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Abstract

The formation of spatial structures lies at the heart of developmental processes. However,many of the
underlying gene regulatory and biochemical processes remain poorly understood. Turing patterns consti-
tute amain candidate to explain such processes, but they appear sensitive to fluctuations and variations in
kinetic parameters, raising the question of how theymay be adopted and realised in naturally evolved sys-
tems. The vastmajority ofmathematical studies of Turing patterns have used continuousmodels specified
in terms of partial differential equations. Here, we complement this work by studying Turing patterns us-
ing discrete cellular automata models. We perform a large-scale study on all possible two-node networks
and find the same Turing pattern producing networks as in the continuous framework. In contrast to con-
tinuous models, however, we find the Turing topologies to be substantially more robust to changes in the
parameters of the model. We also find that Turing instabilities are a much weaker predictor for emerging
patterns in simulations in our discrete modelling framework. We propose amodification of the definition
of a Turing instability for cellular automata models as a better predictor. The similarity of the results for
the two modelling frameworks suggests a deeper underlying principle of Turing mechanisms in nature.
Together with the larger robustness in the discrete case this suggests that Turing patterns may be more
robust than previously thought.

1 Introduction

Nature is full of highly structured multi-cellular organisms that develop from single fertilized cells. It re-
mains a key question how these can evolve robustly in the presence of environmental fluctuations.

The Turing mechanism has been proposed to explain such developmental patterning processes. It was first
proposed by Alan Turing in 1952 [1]. The Turingmechanism gives rise to self-organised patterns in the local
concentrations of biochemical components in reaction-diffusion systems. These lead to patterns such as
spots, stripes and labyrinths [2]. Such inhomogenous patterns are induced by diffusion of the components.
Due to this counter-intuitive concept, and the observation that Turing patterns are highly sensitive to initial
conditions and variations in kinetic parameter values, the Turingmechanisms had been dismissed from the
developmental community for almost two decades [3].

It was not until 1972 that Turing’s idea was revived by Gierer and Meinhardt who extended and formalised
Turing’s ideas [4]. Despite some indicationsof suitable reaction-diffusion systems [5], the experimental tech-
nology available at the time was not able to convincingly identify Turing mechanisms in biological systems.
It was not until another three decades later that technological advances have enabled compelling experimen-
tal evidence of Turing-likemechanisms [6]. Examples include the patterning of palatel ridges anddigits, hair
follicledistribution, and thepatternson the skinsof animals, suchasfishandzebras [7,8,9, 10, 11]. However,
due to the complexity of the underlying systems, the exact molecular mechanisms are hard to identify most
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of the time, making it hard to prove that the Turing mechanism exists in nature. The sensitivity to param-
eters constitutes another problem as it is not clear how biological systems could have evolved to find these
small parameter ranges, and how these developmental processes can be so robust to extrinsic fluctuations.

This has resulted in a large number of theoretical studies in recent years [12, 13, 14, 15, 16, 17, 18, 19]. Some
recent studieshaveperformedextensiveanalysesofpotential network topologies [12, 14, 20]. Together these
studies provide an inventory of the types of network structures that are capable of generating patterns and
their robustness. Themajority of these studies are preformedwithin a deterministic continuous framework
in terms of partial differential equations (PDEs). An important question is if these results generalise to other
types ofmodelling frameworks. This would indicate a deeper underlying principle of the Turingmechanism
that is independent of the applied modelling framework. Moreover, since every model is an abstraction of
a true biological system, the generalisation to different modelling frameworks would also suggest a certain
robustness of the patterning processes.

Lattice gas cellular automata (LGCA)models constitute an alternativemodelling framework [21]. Thesemod-
els discretize both space and the concentration of chemical components, and the dynamics is modelled by
means of discrete diffusion and reaction steps. Turing patterns in LGCA models have first been studied in
[22]. So far, only a single LGCA reaction map has been studied in this context. LGCA models have not been
compared to continuous models in a broader scope with respect to Turing patterns (see also [23].

Here, we perform an exhaustive analysis of all possible two-node networks, and compare the results to the
continuous modelling case. In our mathematical analysis of LGCAs we follow closely [22].

First, we analyse different network topologieswith respect to Turing instabilities. Next, we analyse the emer-
gence of patterns in simulations. It has been found in continuous models that a Turing instability is not a
sufficient criterion for a pattern tomanifest [20]. It remains unclear to what extent this is also true for LGCA
models, or other related systems, such as Ising systems [24]. Finally, we propose a modification of the def-
inition of Turing instabilities for LGCA models that constitutes a better predictor for patterns emerging in
simulations.

This article is structured as follows. In Section 2 we introduce the mathematical description of the LGCA,
its simulation procedure and the definition of Turing instabilities. Next, we describe simulation details and
how to identify patterns in simulations. Subsequently, in Section 3 we present the results obtained from our
analysis of two-node networks and compare these results to the continuous case. Finally, we discuss the
results and conclude in Section 4.

2 Methods

In this section we present the mathematical background on lattice gas cellular automata models (LGCAs)
(Section (2.1)), introduce the employed mean-field approximation (Section 2.3, define Turing instabilities
(Section 2.3), and give simulation details in Section 2.4.

2.1 The LGCA model

Weconsider systems that consistof two interactingspeciesmodelledasdiscreteparticlesonaone-dimensional
discrete lattice. The dynamics are modelled in discrete time steps that iteratively update the state of the
system. Each update consists of separate reaction, shuffling, and diffusion steps, which are evaluated suc-
cessively. Each spatial position consists of three compartments known as “velocity channels”, which can be
either occupied or unoccupied by a single particle. Each spatial position hence can be occupied by a maxi-
mum of three particles. Accordingly, we define the state of the system at time step k and lattice position r
as

η(r, k) = (η1,1(r, k), η1,2(r, k), η1,3(r, k), η2,1(r, k), η2,2(r, k), η2,3(r, k)). (1)

Each ηi,σ(r, k) is a Boolean variable that represents the occupancy of velocity channel i of species σ, with
ηi,σ(r, k) = 1 (ηi,σ(r, k) = 0) meaning the channel is occupied (unoccupied). Let further nσ(r, k) denote
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Figure 1: Themap F analysed in [23] (top panel), themap’s state transition graph (middle panel) and the resulting reac-
tion topology (bottom panel).

the total number of particles of species σ at spatial position r and time k,

nσ(r, k) =
3∑

i=1

ησ,i(r, k). (2)

Next, let X = {0, 1, 2, 3} × {0, 1, 2, 3} denote the set of all possible states of (n1(r, k), n2(r, k)). We define
the reaction step by a map F : X → X, where each state x ∈ X is mapped onto F(x) = (f1(x), f2(x)) ∈ X.
During the reaction step, each (n1(r, k), n2(r, k)) in each spatial position r is updated independently accord-
ing to F with a probability 0 < p ≤ 1, and it remains the same with probability (1 − p). For p = 1 the
reaction step becomes deterministic, and a smaller p introduces more stochasticity to the system. We refer
to p as the “noise parameter”.

The state transition graph of the map F is a directed graph with the set of vertices X, and the set of edges
{(x, F(x))|x ∈ X} for all x ∈ X. See Appendix A for more details.

The reaction topology of the map F, also known as “interaction graph” in the literature [25], is a graph that
summarises the interactions between species: each species is represented by a node and each interaction is
represented by an edge. Each edge is assigned a positive (negative) sign if the source node of the edge acts
as an activator (inhibitor) on the target node. The edges can be identified from the state transition graph as
follows: for species i, j ∈ {1, 2} there is a positive (negative) edge from species j to i if there exists a state
x = (x1, x2) ∈ X such that fi(xi, xj + 1) − fi(xi, xj) is positive (negative). Intuitively, this means that an
increase in xj is likely to lead to an increase (decrease) in xi (see supplementarymaterial S1 formore details).

Note that due to the discrete nature of the state space there exist maps F : X → X, for which there exist
x, x′ ∈ X such that fi(xi, xj+1)− fi(xi, xj) > 0 and fi(x′i , x

′
j +1)− fi(x′i , x

′
j) < 0, whichmeans no single sign

can be assigned to the edge from j to i. We omit such maps from our analysis since they cannot be assigned
to a reaction topology.

Figure 1 shows the function F, the state transition graph, and the reaction topology for the map originally
analysed in [23].

Following the reaction step, the diffusion step acts simultaneously over all lattice positions and mimics a
random walk of the particles on the lattice. It is comprised of two parts: a local random shuffling, where
the particles of each lattice position are randomly redistributed across the three velocity channels; this is
followed by a deterministic jump step, where a particle is moved on the lattice by a predetermined amount
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Figure 2: The 21 two-species reaction topologies distributed across three levels of complexity, where complexity is de-
fined by the number of edges. Highlighted in blue are the topologies found with maps that produce Turing
instabilities within the LGCA framework. Highlighted in purple are the topologies found to produce Turing
instabilities within the PDE framework.

of spatial positions dσ ∈ N+ in the direction associated with the velocity channel i it is occupying, ci ∈
{−1, 0,+1}.

We can formalise the diffusion step by defining the difference Cσ,i(η(r, k),η(r + dσci, k + 1)) of any given
velocity channel i after one time step as

Cσ,i(η(r, k),η(r+ dσci, k+ 1)) = ησ,i(r+ dσci, k+ 1)− ησ,i(r, k). (3)

See appendix B for more details on the diffusion step.

2.2 Mean-field approximation

So far, we have defined the dynamics of the LGCA in an algorithmic manner which is convenient to simulate
stochastic simulations but not convenient for mathematical analysis, in particular in the context of pattern
formation. We therefore apply amean-field approximation to Eq. 3which consists of neglecting correlations
between channel occupations within a spatial position [23],

⟨ησ,i(r, k)ησ′,j(r, k)⟩ = ⟨ησ,i(r, k)⟩⟨ησ′,j(r, k)⟩, for i ̸= j, and σ,σ′ ∈ {1, 2}. (4)

where ⟨·⟩ refers to the expectation with respect to the marginal distribution of ησ,i(r, k).

Using this one can derive the so-called “lattice-Boltzmann equations” which describe the evolution of the
expectation values of the velocity channels [22],

νσ,i(r+ dσci, k+ 1) = νσ,i(r, k) + C̃σ,i(ν(r, k)), (5)

where ci denotes channel i direction of propagation, c = {−1, 0, 1}, ν(r, k) = (ν1,1(r, k), . . . , ν2,3(r, k)),
Cσ,i(ν(r, k)) is now a function of time step k only (c.f. Appendix B, Equation (17)), and we define

νσ,i(r, k) = ⟨ησ,i(r, k)⟩. (6)

The νσ,i are also referred to as “single-particle distributions” and can be viewed as the probability of finding
a particle of speciesσ in channel i on lattice position r at discrete time point k. The stochastic shuffling of the
particles across the channels within the diffusion step means that the single-particle distributions for each
species σ ∈ {1, 2} are indistinguishable, so we define νσ = νσ,i, i ∈ {1, 2, 3}.
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2.3 Turing instabilities

Wenext define Turing instabilities in the context of LGCA using the lattice-Boltzmann equations in Eq.(5) by
means of a linear stability analysis. A Turing instability describes the scenario where a stable steady state of
a non-spatial system becomes unstable in the spatial setting including diffusion. By “stable” we mean that a
small perturbation around the steady state asymptotically converges back to the steady state.

We start by defining a spatially homogeneous steady state ν̄ of the lattice-Boltzmann equations as the solu-
tion of

νσ(r, k+ 1) = νσ(r, k), C̃σ(ν(r, k)) = 0 for σ ∈ {1, 2}. (7)

Toassess the stabilityof a steadystate ν̄weanalyse theevolutionof a local perturbationof a certainwavenum-
ber q around ν̄ by applying a Fourier transformation to the lattice-Boltzmann equations. This decouples the
individual frequency modes allowing the identification of unstable and stable modes. The evolution of the
Fourier modes can be described in terms of the so-called “Boltzmann propagator”Γ(q) [26]. Γ(q) has only
twonon-trivial eigenvaluesλ1(q) andλ2(q)which canbederived analytically (seeAppendixD for thederiva-
tion and expressions).

Amodeq is stable if both |λ1(q)| < 1and |λ2(q)| < 1andunstableotherwise. q = 0 corresponds toahomo-
geneous perturbation. Since diffusion does not play a role in this case (under themean-field approximation),
this corresponds to a non-spatial system. A Turing instability is hence defined as |λ1(0)|, |λ2(0)| < 1 and
|λ1(q)| > 1 or |λ2(q)| > 1 for some q > 0.

If an instability exists, the wavenumber q∗ that produces themaximum absolute value of |λ(q)| is the fastest
growing mode and the system may be expected to converge to a pattern with corresponding wavelength L

q ,
where L is the length of the spatial domain. For more details on the linear stability analysis see Appendix C
or Chapter 13 of [23]. Figure 3a shows the absolute values ofλ1 andλ2 as a function of wavenumber q for the
map given in Figure 1.

2.4 Simulation details and power spectrum analysis

Considering all different possible combinations of positive and negative edges between the two species gives
rise to 21 different fully-connected topologies shown in Figure 2 [20], i.e., topologies where both species
influence each other. We only considermaps that can be assigned to one of these topologies. We thus exclude
maps that have edges which cannot be assigned a positive or negative sign, as explained in Section 2.1.

We further reduce the number of maps to analyse by only considering asymptotic maps, which are defined
by fσ(x) ∈ {0, xσ, 3}, i = 1, 2. This corresponds to a switch-like behaviour: the total occupation number
of each species gets either updated to its maximal or minimal value, or remains the same. The total number
of asymptotic maps for the 21 topologies of interest is 592, 490. Figure 2 shows the 21 possible reaction
topologies grouped across three levels of complexity, whichwe define as the number of edges in the topology.

The formalism adopted here reduces the number of parameters considerably compared to the continuous
case [20]. We set the noise parameter of the reaction step introduced in Section 2.1 to p = 0.9. We found em-
pirically that p = 1 often leads to the system getting stuck in absorbing states that prevent Turing patterns;
while smaller values of p introduce more stochasticity which tends to destroy patterns.

We further fix the diffusion constants to (d1, d2) = (1, 7) following [23], and extensive analysiswhich shows
that varying the diffusion parameters leads only to a negligible change in the number of maps that produce
patterns. To account for the stochasticity of the system, we simulate a given map a hundred times with ran-
dom initial conditions in each simulation for T = 500 time steps on a domain of size L = 101 (see Section
2.1 for the simulation details).

We then take the endpoint of each simulation, compute the power spectrum via a Fourier transform, and
average the result over the different simulation runs. Finally, we fit a Lorentz distribution to the maximum
of the resulting average power spectrum (see Appendix D for details). The scale parameter, γ, of the fitted
Lorentz distribution corresponds to the width of the peak at half its height, and is hence a measure for the
peak width. A smaller γ value indicates a sharper peak in the Fourier transform and hence a clearer pattern
in the simulation result. Empirically, we choose a threshold of γ < 1 to define patterns in simulations.
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Figure 4: Illustration of the subsets of maps. Asymptotic maps: 592,490. Maps with steady states: 338,680. Maps with
stable steady states: 53,479. Turing maps: 45,591. Pattern producing maps: 20,103.
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Figure 3: a) Dispersion relation of examplemap F. The plot shows that the non-spatial system is stable, that is at q = 0,
while a clear instability exists at q ∼ 8 for eigenvalue 1, λ1. b) A simulation of the example map F shows a
pattern emerge. c) Power spectrum of the simulation shown in figure 3b. The spectrum shows a significant
signal at a frequency value of q ∼ 8, this corresponds with figure 3a.

3 Results

3.1 Turing instabilities

Of the 592, 490 asymptotic maps, 51, 255 posses a stable steady state1. Of these, 45, 591 posses a Turing
instability. Surprisingly, 89% of maps with a stable steady state possess also a Turing instability. Figure 4
shows the relative proportions ofmapswith steady states, stable steady states, Turing instabilities and those
that produce patterns in simulations.

Themapswith Turing instabilities are distributed across eight reaction topologies (see Figure 2, highlighted
with blue). We name these topologies “Turing topologies”: all of these maps exhibit antagonistic behaviour
between the two species, where the first species acts as an activator of the second species, while the sec-
ond species inhibits the first. This activator-inhibitor principle is the generic mechanism used to describe
Turing instabilities, first introduced by Gierer and Meinhardt [4]. Topology 8 corresponds to the classical
Gierer-Meinhardtmodel (c.f. Figure 2), which consists of a slowly diffusing autocatalytic activator and a fast
diffusing antagonist (inhibitor) species [4]. The other Turing topologies we identify are all variants of this
core slow activator-fast inhibitor mechanism.

1Recall that Turing instabilities are only defined for maps with a stable steady state, c.f. Section 2.3
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3.2 Types of simulation outcomes

Turing instabilities only describe the local instability of a steady state and donot guarantee the emergence of
an actual pattern in simulations of amodel. Indeed, in continuous PDEmodels it has been found that Turing
instabilities donot always give rise topatterns in simulations [20]. Here,wefind the same tobe true for LGCA
systems. More precisely, we observe three qualitatively different behaviours: no structure emerging, struc-
ture emerging without a characteristic wavelength (similar to “phase separation”) and structure emerging
with a characteristic wavelength (Turing-like patterns). We are interested in the latter: the “characteristic
wavelength” of a pattern does not depend on the domain size.

Figure 5a shows an example for the first case of no structure emerging, which means that either random
noise emerges (as shown in Figure 5a) or a spatially homogeneous state is reached. The correspondingpower
spectra do not contain significant signals indicating the absence of a pattern.

The second qualitative behaviour breaks the symmetry of the system and produces a structure without a
characteristic wavelength. This behaviour is similar to the phenomenon of phase separation in PDEmodels
[27]. The majority of these maps separates the domain into two parts, one highly expressed side and the
other lowly expressed. Figure 5b shows an example of a map that breaks symmetry with no characteristic
wavelength. As the domain increases so does the resulting length-scale of the structure.

The third characteristic behaviour, towhich Turing patterns belong, produces a spatial structurewith a char-
acteristicwavelength that does not depend on the domain size. Figure 5c shows an example of this behaviour.
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Figure 5: (a) Example of no structure forming over varying sized spatial domains L = 100 (top) and L = 500 (bottom).
(b)Exampleof spatial structurewithnocharacteristicwavelengthover varying sized spatial domainsL = 100
(top) and L = 500 (bottom). Example of spatial structure with a characteristic wavelength over varying sized
spatial domains L = 100 (top) and L = 500 (bottom). The three categories of power spectrum outcomes,
a) no spatial structure, b) spatial structure without a characteristic wavelength, c) spatial structure with a
characteristic wavelength.

To automate the analysis of simulation resultswe proceed as explained in Section 2.4. For a simulation result
to be classified as a pattern,we require the Lorentzianfitted to thenormalisedpower spectrumaveragedover
n trials to have the scale γ ≤ γ∗, i.e., the peak must not be too broad. Note that this criteria is somewhat
arbitrary, as the distribution of γ values for all maps is close to continuous. We found empirically that the
threshold γ∗ = 1 selects only maps that produce robust clear patterning.

3.3 Turing patterns

We find that out of the 45, 591maps with Turing instabilities, only about 33% produce a Turing pattern in
simulations (see Figure 4 for a visualisation of these ratios). We thus find that a Turing instability is a rather
weak predictor of a Turing pattern emerging in simulations. This is in stark contrast to the continuous case
where only a tiny fraction of systemswith Turing instabilities do not produce a pattern [20]. Thesemaps are
distributed across topologies 8, 9, 15, 16 and 20. Thus topologies 6, 7 and 14 are not able to produce a Turing

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2020. ; https://doi.org/10.1101/2020.10.18.344135doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.18.344135
http://creativecommons.org/licenses/by-nc/4.0/


8

pattern despite having a Turing instability. Instead, we find that these three topologies give rise to simu-
lations that enter into a spatially-homogeneous limit cycle, switching between high and low homogeneous
expression levels (see supplementary S3 for an example). We further found 5, 285maps fulfilling the pattern
criterion without possessing a Turing instability. These maps are distributed across the same topologies 8,
9, 15, 16 and 20 containing maps producing Turing patterns.

If we choose a larger threshold for γ, the ratio ofmapswith Turing instabilities that produce a patternwould
increase. However, so would the number of maps without Turing instabilities producing patterns. The pre-
dictability of the Turing instability would hence not necessarily increase. Rather than using a threshold on
the scale γ of the Lorentzian fit, we can alternatively view γ as an inverse measure of the quality of a pat-
tern: the smaller γ, the sharper the peak in the power spectrum. Figure 6b shows the distribution of γ values
over both maps with and without Turing instabilities. We observe that maps with Turing instabilities are
more likely to result in patterns emerging in simulation data, with the majority of highest quality patterns
all containing Turing instabilities.

Topology: 1 2 3 4 5 6 7 8 9 10 11
# of maps : 9 9 9 600 849 600 600 849 849 600 849

% of Turing maps: 0 0 0 0 0 0.45 0.45 0.32 0.32 0 0
% of pattern maps: 0 0 0 0 0 0 0 0.28 0.27 0 0

Table 1: Turing instability and pattern information for topologies of complexity level 1 and 2.

Topology: 12 13 14 15 16 17 18 19 20 21
# of maps : 40000 56600 40000 56600 56600 80089 40000 56600 80089 80089

% of Turing maps: 0 0 0.17 0.30 0.30 0 0 0 4.9 0
% of pattern maps: 0 0 0 0.15 0.15 0 0 0 0.032 0

Table 2: Turing instability and pattern information for topologies of complexity level 3.

3.4 Robustness

We next study the robustness of the different topologies[28], which we define as the fraction of maps of a
given topology that produces Turing patterns in simulations. The robustness corresponds to the fraction
in parameter space producing Turing patterns in continuously-modelled systems[29]. Figure 6a shows the
ratio of Turingmapswith respect to the total number ofmaps for each topology, and table 1 and table 2 show
the total number of maps and Turing maps for each topology.

We find that for the Turing topologies a surprisingly large fraction of maps produce Turing patterns, with
fractions ranging from0.032 to 0.28. This is in stark contrast to continuouslymodelled systemswhere only
small fractions of parameter space allow for Turing instabilities, with reported robustness values in kinetic
parameters typically smaller than0.01 [20]. We also find that the robustness decreaseswith increasing com-
plexity of the topologies (i.e., number of edges).

3.5 No pattern despite Turing instability

As we have seen in Section 3.3, some Turing maps do not produce a pattern in simulations. This might be
expected since the Turing instability only indicates a local diffusion-driven instability and does not make
statements about the global behaviour. Moreover, we work with stochastic models here, which means the
random fluctuations can “wash out” the wavelengths emerging from a Turing instability. Another reason is
that the system can get stuck in homogeneous absorbing states. Finally, the mean-field approximation used
in the stability analysis may also contribute to such discrepencies.
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Figure 6: a) Histogram of the ratio of maps that contain Turing instabilities and those that produce patterns. b) Com-
parison of the γ-value of Turing and non-Turing maps when excluding homogeneous simulation outcomes.
The ratios of spatial structure producing maps for each topology and comparisons of Turing maps and non-
Turing maps in terms of the quality of patterns they produce on average.

3.6 Pattern despite no Turing instability

Asdiscussed in Section 3.3, wefind5, 285maps that produce a stable pattern despite not possessing aTuring
instability. These are all distributed across the same topologies that possess maps with Turing instabilities
that produce patterns, namely topologies 8,9,15,16 and 20. 1, 011 of the 5, 285maps possess a stable state
state andwefind that thesemaps all have an eigenvaluewhosemaximal absolute value is close to one, and are
hence “close” to a Turing instability (in a loose sense). One potential explanation is that fluctuations present
in the model could push the system over the threshold into the instability and hence lead to a pattern of
the corresponding wavelength. This has also been suggested in [22]. The remaining 4, 274 do not possess
a stable steady state. Here a mechanism different to the Turing mechanism could be responsible for the
pattern.

3.7 Comparison to continuous model

We next compare the results found so far using the LGCA approach with results from the literature using the
continuous PDE approach.

3.7.1 Turing instabilities and emerging patterns

In Figure 2 thefive two-node topologies known toproduceTuring instabilities in the continuous PDEcase are
highlighted by purple [14, 12, 20]. Here, we find that these five topologies also produce Turing instabilities
in the LGCA framework. However, we find additional Turing topologies 6, 7 and 14 (c.f. Figure 2 highlighted
in blue). But these three topologies do not produce Turing patterns in simulations, despite the presence of
Turing instabilities (see Section 3.2). Therefore, in termsof Turing patterns emerging in simulations, wefind
a 1-to-1 correspondence between Turing topologies in the LGCA and the continuous frameworks.

3.7.2 Turing instabilities as predictors of patterns

Only 33% of the maps with Turing instability produce a pattern in simulations (see 3.3; although the exact
number depends on our choice of scaleγ). Turing instabilities in the LGCA framework do thus not guarantee
an emerging pattern in simulations. This is independent of how many stable states a map possesses. In
contrast, in continuous PDE models Turing systems with a single stable steady state have empirically been
found to always give rise to patterns in simulations [20]. Only Turing systems with multiple steady states
have been found to sometimes converge to homogeneous steady states. Overall, Turing instabilities that do
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not lead to patterns in simulations seem to be substantially more frequent in the LGCA framework. We thus
conclude that a Turing instability in the LGCA formalism is a weaker predictor for the existence of a pattern
than in the continuous case.

3.7.3 Robustness

Even thoughwe found the same five Turing topologies for the LGCA and continuous frameworks, we observe
considerable differences in terms of their robustness. In Section 3.4 we defined the robustness of a topology
as the fraction of maps that produces patterns in simulations. In the continuous modelling framework, this
roughly corresponds to the fraction of kinetic parameters producing Turing patterns in a given topology
(note that we do not consider robustness with respect to changes in diffusion constants or topology here as
has for example been done in [20]). Importantly, we find that the topologies are substantiallymore robust in
the LGCA framework, with robustness values ranging from 0.032 to 0.282, as opposed to robustness values
smaller than 0.01 in the continuous-modelling case for the same two-node topologies [20].

3.8 A modified definition of Turing instabilities

Recall that we used the conventional definition of a Turing instability used in the literature [22, 23]: the ab-
solute value of an eigenvalue of the Jacobian of the system linearised around a stable steady state becomes
larger than 1 (c.f. Section 2.3). However, since a negative real part of an eigenvalue indicates an oscillatory
behaviour (c.f. Equation 20), it is questionable if this is a sensible definition if one is not only interested in
a stable state becoming unstable, but in the emergence of stable patterns. Indeed, topologies 6, 7 and 14 in
Figure 2, for which we did not find any stable Turing patterns in simulations but only oscillatory patterns 3

despite the presence of a Turing instability, the real part of the eigenvalue in the instability is always nega-
tive. We therefore suggest that in addition to the absolute value of the eigenvalue having to be larger than 1,
to include the condition that the real part of the eigenvalue is also required to be positive in the instability.
Applying this modified definition of a Turing instability gets rid of oscillatory patterns, and it also leads to
a 1-to-1 correspondence between Turing-instability possessing topologies in the LGCA and continuous PDE
framework. Moreover, this definition of a Turing instability seems to be a better predictor of an emerging
pattern: about 53% of maps with such a Turing instability produce patterns in simulations. With the origi-
nal definition, this were only 33%. Positivity of the real part of the eigenvalue hence appears as a reasonable
additional criterion for defining a Turing instability with the LGCAmodel.

4 Discussion

Recent experimental findings [7, 9, 8, 11, 10] have resulted in Turing patterns being widely accepted as an
important mechanism for spatial patterning in developmental processes. These findings have raised impor-
tant questions about the key features underlying the Turingmechanism and its robustness[28]. A variety of
theoretical endeavours aiming to answer these questions have accordingly taken place since. However,most
of these have focused on singlemodels. More recently, some large-scale studies have systematically analysed
large parts of possible design spaces, thereby providing a novel understanding on how common and robust
Turing pattern mechanism are [12, 14, 20]. The majority of these theoretical studies have used differential
equationmodels with continuous concentrations.

Since every mathematical model of a biological system is an abstraction, it is difficult to untangle those dy-
namics and features attributable to the true mechanics of a given biological system and those artificial dy-
namics arising from the modelling technique itself. Describing a biological system by different modelling
frameworks can hence help to identify true underlyingmechanisms; combining qualitative and quantitative

2Wewould like to point out that the exact quantitative results dependon the exactmodellingdetails. For the LGCAcase, thenumbers
might change if we considered all maps and not just asymptotic maps. Also, changing the threshold for the scale γ for the criterion of
what we define as a pattern influences the results (c.f. Section (description of Lorentzian fitting)). Similarly, in the continuous case, the
robustness values depend on the modelled parameter ranges [14, 20].

3Also referred to as “checkerboard patterns” in [23]
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modelling frameworks[30]; or augmentingmodelling by evolutionary/comparativemethods can provide re-
assurances as to the validity of modelling studies [31].

Here, we have performed a large-scale survey of all possible two-species networks using a discrete lattice
gas cellular automata (LGCA) framework. This framework is much more restrictive than the continuous ap-
proach, in that it confines the concentrations to a small number of discrete values (four in our case) and
comprises discrete maps between these states rather than continuous kinetic parameters.

Using this approach, however, we found the exact same five network topologies capable of producing Turing
patterns as in the continuousmodelling framework [12, 14, 20]. Moreover, we found these five topologies to
be evenmore robust in the LGCA framework than they appear to be in the continuous counterpart.

We also found that the presence of a Turing instability is neither sufficient nor necessary for pattern for-
mation in the LGCA framework, and that it is a much weaker predictor of an emerging pattern than in the
continuous counterpart. This can, to some extent, be attributed to the stochasticity of the LGCA framework
whichmakes the definition of a pattern less straightforward, as stochasticity can wash out patterns and lead
to breaking down of the employed mean-field analysis. To a certain degree this can also be attributed to
the original definition of a Turing instability in the LGCA framework [22, 23], and we proposed a modified
definition which leads to a stronger predictor.

The fact that our restricted model identifies the same Turing topologies identifeid before in the continuous
case suggests that the exact molecular details might not be as important as previously thought and hints at
a deeper underlying principle of Turing mechanisms that is independent of the modelling framework. The
larger robustness we found suggests that Turing patterns might be more robust than previous continuous
studies suggest.
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A Reaction step

Following from section 2.1 we derive the general expression for the channel after the reaction step. Recall
from section 2.1 that the total number of particles of a given species σ at a given position r and time k is

nσ(ησ)(r, k) =
3∑

i=1

ησ,i(r, k). (8)

After the reaction step the newly updated total number of particles of species σ at a given r and time k is

nR
σ(η(r, k)) =

3∑
i=0

3∑
j=0

Ψi(η1(r, k))Fσ(i, j)Ψj(η2(r, k)), (9)

where Ψ(ησ(r, k)) = (ψ0(ησ(r, k)),ψ
1(ησ(r, k)),ψ

2(ησ(r, k)),ψ
3(ησ(r, k))) with ψi(ησ(r, k)) = 1

when i particles of speciesσ exist at the lattice position r and 0 otherwise. See supplementary S4 for a full ex-
pression ofΨ(ησ(r, k)). Fσ(i, j) denotes the updated value of species σ from the state x = (i, j) as defined
in section 2.1. The superscript R indicates the variable after the reaction step. We add stochasticity to the
interaction step by introducing sequences of spatial and time independent identically distributed Bernoulli
random variables ϵ ∈ {0, 1}, r ∈ L, k ∈ N. These variables determine whether the reaction takes place or
not. We further define p = P(ϵ(r, k) = 1), where p is the probability of the reaction taking place. We refer
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to p as the “noise parameter”. With these definitions the post-reaction total number of particles of species σ
at a given r and time k reads

nR
σ(η(r, k)) = (1− ϵ)nσ(r, k) + ϵ

l∑
i=0

l∑
j=0

Ψi(η1(r, k))Fσ(i, j)Ψ
j(η2(r, k)), (10)

Once the total number of particles nR
σ are updated they are redistributed back into the individual channels

ηR
σ,i for all i, such that

ηR
σ,i(r, k) =

{
0, if nR

σ(r, k) < i.
1, otherwise.

(11)

B Shuffling step, diffusion step and difference equation

In this sectionweprovide a formal definition of the shuffling anddiffusion steps described in Section 2.1, and
give the full expression for the difference equation in (3). We start by expressing the random shuffling step
in terms of permutationmatrices. The set of permutationmatrices for a systemwith three velocity channels
is

A3 = {

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

}. (12)

Using these we can write the updated channels in terms of the set of local channels at spatial position r as

ηRσ,i(r, k) =
6∑

j=1

ζj(r, k)
3∑

l=1

ηR
σ,l(r, k)a

j
li, (13)

where the superscript R indicates the variable after the shuffling step. aj
li denotes the element of the jth

permutationmatrix at row l and column i, and ζj ∈ {0, 1}, j ∈ 1, . . . 6 are Bernoulli type randomvariables,
such that ζj = 1 for one j ∈ {1, . . . , 6} and zero otherwise. After the shuffling step we apply the jump
diffusion step as

ησ,i(r+ dσci, k+ 1) = ηRσ,i(r, k). (14)

Combining Equations (3), (13) and (14) we obtain an expression for the change in expression level over a
single time step, Cσ,i(η(r, k),η(r+ dσ, k+ 1)), in terms of the variables of the previous time step:

Cσ,i(η(r, k),η(r+ dσ, k+ 1)) = ησ,i(r+ dσ, k+ 1)− ησ,i(r, k) (15)

= ηRσ,i(r, k)− ησ,i(r, k) (16)

=
6∑

j=1

ζj(r, k)
3∑

l=1

ηR
σ,l(r, k)a

j
li − ησ,i(r, k). (17)

andwe canwriteCσ,i(η(r, k),η(r+dσ, k+1)) = Cσ,i(η(r, k)). Equation (17) describes howeach individual
channel evolves over time.

C Linear stability analysis in the LGCA model

Here, we derive the equations needed for the stability analysis used to defineTuring instabilities in themean-
field approximation in Section 2.3. As mentioned in Section 2.3, we use a small perturbation to determine
the stability of a given steady state: let δνi(r, k) = νi(r, k) − ν̄ ∈ R6 be a small perturbation around the
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steady-state solution ν̄ of Equation (7), where i denotes the channel. Using this in (5) and linearizing around
ν̄ we get the linear lattice-Boltzmann equation

δνi(r+ d(i)c(i), k+ 1) = δνi(r, k) +
6∑

j=1

Ωijδνj(r, k), (18)

where the diffusion coefficient d(i) is the ith element of (dσ=1, dσ=1, dσ=1, dσ=2, dσ=2, dσ=2) and the di-
rection c(i) is the ith element of (1, 0,−1, 1, 0,−1). The Jacobian � ∈ R6×6 is defined as

Ωij =
∂C̃i(δν(r, k))
∂δνj(r, k)

∣∣∣∣∣
ν

= ν̄. (19)

Consider a harmonic wave perturbation of the form

δνi(r, k) ∝ λk cos(
π

L
qr), (20)

whereq = 0corresponds toa spatiallyhomogeneousperturbation. Next,weconsiderageneralperturbation
F(q, k) = (F1(q, k), . . . , F6(q, k)) and express each of its components as a sum of sinusoidal terms as

Fi(q, k) =
∑
r∈L

δνi(r, k)e
2πi
L qr. (21)

Applying the discrete Fourier transformation to the linear lattice-Boltzmann equations (18) gives

Fi(q, k+ 1) = e−
2πi
L qd(i)c(i)

(
Fi(q, k) +

6∑
j=1

ΩijFj(q, k)

)
, (22)

which we write in vectorised from for as

F(q, k+ 1) = Γ(k)F(q, k),∀q, (23)

whereΓ(k) is the Boltzmann propagator defined by

Γij(q) = e
−2πi

L qd(i)c(i)
{
δij +Ωij

}
. (24)

In matrix notation this can be written as

Γ(q) = T(I+Ω). (25)

where T ∈ R6×6 which is known as the “Transport matrix” and defined as a diagonal matrix with elements
Tjj = e

2πi
L qdjcj , and I ∈ R6×6 is the identity matrix. (I + �) is a block matrix and reads

{I+Ω} =


ω1 ω1 ω1 ω2 ω2 ω2

ω1 ω1 ω1 ω2 ω2 ω2

ω1 ω1 ω1 ω2 ω2 ω2

ω3 ω3 ω3 ω4 ω4 ω4

ω3 ω3 ω3 ω4 ω4 ω4

ω3 ω3 ω3 ω4 ω4 ω4

 , ω1,ω2,ω3,ω4 ∈ R. (26)

See supplemental SXXforexpressions forω1,ω2,ω3 andω4. WedefineΛΓ(q) = (λ1(q),λ2(q),λ3(q),λ4(q),λ5(q),λ6(q)),
where λi(q) is the ith eigenvalue ofΓ(q). The λi determines the stability of a given steady state and are ob-
tained as solutions of

|Γ(q)− λI| = 0, (27)

where | · | denotes the determinant. Due to the block structure of Γ(q) (c.f. equation 26) only two of the
eigenvalues are non-zero: ΛΓ(q) = (λ1(q),λ2(q), 0, 0, 0, 0), with

λ1,2(q) =
1

2

(
ω1u1(q) + ω4u2(q)±

√
4(ω2ω3 − ω1ω4)u1(q)u2(q) + (ω1u1(q) + ω4u2(q))2

)
, (28)

whereuσ(q) = 1+e−
2πi
L qdσ +e

2πi
L qdσ . When q = 0,λ1 andλ2 define the stability of the non-spatial system.
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D Power spectrum analysis

In this section we provide details on howwe use the power spectrum in Section 2.4 to automatically identify
patterns in simulations as outlined in Section 2.4. Since either both or none of the two species showpatterns
in simulations, we only use the number of particles n1(r, T) of the first species defined in Equation (2) at end
timepointT to identify patterns. Thenormalised power spectrumof a simulation run as described in Section
2.4 is given by

S(q) =
∣∣∣∣ L−1∑

r=0

n1(r, T)e
−2πiqr

L

∣∣∣∣2. (29)

To average out fluctuations we perform K simulation trials. Let S(q)(i), i = 1, . . . ,K be the corresponding
power spectra computed as in Equation (29). We accordingly define S̄(q) as the average over the K trials:

S̄(q) =
1

K

K∑
j=1

S(q)(j). (30)

If S̄(q) possesses a clear peak at a certain wavenumber q this indicates a spatial pattern in the simulation
results with wavelength L/q. To identify such a peak we fit a Lorentz distribution to S̄(q) to quantify the
quality of a pattern. The Lorentz distribution is defined as

f(x, x0, γ) =
1

πγ[1 + ( x−x0
γ )2]

(31)

[32]. We determine the median x0 by finding the frequency in which the cumulative distribution function is
equal to0.5. We then use themethodof least squares to determine the value of the scale parameterγ ∈ [0, 1].
The smaller the scale parameter the sharper the peak and hence the clearer the pattern in the spatial domain.
We thus use a threshold on γ to judge if a simulation result contains a pattern or not, as explained in Section
2.4.
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