all of the juvenile life stages in the absence of density-dependence” (Marshall, Buchman,
Akbari, et al. 2017).
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In MGDrivE it had units of mosquito™'day ~*:

Ry = (i) (9E9L9P(1 — 1) (;)) (10)

It is essentially the same in MGDrivE 2, using the form of 6, from equation 6:

R = (2) 000600 (11)

Note however, the absence of the 1 — p term; this is because equation 11 is a continuous time rate; adults
are available to oviposit immediately upon emergence, so there is no need extra mortality between emergence
and adulthood (Deredec, Godfray, and Burt 2011).

1.1.3 Parameterization from Growth Rates

In MGDrivE the model was typically parameterized such that equilibrium solutions were available in closed
form. The assumptions, outlined in the supplemental information of (Marshall, Buchman, Akbari, et al.
2017) and based on the model of (Deredec, Godfray, and Burt 2011), are that ug = pr = pp; that is, the
density-independent mortality of each aquatic stage is the same. In the absence of density-dependent effects,
the total probability of surviving the aquatic stages was (1 — pz)T=+72+TP) - Combined with knowledge of
the generation time g, the daily population (geometric) growth rate rs, and the per-generation geometric
growth Ras = (ram)?, pr could be found in closed form, and from that the remaining unknowns, a and L,
(strength of density dependence and equilibrium larval population) could also be solved in closed form. The
relevant equations were S51-S55 in (Sdnchez C. et al. 2019).

In MGDrivE 2 we want to be able to solve for equilibria under similar assumptions of equal density-
independent mortality across aquatic stages. Let us define pg = pp = pr = pp so we seek a solution to the
unknown constant aquatic stage mortality pu4. We first expand Equation 11 in terms of Equation 7:

Ry — (5) ( qENE )nE ( qLnr )nL ( apnp )TLP¢ (12)
M= __4rrer
M qENE + A qrnr + pa gpnp + A

Here, Ry is the per-generation growth rate; in MGDrivE it was (r37)9. However, because MGDrivE
2 is a continuous time model, the equations for geometric growth are not appropriate. The equivalent
infinitesimal rate of growth is log (rps) such that Ry; = e log(ra) which is the left hand side of Equation 12.

Finding closed form solutions to this equation is difficult because of the additional terms introduced by
the Erlang delays. Therefore we use Newton’s method in R (with uniroot) to numerically solve for p4. The
input to the function is the daily growth rate r); and biological parameters 3, i, ¢, ng, qr, ", qp, np, ¢, and
it returns the value of p4 such that the following equation holds:

ne nr np
e ) ) () ) e
iz qENE + A qLng + pa gpnp + pha
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1.1.4 Lifespan Modification

In MGDrivE, the genotype-specific parameter w was used to reduce lifespans of non wild-type organisms due
to fitness costs associated with the homing cassette, or intentional fitness reduction. However, for MGDrivE
2 we generalize this to modify lifespans in either direction, relative to wildtype, because experimental data
showed evidence of in some cases substantial lifespan increases from driving certain genetic material in model
organisms (Kandul et al. 2019).

Because wildtype lifespans () were geometrically distributed random variables, and daily survival was
given by (1 — p)w, one could solve for a reduced lifespan, y < z, by noting the daily mortality probability
can be written p =1 — ((1 — p)w) =1 — w + pw. Then note that the mean lifespan is y = m Thus to

solve for w, we solve for the root of the equation — y = 0, where only w is unknown.

1
1—w4pw

In MGDrivE 2 adult lifespans are exponentially distributed random variables. To change the lifespan y
(no longer restricted to y < z, y may be any positive number), consider modifying the mortality hazard by
the factor w. To find w we just solve the following equation:

1.1.5 Movement

In the continuous time model, mosquito movement is given by a rate of movement from each node i to
all other nodes j # i. When parameterizing these rates, we need to take into account that they will be a
function of the total probability of a mosquito to leave its natal habitat ¢ over its lifetime, P. Given that
adult mosquitoes are subject to mortality with rate p, one can solve for the rate of movement out of node @
to anywhere (§) as follows:

P— / e
° (15)
5= P

1-P

Then, if from node i, we have some vector of movement probabilities {7;;};; which give the probability
to move from ¢ to j conditional on leaving i, we can set the movement hazard between to be d7;; so we get
the right lifetime leaving probability. The new vector of movement hazards is {0m;; } ;-

1.2 Genetic Inheritance & Modification

Because MGDrivE 2 builds upon our previous work (Sinchez C. et al. 2019), the data structure used
in MGDrivE to store all probabilities, fitness costs, etc. related to genotypes (the “inheritance cube”) is
compatible with MGDrivE 2. In fact, we use the same cubes developed in that model and do not introduce
any new cubes in this text.

While data structures can be reused, the fitness modifiers that describe the effect of inherited genotype on
the life-history have a slightly different interpretation. In MGDrivE, genotype specific multipliers applied to
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daily probabilities, they had to be bounded in order to prevent nonsensical parameter values. If P represents
a wild-type daily survival probability, for example, the modifier w must be 0 < w < %. Because MGDrivE
2 is parameterized directly in terms of hazards, the genotype-specific effects can be any positive real number.
This has the added benefit of making them amenable to parameterization directly from survival analysis
routinely preformed on biological lab experiments which often estimate relative hazards (Kandul et al. 2019).

2 Epidemiological Dynamics

To introduce epidemiological dynamics in MGDrivE 2, we use the SEI-SIS coupled model of mosquito and
human infection dynamics as the basic model (Figure S1), as more complex vector-host models tend to be
modifications of the basic form. This type of model is known as the Ross-Macdonald model in mathematical
epidemiology (Martcheva 2015; Smith and McKenzie 2004). MGDrivE 2 also supports SEI-SEIR models,
which we introduce briefly later.

Here Sy refers to susceptible humans, Iy to infected/infectious humans, Sy to susceptible mosquitoes,
(Eva, ..., Evy) to incubating mosquitoes, and Iy to infectious mosquitoes. Because only mated adult females
undergo gonotrophic cycles which require bloodfeeding, infection dynamics are only present in F'.

To investigate the dynamics of the model, it is important to focus on events (transitions) that change
state, and the rate at which they occur. For epidemiological dynamics, the two primary events are mosquito
to human transmission and human to mosquito transmission, each driven by a Poisson process. Computation
of the rate with which each process occurs in time depends on the per-capita force of infection (FOI) terms:
Ag and Ay, the rates at which any particular susceptible human gets infected and moves to the infected
class, and the rate at which any particular susceptible mosquito gets infected and moves to the incubating
class, respectively. When multiplied by the total numbers of susceptible humans or susceptible mosquitoes,
respectively, we arrive at the correct rate for the Poisson processes.

Figure S1: SEI-SIS pathogen transmission system; orange arrows denote the contribution of each species to
the force of infection term on the other.

e . @ °
—————> —>
N
@ -
—_—>

2.1 Transmission Terms

The function Ay is the per-capita FOI on susceptible humans, such that Ay Sy is the total rate at which
infection in the human population occurs in the deterministic model, or the intensity of the Poisson process
for human infections in the stochastic model. Using Ross-Macdonald parameters as in (Smith and McKenzie

2004), Ag = ably ﬁ . This is because, if a is the human biting rate, b mosquito-human transmission
efficiency, then the total number of infectious bites produced by the mosquito population is ably . Assuming
uniform biting on humans, any particular person has probability NLH of being bitten, so ably (ﬁ) is the
per-capita FOI. Multiplication by Sg, the total number of humans, gives the total rate of infection in the
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human population.

The per-capita FOI in the mosquito population is Ay Sy . The FOI on susceptible mosquitoes is written

as \y = ac ( J{,f;’{ ) Again, a is the human biting rate, ¢ is the human-mosquito transmission efficiency, and

J{,—f;{ is the probability that a bite lands on an infectious human. Multiplying by the total susceptible vector
population, Sy, gives the total rate of infection in the mosquito population.

2.2 Deterministic Approximation

In this section we describe how to develop a mean-field approximation given by a system of ODEs to the
stochastic SEI-SIS system.

2.2.1 Mean-field Approximation of Human Stochastic Dynamics

Here we describe in detail the method used to approximate the stochastic CTMC model of infection dy-
namics in the human population, as its state space is smaller and the same methods can be used for the
larger mosquito dynamics. The methods follow those presented in (Wilkinson 2006). Because we are only
considering the human population, we drop the H superscript on state variables.

If we consider the mosquito population to be constant, as it would be at dynamic equilibrium for the
deterministic model, then Ay will be a constant and we can decouple the human SIS dynamics from the
mosquito SEI system. We show a diagram of the human only dynamics in Figure S2.

Figure S2: Susceptible-infected-susceptible (SIS) human infection dynamics
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One way to analyze a CTMC is to derive the Chapman-Kolmogorov equations of the process. These
equations give the conditional probabilities to transition to any ending state from a given starting state,
over some time interval. For example if at time ¢t < ¢’ the process (represented by X (¢)) is in a state x,
then the probability to jump to any state o’ is P (X (¢t +t') = 2/| X (¢t) = z), where P is a distribution over
future states. It is often easier to work with the differential form of these equations, where the derivative is
taken with respect to time, giving a system of differential equations that describes the time evolution of the
Markov transition kernel over state space. Taking the derivative of these equations will involve expanding
P(t + 6t), which if expanded as P(¢)P(dt), leads to the linear system of ODEs known as the Kolmogorov
forward equations (KFE).

The CTMC is a process which jumps between points in state space (S,I) — (5, I'). Put another way,
the joint density must be understood as giving the probability to transition between all unique pairs of ways
a number of people can be either susceptible or infectious, when birth, death, infection, and recovery can
change state. Taking into account all events that can cause the system state at time t to change, we can
derive the KFE as:
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D p(S, 1) = — (u(S + 1)+ 1S + pl + A\gS — rI) P(S, I;1)

+u((S=1)+1)P(S—1,I;1)

+/J(S+ 1) P(S-i—LI;t) (16)
+u(I+1)P(S, I+ 1;51)

+ A (S+1)P(S+1,1—1;%)

+r(I+1)P(S—1,1+1;t)

The KFE can be manipulated to derive the deterministic approximation to the CTMC. Because we
assume constant Ag, the hazard/rate functions for each event are all first order in the state variables, the
deterministic approximation will accurately describe the expected value of the stochastic model.

To go about this, we first construct the stoichiometry matriz S, x,, where u is dimension of the state
space, and v is the number of unique events in the process. As the dimension of both state and event spaces
are small, we can easily write this as:

—S S—»D I-»D S—I I->S

s 1 -1 0 -1 1
S= I 0 0 -1 1 1 (17)

To begin developing our deterministic approximation, we take the time-derivative of the expectation of
our state vector at time ¢, denoted as X (t) (full derivation in (Wilkinson 2006)). We also define h(X(¢)) as
a v-dimensional column vector of rates/intensities of each event at that point z in state space.

d d
—E[X ()] =— Z x P(z;t), where M is the set of all allowed model states
dt dt T

= Z x %P(m;t)

reM

= Z mz [hl(m —SP(z — 8% 1) + hi(;v)P(x;t)}

zeM  i=1 (18)
- ZU:E [s@’)m (X(t))]
S SOE R (X(1)]

After making the substitution y(t) = E(X(¢)), the above equation can be recognized as a matrix ODE
giving the deterministic approximation of the system.

Syt = 3" 8hi(y(0)
—S(h(u(®)

10
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Substituting in our stoichiometry matrix S and SIS hazard functions, we derive the following matrix ODE
(writing out the column vector y(t) explicitly in terms of our two state variables):

) (20)
t

Separating the variables and completing the matrix vector multiplication leads to the familiar ODE form
of the SIS model with demography. We defer the equilibrium solution until later, when we can solve for the
mosquito equilibrium jointly.

9501 = n(S(0) + 1) ~pS (1) ~ AwrS(1) +r1(1)
I (21)
() = =ul () + A S(t) — r1(t)

2.2.2 Mean-field Approximation of Mosquito Stochastic Dynamics

Similar as we did for humans, we consider Ay to be a constant and decouple the mosquito SEI dynamics
from the human SIS dyanmics. A flow graph of the mosquito dynamics is shown in Figure S3, which shows
the possible states a adult female mosquito may exist in during its life, with death (D) as an absorbing
state. As described in the main text, we partition the exposure (extrinsic incubation period, EIP) into n
compartments such that the overall dwell time is Erlang distributed. As before, because we are purely focused
on the mosquito model, we drop the V superscript for state variables.

For a single adult female mosquito, the transition rates on the edges of the graph specify the hazard
rates of leaving the current state; the aggregated process for a population of mosquitoes sums the individual
hazards by the number of mosquitoes in that state.

Figure S3: Susceptible-exposed-infected (SEI) mosquito infection dynamics

-

Av nyv

Upon emergence, the mosquito enters the susceptible S state, subject to force of infection Ay . Susceptible
mosquitoes are also subject to a mortality rate, p, which is constant across all compartments, leading to an
exponentially distributed lifespan with mean L. If the mosquito becomes infected, which occurs at rate Ay,

it will advance through the extrinsic incubation period (EIP) prior to becoming infectious.

11
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The EIP is broken into n bins, with transition from the k" to k + 1*" occurring at a rate ng. This
specification allows an Erlang (Gamma with integer shape parameter) distributed duration of EIP, with

1 : 1 . . . e . My \n _WL
mean - and variance et A mosquito survives the EIP with probability hm"—>00(nw +u) = e W,

Conditional on survival, the proportion of mosquitoes that become infectious ¢ days after becoming infected

is distributed as Gamma(t; n, ﬁ) = %t”_le_””" (using shape/scale parameterization).

Written in matrix form, the infinitesimal generator matrix for a single adult female mosquito, or a cohort
emerging at the same time has the following form:

s Ex Ey, B, I D
S _—(Av—l-u) Av 0 0 0 ,u_
E 0 —(nyy + 1) nyy 0 0 0 u
Q- E.k 0 0 coe —(nyw +p) noyy 0 0 u (22)
E, 0 0 0 —(nyy +p) ny p
I 0 0 0 0 -
b | o0 0 0 0 0 0|

For the model of a single adult female mosquito, or a cohort that emerged at the same time, the infinites-
imal generator (Equation 22), the KFE is:

%P(S;t) — A\ SP(S:t) — uP(S:1)
%P(Elgt) = AVSP(S, t) — n’yVP(E1;t) — ,U,P(El; t)
d
@P(Ek;t) = TL’YVP(E]C,U t) — n’yVP(Ek;t) — MP(Ek;t)
(23)
d
%P(Eth) =nyywP(E,_1;t) — nywP(En;t) — uP(Ey;t)
GP(1:0) = myP(Ba:t) — wP(L:1)
d
@P(D; t) = pn(P(S;t) + P(Ey;t) + ...+ P(En;t) + P(I5 1))

While Equation 23 describes how the probability distribution over states for a cohort of mosquitoes
changes over time, to account for emergence (which we will need for the deterministic approximation), we
let € give the rate at which females emerge into S from pupae. For brevity, P(...;t) appearing in the joint
density function means that those elements of the random vector do not change.

12
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%P(S,El,...,En,I;t):eP(S—l,...;t)—eP(...;t)
—AvsP(...;t)+Av(S+1)P(S+1,E—1,...;t)

— 2+ n)uP(...;1) (24)

+uP(S+1,..5t)+uP(...,E1+1,..5t)+ ...+ uP(..., T+ 1;t)

— (nyy)nP(...;t)

+gnP(...,E1+1,E—1,..5)+ ...+ nywP(...,E, + 1,1 — 151)

As we did for deriving the deterministic approximation of human infection dynamics, we write out the
stoichiometry matrix S, ., of dimensions (2+n) x (2n+4). Because each column in S describes an allowable
jump in state space, the total number of terms in the KFEs should be equal to 2(2n + 4) = 4n + 8; checking
this with the derivation in the previous section allows us to confirm that the equations are correct. Once we
have S, the mean-field approximation follows the same method as in Section 2.2.1.

—-S S—E, S—»D Ei—E; Ei—D E;—E;11 E;—D E,—I E,—D I—D
s [ 1 —1 0 0 0 0 0 0 0 0
Ey 0 1 -1 -1 -1 0 0 0 0 0
S=m | 0 0 0 0 0 ~1 -1 0 0 0 (25)
En, 0 0 0 0 0 0 0 -1 -1 0
r Lo 0 0 0 0 0 0 1 0o -1 |

Using the stoichiometry and the KFEs we write down the approximating equations in matrix ODE form:

S(t) AvS(t)
J Ei(t) pS(t)
T : =S : (26)
En(t) n'YVEn(t)
I(t) 1B (t)
pl(t)

Because the emergence rate € and the force of infection on mosquitoes Ay are considered a constants,
all jump terms are of zero or first order and the deterministic approximation will correctly approximate the
mean behavior of the stochastic system. For clarity, we write the system of linear ODEs component-wise:

d

9500 = ¢ avs(e) - s
9 B(t) = M S(1) — v Bx(1) — wEr (1)

(27)
9 Ba(t) = mav Baca (0) — mw Ba(1) — pI5u(0)

%I(t) = nyv B, (t) — pl(t)

13
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2.3 Quasi-stationary distribution for mosquito infection dynamics

In order to solve the coupled mosquito SEI - human SIS model at equilibrium, we need to be able to solve for
the distribution of adult female mosquitoes across states (S, E1, ..., E,,, I). This is because, given an endemic
equilibrium prevalence in humans, we can compute the number of infectious mosquitoes I required to sustain
that prevalence of disease. From that, we can use the quasi-stationary solution of the CTMC model given
in Equation 22 to compute the total adult female mosquito population and their distribution across stages,
which can then be plugged into the life history equilibrium Equation 2 or Equation 4 to solve the entire
model’s endemic equilibrium. We note that for the stochastic model, this is not a stationary distribution,
but a quasi-stationary distribution (QSD), as there exist absorbing states in the model.

To compute the QSD, note death (D) is an absorbing state and the set of transient states is T =
(S,E1,....,E,, I). Then the random variable representing time to absorption (death) as a phase-type distri-
bution. The QSD over T will arise by conditioning on survival. This distribution allows us to distribute
mosquitoes across the transient states properly at equilibrium. We partition Q as (Bladt and Nielsen 2017;
Buchholz, Kriege, and Felko 2014):

a- (g o) (29)

Here, T|7|x |7 is a subintensity matrix of transition rates between transient states, and #7; is a column
vector of exit rates to the absorbing state. We denote the random variable following a continuous phase-type
distribution describing time until absorption as 7 ~ PH(m, T) with density function f,(u) = meT%t, where
T1x|7] is @ row vector specifying the initial distribution over transient states.

Let U = (—T)"! be the matrix containing the means of random variables u;; denoting time spent in
state j starting from 4, prior to absorption. We can use this matrix to define the QSD over 7, denoted as 7.
The j*" element of the quasi-stationary distribution is (Darroch and Seneta 1965; Darroch and Seneta 1967):

~ WTUfj
T T T Ue

(29)

In Equation 29, f; is a column vector with 1 in the j*® row and 0 elsewhere, and e is a column vector of
1’s. In our specific case, m places all mass on state S because the mosquito cannot emerge from the pupa
stage already infected (there is no vertical transmission of pathogen), so the quasi-stationary distribution can
be directly obtained from U.

2.3.1 Coupled SEI-SIS Equilibrium Solutions

In order to solve for the mosquito population required to produce some equilibrium prevalence in humans, let
Ny be the total adult female population, summing over infection states. Writing the SIS human dynamics
(Equation 21) with the expanded form of Ay, we have:

d 1

£SH(t) = M(SH(t) + IH(t))—uSH(t) — (CLbIV <SH(t)+IH(t))) SH(t> + TIH<t)
d 1

%IH(t) = —,U,IH(t) + (ab.[v (SM)) SH(t) - TIH(t)

Because we consider both the human population size Ny = Sy + Ig and equilibrium prevalence x = %

14
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known constants, we can solve the model at equilibrium in terms of the number of infected mosquitoes, such
that:

In(Su +1Iu)(r +p)

I =
v abSH

(31)

After we have solved for the number of infected mosquitoes Iy, we can derive the total female mosquito
population this implies:

_ (nyw)" Av
v =Ny <(n’yv + pv)(Av + Mv)) (32)
No =T ((WVV + puv)(Av + Mv))
v (nw)"Av

This total size Ny can be spread across the EIP stages via Equation 29. Given Ny, we can calculate
equilibrium solutions for the full lifecycle model by plugging in this number of adult females into either
Equation 2 or 4.

2.4 SEIR Model

We also present results for an SEIR style model of human dynamics. An additional parameter, g, is the
rate of progression from Fy — [y, that is, the inverse of the duration of latency in humans.

d
%SH = uNg — AgSu — uSH

d

%EH =AgSy —vyaEn — pEy

y (33)
—Ig = —rlg — pul

i H=7YH —Tlg — Wiy

d

il . S

dtRH rig /LRH

Where Ny is the total human population and the force of infection on humans follows the Ross-Macdonald
form Ag = ably (ﬁ) We consider that the total population size Ny and the number of infected and
infectious humans Iy are known, allowing us to solve for Ry and Epy at equilibrium. It should be noted
that for realistic parameter values, this model only has a non-trivial equilibrium when p < %, which
results in extremely unrealistic (short) lifespans. The other two equilibrium points are the trivial disease free
equilibrium when Az = 0 and the normal (Ag > 0) case when Rp(00) — Ny, that is, for realistic values of
parameters, all surviving individuals will become infected subsequently recover. For that reason we do not
explicitly calculate the endemic equilibrium. In general the SEIR human model should be used to evaluate
the impact of gene drive interventions on one-off epidemic situations (eg; does releasing large numbers of
modified mosquitoes 10 days after initial cases appear make a significant difference in final outcome), rather

than for investigating endemic diseases, which require more complex models with waning immunity.
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3 Stochastic Petri Net

Here we provide an introduction to the stochastic Petri net modeling formalism used in MGDrivE 2.
Notation in this introduction is borrowed from (Wilkinson 2006).

3.1 Properties of SPN

SPN is a mathematical modeling language to describe discrete event systems, that is, a system which has a
countable set of events (although only a finite number may enabled at any given time), each of which changes
state in some way when it occurs. When events are assumed to happen after Exponentially-distributed
intervals (alternatively, each event occurs at a constant, age-independent rate), the SPN is isomorphic to a
CTMC, and can be extended to provide a modeling semantics for generalized semi-Markov processes (Glynn
1989). For practical application, a benefit of adopting the SPN modeling language is that model representation
is separate from numerical simulation. This can allow both for highly efficient simulation, as the model can
be represented via vectors and sparse matrices, and also utilization of model-agnostic simulation algorithms
that take as input a generic SPN model and output sampled trajectories.

A Petri net is, formally, a bipartite graph, consisting of a set of places, P, and a set of transitions, T.
Directed edges, often called arcs, lead from places to transitions and from transitions to places. Arcs are
allowed to have a positive integer weight. Therefore, if u = |P| and v = |T|, the set of arcs that connect
places to transitions can be denoted by a non-negative integer matrix Pre, «,, and the set of arcs connecting
transitions to places by Post, .

This bipartite graph so far defines the structural properties of the model. When translating conceptual
models to the language of Petri nets, the places define the allowable state space of the model. However,
in order to describe any particular state of the model, the Petri net must be given a marking, M, which is
given by associating with each place a non-negative integer number of tokens, such that M € N*. Put more
concretely, we can imagine taking some number of indistinguishable tokens and assigning each one to a place
in the set P; the resulting vector in N is a valid state of the model. In the language of CTMCs the marking
M is referred to as the state, and we use the terms interchangeably.

Each transition k € T is allowed to change state when it occurs (fires). A transition k is enabled in some
marking M and may fire when there are tokens on the place corresponding to each input arc (k*" row of Pre)
greater than or equal to the arc weight. When the transition fires, M is updated by removing tokens from
M given by the set of input arcs and weight, that is, according to Pre. It then adds tokens in M according
to its output arcs and weight in Post. This can be represented succinctly if we let A = Post — Pre, then
if 7, is a column vector of zeros with a one at place k, the state can be updated as M’ = M + Sry, where
S = AT. S has dimensions u X v, so it maps vectors in the space of events to vectors in the space of marking
updates.

So far we have described a deterministic Petri net. However, associate with each transition a clock that
tells us when k will fire, if it were the first of all enabled transitions to fire and let the process associated with
k be a Poisson process Y; with intensity Ax which may depend on the current time ¢, and current marking
M (t). Finally, if we let all enabled processes Y, compete under a race condition by sampling the next firing
time for each clock, 7k, such that & = arg min, {74}, then &’ is the event that fires. In that case the system
time is updated to ¢’ =t 4+ 74/ and the state as M (t') = M (t) + Sry/. It can be rigorously proven that such
a construction is a continuous-time Markov chain (Brémaud 1999).

An advantage of this construction of a Markov process rather than the more traditional presentation via
the infinitesimal generator matrix is that processes with infinite state spaces can be compactly represented,
because only a finite number of clock processes compete at any given time. In this way, infinite birth death
processes, for example, can be succinctly represented graphically and simulated. Additionally, because most
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transitions only have a few input and output arcs, the matrices Pre and Post, which define the bipartite
graph, can be sparse matrices, and the marking update step can use fast sparse matrix routines, enhancing
computational efficiency.

3.2 SPN Architecture

We have developed algorithms to construct Petri nets for arbitrary genetic inheritance cubes (Sénchez C.
et al. 2019), metapopulation structure, Erlang-distributed aquatic stages, infection dynamics, and human
populations. Once built, and augmented with parameters for hazard functions in 7T, the resulting SPN
model can be numerically evaluated via a variety of sampling algorithms. We describe the SPN architecture
without considering epidemiological dynamics, as those are considered in a later section.

MGDrivE 2 has been designed with consideration for computational efficiency. We store the matrices
defining the SPN in sparse matrix format using the Matrix R package (Bates and Maechler 2019). In addition,
when constructing 7, we check the input inheritance cube. If the viability mask (A) indicates a certain cross
will never produce viable offspring, or if the probability of offspring for a cross is zero (Ih), that transition
is not instantiated in the SPN.

Generation of the set of places P for a single node is simple, and requires the user to pass the inheritance

cube Th, and the shape parameters for Erlang dwell distributions associated with egg, larval, and pupal
aquatic stages to the function. The function returns the named set of places, along with an indexing data
structure containing the indices of places stratified by life stage and genotype, both for easy debugging and
the construction of arcs when the set of transitions is made. We note that SPN defines no particular order
on the set P but we “unroll” the set hierarchically into a vector first by node, life-stage, and genotype, for
easier comprehension and testing.

After P is constructed, we can construct transitions 7, using P as input, as well as the aforementioned

shape parameters of aquatic dwell times and Th. While not strictly necessary for SPN, we adopted several
conventions here which simplify later generation of hazard functions. We first defined “classes”, K, of transi-
tions, such that, for example, all transitions related to oviposition were grouped together. Each class K then
is a proper subset of all transitions, K C 7, and |J; K; = 7. Each individual transition in a set k; € K; has
an associated R function which returns a data structure containing, at minimum, an index vix, indicating
where in T, k; can be found, a label, a character string giving the name of the transition, s and s_w, indices
of input arcs (the places they originate at), and weights respectively, o and o_w, the same for output arcs from
this transition back to places, and class, giving the name of the class K; as a character string this transition
belongs to. To make 7, we iterate through classes K;, and k; within classes, storing each transition’s packet
of information in the vector 7. Because each transition “knows” its input and output arcs, as well as their
weights, adding new classes of transitions is simple, as a single function merely needs to be written that takes
in places and perhaps genetic information, and returns this minimal packet of information.

Once P and T are constructed, the SPN is formally constructed. However for computation, we prefer
to store a more compact representation of the net. It is at this point we build the sparse matrices Pre and
Post. To do so, we simply allocate two v X u sparse integer matrices, then iterate through k € 7. We use
the information packet described earlier, specifically s, s_w and o, o_w, to fill in the non-zero entries of Pre
and Post respectively. Because we have already induced ordering on P and 7, the matrices have the right
sorting of rows and columns.

17


https://doi.org/10.1101/2020.10.16.343376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343376; this version posted October 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.3 Hazard Functions

To build a CTMC model from the Petri net (SPN), each transition must have a hazard function Ay (t, M (t)).
In the code implementation of MGDrivE 2, each hazard first checks if that transition is enabled, if not
it immediately returns zero and else computes the hazard rate. We allow \; to be a function of time for
simulation of inhomogeneous processes. Because in this manuscript we consider only Markovian systems,
hazards only depend on the current system state M (¢) and time ¢. Unless otherwise noted, we use Ay to
generically denote the joint hazard and enabling function for process Y.

This use of CTMC is known as a Markov population process, and has been used to model stochastic
population models for some time now (Kingman 1969). However, it can be useful to include exogeneous
stochastic processes into the model, which may affect hazard rates. These processes could represent, for
example, environmental processes such as temperature or rainfall. Knowledge of these processes would
be necessary to evaluate the hazard functions. Consider the situation in which process Y} is affected by
environmental stochasticity represented by z so that the hazard is i (¢, M (t), z); for concreteness, consider
z to be temperature and k to be larval mortality. We must also consider a specific function of interest (f) to
be computed from trajectories of MGDrivE 2, which we would like to estimate via Monte Carlo, to average
over uncertainty in z. Again for concreteness, we could consider functions like time required for a specific
gene to fixate, or time required for pathogen extinction in a specific node. To propagate uncertainty from
arbitrary exogenous processes, we simply draw many samples from z and then run Monte Carlo simulation of
MGDrivE 2 on each realized exogenous trajectory; we can imagine an “outer” loop sampling a trajectory 2z
from z and an “inner” loop computing Monte Carlo estimates of f, conditioning on 2z as deterministic input
to Ak (¢, M(t),%). Because z is by definition an exogeneous source of stochastic variation, the probability
factorizes such that this method properly propagates uncertainty into our estimation of f. For specific
functions, more efficient methods than naive Monte Carlo may exist, and we refer to the panoply of variance-
reduction methods covered in (Bratley, Fox, and Schrage 2011).

In MGDrivE 2, once the Petri net (P, T) is constructed (and we have parameters 6 and inheritance

cube Th), we can construct the v-dimensional column vector of hazard functions A. Specifically, we store the
individual Ay functions as function closures within the vector A, as functions are first class objects in R. We
note that this can be easily adapted to other programming languages, for example in C++98, functors could
be used in lieu of closures, and in C++11/14, lambda functions could achieve the same effect (Meyers 2014).

Each closure stores only the elements of § and Th necessary for computation of the hazard. We note that the
function closure based storage of hazard functions means that it is easy to include additional computational
state for specialized algorithms or more complex processes, such as enabling times or integrated hazards.

So far we have described what the fully constructed object A is, but not yet how we implemented it in
code, which we do now. Much like the construction of 7, we rely heavily on our assignment of transitions into
classes; after allocating memory for a v-length vector, we begin iterating through k € 7. First, we scan the
class of the transition; this tells us the appropriate function factory to call that will return Ag, the function
closure that computes the hazard. We pass the packet k to the function factory, along with parameters 6.
The packet provides all the necessary information to set up the enabling rule, and the function factory pulls
out the necessary components of # to compute that specific hazard, which are stored in the function closure.
All returned hazard functions A\ accept only two arguments, ¢ time, and M, the state (marking).

We allow the option for users to select if the vector of hazard functions shall be “exact” or “approximate”.
Exact hazards are required for both sampling algorithms that simulate integer numbers of tokens, in which
case enabling rules make sense. In this case evaluation of Ay proceeds as described above. If however a
continuous-state approximation is desired, either from a deterministic interpretation of the hazard functions
as rate functions for mean-field approximation, or from a drift-diffusion stochastic differential equation, we
ignore the check for sufficient tokens on input arcs, as the model no longer has an integer state space.
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3.4 Numerical Simulation

One key feature of the SPN representation of MGDrivE 2 is the convenient decoupling of model specification
and sampling method, allowing model-independent development of fast algorithms. This lets us benefit
from extensive work into optimized stochastic sampling algorithms from the chemical kinetics and physical
simulation communities, many of which can be used nearly “off the shelf” with a place/transition model
representation. We refer to the encyclopedic book by (Marchetti, Priami, and Thanh 2017) as one of many
resources for fast simulation routines.

Currently we do not support exact simulation of inhomogeneous processes, although approximate sim-
ulation is best done via the Poisson time-step method, where inhomogeneous terms are discretized to a
piecewise constant step function with the same At as used in the approximate time-step. Exact simulation
of inhomogeneous processes is difficult, although an algorithm based on random time change was presented
by (Anderson 2007), and (Thanh et al. 2018) investigate exact and approximate rejection-based methods.
We leave the incorporation of these or similar sampling methods into the MGDrivE 2 framework for future
development.

We provide example code to numerically integrate deterministic trajectories, based on the deSolve R
package of ODE solvers (Soetaert, Petzoldt, and Setzer 2010), using a mean-field approximation to the
stochastic system (Bortolussi et al. 2013). We also provide several stochastic samplers for both exact and
approximate trajectories, inspired by the smfsb R package (Wilkinson 2006).

In certain situations, when populations are large (that is, no places have a small number of tokens) and
hazard functions are close to linear (guaranteed when using mass-action forms), it may be the case that
stochastic fluctuations can be safely neglected. (Kurtz 1970) made rigorous the conditions under which
CTMCs may converge to ODEs. Such an approach essentially simplifies to considering the hazard functions
as rate functions, and the state M (t) as a continuous quantity (motivating the ability for the user to se-
lect generation of “approximate” A) (Gillespie 2007). Even when stochastic fluctuations are non-negligible
such that deterministic approximation is not valid, it may be useful to provide the option for deterministic
integration of the SPN model for quick visualization of transient behavior, or for sensitivity analysis.

At present we only offer Gillespie’s “direct-method” to sample statistically exact trajectories, a well known
method to sample from stochastic models (Gillespie 1977). Being an exact sampler, it samples integer-valued
trajectories, and thus uses exact hazards and enabling functions. Briefly, the method works via a simple
update step where first the vector of hazard functions is evaluated, h(t) = A (t, M (t)). The Markov transition
kernel to the next state can be factored such that the sampler first samples the random variable 7 describing
when the jump occurs, relative to ¢, 7 ~ Exp (>, hi(t)). Next it samples which process caused the jump, and
updates the system accordingly, that is, it selects the process causing the jump, &’ with probability %
Then update the marking according to matrix equation M’ (t+7) = M (t)+Sry.. In general, large populations
of mosquitoes and/or large numbers of nodes would render exact simulation practically impossible, if, for
example many tens of thousands of individual events needed to fire each day, each requiring a system update
and resampling of random variables for each event, both of which are computationally expensive tasks.

In addition, there are two approximate stochastic sampling algorithms that have been implemented for use
in MGDrivE 2, and we anticipate future algorithmic development focusing on implementation of improved
approximate samplers. The first of these is a simple fixed size tau-leaping method, the Poisson time-step
(PTS), reviewed in (Wilkinson 2006) and first introduced by (Gillespie 2001). The basic concept behind
the PTS algorithm is that if none of the hazard functions change significantly over a small time step, say
[t,t + At), then one can approximate the state change by sampling a Poisson distributed random variable
for enabled each k € T, such that the elements of the r vector indicating how many times each event fired
are each independent Poisson random variates with rate parameter Ay (¢, M (t)) At. Then the matrix update
can be preformed with those sampled Poisson variates in the vector r, system time updated, and another
iteration preformed. The extent to which the assumption that hazards do not change significantly over

19


https://doi.org/10.1101/2020.10.16.343376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343376; this version posted October 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the interval determines the quality of the approximation. The original tau-leaping algorithm has spawned
many variations on the theme, including some with strong probabilistic guarantees of approximation quality
(Anderson 2008), which may be incorporated for MGDrivE 2.

The second approximate stochastic sampling algorithm is based on a continuous state stochastic differ-
ential equation (SDE), known as the diffusion approximation. We offer a brief heuristic explanation of the
algorithm but a detailed derivation can be found in (Gillespie 2005). If one starts with the integer valued
Markov jump process, it will have a set of differential equations known as Kolmogorov’s forward equations
(KFE), sometimes referred to as (chemical) Master equation. The KFE gives the complete time-evolution
of the probability mass function across allowable system states, and is usually intractable. It is possible (see
(Toral and Colet 2014) for a brief overview) to generate a partial differential equation (PDE) second-order
approximation to the KFE known as the Fokker-Planck equation, which approximates the probability mass
function with a probability density function evolving according to first order drift and second order diffusion
coefficients. Considering the marking M as a continuous state, the Fokker-Planck equation can be interpreted
as a u-dimensional SDE driven by independent Wiener processes. While advanced techniques for simulation
of SDEs exist (Sarkka and Solin 2019), we implement the simple Euler-Maruyama method in MGDrivE 2.
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