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ABSTRACT 8 

 We report a meta-Genome Wide Association Study involving 73 published studies in soybean 9 

(Glycine max L. [Merr.]) covering 17,556 unique accessions, with improved statistical power for robust 10 

detection of loci associated with a broad range of traits. De novo GWAS and meta-analysis were conducted 11 

for composition traits including fatty acid and amino acid composition traits, disease resistance traits, and 12 

agronomic traits including seed yield, plant height, stem lodging, seed weight, seed mottling, seed quality, 13 

flowering timing, and pod shattering. To examine differences in detectability and test statistical power 14 

between single- and multi-environment GWAS, comparison of meta-GWAS results to those from the 15 

constituent experiments were performed. Using meta-GWAS analysis and the analysis of individual studies, 16 

we report 483 quantitative trait loci (QTL) at 393 unique loci. Using stringent criteria to detect significant 17 

marker trait associations, 66 candidate genes were identified, including 17 candidate genes for agronomic 18 

traits, 19 for seed related traits, and 33 for disease reaction traits. This study identified potentially valuable 19 

candidate genes that affect multiple traits. The success in narrowing down the genomic region for some loci 20 

through overlapping mapping results of multiple studies is a promising avenue for community-based studies 21 

and plant breeding applications. 22 

INTRODUCTION 23 

Genome-wide association studies (GWAS) analyze the association between a trait of interest and 24 

thousands of genetic variants throughout the genome. The general approach has benefited from the 25 

development of greatly increased numbers of markers due to the advent of next-generation sequencing 26 

approaches (Rico et al. 2013), and increased sample size with the formation of biobanks, such as the 27 

100,000 Genomes Project (The 100,000 Genomes Project  2019). Plant scientists now routinely conduct 28 

GWAS in crop species, including soybean [Glycine max (L.) Merr.]. Increased marker data availability and 29 

development of new statistic methods provided great opportunities to gain new knowledge from existing 30 

data and address previous lacuna of GWAS experiments (Zeng et al. 2017; Chang et al. 2016; Chang and 31 
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Hartman 2017; Bandillo et al. 2015; Bandillo et al. 2017; Zhou et al. 2015; de Azevedo Peixoto et al. 2017; 32 

Zhang et al. 2015; Zhang et al. 2017). 33 

Researchers have recognized that while single environment GWAS such as those conducted in the 34 

greenhouse are powerful for genetic studies and candidate gene identification, their extrapolation in field 35 

environment applications require further validation (Zhang et al. 2015; de Azevedo Peixoto et al. 2017; 36 

Coser et al. 2017). When comparing separate studies of the same trait, significant differences in results are 37 

often found. These differences may be caused by allele frequency variation between populations, 38 

inadequate control of population structure, or environmental dependencies (Gibson and Mullen 1996). With 39 

the availability of standardized marker data across the USDA soybean germplasm collection (Song et al. 40 

2015), several studies have mapped important major effect quantitative trait loci (QTL) using historical 41 

records and GWAS analysis: for example, insect resistance (Chang and Hartman 2017), disease resistance 42 

(Chang et al. 2016), descriptive traits such as flower and pubescence color (Bandillo et al. 2017), and seed 43 

oil and protein content (Bandillo et al. 2015). However, for many quantitative traits such as seed 44 

composition or plant height, using raw measurements from differing environments introduces bias, which 45 

may erode the power of detection for significant QTL (Chen et al. 2010). While results from within the 46 

same environment(s) share a common environmental component, attempting to combine multiple panels 47 

grown in different environments leads to an improper assignment of environmental effects to the differences 48 

between genetics of the panels involved (Zhao et al. 2019).  Meta-analysis provides an attractive alternative 49 

to address the above-mentioned challenges of individual GWAS, and this analysis can be performed on 50 

results from independent studies using statistical approaches such as those provided by the analysis program 51 

METAL (Willer et al. 2010). 52 

Quantitative traits, in contrast with qualitative traits, are controlled by many genes and 53 

environmental factors. To fully understand the pathways that determine these traits, interactions between 54 

previously discovered genes and new candidate genes must be added to the existing models. Directly 55 

measured traits often comprise only a portion of the information about a biological pathway, necessitating 56 

the identification of pleiotropic effects (on correlated traits) for an increased biological understanding of 57 

the phenotype. Genes may exhibit pleiotropy either through control of a common pathway such as the 58 

influence of Dt1 on both plant height and lodging (Diers et al. 2018), or through multiple effects of a 59 

chemical as seen in the effect of T locus that has a dual role in pigmentation and chilling tolerance through 60 

isoflavones (Takahashi and Asanuma 1996). Identifying genes that control multiple phenotypes of 61 

importance can either suggest candidates for fixation, in cases where both effects are positive, or may 62 

identify possible penalties associated with incorporating particular alleles and improve multi-trait selection 63 

results (Bolormaa et al. 2014).  64 
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Meta-analyses include separately analyzing each individual experiment in order to determine 65 

experiment-specific p-value and allele effect estimates, rather than performing a combined analysis to 66 

leverage extensive data (Bandillo et al. 2015). Further genetic insights can be gleaned through an ease in 67 

the identification of pleiotropic effects due to the analysis of a wide range of traits. Moreover, the ability to 68 

compare the results from a combined analysis with those from separate analyses of individual studies allows 69 

for the identification of both environment-dependent associations and for the enrichment and detection of 70 

quantitative traits and rare alleles from more unique but diverse populations. Previous meta-analysis results 71 

have shown the effectiveness of combined panels to identify minor genes that were missed in a single study 72 

(Chang et al. 2017). Due to the need for adequate representation of minor alleles in GWAS, rare alleles that 73 

are predominant in a small zone of adaptation may be absent or undetectable within individual studies. The 74 

agronomic screenings for the USDA soybean germplasm collection are arranged based on the influx of new 75 

germplasm into the United States, and therefore serve as a semi-randomized subset of global soybean 76 

variation and spatiotemporal patterns in the origins of new accessions enabling potential detection of rare 77 

variants, which may be enriched in one of these geographical regions (Trotta et al. 2016).  78 

While combined analyses for disease and insect resistance (Chang et al. 2016; Chang and Hartman 79 

2017) and seed composition (Bandillo et al. 2015) have previously been reported, we perform a large-scale 80 

meta-analysis utilizing individual studies in soybean. Our study builds on previous studies by integrating 81 

the environmental component that can provide a historical perspective on adaptation, with the inclusion of 82 

quantitative traits of agronomic importance, stress tolerance, and seed composition. Subsequent study of 83 

pleiotropic genes and reporting on gene rich clusters can be useful when attempting to introgress favorable 84 

alleles into breeding lines (Cameron et al. 2017), as it improves the understanding of potential 85 

complications of introgression. The multitude of traits examined with our study facilitates the detection of 86 

co-localized peaks indicative of potential pleiotropic effects of genes across a diverse range of phenotypes. 87 

Loci associated with multiple traits identified within this study require additional functional validation, as 88 

GWAS are not designed to definitively differentiate between pleiotropy and (tight) linkage. We included 89 

results from reports published from 1964 to 2009 for a total of 73 individual studies. The design of this 90 

study was intended to identify co-localization of peaks for multiple traits, as well as to identify previously 91 

overlooked genes through meta-analysis approaches. Using meta-GWAS analysis and analysis of 92 

individual studies, we report 393 unique QTL including 66 candidate genes across important traits and 93 

provide confirmation of many previously reported genes. This study provides targets for functional 94 

characterization and introgression of previously untapped diversity for many important traits. 95 

MATERIALS AND METHODS 96 

Genotypic data and quality control 97 
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Marker data from the testing of  20,087 Glycine max and G. soja accessions from  the USDA 98 

Soybean Germplasm Collection with the SoySNP50K iSelect BeadChip  (Song et al. 2013) were 99 

downloaded from SoyBase (Song et al. 2013). A data imputation pipeline based on Java implementation of 100 

Beagle 5.0 (Browning and Browning 2016) was utilized to impute missing data for the 42,080 SNP markers 101 

that were aligned to the Williams 82 reference genome v2 assembly. Markers aligned to scaffolds but not 102 

assigned to a chromosome were removed prior to processing. Ten burn-in iterations and five phasing 103 

iterations were used to impute missing markers, which accounted for 0.64% of all markers. For each test, 104 

markers remaining after applying cutoffs of minor allele frequency ≥ 0.05 for studies involving 300 ≤n 105 

≤1000 accessions, or 0.01 for studies involving n ≥ 1001 accessions, were selected for further analysis.  106 

Phenotypic data and genetic accessions 107 

Numeric phenotypic data from USDA reports were compiled from the U.S. National Plant 108 

Germplasm System website (http://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx (Descriptors for 109 

Soybean  2019). Subsets of accessions that were part of historical USDA germplasm characterization trials 110 

with a size n ≥ 300 were selected for further analysis. Information on the design of the original trials is 111 

available from the technical bulletins in which they were originally published. These technical bulletins are 112 

available online in part at https://pubs.nal.usda.gov/sites/pubs.nal.usda.gov/files/tb.htm (Miller 2003). 113 

Alternatively, PDFs of the technical bulletins are available on our GitHub 114 

(https://github.com/SoylabSingh/META-GWAS). Additional traits, such as disease resistance and amino 115 

acid composition, were downloaded from the NPGS website.  116 

Genome-wide association analysis 117 

Each experiment was analyzed separately with a mixed linear model implemented using GAPIT in 118 

R (Lipka et al. 2012) to prevent confounding of environmental effects with marker effects, which would be 119 

expected for several traits (i.e., flowering time, oil, protein, etc.). Population structure was controlled using 120 

the first three PCAs based on the marker data. This resulted in 585 combinations of experiment/trait 121 

analyses. Analysis was subsequently performed for combined panels for each trait. The Bonferroni 122 

threshold (Neyman and Pearson 1928) was employed to minimize the likelihood of false positives in 123 

declaring significance. The significant SNPs were compiled for further analysis (Supplemental Table 1).   124 

Initial QTL calling was performed trait-by-trait based on marker position. Subsequently, QTL for 125 

related traits (such as flowering date and maturity date) with substantial overlap were merged, resulting in 126 

fewer unique QTL than originally called. Local LD decay analysis was used to further clarify between 127 

separate or overlapping QTL. 128 
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Markers that were significant for multiple traits and experiments, or were identified during analysis 129 

of the combined trials, were examined for nearby candidate genes. Candidate genes were identified by 130 

examining annotated genes within linkage disequilibrium (LD) of the leading SNP with r2 > 0.7 for each 131 

experiment and peak (de Azevedo Peixoto et al. 2017). Candidate gene identification was performed based 132 

on previously characterized genes, gene family function, and the nearest gene to the peak SNP in cases 133 

where no known function could be identified. For candidate casual genetic variant analysis, we utilized the 134 

SNP dataset from the genome resequencing study of 302 soybean lines (Zhou et al. 2015) and searched the 135 

possible causal mutants at the identified candidate genes. We first identified the lead SNP from peaks of 136 

interest in the resequencing dataset, then calculated the pairwise LD r2 values between the lead SNP and 137 

the SNPs covering the locus of candidate gene. All other analyses here within were aligned to the Glyma2.0 138 

reference genome (https://soybase.org/gb2/gbrowse/gmax2.0/). The R package ‘circlize’ was employed to 139 

generate the circular visualizations of significant SNPs for multiple traits throughout the genome. Study 140 

names have been shortened for convenience within the text; a reference file is provided to find the initial 141 

source of phenotypic data used in this work (Supplemental Table 2). Trait definitions, as well as the 142 

number of QTL and candidate genes identified for each trait, are provided in Supplemental Table 3. 143 

RESULTS AND DISCUSSION 144 

From the individual study GWAS and meta-GWAS 4,919 significant SNPs were detected, of which 145 

787 were reported from the meta-GWAS analysis. Complete listing of the significant SNP identified using 146 

individual study GWAS and meta-GWAS are provided in Supplemental Table 1.  Among these 787 SNPs 147 

identified using meta-GWAS, 110 were associated with agronomic traits, 106 with seed composition traits, 148 

and 571 with disease resistance traits. Overall, candidate genes were assigned for 66 unique loci; and these 149 

included genes with moderate to large effects. We focus our results on loci that were associated with 150 

multiple traits.  151 

Agronomic Traits  152 

Amongst agronomic traits, we identified 1422 marker-trait associations with traditional GWAS 153 

studies, as well as 110 SNPs associated with agronomic traits when analyzed across studies by meta-154 

GWAS. In all, 115 QTL across 20 chromosomes were identified, with 17 candidate genes (Figure 1a, 155 

Supplemental Table 1, Supplemental Table 3, Table 1).  156 

In our approach, we used results from individual studies to detect overlapping genomic regions for 157 

the purpose of locating candidate gene for traits, including for genes previously cloned. The locus harboring 158 

Dt1 (Glyma.19g194300) (Liu et al. 2010), the major gene conditioning stem termination in soybean, was 159 

significantly associated with oleic acid and linoleic acid content, as well as plant height, stem termination, 160 

and stem lodging (Supplemental Table 1). By comparing the mapping results of four studies, we were 161 
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able to limit the candidate genomic region to a 125 kb fragment harboring previously cloned Dt1 (from 162 

ss715635422 to ss715635460) (Supplemental Figure 1). These results highlight the advantages of meta-163 

GWAS for finer mapping the candidate gene region. A nonsynonymous SNP (SNP_19_44980087), in high 164 

LD (r2 = 0.5) with the leading SNP ss715635424 (also known as SNP_19_45000827), was found at the 165 

fourth exon of Dt1 that changes amino acid R (Arg) to W (Trp) (Supplemental Figure 2). This SNP is 166 

identical to the R166W mutation previously identified (Liu et al. 2010). 167 

On chromosome 19, we identified a QTL for stem lodging which was on the opposite end of the 168 

chromosome as Dt1. ,Stem lodging is associated with plant height and this has been reported in multiple 169 

crops (Flint-Garcia et al. 2003; Diers et al. 2018; Singh et al. 2019). As lodging causes significant yield 170 

and quality losses, the development of the shorter statured wheat and rice were promoted which could better 171 

handle high input agriculture. However, this solution is not universally applicable. In soybean, pods are 172 

arranged at nodes on the stem and decreasing the length of stem, and if fewer nodes are present, yield 173 

potential is reduced. Leveraging four studies, we report a peak for tolerance to stem lodging with the 174 

candidate gene Glyma.19g016400, an ABC transporter on chromosome 19. This locus was found to affect 175 

lodging tolerance but was not found to be associated with plant height, thereby making it a useful target to 176 

develop lodging resistant soybean cultivars without decreasing stem length and yield potential. While this 177 

is the first genome wide association study identifying this gene, additional evidence towards its validity 178 

comes from several recent patents (US Patents #8697941, 8748695, and 9675071) that relate to molecular 179 

markers in the region of interest and include Glyma.19g016400 as one of the candidate genes for PPO 180 

inhibitor tolerance in soybean. Significant effects of this region for seed yield, lodging, and plant height 181 

were reported from the SoyNAM project (Diers et al. 2018). The results from Hulting et al. (2001) on PPO 182 

inhibitor tolerance and our findings on stem lodging susceptibility suggests a tradeoff between PPO 183 

inhibitor tolerance and lodging susceptibility. The soybean accessions highly tolerant to sulfentrazone 184 

contain alleles associated with increased lodging in our study, necessitating further studies to validate these 185 

observations. 186 

On chromosome 6, a significant SNP peak was identified that co-located with the T gene, a 187 

flavonoid 3’ hydroxylase (Toda et al. 2002). This region was significant for arginine, cysteine, isoleucine, 188 

and leucine levels, as well as for seed mottling (Figure 1 a, c). The cloned E2 locus (Watanabe et al. 2011) 189 

was significantly associated with flowering and maturity date, maturity group, days from flowering to 190 

maturity, plant height, and seed yield (Figure 1b). The associations between E2 and these traits has been 191 

previously reported (Fang et al. 2017).  192 

Seed Composition Traits 193 
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Amongst seed composition traits, we identified 1364 marker-trait associations with traditional 194 

GWAS studies, as well as 106 SNPs associated with compositional traits when analyzed across studies by 195 

meta-GWAS. SNPs associated with composition were found on chromosomes 1-9, 11, 13-15, 17, 19-20, 196 

resulting in 88 QTL with 19 candidate genes (Figure 1b, Supplemental Table 1, Supplemental Table 3, 197 

Table 2) 198 

A cluster of candidate genes for seed composition, including isoleucine, methionine, leucine, 199 

tryptophan, threonine, lysine, and palmitic acid, were located in a region of 30 kb on chromosome 1 between 200 

53.13 – 53.16 Mb, 4 a cysteine desulfurase (Glyma.01g197100) and a malate and lactate dehydrogenase 201 

gene (Glyma.01g197700) (Supplemental Figure 1). Further targeted analysis will be necessary to 202 

determine which gene is influencing each trait, as a single enzyme is unlikely responsible for multiple steps 203 

in the metabolic pathway. We found significant SNPs in high LD (r2 > 0.5) with the detected leading SNP 204 

at the promoter of Glyma.01g197700, but not in the coding region of the gene (Supplemental Figure 2). 205 

A region including the I locus on chromosome 8 (Clough et al. 2004) was associated with seed 206 

mottling, as well as oil, cysteine, isoleucine, leucine, linoleic acid, lysine, methionine, palmitic acid, stearic 207 

acid, threonine, and valine levels in the seed (Figure 1b). The most likely candidate gene for the observed 208 

differences in amino acids levels, AK-HDSH (aspartokinase homoserine dehydrogenase, 209 

Glyma.08g107800) is a bifunctional enzyme catalyzing the key steps of asparagine phosphatization and the 210 

aspartate-semialdehyde to homoserine conversion by which aspartate family amino acids (lysine, threonine, 211 

methionine, and isoleucine) are synthesized (Zhu-Shimoni and Galili 1998). However, amino acid data 212 

were generated using Near Infrared Reflectance, which may have low precision in estimating amino acid 213 

composition when there is variability in seed coat color (Baianu et al. 2011). Therefore, further validation 214 

is needed to establish the association between the AK-HDSH or I loci and the amino acid profile. 215 

SACPD-C (Glyma.14g121400) was the primary candidate to explain differences in stearic acid 216 

content within seed oil and has been previously functionally validated (Gillman et al. 2014). Using the 217 

Wm82.a2 reference genome build, this appeared as three separate peaks; however, a single peak was 218 

observed when using the Wm82.a1 version. We postulate a possible assembly error in the region 219 

surrounding the SACPD-C locus in the soybean reference genome Wm82.a2, due to conflicting results 220 

(Supplemental Table 4). We attempted to identify false peaks generated due to genome mis-assembly by 221 

fitting the lead SNP as a covariate in the GWAS model, and then observed lower p-values for the remaining 222 

SNPs and detected a weaker signal from surrounding SNPs indicative of a single gene. Presence of stronger 223 

signals in surrounding SNPs would have indicated that two separate genes are in play. Additionally, the r2 224 

between SNPs in all three regions was greater than 0.7, suggesting physical linkage. The Wm82.a1 results 225 
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(SNP effects, physical location, LD) provide the most plausible explanation for the presence of a single 226 

gene in this genomic region and suggests that Wm82.a2 has unresolved errors in scaffold positioning.  227 

A peak on chromosome 5 associated with palmitic acid content was detected in 3 different studies. 228 

Using data from the ‘2mn81’ study, the locus mapped to a region of over 600 kb. However, two other 229 

studies (2ky81 and ms2000.02) mapped this locus within a smaller region of 130 kb (ss715592495-230 

ss715592503) and 182 kb (ss715592491-ss715592500), respectively, with an overlap of about 88 kb 231 

(ss715592495-ss715592500) (Supplemental Figure 2). The candidate gene FATB1a (Glyma.05g012300) 232 

(Wilson et al. 2001) was identified in the overlap. However, no SNP in LD (r2 ≥ 0.5) with the leading SNP 233 

of the locus was identified at the coding region or promoter of FATB1a based on analysis of resequencing 234 

data (Zhou et al. 2015) except the synonymous SNP_5_7995427 (Supplemental Figure 1). Causal variants 235 

have been identified in mutagenized breeding material (Thapa et al. 2016, Bachleda et al. 2016. Goettel et 236 

al. 2016), but naturally occurring variations are not well characterized. 237 

Disease Resistance Traits 238 

Amongst disease traits, we identified 1346 marker-trait associations with traditional GWAS 239 

studies, as well as 571 SNPs associated with disease traits when analyzed across studies by meta-GWAS. 240 

213 QTL mapped to all 20 chromosomes, with 33 candidate genes identified (Figure 1c, Supplemental 241 

Table 1, Supplemental Table 3, Table 3). Meta-analysis in several instances narrowed the genomic region 242 

for QTL. For example, the association between the Rps3 region and resistance to race 1 of Phytophthora 243 

root rot was mapped to a 144 kb region in the meta-analysis, compared to a 1Mb region in individual studies 244 

(Supplemental Table 1). This reduces the search space for causal genes and allows for greater accuracy 245 

when identifying candidate genes. 246 

We found a peak that was associated with resistance to races 1, 2, 3, 4, 5, 7, 10, and 17 of 247 

Phytophthora sojae that mapped to the position of the Rps1 locus (Gao and Bhattacharyya 2008). A 248 

previously unreported peak for soybean cyst nematode resistance was identified on chromosome 11 was 249 

mapped to Glyma.11g234500, an alpha-soluble N-ethylmaleimide-sensitive factor (NSF) attachment 250 

protein (α-SNAP). Notably, the candidate genes GmSNAP11 (Glyma.11g234500) and GmSNAP14 251 

(Glyma.14g054900) (Lakhssassi et al. 2017), identified at 7 kb and 84 kb apart from lead SNPs 252 

ss715610420 and ss715618859, respectively, are paralogs and encode a Soluble NSF Attachment Protein 253 

(SNAP).  Another soybean SNAP gene on chromosome 18, GmSNAP18, has been reported to play a role 254 

in resistance to SCN (Cook et al. 2012). On chromosome 1, the locus for seed composition co-localized 255 

with a bacterial pustule resistance QTL. This QTL does not correspond to the previously identified Rxp 256 

locus, instead, a candidate gene Glyma.01g197800 is identified as the potential underlying gene. A peak on 257 

chromosome 3 at 34.24 - 35.18 Mb was found to be significantly associated with iron deficiency chlorosis 258 
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tolerance and Pythium irregulare resistance. This region has previously been investigated as the source of 259 

IDC tolerance in “Isoclark” (Stec et al. 2013). The GWAS analysis identified previously unreported 260 

genomic regions that were associated with resistance to bean pod mottle virus, brown stem rot, frogeye leaf 261 

spot, Phytophthora root rot, and soybean cyst nematode (Figure 1c). A full list of identified SNPs and 262 

candidate genes for these traits, as well as for all other traits examined in this study using both combined 263 

analyses and analysis of individual experiments are provided in Supplemental Table 1.  264 

The majority of studies included in this work for disease resistance were germplasm screenings, 265 

where many entries were tested to find new sources of resistance. Such germplasm screening studies were 266 

not originally intended for GWAS; for example, multiple rating systems, ordinal rating scales, and non-267 

integer ratings used in the studies complicates result comparisons and are not easily amenable to linear 268 

statistical models. Standardization of screening protocols across research groups and inclusion of key data 269 

for comparison of studies such as those suggested by the MIAPPE checklist (Ćwiek-Kupczyńska et al. 270 

2016) will be key for future research into plant disease resistance. In addition, an increased utilization of 271 

image-based phenotyping will play a key role, allowing for digital disease severity ratings on a continuous 272 

scale (Naik et al. 2017; Zhang et al. 2017), minimal inter- and intra-rater variability in measurements 273 

through hyperspectral camera and ML-based analysis (Nagasubramanian et al. 2018; Nagasubramanian et 274 

al. 2019). It will also enable the comparison of results across studies by facilitating reanalysis of previous 275 

experiments with new rating systems or approaches, as long as needed input variables are available. 276 

Implications of pleiotropy vs. linked genes 277 

While repeated crossing or careful selection of the donor parent can break linkage drag, negative 278 

pleiotropic effects associated with a gene of interest are more problematic. Candidate gene analysis was 279 

aided by tissue-specific gene expression data available at SoyBase. The use of a blend of individual and 280 

meta-analyses provided improved resolution through examining overlapping peaks and utilizing the 281 

increased power in larger panels in the meta-analysis. When investigating the peak on chromosome 1 for 282 

fatty acid and amino acid composition, a convincing distinction between pleiotropy and linkage could not 283 

be made. This was due to the presence of multiple strong candidate genes. While meta-GWAS approaches 284 

are very beneficial for improving map resolution, they are still limited in their inference in regions with 285 

strong linkage disequilibrium. Meta-GWAS results outputs still require follow-up molecular and functional 286 

validation to confirm the candidate genes as well as to confirm pleiotropy vs. linkage. 287 

Pleiotropic effects of major genes significantly alter multiple traits simultaneously, creating a 288 

situation of either rapid improvement across traits, or of tradeoffs, such as is found in most soybean 289 

protein/oil content QTL. Genetic improvement utilizing pleiotropic effects may be limited in applicability 290 

to specific geographic regions if they affect key adaptation genes such as the maturity loci or stem 291 
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termination. Therefore, it will be necessary for breeders to independently determine whether a gene with 292 

pleiotropic effects is a good fit for their variety development goals. In cases where pleiotropy is associated 293 

with a tradeoff between multiple traits, such as between seed protein and oil content, breeders will need to 294 

weigh the importance of each trait or identify combinations of genes affecting the trait that can provide an 295 

adequate phenotype for each trait considered.  296 

Motivation for the use of meta-analysis 297 

For many important row crop species, such as soybean, corn, wheat, and sorghum, it is impractical 298 

or impossible to evaluate the full breadth of the available germplasm at a single location. This is due to 299 

space limitations, availability of labor or funding for phenotyping, or irreconcilable differences between 300 

genotypes preventing them from growing in the same place, such as differences in photoperiod sensitivity 301 

or vernalization requirements. To capture the breadth of the genetic and phenotypic diversity, it is necessary 302 

to test each variety with a similarly adapted cohort. The separate analysis of each environment can increase 303 

the odds of finding alleles which are near fixation in the population or are environmentally dependent (Singh 304 

et al. 2014; Sherman et al. 2019).  305 

For simple, qualitative traits such as pubescence color in soybean, there is little benefit in meta-306 

GWAS due to the consistency with which the gene can be mapped and the lack of environmental 307 

dependence on trait expression. When studying environmentally dependent traits, such as agronomic, 308 

disease resistance and seed composition traits including seed oil or protein content, meta-GWAS provide 309 

advantages particularly in increasing the likelihood of finding small effect genes. When comparing 310 

individual experiments results (Figure 2a) with the combined meta-analysis (Figure 2b), additional 311 

significant peaks were observed in meta-analysis. For example, the SNP marker ss715614263 was 312 

previously associated with seed protein using mega-analysis (Bandillo et al. 2015). The same locus was 313 

found to be associated with protein, palmitic, and oleic acid content in an individual panel in the current 314 

study (ms2000.02), but was associated with protein and linoleic acid content in the meta-analysis 315 

(Supplemental Table 1). While meta-analysis identified fewer traits in the specific instance of 316 

ss715614263, the association with an additional trait (compared to individual analysis) still encourages its 317 

use, as each newly associated trait may provide guidance in identifying putative causal genes. A full listing 318 

of candidate genes detected in each study is provided as Supplemental Table 5, which also provides a 319 

reference to candidate genes detected either only in individual studies or only via meta-analysis. 320 

Identification of an association with multiple related traits, although only spanning one to two markers, is 321 

a strong signal that the association may merit additional study to identify a strong candidate gene and further 322 

explore the possible pleiotropic effects this locus is exhibiting, especially when a stringent cut-offs are used 323 

to declare significance. 324 
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To maximize the effectiveness of soybean breeding programs, we sought to identify as many genes 325 

as possible for numerous traits, ensuring that multiple paths are available for further cultivar improvement. 326 

By maximizing the identified links between markers and phenotypes of interest, meta-GWAS aids efforts 327 

to bridge the gap between genotype and phenotype, allowing for improvements not only in trait prediction 328 

and selections, but also in modelling the interactions between multiple genes in overall trait performance.  329 

 Future mapping, validation and integration with Phenomics studies 330 

 Traditional fine mapping through creating lines sharing homogenous genetic background, such as 331 

near isogenic lines, is a powerful tool to uncover the casual genetic variants. However, it is time consuming 332 

to develop new near-isogenic lines in multiple backgrounds to reduce the potential influence of background-333 

specific effects. In this study, large variation of LD architecture was observed across populations. This 334 

enables substantially shortening of the candidate chromosomal regions of specific QTL by comparing 335 

mapping results from separate studies using different populations. Considering almost all accessions in the 336 

USDA Soybean Germplasm Collection were genotyped by SoySNP50K BeadChip and are publicly 337 

accessible, mapping populations with a high LD decay rate at specific genomic regions of interest can be 338 

constructed for fine mapping. The consistent identification of major genes, including those affecting 339 

multiple traits of interest, suggests that further improvements in mapping ability would likely require a 340 

model with the major genes treated as covariates. While it is currently possible to account for the effects of 341 

major genes by using SNPs linked to the gene of interest as covariates, this approach is only an 342 

approximation due to incomplete linkage between common SNPs and the underlying gene. Instead, allele-343 

specific markers should be developed and deployed across both wild-type germplasm and breeding 344 

material.  345 

In the future, similar studies will benefit by incorporating weather, soil, or management parameters 346 

in order to explain differences in marker effects between individual studies and in Meta-GWAS (Cook et 347 

al. 2017 ). In this scenario, access to standardized, quality-controlled records will be needed to tease apart 348 

the GxE component and identify the architecture of environmentally mediated expression and decipher 349 

associations between genetics and environmental signals for the traits of interest. The establishment of 350 

standardized tests enabled with advanced sensors and high-throughput phenotyping should improve the 351 

opportunity to identify additional genes influencing traits of interest through the analysis of previously 352 

ignored component traits, such as leaf expansion rate or chlorophyll density in the case of yield, (Dhondt 353 

et al. 2013) which may lead to an increased understanding of the genetic architecture of these traits and 354 

responses to environmental and management conditions (Parmley et al. 2019). 355 

CONCLUSION 356 
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Combined analysis of all investigated traits found 63 loci that corresponded to previously reported 357 

QTL, characterized genes, and new reported loci backed up with strong candidate genes conditioning the 358 

observed phenotypes. Several of the previously identified loci (for example, Dt1, E2) were associated with 359 

multiple traits, identifying putative pleiotropic effects of the underlying genes. Differences between results 360 

in individual trials and the combined analyses confirm the importance of multi-environment testing for 361 

identification of key traits, but also provide a strong motivation to create a community database that can be 362 

queried for scientific advancement. Continued publication of raw phenotypic values from screenings will 363 

increase the power for identification of important genes for both mean and plastic responses to reduce the 364 

financial and time burden on any individual program while benefitting future breeders and researchers. For 365 

example, the sharing of phenotypic information across research programs both nationally and globally, as 366 

currently on-going with multi-states and –institutions uniform soybean tests and other cooperatively run 367 

tests in other crops.  368 

 369 
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Table 1. List of candidate genes identified for agronomic traits using GWAS from individual studies and 388 

Meta-GWAS. 389 

Chr

om

oso

me 

Likely 

Gene 

Met

a-

GW

AS 

Individ

ual 

Studies 

GWAS 

Trait(s) Studies Source 

5 

Glyma.

05G20

0100 

  * 
Flower date, Maturity 

date, Maturity group 
4il87, ms1999.01, ms923 

6 

E1 * * 

Flower date, Maturity 

date, Maturity group, 

Stem termination 

1il64, 1il66, 2il81.1, 2il81.2, 4il87, 5il90, 

il0102, il989, meta, mn945 

Glyma.

06G06

8900 

* * Seed mottling 3mn83.2, meta 

Glyma.

06g134

400 

  * 

Pod shattering 

(early), Pod 

shattering (late) 

4il87 

T * * Seed mottling 3il84, meta, ms1999.01, ms923, ms967 

7 

Glyma.

07g049

800 

* * 

Pod shattering 

(early), Pod 

shattering (late) 

3il84, meta, ms1999.01, ms923 

8 I   * Seed mottling 1il66, 2ky81, 4il87, il0102, ms923 

9 

fr1   * Root fluorescence fluorjt97 

Glyma.

09g090

600 

* * Seed mottling 1il66, 4il87, meta 

Glyma.

09g266

200 

  * 
Flower date, Maturity 

group 
ms923, ms1999.01 

10 E2 * * 

Branching, Flower 

date, Height, Maturity 

date, Maturity group, 

Yield 

1il64, 1il66, 2il81.1, 3il83.1, 3il84, il0102, 

il989, meta, ms1999.01, ms967 

11 
K1/AG

O 
* * Seed mottling 3mn83.2, il0102, meta, ms923, ms967 

13 Rsv1 * * Seed mottling 
1il66, 2il81.1, 2il81.2, 5il90, meta, 

ms1999.01, ms2000.02, ms923 

14 fan1   * Seed quality 2ky81 

15 

Glyma.

15g139

800 

* * 

Pod shattering 

(early), Pod 

shattering (late) 

1il66, 2il81.2, 2ky81, meta 

16 

E9 * * 
Flower date, Maturity 

group 
2il81.1, 3il83.1, meta, ms1999.01 

Pdh1 * * 

Pod shattering 

(early), Pod 

shattering (late) 

1il64, 2il81.1, 4il87, il0102, meta, 

ms1999.01, ms2000.02, ms923, ms967 
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18 Dt2 * * Stem termination meta, mn945, ms923 

19 

ABC, 

Glyma.

19g016

400 

* * Lodging 1il66, 2ky81, ms923, 3il84, meta 

Dt1, 

Glyma.

19g194

300 

* * 
Height, Lodging, 

Stem termination 

1il64, 1il66, 2il81.1, 2il81.2, 2ky81, 

3il83.1, 3il84, 3mn83.2, 4il87, 5il90, 

il0102, meta, mn945, ms1999.01, 

ms2000.02, ms923, ms967 

E3   * Maturity group 2il81.2 

 390 

  391 
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Table 2. List of candidate genes identified for seed composition traits using GWAS from individual studies 392 

and Meta-GWAS. 393 

Ch

ro

mo

so

me 

Likely 

Gene 

Me

ta-

G

W

AS 

Indivi

dual 

Studie

s 

GWA

S 

Trait(s) Studies Source 

1 
BCAT/M

DH 
* * 

Isoleucine, Leucine, Lysine, 

Methionine, Palmitic acid, 

Threonine, Tryptophan 

aa op sugar fa 2009, il0102, meta, 

ms967 

3 

Glyma.0

3g17340

0 

  * Methionine aa op sugar fa 2009 

5 

fap3 * * 
Iodine number, Palmitic acid, 

Stearic acid 

aa op sugar fa 2009, 1il64, 2il81.1, 

2il81.2, 2ky81, 2mn81, 3il83.1, 

3il84, 3il87, il0102, meta, 

ms1999.01, ms2000.02, ms923, 

ms967 

MTFL   * 
Linoleic acid, Seed oil, Oleic 

acid, Tryptophan 

aa op sugar fa 2009, 2il81.1, 

il0102, ms1999.01, ms967 

6 

Glyma.0

6G2148

00 

* * Stearic acid meta, ms1999.01, ms2000.02 

Glyma.0

6g27510

0 

  * Cysteine aa op sugar fa 2009 

T   * 
Arginine, Cysteine, Isoleucine, 

Leucine 
aa op sugar fa 2009 

8 
I/AK-

HDSH 
* * 

Cysteine, Isoleucine, Leucine, 

Linoleic acid, Lysine, 

Methionine, Seed oil, Palmitic 

acid, Stearic acid, Threonine, 

Valine 

aa op sugar fa 2009, meta, ms967 

9 

Glyma.0

9g09060

0 

* * Palmitic acid il0102, meta 

R   * Tryptophan aa op sugar fa 2009 

13 

Glyma.1

3g14970

0 

* * 
Oleic acid, Palmitic acid, Seed 

protein 
meta, ms2000.02 

14 fan1 * * Linolenic acid 
2mn81, 3il83.1, il0102, meta, 

mn945, ms967 

15 

Glyma.1

5g04920

0 

"GmSW

EET15" 

* * 
Linolenic acid, Seed oil, Seed 

protein, Threonine 

aa op sugar fa 2009, 2ky81, 

3il83.1, 3il84, il989, meta, 

ms1999.01, ms923 
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19 

Dt1, 

Glyma.1

9g19430

0 

  * 
Linoleic acid, Oleic acid, 

Valine 

aa op sugar fa 2009, ms1999.01, 

ms2000.02 

20 
CHR20

OP 
* * Seed oil, Seed protein 

aa op sugar fa 2009, 2il81.1, meta, 

ms1999.01, ms967 

14 

(3) 

SACPD-

C 
* * Stearic acid 

1il66, 2il81.1, 2mn81, 3il83.1, 

4il87, 5il90, il0102, meta, mn945, 

ms923 

 394 

 395 

  396 
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Table 3. List of candidate genes identified for disease resistance/ stress tolerance traits using GWAS from 397 

individual studies and Meta-GWAS. 398 

Chrom

osome 
Likely Gene 

Met

a-

GW

AS 

Indivi

dual 

Studi

es 

GWA

S 

Trait(s) Studies Source 

1 RLK3   * 

Bacteri

al 

pustule 

bp488001 

3 

Glyma.03g1271

00 
  * 

Pythiu

m root 

rot 

PYU.11002 

Glyma.03g1306

00 
* * 

Iron 

deficien

cy 

chlorosi

s 

lssleepyeye04, meta 

Glyma.03g2625

00 
*   

SCN 

races: 

14 

meta 

Rps1 * * 

Phytop

hthora 

root rot 

races: 

1, 2, 3, 

4, 5, 7, 

10, 17 

meta, PRR1, PRR1.10001, PRR1.10002, 

PRR1.10004, PRR1.11002, PRR1.11003, 

PRR1.461592, PRR1.488001, PRR1.492577, 

PRR1.492990, PRR10, PRR17, 

PRR17.491404, PRR17.492448, 

PRR17.492990, PRR2, PRR3, PRR3.492577, 

PRR3.492990, PRR4, PRR4.492990, PRR5, 

PRR5.492990, PRR7, PRR7.491404, 

PRR7.492448, PRR7.492990, prrdl96_1, 

prrdl96_3, prrfs04_17, prrfs04_7, prrrs01_1 

Rps7 * * 

Phytop

hthora 

root rot 

races: 

1, 2, 3, 

4, 5, 7, 

10, 17 

meta, PRR1, PRR1.10002, PRR1.10003, 

PRR1.10004, PRR1.11003, PRR1.488001, 

PRR1.492577, PRR1.492990, PRR10, 

PRR17, PRR17.491404, PRR17.492448, 

PRR17.492990, PRR2, PRR3, PRR3.492990, 

PRR5, PRR5.492990, PRR7, PRR7.491404, 

PRR7.492448, PRR7.492990, prrfs04_17, 

prrfs04_7 

4 

Glyma.04g1904

00 
* * 

SCN 

races: 

3, 4, 14 

meta, SCN14, soyscnyoung94_3 

Glyma.04g2279

00 
  * 

Brown 

stem rot 
bsrcodeall 

5 
Glyma.05g1375

00/800 
  * 

Brown 

stem rot 
bsr97, bsrcode492477 
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6 
Glyma.06g1996

00,197800 
* * 

Frogeye 

leaf 

spot, 

race 2 

2ky91, Fe2, meta 

7 
Glyma.07g1922

00 
* * 

SCN 

races: 

1, 3, 5, 

14 

meta, SCN14, SCN14.491576, 

SCN14code.491576, soyscnanand_3, 

soyscnanand_5, soyscnyoung94_3, 

soyscnyoung94_5 

8 

Glyma.08g2311

00 
* * 

SCN 

races: 

3, 5, 14 

meta, SCN14, soyscnyoung94_5, 

soyscnyoung94_14 

Rhg4 * * 

SCN 

races: 

1, 3, 5, 

14 

meta, SCN1, SCN14, soyscnyoung94_3 

10 
Glyma.10g2733

00/276600 
* * 

SCN 

races: 

14 

meta, SCN14, SCN14.491576, 

SCN14code.491576, soyscnyoung94_14 

11 

Glyma.11g2335

00 
  * 

Phytop

hthora 

root rot 

races: 

17 

PRR17.492990 

Glyma.11g2345

00 (SNAP11) 
* * 

SCN 

races 1, 

3, 4, 14 

meta, SCN14, sojascnarelli00, 

soyscnanand_5, soyscnyoung88_5, 

soyscnyoung94_5, soyscnyoung94_14 

12 
Glyma12g2266

0 
  * 

SCN 

races: 1 
SCN1 

13 

Glyma.13g2223

00 
* * 

SCN 

races: 

1, 3, 14 

meta, SCN14, sojascnarelli00, 

soyscnyoung94_14 

Rag2,5   * 
Soybea

n aphid 
aphidcm02 

Rps3 * * 

Phytop

hthora 

root rot 

races: 

1, 4, 12, 

20, 25 

PRR1, PRR1.10004, PRR1.11003, 

PRR1.492990, PRR12, PRR20, PRR25, 

PRR25.491404, PRR25.492990, PRR4, 

PRR4.492990, meta 

Rsv1   * 

Peanut 

mottle 

virus 

pmv 

14 

Glyma.14g0989

00 
  * 

Brown 

stem rot 
bsr97, bsrcode492477 

NSC14   * 

Norther

n stem 

canker 

NSC, NSC.491493 

15 
Glyma.15g0520

00 
  * 

Phytop

hthora 
PRR2 
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root rot 

races: 2 

16 

Glyma.16g0969

00 
  * 

Phytop

hthora 

root rot 

races: 2 

PRR2 

Rag3   * 
Soybea

n aphid 
aphidcm02 

Rbs1, Rbs2, 

Rbs3 
  * 

Brown 

stem rot 
bsr97, bsr491584, bsrall, bsrcodeall 

Rcs3 * * 

Frogeye 

leaf 

spot, 

race 2 

2il81.1, Fe2, meta 

Rps2 * * 

Phytop

hthora 

root rot 

races: 

2, 25 

PRR2, meta 

17 
Glyma.17g0902

00 
  * 

Bean 

pod 

mottle 

virus 

bpmvall 

18 

Glyma.18g1387

00 
  * 

Phytop

hthora 

root rot 

races: 5 

PRR5, PRR5.492990 

Rhg1 * * 

SCN 

races: 

3, 4, 5, 

14 

meta, SCN14, soyscnanand_3, 

soyscnyoung88_5, soyscnyoung94_3, 

soyscnyoung94_14 

Rps4 * * 

Phytop

hthora 

root rot 

races: 

1, 3, 4, 

25 

meta, PRR1, PRR1.10001, PRR1.10002, 

PRR1.10004, PRR1.488001, PRR25, 

PRR25.491404, PRR4 

 399 

  400 
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FIGURE CAPTIONS 401 

Figure 1. Significant SNPs from GWAS from individual studies and meta-GWAS. (a) Peaks for seed 402 

related traits, (b) Peaks for flowering and maturity related traits, (c) Peaks for disease resistance related 403 

traits. Symbol position along the x-axis shows the position (in Mb) along the chromosome, while y-axis 404 

symbol position shows the LOD score of the lead SNP for each QTL. X-axis labels indicate position (in 405 

Mb) of tertile points, while y-axis labels show minimum, maximum, and middle of LOD score range for 406 

the given trait class. Shape and color correspond to unique traits. 407 

Figure 2. Circle plots of significant SNPs identified with (a) GWAS from individual studies, and (b) meta-408 

GWAS. The peaks in the innermost ring includes seed composition traits, the middle ring includes disease 409 

resistance traits, and the outermost ring includes agronomic traits. Symbol position along the x-axis shows 410 

the position (in Mb) along the chromosome, while y-axis symbol position shows the LOD score of the lead 411 

SNP for each QTL. X-axis labels indicate position (in Mb) of tertile points, while y-axis labels show 412 

minimum, maximum, and middle of LOD score range for the given trait class. Shape and color correspond 413 

to unique traits 414 

 415 
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SUPPLEMENTAL FILES 417 

Supplemental Figure 1. Comparison of the chromosomal region of (a) FATB1a, (b) Dt1, (c) PMDH1 loci 418 

identified using diverse populations. The x-axis indicates the physical location on each chromosome 419 

referring soybean genome version Glyma2.0. The y-axis indicates the pairwise LD r2 between the lead SNP 420 

and the rest SNPs in the specific region for each population. 421 

Supplemental Figure 2. SNP at the region of candidate genes (a) FATB1a, (b) Dt1, (c) PMDH1. SNP were 422 

retrieved from Figshare database (http://figshare.com/articles/Soybean_resequencing_ project/1176133) 423 

based on the genome resequencing study of the 302 diverse soybean lines. For each panel, the x-axis 424 

indicates the physical location of the specific regions on the chromosome. The y-axis indicates the pairwise 425 

LD r2 between the SNP(s) in the region and the lead SNP, which was also identified in the resequencing 426 

dataset.  427 

 428 

 429 

Supplemental Table 1. Full list of significant marker-trait associations found in individual GWAS and 430 

meta-GWAS. 431 

Supplemental Table 2. List of studies, methods, and reference literature used to generate phenotypic 432 

datasets.  433 

Supplemental Table 3. Significant SNPs for stearic acid levels from 3il83.1. Positions in Wms82.1 and 434 

Wms82.2 provided to show alignment differences between the two reference genome versions. 435 

Supplemental Table 4. Trait definitions, number of QTL detected, and number of candidate genes 436 

assigned for each trait. 437 

Supplemental Table 5. Full listing of which candidate genes were detected in which study, as well as 438 

whether the association was detected in only individual studies or only in meta-analysis. 439 

 440 

  441 
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