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ABSTRACT

Human-in-the-loop optimization allows for individualized device control based on measured human performance. This technique
has been used to produce large reductions in energy expenditure during walking with exoskeletons but has not yet been applied
to prosthetic devices. In this series of case studies, we applied human-in-the-loop optimization to the control of an active
ankle-foot prosthesis used by participants with unilateral transtibial amputation. We optimized the parameters of five control
architectures that captured aspects of successful exoskeletons and commercial prostheses, but none resulted in significantly
lower metabolic rate than generic control. In one control architecture, we increased the exposure time per condition by a factor
of five, but the optimized controller still resulted in higher metabolic rate. Finally, we optimized for self-reported comfort instead
of metabolic rate, but the resulting controller was not preferred. There are several reasons why human-in-the-loop optimization
may have failed for people with amputation. Control architecture is an unlikely cause given the variety of controllers tested.
The lack of effect likely relates to adaptation protocol or differences in the learning mechanisms or objectives of people with
amputation. Future work should investigate these causes to determine whether human-in-the-loop optimization for prostheses
could be successful.

Introduction
Over 600,000 individuals in the United States alone live with a major lower limb amputation, with this number expected to
double by 2050 due to the increasing prevalence of diabetes and obesity1. Individuals with amputation rely on lower-limb
prostheses to replace their lost biological limb. However, gait metrics for users of lower-limb prosthesis are typically worse
than those for people without impairment. For example, people using lower-limb prostheses tend to walk more slowly2, fall
more frequently3, and expend more energy to walk at the same speed4 when compared to unaffected individuals. In addition,
people using a prosthesis tend to demonstrate more gait asymmetry, causing an increased rate of joint degeneration, pain, and
osteoarthritis in their intact limb5, 6. The combination of all of these factors can lead to limited mobility for individuals with
amputation, resulting in secondary health problems, increased medical costs, and more reliance on caregivers7.

Although many active ankle-foot prostheses have been developed8–13, the vast majority of devices on the market are still
passive. Two different approaches in the development of ankle-foot prostheses have had success in reducing the energy cost
of walking. The first is to provide ankle power similar to biological gait. Lack of pushoff work of passive prosthesis has
been shown to cause higher step-to-step transition losses14, which is correlated with increased metabolic rate15, although
some studies have also shown that more prosthesis push-off work does not necessarily reduce collision work16, 17. A device
that provided pushoff work and emulated biological characteristics of human neuromuscular control, was shown to lead to
reductions in the energy cost of walking in people with transtibial amputation by up to 12% compared to passive prostheses18, 19.
The second approach focuses on balance assistance in the form of ankle inversion or eversion torque in response to changes in
the frontal plane center of mass. Implementing such control in an ankle-foot prosthesis emulator led to an average 9% reduction
in energy expenditure during walking when compared to a zero gain controller20. Although these results are promising,
simulations demonstrate that active prostheses have more potential to mitigate problems faced by individuals with amputation,
with the possibility of reducing the metabolic cost of walking to more than 70% less than unimpaired walking21. One possible
reason that powered prostheses have not lived up to their potential is because it is still unknown how best to control them, and
physiological and neurological differences between users could lead to varying responses to the same device. Previous work
has addressed this by hand-tuning control parameters for each subject, but this process is cumbersome and subjective due the
high number of parameters that need to be adjusted. Perhaps a control strategy that takes individual gait characteristics into
account would allow powered prosthetic devices to better help mitigate problems for individuals with amputation.

Human-in-the-loop optimization (HILO) has been successfully used to determine control parameters for exoskeletons that
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Control Device Params Time/ Control Gens N = Participant Speed Control
Architecture Control Law Laws/Gen Laws/Bout

(#) (mins) (#) (#) (m/s) (#)

Heel Stiffness 3 DOF 2 2 6 4 1 Sub 1 1.25 2

Neuromuscular 1 DOF 3 2 7 4 1 Sub 2 1.0 7

Balance 3 DOF 2 2 6 4 2
Sub 3 0.89 2

Sub 4 0.67 3

1 DOF

5 2 8 6 1 Sub 1 1.25 3

Time-Based 4 2 8 4 2
Sub 1 1.25 3

Torque Sub 5 1.25 3

4 10 8 4 1 Sub 2 1.0 2

Table 1. An overview of the protocol for each human-in-the-loop optimization case study that attempted to minimize
metabolic rate, including the control architecture and device used, the number of parameters (params) in the control
architecture, the time spent walking in each control law with a specific parameter set, and the number of control laws per
generation (gen). The participants in each case study are also listed, along with their self-selected walking speed and the
number of different control laws that were tested during each bout of continuous walking.

result in high reductions in metabolic cost22–26. This technique involves choosing the parameters of a control architecture based
on the human response to changes in control parameters. To do this in a time-efficient manner, HILO uses an optimization
strategy that predicts the optimal parameter set over time using a sample of measurements from different control parameter
values. Both covariance matrix adaptation evolution strategies (CMA-ES)24 and Bayesian optimization25 have been successfully
used to determine control parameters that lead to reductions in metabolic cost. In one example, optimized assistance from an
exoskeleton worn on one ankle reduced the energy cost of walking for all participants significantly more than a hand-tuned
static controller, with a range of improvements of 14% to 42% and an average improvement of 24%24. HILO has been used
to successfully reduce the energy expenditure of running26 and inclined walking24 with an ankle exoskeleton, in addition to
reducing the energy expenditure of walking with a hip exoskeleton25. It has also led to reductions in muscle activity while
walking with an ankle exoskeleton24. These studies suggest that user-specific prosthesis control can provide substantial benefits
over conventional, hand-tuned devices. However, HILO has not yet been tested to determine the control parameters of powered
prostheses.

In this series of case studies, we applied human-in-the-loop optimization to the control of an active ankle-foot prosthesis
used by participants with unilateral transtibial amputation (Fig. 6). Four different classes of control architectures were tested:
(1) a heel stiffness controller that varied the stiffness and damping of the heel of the prosthesis (Fig. 1A); (2) a neuromuscular
controller that emulated biological components of the muscle-tendon complex and has been previously used to reduce the
metabolic cost of walking with an active prosthesis19 (Fig. 2A); (3) a balance controller that provided ankle inversion/eversion
torque based on deviation of the user’s lateral center of mass velocity and has been previously used to reduce the metabolic cost
of walking with a prosthesis emulator20 (Fig. 3A); and (4) a time-based torque controller with similar control architecture to
that used to reduce the metabolic cost of walking with exoskeletons (Fig. 4A). In addition, both 5-parameter and 4-parameter
controllers were implemented for the time-based torque control architecture, resulting in a total of five different control
architectures tested.

The main objective of the majority of the case studies was to minimize user energy expenditure. The optimization protocol
for each case study with this objective, is outlined in Table 1. Five unique participants were enrolled in these studies, with
some individuals completing more than one experiment (Table 2). The protocol was similar for all experiments and was based
on an optimization protocol successfully used with exoskeletons24. However, there was one exception where the participant
completed an extended protocol to determine its effects on adaptation and the optimization. Finally, one additional case study
optimized the control parameters with the objective of maximizing participant preference instead of minimizing metabolic rate.
For all case studies, participants completed separate validation trials after optimization was complete, and performance with the
optimized controller was compared to a generic controller and the participant’s prescribed prosthesis.
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Figure 1. A. The heel stiffness control architecture was dictated by a stiffness and a damping parameter that controlled the
torque profile during loading and unloading of the heel as a function of heel angle. Stiffness was allowed to vary between 50
and 130 Nm/rad, and damping from -0.5 to 0.5. B. The resulting torque profile of the generic controller and the optimized
controller is shown as a function of heel angle. C. The average metabolic cost of the optimized controller was 1.3% lower than
the generic controller, but both were higher than the participant’s prescribed prosthesis.

Results

Heel Stiffness Controller
The resulting optimized parameters after four generations of walking were a heel stiffness of 100 N·m/rad with a heel damping
coefficient of 0.4. In validation, the optimized controller was compared to a generic controller (stiffness = 120 N·m, damping =
-0.5) chosen to provide 32% heel energy dissipation, emulating common energy storage and return (ESR) passive devices on the
market27. The optimized controller resulted in a 1.3% reduction in metabolic cost compared to the generic controller (optimized:
3.55 W/kg, generic: 3.59 W/kg) (Fig. 1B). Both resulted in higher metabolic cost than walking with the participant’s prescribed
prosthesis (3.22 W/kg), which was only tested once in validation for this case study.

Neuromuscular Controller
Three parameters in the neuromuscular controller were optimized: two within the muscle-tendon complex model (Fmax and εre f )
and one feedforward gain K f f (See Fig. 2). After four generations of walking, the optimized parameters for the neuromuscular
controller were as follows: Fmax = 4261 N, K f f = 1.346, and εre f = 0.062. This optimized controller was compared to a generic
controller using parameters previously determined to best mimic biological ankle torque (Fmax = 3377 N, K f f = 1.22, and εre f
= 0.04)19. In validation, the optimized controller resulted in a metabolic cost that was 1.0% higher than the generic controller
(optimized: 2.80 W/kg, generic: 2.77 W/kg) (Fig. 2B). However, both controllers resulted in higher metabolic cost than walking
with the participant’s prescribed prosthesis (2.57 W/kg).

Balance Controller
Two participants (Subject 3 and Subject 4) completed the optimization protocol for the 2-parameter the balance controller
consisting of four generations of walking (See Fig. 3A). The optimization for Subject 3 resulted in a K value of 1.24 and a
τnom value of -0.173, while the optimization for Subject 4 resulted in a K value of 3.97 and a τnom value of 3.03. These were
compared to a zero gain generic controller where the K value was set to zero, but the optimized τnom value was retained. The
optimized controller resulted in a 0.5% increase in metabolic cost for Subject 3 (optimized = 2.47 W/kg, generic = 2.46 W/kg)
and a 9.1% increase in metabolic cost for Subject 4 (optimized = 1.54 W/kg, generic = 1.41 W/kg). The prescribed prosthesis
cost for Subject 3 was less than either controller (2.27 W/kg), while the prescribed prosthesis cost for Subject 4 was equivalent
to the generic controller (1.41 W/kg). The results for all validation conditions are shown in Fig. 3B.

Time-based Torque Controller
5-parameter
The five parameters optimized in this control architecture were: stiffness, peak time, rise time, fall time, and peak torque
(Fig. 4A). Because of the increased number of parameters, the participant completed six generations of optimization before
validation. His optimal parameters were as follows: stiffness = 990 N·m/rad, peak time = 48%, rise time = 12%, fall time =
13%, peak torque = -0.01 N·m/kg. Because the optimal peak torque value was so small in magnitude, it should be noted that
varying the peak time, rise time, and fall time had minimal effects on the resulting torque profile. This optimized controller was

3/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.17.343970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.17.343970
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2

Prescribed
Generic
Optimized

M
et

ab
ol

ic
 C

os
t (

W
/k

g)

A B
+1.0%

Adapted from: Eilenberg et al, 2010 

Muscle 
Geometry

Muscle-Tendon
Complex

x

θ, θ̇

lMTC

l̇MTC

FMTC

τPF

DelayP3:Kx

PreStim

θfoot

Foot

S
ha

nk

rfoot

M
TC

rfootP1: F      , P2: ε  

Act
(A)

Saturation Low-pass

max ref

ff
3

Figure 2. A. The neuromuscular controller draws inspiration from biological muscle-tendon parameters and models the
geometry of the prosthetic foot, as well as the the biological muscle-tendon complex. Two optimization parameters (Fmax and
εre f ) affect the force output from the muscle-tendon complex model, and the third optimization parameter K f f affects the gain
from this force output. Based on biological data, Fmax was allowed to vary from 3000 to 10,000 N, and εre f from 0.03 to 0.14.
Based on prior work, K f f was allowed to vary from 0.7 to 1.5. B. The metabolic results show that the optimized controller was
the most costly, followed by the generic controller, and then the prescribed prosthesis.

compared in validation with a generic controller with the following parameters: stiffness = 800 N·m/rad, peak time = 86%,
rise time = 18%, fall time = 14%, and peak torque = 0.05 N·m/kg. The optimized controller resulted in a 3.1% decrease in
metabolic cost from the generic controller (optimized = 3.13 W/kg, generic = 3.23 W/kg). However, both controllers resulted
in higher metabolic cost than the participant’s prescribed prosthesis (2.68 W/kg). Visualization of the torque profiles of the
controllers and resulting metabolic cost from all validation conditions are shown in Fig. 4B and Fig. 4C.

4-parameter
Because the peak torque chosen by the optimizer for the 5-parameter time-based torque control optimization had a magnitude
so close to zero, negating the effect of the other parameters, additional experiments were run on a 4-parameter time-based
torque control architecture where the peak torque was set at 0.5 N·m/kg. Two participants (Subject 1 and Subject 5) completed
the optimization protocol for this control architecture. Subject 1 had previous experience walking in the 5-parameter control
architecture, and his resulting optimal control parameters after four generations were as follows: stiffness = 843 N·m/rad, peak
time = 78%, rise time = 13%, fall time = 21%. This was the first case study that Subject 5 had participated in, and his resulting
optimal control parameters were as follows: stiffness = 754 N·m/rad, peak time = 60%, rise time = 50%, fall time = 17%.
These optimized controllers were compared to a generic baseline controller with the following parameters: stiffness = 900
N·m/rad, peak time = 80%, rise time = 10%, fall time = 10%. In validation, the optimized controller resulted in a 5.1% increase
in metabolic cost for Subject 1 (optimized = 3.19 W/kg, generic = 3.03 W/kg) and a 4.1% increase in metabolic cost for Subject
5 (optimized = 3.96 W/kg, generic = 3.81 W/kg). The prescribed prosthesis was also tested in validation. Subject 1’s prescribed
prosthesis resulted in the same metabolic rate as the optimized controller (3.19 W/kg), while Subject 5 had a more typical lower
metabolic rate with his prescribed prosthesis (3.45 W/kg). The torque profiles and average metabolic results of the validation
trials are shown in Fig. 4B and Fig. 4C.

Conversationally Tuned
During the validation of the 4-parameter optimization using the time-based torque control architecture, a fourth condition
based on subject preference was tested in addition to the prescribed prosthesis, generic controller, and optimized controller. To
determine the parameters of the controller for this fourth condition, the subject walked on the prosthesis as the controller was
changed and gave verbal feedback on the preferred parameters. The preferred parameters chosen by Subject 1 were: stiffness
= 675 Nm/rad, peak time = 80%, rise time = 25%, fall time = 15%. The preferred parameters chosen by Subject 5 were:
stiffness = 800 Nm/rad, peak time = 80%, rise time = 60%, fall time = 20% (igure 4B). In validation, the conversationally tuned
controllers resulted in higher metabolic rate than all other conditions for both Subject 1 (3.42 W/kg) and Subject 5 (4.12 W/kg)
(Fig. 4C). We also collected each subject’s opinions of the controllers during validation. Subject 1 commented that the generic
controller was "comfortable from the start and stayed comfortable," but he also noted that it "has finicky timing." He noted that
both the optimized controller and the conversationally tuned controller were "comfortable from the start," but the optimized
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Figure 3. A. The balance controller corrects deviations in center of mass velocity of the user by applying an opposing ankle
inversion or eversion torque, scaled by a gain (K), in addition to a baseline nominal torque (τnom). K was allowed to vary from
0 to 5, and τnom was allowed to vary from -5 to 5 N·m. B. The optimized controller resulted in higher metabolic cost compared
to the generic controller for both participants, with the prescribed prosthesis resulting in a cost equal to or less than the generic
controller.

controller "felt like it required more effort later" and the conversationally tuned controller "didn’t feel good later." Subject 5
noted that the generic controller had "too much pushoff," the conversationally-tuned controller had "definitely not enough
pushoff," and the optimized controller had "a perfect amount of pushoff."

Extended protocol
One subject completed an optimization protocol with the 4-parameter time-based torque controller in which the time spent
in each control law was increased by a factor of five, from two minutes to ten minutes, in order to give the participant more
time to adapt to each controller. The optimization resulted in the following control parameters: stiffness = 710 Nm/rad, peak
time = 74%, rise time = 44%, fall time = 11%. The optimal controller was compared to a generic controller with the following
parameters: stiffness = 1200 Nm/rad, peak time = 80%, rise time = 10%, fall time = 10% (Fig. 4B). The optimized controller
resulted in an 11.2% increase in metabolic cost compared to the generic controller (optimized = 3.27 W/kg, generic = 2.94
W/kg). Both resulted in higher cost than the participant’s prescribed prosthesis (2.63 W/kg; Fig. 4C).

To examine if the additional time spent in each control law resulted large changes in metabolic rate between the conditions,
we compared the results of a 2-minute metabolic fit, as performed in all other case studies, with the metabolic results averaged
in the last two minutes of each ten-minute control law. The RMSE error between these two conditions was 0.24 ± 0.16 W/kg, or
6% of the participant’s metabolic cost while walking with the prescribed prosthesis (without subtracting the standing baseline,
as this was only collected during optimization and not validation). Because the optimizer uses a weighted average of the control
laws resulting in the lowest metabolic cost from each generation to create the distribution of the parameter set for the next
generation, we also compared the rankings using the 2-minute metabolic fits to the rankings using the average of the last two
minutes of each condition. In all generations, the 2-minute metabolic fit correctly predicted 2 of the top 3 control laws that
resulted in the lowest metabolic cost, and it predicted the top control law with the lowest metabolic cost 50% of the time.

Preference Optimization
Subject 1 completed an optimization with the objective of maximizing user comfort, instead of minimizing metabolic cost. This
case study followed a similar optimization protocol, except the time spent in each control law was much shorter (23 seconds),
and the participant experienced five unique control laws multiple times within a generation for a total of eleven conditions.
This allowed all control laws to be directly compared with one another by asking the participant to rank the current control
law as better or worse than the previous control law, and a composite "score" for each control law was used at the end of the
generation to determine the parameter set of the next generation. At the end of the optimization, the parameters were as follows:
stiffness = 1041 Nm/rad, peak time = 69%, rise time = 40%, fall time = 18%. In validation, in addition to comparing to the
generic controller (stiffness = 900 Nm/rad, peak time = 80%, rise time = 20%, fall time = 15%), the optimization seed was
also tested (stiffness = 800 Nm/rad, peak time = 65%, rise time = 30%, fall time = 20%) (Fig. 5A shows a visualization of the
torque profiles). During validation, the participant was allowed to request these three controllers in any order, and was asked to
rank them at the end of the trial. As shown in Fig. 5B, the participant chose the controller used as the optimization seed as
the most preferred, followed by the generic controller. The optimized controller was the least preferred. We also collected
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Figure 4. A. The time-based torque controller consisted of an underlying heel stiffness parameter, in addition to three timing
parameters (peak time, rise time, and fall time) and one magnitude parameter (peak torque) that affected the shape of the torque
profile. Stiffness was allowed to vary from 400 to 2000 N·m/rad, peak time from 10% to 90% of stance, rise time from 10% to
90% of stance, fall time from 10% to 40% of stance, and peak torque from -0.5 to 0.5 N·m/kg. When using the 4-parameter
control architecture, peak torque was set at 0.5 N·m/kg. B. The resulting stiffness and torque profiles for each condition in the
case studies using the time-based torque controller to minimize metabolic cost is shown. C. Although the optimized controller
resulted in a mild reduction in metabolic cost with the 5-parameter control architecture, all other optimized controllers resulted
in a metabolic cost higher than the generic controller. The metabolic cost of the conversationally tuned controllers was higher
than both the generic and optimized controllers.
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Figure 5. A. The parameters from all validation conditions in the 4-parameter time-based torque control optimization where
preference was used as the cost function are shown. B. In validation, the controller used as the optimization seed was ranked as
the most highly preferred, followed by the generic controller. The optimized controller was ranked as the least preferred.

the participant’s thoughts on the three controllers. He stated that the optimized controller was "too passive", and the generic
controller "too springy," while the controller used for the optimization seed was "just right."

Discussion
We present a series of case studies in which human-in-the-loop optimization of an ankle-foot prosthesis failed to produce
significant changes in metabolic cost for people with transtibial amputation. In total, five different control architectures were
implemented, and between one and three participants completed the optimization protocol for any one control architecture.
Mild reductions in the optimized controller of up to 3.1% compared to a generic controller were seen in some of the case
studies. However, because the error in human metabolic rate measurement using indirect calorimetry has been estimated to be
between 2-3%28, 29, these reductions are not meaningful. In addition, these reductions are significantly smaller when compared
to an average 24% reduction in metabolic cost as a result of optimization of unilateral ankle exoskeleton control. One case
study examined an extended protocol, but the optimized controller still resulted in higher metabolic cost than during walking
with a generic controller. We also examined a controller chosen by the participant via conversational tuning, but this resulted in
higher metabolic rate than all comparison controllers. Finally, in one case study we attempted to optimize for preference by
allowing the participant to rank controllers, but the optimized parameters were not preferred in validation.

Since we first started using the technique in 2016, human-in-the-loop optimization has been successfully used for a variety
of different exoskeletons in various gait conditions and control architectures. Given its success with exoskeletons, it is surprising
that HILO failed to produce meaningful changes in metabolic cost when used to tune the parameters of an ankle-foot prosthesis
controller. There are several reasons why this technique may have failed, and these can be broadly separated into two categories.
First, it is possible that optimization decisions that have led to successes with exoskeletons are not applicable when optimizing
prosthesis control. There are many factors that can affect the optimization, such as the chosen control architecture, optimization
strategy, cost function, and optimization protocol. It is possible that further modifications of these factors would lead to different
results. Second, it is possible that inherent differences in user mechanics and neural control between people with amputation and
those with intact limbs are the cause of the failure of HILO for prostheses. Similarly, the lack of sensory feedback, differences
in learning mechanisms, or different objective functions of people with amputation could prevent HILO from being successful.

Although there are many engineering decisions that affect the results of human-in-the-loop optimization, we can hypothesize
which are the most likely sources based on the case studies completed. For example, it is possible that all control architectures
tested resulted in metabolic cost landscapes that were largely unvarying and did not result in minimums that were significantly
lower than the cost of walking with the participants’ prescribed prostheses, even with the optimal parameters. However, we
tested five different control architectures, four vastly different from each other. Both the neuromuscular and the balance
controller have been successfully used in the past to reduce the metabolic cost of walking with an active prostheses below
that of walking with a passive prosthesis18, 20. In addition, the time-based torque controller is similar to one that has been
successfully used to reduce the metabolic cost of walking with exoskeletons24. Given this information, it is unlikely that none
of the control architectures tested would have been able to produce control parameters that reduce the metabolic cost of walking
compared to generic control parameters, and possibly even the participant’s passive prosthesis.
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Another factor that could affect the optimization is the chosen optimization protocol. The case study protocols were chosen
based on the protocols successfully used for HILO with exoskeletons using a control architecture similar to the 5-parameter
time-based torque controller. These previous experiments show that for a 4-parameter optimization, four generations with eight
different conditions of two minutes each resulted in convergence for 9 out of 11 participants24. In the case studies presented
here, the protocol for the 4-parameter optimization was the same, with the number of control laws for other protocols scaled
based on the number of parameters. The protocol completed for the optimization of a 5-parameter controller included two
additional generations. We also examined an extended protocol where the amount of time spent in each control law was
increased from two to ten minutes in order to verify that the metabolic fit predicted at two minutes was similar to the average
metabolic rate at the end of ten minutes. Although there were differences in metabolic rate between the two, the majority of
the control laws that were predicted at two minutes to result in the lowest metabolic rate were the same as those measured at
ten minutes. It is possible that an increased number of generations would produce better results, but this is unlikely because
we did not observe a consistent reduction in metabolic cost or metabolic cost variation over time from one generation to the
next. Nevertheless, it is possible that better results might be achieved with additional training, continued optimization or other
improvements in the protocol.

The optimization strategy is an additional factor that could affect the outcome of the experiment. All pilot studies used a
covariance matrix adaptation evolution strategy (CMA-ES) to calculate the next generation of control laws, which ultimately
dictates the optimal control parameters chosen from the last generation. This strategy has previously been shown to be robust to
measurement noise and successful in high dimensionality spaces. It is also not biased due to changes as a result of adaptation
over time because it does not use information from previous generations. Other optimization strategies such as gradient
descent22, 23 or Bayesian optimization25 have also been used successfully for HILO of exoskeletons. However, these strategies
have only been used to optimize one or two parameters simultaneously. In addition, both methods have drawbacks. Gradient
descent is sensitive to measurement noise, and Bayesian optimization is not robust to human adaptation over time, as it uses
all information from previous trials instead of evaluating each generation independently. It is possible, however, that using a
different optimization strategy could be more effective, especially for control architectures with fewer parameters.

Finally, when defining an optimization problem it is important to consider the cost function. In this case, we must take
into account two cost functions: the cost function that we choose for the optimizer and the cost function being used by the
neuromuscular controller of the human in the loop as they move. The majority of prior work with HILO has simply used the
minimization of metabolic rate as the cost function of the optimization, both because it is easy to quantify and because humans
using exoskeletons have been shown to shown to minimize metabolic rate in real-time30. However, people with amputation
may have additional constraints that affect their gait compared to unaffected individuals. For example, people with amputation
tend to fall more frequently3 and complain of socket discomfort31. Perhaps because of the additional importance of stability
and comfort, individuals with amputation adapt gait patterns with a similar energy cost no matter what the prosthesis does.
We attempted to address this issue with two case studies: one where we allowed the participant to choose their own device
parameters through conversational tuning, and one where we changed the cost function of the optimization to maximize subject
preference. However, the conversationally tuned controller resulted in higher metabolic cost than all other controllers tested in
validation, and the controller chosen by the optimization for preference was not preferred in validation.

Independent from the factors in the optimization that can affect the results, it is possible that the contrast between the
success of HILO for exoskeletons and the failure of HILO for active prostheses has to do with the differences between the
groups of participants. At the joint level, people with amputation are lacking both sensing and direct control of the joint where
the optimization is taking place. Perhaps one or both of these factors is necessary in order to learn during the optimization. For
example, when undergoing HILO with exoskeletons, participants are able to feel the timing and magnitude of torque being
applied by the exoskeletons and can adjust their gait accordingly, either to take advantage of the additional power provided by a
"good" control law or to mitigate the negative affects of a "bad" control law. In contrast, people with amputation are limited in
sensing to what they can feel through their socket, which has limited perception. Therefore, it is possible that a controller could
be beneficial and allow them to reduce their metabolic cost if they were able to alter their gait in a certain way, but the lack of
sensing prevents them from knowing how to move to best make use of the power provided by the prosthesis.

At the whole-body level, it is also possible that there are inherent differences that separate people with amputation from
those with intact limbs. The additional constraints placed on people with amputation during gait has already been discussed.
However, it is also possible that individuals with amputation have different learning mechanisms as well, as neural circuitry
associated with motor learning could be disrupted in complex ways with the loss of a limb. Perhaps learning is possible even
with the lack of sensing, but it may occur on a much longer timescale that was not captured within our experiments. Previous
success in reducing metabolic cost with an active ankle-foot prosthesis has involved a long protocol in which participants are
able to bring the device home with them and use it for weeks at a time before validation. One limitation of device emulators is
that they are constrained to the lab, and therefore protocols of this length are not feasible. In addition, after someone has lost a
limb, they must re-learn how to walk with their prosthetic limb, with prosthetists and physical therapists typically providing gait
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recommendations. Perhaps this training could interfere with adaptation to a new device. Or perhaps the "forced exploration"
that comes from trying many diverse conditions, which is shown to be beneficial in pushing a person towards the metabolic
minimum while walking with exoskeletons32, is actually harmful to the learning process of people with amputation.

As discussed above, there are a myriad of reasons why HILO may be more challenging when applied to powered prostheses
instead of exoskeletons. By presenting the results of our case studies in which HILO did not result in meaningful changes in
metabolic cost for those walking with an ankle-foot prosthesis, we do not suggest that HILO will never be successful for people
with amputation. We recognize that each of our experiments contained a limited number of participants and should not be used
to make broad conclusions. However, our results can be used to guide future directions for new HILO experiments with active
prostheses. For example, the control architecture is a possible cause of failure, but this is less likely than other possibilities
simply because we tested such a wide variety of control architectures. Our case studies also address other possible causes, such
as the cost function or optimization protocol, but these are addressed less fully and warrant additional experiments.

Ultimately, HILO could still be extremely beneficial for people with amputation. Powered prostheses, if controlled properly,
have the potential to reduce falls, lower metabolic cost, increase walking speed, and decrease osteoarthritis in the intact limb.
Because HILO has shown that customization is important for controlling exoskeleton control parameters, it has the potential to
make meaningful improvements in controlling powered prostheses as well. We hope that the results of our case studies provide
a good starting point for future experiments to attempt to tease out the various causes of the failure in HILO for powered
prostheses.

Methods

Participants
A total of five participants with unilateral transtibial amputation (N = 5, 4 male and 1 female; age = 37.8 ± 14.1 [26 - 60] years;
body mass = 77.8 ± 8.99 [65.8 - 90.7] kg; height = 171.2 ± 4.44 [167 - 178] cm; time since amputation = 13.6 ± 10.4 [3 -
26] years; mean ± standard deviation) were enrolled in the case studies (Table 2). An overview of the case studies in which
each participant was enrolled can be found in Table 1. All individuals provided informed consent prior to participation in the
study. All study protocols were approved by the Institutional Review Board of either Carnegie Melon University or Stanford
University, depending on the location at which the study took place.

Subject Sex Age Body Height Side of Cause of Time since Prescribed
Mass Amputation Amputation Amputation Prosthesis
(kg) (cm) (years)

1 M 26 90.7 170 L Congenital 26 Ossur VariFlex XC
2 M 26 65.8 168 L Traumatic 22 Ossur VariFlex Modular
3 F 35 74.8 167 L Traumatic 3 Ossur ProFlex LP
4 M 60 78.0 173 R Dysvascular 4 Ossur ProFlex LP
5 M 42 79.8 178 R Traumatic 13 Fillauer Wave

Table 2. Demographics for the five subjects with unilateral transtibial amputation that participated in the case studies. Note
that some participants took part in more than one case study, as described in Table 1.

Hardware
In all case studies, subjects walked on a treadmill (Bertec, Ohio, USA) while using either an ankle-foot prosthesis emulator
or their prescribed prosthesis. Walking speed for each case study was determined by participant fitness and the duration of
the study (Table 1). The ankle-foot prosthesis emulator consisted of off-board actuation and control hardware attached to a
prosthesis end-effector (HumoTech, Pennsylvania, USA). Flexible Bowden-cable tethers transmitted mechanical power to
the prosthesis. Sampling of the strain gauges and encoders of the device, as well as control commands, were implemented at
1000 Hz. All studies used one of two different ankle-foot prosthesis end-effectors (Fig. 6B). The first was a one-degree-of-
freedom device with a mass of 0.96 kg capable of 41° of ankle plantarflexion, 21.7° of ankle dorsiflexion, 190 N·m of ankle
plantarflexion torque, and 5 N·m of ankle dorsiflexion torque (HumoTech, Pennsylvania, USA). The second end-effector was a
three-degree-of-freedom device with an actuated heel and two toe digits and a mass of 1.2 kg. This device could generate 19°
of ankle plantarflexion and dorsiflexion, 140 N·m of ankle plantarflexion torque, and 100 N·m of ankle dorsiflexion torque33.
The device used for each case study can be found in Table 1.
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Figure 6. A. The experimental setup used for all case studies is shown. Participants walked on a treadmill in a universal
emulator system that consisted of an ankle-foot prosthesis end-effector powered by off-board motors and controlled by a
computer. B. Each case study used one of two different ankle-foot prosthesis end-effectors: a one-degree-of-freedom device or
a three-degree-of-freedom device.

Metabolic Rate Calculations
To determine user metabolic rate, respirometry data was collected using a Quark CPET metabolic cart (Cosmed, California,
USA). Metabolic rate was calculated using standard empirical equations34. In validation, net metabolic rate was calculated by
subtracting standing metabolic power from the metabolic cost of all other conditions and normalizing by body mass. During
optimization, most control laws were tested for two minutes of walking. As this is not typically sufficient time for metabolic rate
to reach a steady-state, we fit an exponential curve to the metabolic rate and used the asymptote as the estimate of steady-state
metabolic rate, as previously described24. One extended protocol tested each control law for ten minutes of walking.

Optimization Trials
During optimization, participants’ metabolic rate was measured as they walked on the treadmill wearing an ankle-foot prosthesis
emulator with changing control laws. A Covarience Matrix Adaptation Evolution Strategy (CMA-ES) was used to identify
the control parameters, as described in Zhang et al.24. The goal of the optimizations was either to minimize metabolic rate or
maximize subject preference. The optimization protocol, including the number of generations, number of control laws per
generation, duration of each control law, walking speed, and the number of control laws tested per continuous walking bout
for each case study minimizing metabolic rate is given in Table 1. The protocol for the case study in which user preference
was optimized is described in further detail in the Preference Optimization subsection. Prior to starting optimization trials and
after every break, participants were allowed to acclimate to walking in the ankle-foot prosthesis emulator controlled using a
standard spring controller. The acclimation time was one minute for the case studies using the heel stiffness controller and the
4-parameter time-based torque controller with the standard protocol, and two minutes for all other case studies.

Validation Trials
At the end of optimization, validation trials were performed in order to compare performance of the optimized controller with
one or more of the following conditions: a generic controller, the participant’s prescribed prosthesis, and a conversationally
tuned controller. Following a standing baseline measurement of energy expenditure, all validation conditions were tested twice
in a double reversal order to mitigate the effects of adaptation or drift. The one exception was the heel stiffness controller case
study, in which the prescribed prosthesis was only tested once. The validation trials lasted 5 minutes for the case study with
the heel stiffness controller, 10 minutes for the case study with the extended protocol of the 4-parameter time-based torque
controller, and 6 minutes for all other case studies optimizing for metabolic rate. The metabolic rate for each trial was found
by averaging the last two minutes of metabolic data. The average metabolic cost of the two validation trials per condition,
normalized to user mass, determined the final metabolic cost for that condition.

Control Parameterization
Heel Stiffness Controller
This case study used the three-degree-of-freedom ankle-foot prosthesis end-effector with the two toes connected to passive
compression springs, and the heel being the only actively controlled digit. The stiffness of the compression springs was chosen
by the participant based on comfort. Heel torque was dictated by a control architecture dependent on stiffness and damping
parameters, as well as the heel angle (Fig. 1A). When the heel angle is less than 0.2 rad, the heel provides a minimum torque of
1.5 N·m. However, as the heel angle increases above this threshold, stiffness and damping coefficients dictate the heel torque
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during loading and unloading. The resultant torque profile can be visually displayed as a parallelogram in the heel torque
and angle space, with two sides of the parallelogram corresponding to the loading phase of the heel and the other two sides
corresponding to the unloading phase. The bottom left point of the parallelogram is located at 0.2 rad and 1.5 N·m and is the
point of transition from minimal torque behavior at a small heel angle to the higher torques at larger angles. The top right point
of the parallelogram lies at a heel angle of 0.7 rad, and along a line with a slope defined by the stiffness parameter that begins at
the bottom left point of the parallelogram. This stiffness parameter can vary from 50 N·m/rad to 130 N·m/rad.

While stiffness dictates the maximum torque provided at 0.7 N·m, the damping coefficient determines the trajectory the
torque follows in order to reach this maximum by controlling the top left and bottom right points of the parallelogram. To
find these two points, you must first determine the second axis of the parallelogram on which they occur. This second axis is
determined to ensure that the heel stiffness does not exceed 130 N·m/rad at any point in the trajectory. Therefore, the first of the
two points that form the second axis is found by calculating the intersection of a line with an initial value at the bottom left
point of the parallelgram and a slope of 130 N·m/rad and a horizontal line with the same torque value that occurs at 0.7 radians,
which varies based on the stiffness parameter. The second of these two points is found by calculating the intersection of a line
with an initial value at the top right point of the parallelogram and a slope of 130 N·m/rad with a horizontal line at the minimal
torque value of 1.5 N·m.

After the second axis of the parallelogram is found, the damping coefficient is used as a scaling factor that determines how
far along this axis the last two points of the parallelogram are located, and is used to distinguish which points corresponds to
the loading and unloading phases. A positive value of the damping coefficient indicates that the heel produces more torque in
the unloading phase than the loading phase, with the bottom sides of the parallelogram corresponding to the loading phase.
This results in net positive work over the gait cycle. A negative damping coefficient indicates that the heel produces less torque
in the unloading phase, resulting in net negative work over the gait cycle. In addition, the magnitude of the damping coefficient
is used to determine the effective "width" of the parallelogram. A damping coefficient with a value of 0 results in no width, and
the torque profile becomes a function of heel angle with a given stiffness for both the the loading and unloading phases. A
damping coefficient with a higher magnitude results in a greater difference between the torque magnitude in the loading phase
and the torque magnitude in the unloading phase.

Neuromuscular Controller
The neuromuscular controller adapted the active plantarflexor component of the controller described in Eilenberg et al.19

(Fig. 2A). We varied three model parameters during optimization: (Fmax, εre f , and K f f ). The parameters Fmax and εre f are
analogous to maximum muscle isometric force and a tendon strain multiplier, respectively, with K f f acting as a feed-forward
gain. Parameterizing the controller in such a way allowed for large variability in the resulting behavior of the ankle-foot
prosthesis.

Balance Controller
We made two modifications to the balance controller previously described in Kim et al.20 (Fig. 3A). First, we measured
deviations of center of mass velocity instead of center of mass acceleration. Center of mass velocity was determined using
two string potentiometers attached to the participant’s waist and grounded to the treadmill handlebars. Since the side-to-side
distance of the treadmill is known, we could calculate the center of mass of the participant with additional information from the
potentiometers. By differentiating the center of mass position, we found the center of mass velocity. Second, prior work relied
on an instrumented treadmill to calculate the center of mass deviation at the moment of intact limb toe-off, used to determine
the ankle torque to be applied during the subsequent stance phase of the prosthetic foot. In this case study, we sampled when
the prosthesis achieved foot flat due to a lack of an instrumented treadmill.

Time-based Torque Controller
Five parameters defined the torque profile of the time-based torque controller: device stiffness, peak torque magnitude, time to
peak torque, rise time to peak torque, and fall time after peak torque. Peak time, rise time, fall time, and peak torque parameters
are identical to previous work with exoskeletons24. For our work with the ankle-foot prosthesis, we also added an underlying
baseline stiffness of the device (P1), creating a total of five optimization parameters (Fig. 4A). Although all parameters could
be modified, three case studies utilized a controller where the peak torque was fixed at 0.5 N·m/kg, and only the other four
parameters were optimized.

Preference Optimization Protocol
Subject 1 participated in this case study focused on modifying the parameters of the 4-parameter time-based torque controller
in order to maximize subject comfort, as opposed to minimizing metabolic cost. The optimization protocol included six
generations with five control laws evaluated per generation. However, instead of experiencing each control law only once,
the participant experienced each control law multiple times for 23 seconds each. Starting with the presentation of the second
control law, the participant was asked to rate the current control law as better or worse than the previous one. Control laws were
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presented in an order such that all five were directly compared to each other (12345135241), and a total preference score for
each control law was determined at the end of the generation. This was then used to determine the distribution of the parameter
set for the next generation. Three controllers were evaluated in validation: the optimized controller, a generic controller, and a
controller with the parameters used for the optimization seed. To allow for comparison of all three controllers with one another,
validation consisted of 5 minutes of continuous walking, during which time the participant was allowed to request any of the
three controllers at any time. At the end of the 5 minute trial, the participant ranked all three in order of preference.
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