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Summary 53 

Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers 54 

and pathophysiologic mechanisms of disease. The importance of these platforms in clinical 55 

and translational studies led us to investigate the impact of delayed blood processing on the 56 

numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma 57 

proteome. Similar to previous studies, we show minimal effects of delayed processing on the 58 

numbers and general phenotype of PBMCs up to 18 hours. In contrast, profound changes in 59 

the single-cell transcriptome and composition of the plasma proteome become evident as 60 

early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse 61 

cell types that lead to progressive distancing of the gene expression state and plasma 62 

proteome from native in vivo biology. Differences accumulating during an overnight rest (18 63 

hours) could confound relevant biologic variance related to many underlying disease states. 64 

65 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2020.10.18.344663doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.18.344663


4 

Introduction 66 

Advances in “-omics” technologies now provide scientists with the ability to probe human 67 

biology and biologic variance with high sensitivity at the single cell level. These approaches 68 

have been of particular benefit to studies of immune-mediated diseases in humans where 69 

deep profiling of peripheral blood and peripheral immune cells has provided insights to 70 

underlying pathobiology, unique biomarkers of disease, and biological variation. The ability 71 

to reliably discern the state of individual cells and discover true biologic heterogeneity in a 72 

complex system like peripheral blood requires that the effects of sample handling and 73 

storage not overwhelm those associated with the underlying biology. The logistical 74 

challenges related to collecting, processing, and shipping blood in human studies and 75 

particularly in clinical trials can make the application of these highly sensitive technologies a 76 

challenge. At present, there is a dearth of multi-modal studies that provide practical 77 

guidance about how quickly peripheral blood samples need to be processed and which cells 78 

and cell pathways are most impacted by delayed processing.  79 

Peripheral blood mononuclear cells (PBMC) are a workhorse of human immunology owing 80 

to the ease of collection and simplicity of cell isolation. Whole blood, from which PBMC are 81 

derived, is understood to be remarkably stable and previous work has established support 82 

for flexibility in sample handling for various whole blood assays, often as a way of managing 83 

the inherent challenges of human blood collection. Studies have shown that, when collected 84 

into anti-coagulant tubes to prevent clotting, whole blood left to “rest” was shown to be 85 

stable up to 24 hours at room temperature (Wu et al., 2017; Zini, 2014) and plasma profiling 86 

for common metabolites was similarly robust (van Eijsden et al., 2005; Zimmerman et al., 87 

2012). Other data, however, demonstrated the potential for profound changes resulting from 88 

variability in sample handling, particularly in the context of untargeted assays such as those 89 

for transcriptomic analysis. Overnight delay of PBMC isolation from whole blood was shown 90 

to alter thousands of genes, in particular JUN, FOS, and the heat shock pathway (Baechler 91 

et al., 2004), and even delays as short as four hours led to substantial changes, especially 92 

in immune-related gene expression (Barnes et al., 2010; Massoni-Badosa et al., 2020). 93 

Particularly problematic are processing artifacts that impact a wide variety of genes and 94 

proteins related to immunity in health and disease, which can obscure the disease 95 

processes of interest (Dvinge et al., 2014). Missing from previous analyses, however, is a 96 

comprehensive, multi-modal approach from which to understand the full complexity of ex 97 

vivo biology and its impact on physiological signals. 98 

In an effort to clearly address these questions prior to initiating a series of multi-center 99 

clinical studies focused on human immunology, we performed deep, multi-modal profiling of 100 

human peripheral blood stored in anticoagulant for varying lengths of time before processing 101 

to plasma and peripheral blood mononuclear cells (PBMC). This resource provides clear 102 

insights into the rapid changes related to delayed sample processing, elucidating the cells 103 

most altered, the cellular pathways most impacted, and the assays most affected. While flow 104 

cytometry did not reveal large-scale changes in cell type frequencies through an 18-hour 105 

delay, single-cell gene expression and high-plex plasma proteomics provide overwhelming 106 

evidence that cells of all types exhibit time-dependent changes that distorts the underlying 107 

biology. These changes are broad and dynamic, complicating the technical analysis of 108 

single-cell RNA-seq data and especially inferences of in vivo physiology from ex vivo 109 

assays. We propose the affected proteins and genes be carefully considered in any human 110 

biology study or clinical trial that uses blood and/or PBMCs to reflect in vivo biology, and that 111 

these findings may extend to blood- and immune-cell permeated tissue, as well. To assist in 112 

their use, we provide these data in an easily explorable web-accessible tool 113 

(http://bloodprocessingdelay.allenimmunology.org). The baseline cytometry, proteomic, and 114 

transcriptomic data on 10 donors serve as a high-quality resource to accelerate human 115 

systems immunology research and provide the substrate to begin decoding these effects in 116 

existing and emerging studies. 117 
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 119 

Results 120 

Bulk transcriptomics identifies time-dependent changes unrecognized by cytometry 121 

To study the effects of delays in PBMC processing from whole blood we performed two 122 

similar but independent experiments (Figure 1A). In Experiment 1, we isolated PBMC or 123 

plasma from whole blood at 2, 4, 6, 8, and 18 hours after blood draw from healthy donors 124 

(n=3) or those diagnosed with systemic lupus erythematosus (SLE, n=3). In Experiment 2, 125 

we assayed PBMC or plasma isolated from only healthy donors (n=4) starting at 2, 4, 6, 10, 126 

14, and 18 hours after blood draw. In both experiments, the whole blood was held in the 127 

dark at room temperature prior to PBMC isolation by Ficoll gradient separation or plasma 128 

isolation. PBMC were assayed after freeze/thaw by flow cytometry and 10x Genomics 129 

single-cell RNA-sequencing, and the plasma by Olink proteomics. Details of the samples, 130 

the assays used in each experiment, and any deviations are available in the Methods. 131 

Important to data interpretation, the samples were held as whole blood in phlebotomy tubes 132 

prior to processing. Thus, the samples were a closed system, obviating the confounding 133 

effects of cellular migration and blood cell development as sources of time-dependent 134 

variability. 135 

We started by assessing basic metrics from our technical processes. Cell yields from PBMC 136 

isolation, and their viability, did not exhibit time-dependent changes (Supplemental Figures 137 

S1A-B). Nor were the cells somehow more “fragile”, as they exhibited similar post-thaw 138 

recovery and viability at any time of isolation (Supplemental Figures S1C-D). This overall 139 

consistency was substantiated by flow cytometry profiling of the major immune cell types 140 

present in PBMC, most of which did not show noticeable changes throughout the processing 141 

delay time series (Figure 1B and Supplemental Figure S2A-B). Neutrophils (CD15
+
 SSC

hi
 142 

cells), however, were apparently increased over the time course in both experiments 143 

(Figures 1C and Supplemental Figure S2C-D), consistent with previous data (McKenna et 144 

al., 2009; Nicholson et al., 1984), suggesting an increased recovery of low-density 145 

neutrophils by Ficoll gradient separation with longer delays in PBMC processing. In addition, 146 

more granular flow cytometry profiling in Experiment 2 showed decreases in plasmablasts, 147 

non-classical monocytes, and basophils (Figures 1D-F), though with the less extensive 148 

phenotyping in Experiment 1 we cannot confirm these observations. Nevertheless, with the 149 

exception of rare neutrophils, time-dependent effects on the abundance of cell types were 150 

modest. 151 

The minor effects seen by cytometry could result from subtle changes in PBMC isolation and 152 

PBMC survival, but little can be inferred of cellular activation or stress from the flow 153 

cytometry panels used in this study to quantitate cell types. To get a better understanding of 154 

cellular activity, we first assayed bulk PBMC from the six donors in Experiment 1 by targeted 155 

transcriptomics with the Nanostring nCounter platform. This clinical assay enumerates a 156 

panel of 594 pre-selected immune- and disease-relevant transcripts from a bulk cell sample. 157 

Despite well documented person-to-person variability in PBMC gene expression 158 

(Kaczorowski et al., 2017; Radich et al., 2004; Whitney et al., 2003), Principal Component 159 

Analysis (PCA) indicated that PBMC processing delay accounted for a substantial part of 160 

the variability (Supplemental Figure S3). These effects were reflected in unsupervised 161 

clustering of the data, where it was apparent that expression levels across nearly the entire 162 

targeted gene set are inverted at 18 hours post-blood draw compared to the previous time 163 

point (Figure 2A, box indicated by the solid line). A feature of this longitudinal data set is 164 

that gene regulation dynamics can be observed, revealing that in all six donors a subset of 165 

these genes underwent an earlier induction before returning to low levels (box indicated by 166 

the dashed line). Aggregate analysis highlighted common and progressive exaggeration of 167 
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changes over the time course (Figure 2B), with 85 genes significantly induced (including 168 

IL20, DEFB4A, DUSP4, LILRB5) and 261 genes significantly down-regulated (including PD-169 

1 (PDCD1), ST2 (IL1RL1), CX3CL1, and CCR2) at 18 hours relative to 2 hours post-draw 170 

(Figure 2C-D and Supplemental Table S1). Without the context of the longitudinal data, 171 

these expression patterns could suggest physiologic biology that was not actually present in 172 

the host. Therefore, we conclude that while the cells themselves are generally robust to 173 

processing delays, their biological profile is greatly impacted. 174 

 175 

Delayed processing results in substantial changes to the plasma proteome 176 

The extensive changes recognized by bulk transcriptomics suggested that whole blood 177 

awaiting processing was an active and dynamic immune environment, and for numerous 178 

reasons we hypothesized there would be significant changes in plasma proteins as blood 179 

awaited processing: it has previously been reported that storage of whole blood led to 180 

increased levels of thrombospondin by eight hours (Kaisar et al., 2016), immune cells are 181 

known to respond to hemostasis (Jenne et al., 2013), temperature (Cho et al., 2010) and 182 

oxygen levels (Nizet and Johnson, 2009), and many transcripts demonstrating increases in 183 

our bulk transcriptomics assay encode secreted proteins (Supplemental Table S1). We 184 

speculated that not only were cells likely undergoing an intrinsic response, but that the 185 

extrinsic environment was likely changing as well. 186 

To test this hypothesis, we interrogated the 54 samples in our study for 1161 plasma 187 

proteins using a dual-antibody targeted assay (Assarsson et al., 2014). We found nearly 188 

one-third of the proteins showed relative abundance varying with delayed processing in a 189 

combined analysis of both experiments (Figure 3A and Supplemental Table S2). While the 190 

number of proteins exhibiting significant change was only modestly increased over the time 191 

course (350 proteins at 4 hours to 469 proteins at 18 hours post-draw), the magnitude of the 192 

changes exhibited a shift from 6 hours onward. Only 5 proteins were 1.5-fold changed 193 

between 2 and 4 hours post-draw (LAT, CD40L, EGF, PDGFβ, and SDC4), while by 6 hours 194 

27 proteins had changed by more than 1.5-fold and by 18 hours 69 proteins had changed by 195 

at least 1.5-fold, relative to the 2-hour time point. Given that whole blood waiting in 196 

phlebotomy tubes is a closed system, increases in plasma proteins must be due to de novo 197 

production or enhanced availability to detection. The latter may result from liberation of 198 

sequestration factors or modification of assay-targeted epitopes. In all cases, increases in 199 

detectable proteins over time suggest active biology in the waiting blood. 200 

Some of the most highly affected protein levels suggest complex and coordinated activity. 201 

For example, AnxA1 and S100A11 directly interact on early endosomes, and EGFR can 202 

both lead to phosphorylation of and be degraded by AnxA1 (Poeter et al., 2013). ANXA1, 203 

S100A11, and EGF protein are all increased in the plasma over time. More striking was that 204 

the number of platelet-related proteins significantly changed over time. In agreement with 205 

previous work (Khan et al., 2006), one of the earliest and most increased proteins was 206 

CD40LG (Figures 3B-D and Supplemental Table S2), a product of platelet activation 207 

(Henn et al., 1998). PDGFβ, ANGPT1, STK4, STX8, OSM, and SDC4, were also rapidly and 208 

significantly increased. These proteins, some of which were reported previously (Shen et al., 209 

2018), are all known to be involved in platelet biology (Andrae et al., 2008; Beck et al., 2017; 210 

Golebiewska et al., 2015; Londin et al., 2014; Tanaka et al., 2003), perhaps indicative of 211 

regulation or dysregulation of platelet activation in the waiting blood despite the presence of 212 

anti-coagulant. Fewer proteins exhibited decreases in abundance, with APLP1 the most 213 

striking. APLP1 can be processed by gamma-secretase but, unlike the homologs APP and 214 

APLP2, it was suggested that cleavage of APLP1 could occur without ectodomain shedding 215 

(Schauenburg et al., 2018), potentially sequestering the protein intracellularly. MMP7 also 216 

exhibited a significant decrease over the time course and was shown to be a target of 217 

platelet activation (Yang et al., 2020) and platelet-derived CXCL4 (Erbel et al., 2015). These 218 
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data demonstrate that many of the strongest changes in plasma proteins in whole blood ex 219 

vivo relate to platelet biology. 220 

 221 

Single-cell transcriptomic profiling reveals reorganization of cell type-specific gene 222 

expression 223 

While the majority of cell-type frequencies were essentially stable throughout the blood 224 

processing delay (Figure 1), plasma proteomics showed the signals available to those cells 225 

were dynamic and the corresponding bulk transcriptomics indicated similar changes in gene 226 

regulation, as might be expected from an immune system evolved to respond to 227 

extracellular signals. To better understand the impact of blood processing delay on distinct 228 

cell types we performed droplet-based single-cell RNA-sequencing on both experiments. In 229 

total, we collected and analyzed 450,189 high quality singlet cells with an average median 230 

features per cell of 1942 (Supplemental Figure S4 and Supplemental Table S3), for a 231 

total of more than 800 million unique RNA molecules quantitated by single-cell RNA 232 

sequencing. 233 

We assessed the overall effect of delayed blood processing across all cell types by 234 

aggregating together the samples in each experiment and summarizing the high-235 

dimensional data set in two dimensions using tSNE (Figure 4 and Supplemental Figure 236 

S5). With this visualization, it was clear that by 18 hours post-draw (purple) there was a 237 

profound shift in the global gene expression pattern per cell across multiple clusters, with 238 

the time effect dominating inter-donor variability. While this effect was clear and pervasive at 239 

18 hours in Experiment 1, we were concerned that the irregular time spacing (PBMC 240 

isolation at 2, 4, 6, 8, and 18 hours post-draw) was a confounder in the way the data 241 

clustered. We therefore changed the experimental design of Experiment 2 (PBMC isolation 242 

at 2, 4, 6, 10, 14, and 18 hours post-draw) so the later time points occurred at more regular 243 

intervals. The time-dependent divergence from the native transcriptional state was even 244 

more pronounced in Experiment 2, with a progressive distancing apparent at 10 hours (light 245 

blue), 14 hours (dark blue), and 18 hours (purple) post-draw. These effects were not 246 

restricted to a limited number of cell types, such as monocytes and dendritic cells (DC), but 247 

were apparent in all labeled cell types, even those thought to be quiescent, such as naive T 248 

cells (Sprent and Surh, 2011). These data demonstrate that analysis of global gene 249 

expression profiles in human PBMC can be confounded by pre-analytical process artifacts. 250 

We were interested to more deeply understand the effect of blood processing delay on 251 

individual cell types to better define the changes on functionally distinct immune cell 252 

populations. To highlight cell type specific changes, we isolated the tSNE coordinates of the 253 

clusters mapping to selected cell types (Figures 5A) and quantified the occupancy of each 254 

cluster over the time course. In this approach, we infer that each cluster represents a distinct 255 

transcriptional state of a given cell type, such that a change in cluster composition within a 256 

cell type indicates changing transcriptional states. For example, most CD14+ monocytes 257 

start from a single, dense cluster at the earliest time point which disintegrates concurrently 258 

with the appearance of three new clusters by 18 hours, with the major transition occurring 259 

between 4 and 6 hours post-blood draw (Figure 5B). A similar pattern was observed for 260 

CD4+ memory T cells, CD8+ memory T cells, and double-negative T cells. In contrast, the 261 

originating clusters of CD8+ naive T cells and CD56low NK cells persisted throughout the time 262 

course despite the appearance of new clusters, and CD4+ naive T cells exhibited some 263 

clusters persisting, some disappearing, and some appearing throughout the time course. 264 

Though the effects on different cell types resulted in different patterns of changing 265 

transcriptional profiles, for nearly all cell types changes were most apparent between the 4-266 

hour and 6-hour time points (Figure 5C). This was true of cell types thought to be most 267 

responsive to environmental signals (e.g. monocytes) and for those thought to be quiescent 268 

(e.g. CD4+ naive T). From these data we conclude that measurements obtained from PBMC 269 
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processed more than four hours after blood draw are increasingly at risk for pre-analytical 270 

artifacts. 271 

Reflecting the changes in the global gene expression profile observed through unsupervised 272 

clustering, quantification of differentially expressed genes (DEG) relative to the 2-hour time 273 

point demonstrated a trend of an increasing number of DEG across cell types 274 

(Supplemental Figure S6 and Supplemental Table S4). Once again, the number of 275 

changes was muted when PBMC processing started at 4 hours but emerged following the 6-276 

hour time point. As expected, the specific transcriptional changes exhibiting time-dependent 277 

regulation were varied across cell types, but generally reflected an elevated activation status 278 

and included many shared transcripts, such as NFκB pathway genes (NFKBIA, REL, 279 

TNFAIP3), CD83, JUN family members, HIF1A, and EIF1. But coordinated regulation was 280 

also apparent, such as induction of MAP3K8, IRF2BP2, TLE3, and MIR22HG in both 281 

monocyte subsets and classical dendritic cells, and SBDS and RBM38, both RNA binding 282 

proteins, in all eight lymphocyte subsets. 283 

Down-regulated genes exhibited similar trends. DDX17, RIPOR2, TRAF3IP3, UCP2, and 284 

CD53 were diminished across many of the 14 cell types classified in the scRNA-seq data, 285 

while DYNLL1, IFI16, POU2F2, CALM2, FYB1, and FGL2 were coordinately down-regulated 286 

in monocytes and dendritic cells in both experiments (Supplemental Table S4). We were 287 

particularly interested in the GIMAP (GTPase of the immunity-associated protein) family, a 288 

collection of eight sequence-related genes implicated in pro- and anti-apoptotic functions, 289 

primarily through studies in mouse T cells (Filén and Lahesmaa, 2010). GIMAP4 and 290 

GIMAP7 were down-regulated in nearly all cell types, with the exception of B cells and 291 

plasmacytoid dendritic cells, and GIMAP1, GIMAP6, and GIMAP8 also exhibited decreasing 292 

expression in various cell types over the time course. In fact, GIMAP4, GIMAP7, and 293 

GIMAP1 were among the genes that had the greatest drop in cellular percentage detection, 294 

irrespective of expression level. These data suggest survival or apoptosis may be key 295 

processes impacted by delayed PBMC processing. 296 

To more comprehensively assess the changes occurring through the processing delay we 297 

performed pathway analysis by comparing the dominant cluster late in the time series and 298 

the dominant cluster early in the time series within a given cell type. For this analysis we 299 

selected CD14+ monocytes and CD4+ memory T cells as examples of myeloid and lymphoid 300 

cell types frequently interrogated in systems biology studies. Through this analysis, 18 of the 301 

top 22 pathways in CD14+ monocytes and 23 of the top 26 pathways in CD4+ memory T 302 

cells enriched in the late clusters included NFκB and/or JUN family members 303 

(Supplemental Table S5), indicating the emergence of an activated phenotype within these 304 

cell types. Also of note was the elaboration of pathways in both cell types related to HMGB1, 305 

hypoxia, Th17 activation, the NFκB pathway, IL-6 signaling, and apoptosis. Other pathways 306 

of note include two AHR pathways and TREM1 signaling induced in CD14+ monocytes, and 307 

the mTOR and unfolded protein response in CD4+ memory T cells. These pathways 308 

variously relate to survival and apoptosis, inflammation, and sensing of extracellular signals 309 

that potentially confound the native ex vivo biology. Though we cannot determine whether 310 

this shift in cluster occupancy and gene expression program represents a direct precursor-311 

progeny relationship or whether it results from the outgrowth of a distinct rare subset of cells 312 

within each population, in either case it is clear that cells labeled as CD14+ monocytes or 313 

CD4+ memory T cells have undergone a time-dependent shift in their transcriptional profile. 314 

On the whole, the single-cell transcriptomics data demonstrate that cells are not “resting” in 315 

whole blood in the time between blood draw and PBMC processing, but rather are subject to 316 

and participating in a complex and active immune environment. 317 

 318 
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Aligned -omics data powers hypothesis generation 319 

A unique advantage of these data is the ability to use them in cross-modal analyses. All data 320 

sets from a given donor were acquired from the same blood draw, eliminating subclinical 321 

immunity, circadian, diet, sleep, seasonal allergy, and a host of other environmental 322 

variables as confounders for intra-donor longitudinal analysis. In addition, targeted bulk 323 

transcriptomics and single-cell transcriptomics were performed from the same PBMC 324 

isolation per time point. Therefore, these single-cell RNA-seq data are ideal for 325 

deconvoluting the bulk transcriptomics of PBMC. One striking example is the T cell 326 

costimulatory molecule ICOS ligand (encoded by ICOSLG). Targeted bulk transcriptomics 327 

indicates a modest log2 fold change of 1.7-2.3 across the six donors in Experiment 1 328 

(Figure 6A). Single-cell RNA sequencing, however, identifies induction of ICOSLG not only 329 

in myeloid cells such as conventional dendritic cells and plasmacytoid dendritic cells but 330 

also in B cells, with the highest expression in naive B cells (Figure 6B). Another interesting 331 

example is the secreted plasminogen activator urokinase, encoded by the gene PLAU, 332 

which was identified in the bulk transcriptomics data for a moderate induction by the 18-hour 333 

time point of Experiment 1. Single-cell analysis indicates the majority of this induction occurs 334 

in plasmacytoid dendritic cells, with little expression in other cell types. Urokinase is 335 

localized to the extracellular plasma membrane by association with PLAUR (Ellis and Danø, 336 

1991), which was likewise induced in bulk transcriptomics and shown to be expressed by 337 

monocytes and dendritic cells in our data, thus establishing a potential source and reservoir 338 

for potentiation of thrombolytic activity. These examples highlight the potential to explicitly 339 

decode bulk transcriptomic data sets of PBMC using our six matched longitudinal data sets. 340 

More intriguing is the potential for synergy with cross-modal data. Whole blood left on the 341 

benchtop to be processed is a closed system and observations of concordant changes in a 342 

plasma protein and its corresponding transcript within a given cell type could be used to 343 

build testable hypotheses. To find such protein-transcript relationships, we filtered the list of 344 

proteins identified in Figure 3 for those having significant slopes over the entire time course, 345 

and determined the significance and direction of the slopes of the corresponding transcripts 346 

in each cell type. Though the number of anti-correlations outnumbered correlations, we 347 

focused on the proteins that were increasing over the time course and their positively 348 

correlated transcripts, as such a trend suggests de novo transcription, translation, and 349 

release resulting from activity occurring after blood draw. 137 proteins (11.8%) were 350 

significantly increased over the time course, of which approximately 25% were correlated 351 

with their corresponding transcript in at least one cell type and almost 11% in 3 or more cell 352 

types (Supplemental Figure 7 and Supplemental Table S6). A limited number of protein-353 

transcript pairs were increased in 9 or more of the 14 populations: PTPN1, NFKBIE, ELOA, 354 

TR, BACH1, RPS6KB1, and CD69. Conversely, the only decreased protein showing 355 

concordance with its transcript was APLP1, the strongest decreased protein in both 356 

experiments (Figure 3), and the correlation was found only with naïve B cells. Though the 357 

number of correlations overall was low, these data are consistent with the hypothesis that 358 

transcriptional activity ex vivo can lead to protein changes in the blood, with potential for 359 

cascading effects on bystander cells. 360 

To consider these correlations in a more hypothesis-generating approach, we highlight two 361 

targets from this analysis. One, the TNF superfamily member LIGHT (encoded by 362 

TNFSF14), is a membrane and secreted ligand of the receptors HVEM, LTβR, and the 363 

soluble decoy DcR3. LIGHT potentiates T cell responses (Shaikh et al., 2001), has been 364 

reported in the setting of autoimmunity (Herro et al., 2015; Kotani et al., 2012), and is 365 

actively pursued as an anti-cancer therapy (Skeate et al., 2020). In our proteomics data, 366 

detectable LIGHT protein in the plasma fraction increased over the blood processing delay 367 

time course of both experiments (Figure 7A), resulting in a mean 2.49 fold increase at 18 368 

hours post-blood draw relative to 2 hours, the 20th most-induced protein in that comparison. 369 

Simultaneously, single-cell RNA sequencing showed the highest expression of LIGHT in 370 
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CD8+ memory αβT cells, NK cells, and double-negative T cells (likely comprised of 371 

CD4�CD8� αβT and many γδT cells) (Figure 7C). One of the receptors of LIGHT, HVEM 372 

(encoded by TNFRSF14), was broadly expressed but the other major receptor LTBR was 373 

restricted primarily to the myeloid compartment. At the same time, the decoy receptor DcR3 374 

(encoded by TNFRSF6B), capable of negatively regulating LIGHT (Wroblewski et al., 2003), 375 

was expressed primarily in lymphocytes, especially by double-negative T cells, which 376 

showed a trend toward increasing transcript levels concordant with increased levels of 377 

LIGHT plasma protein. 378 

Another intriguing participant in the complex ex vivo blood environment is BACH1. BACH1 is 379 

a BTB/POZ transcription factor that heterodimerizes with small MAF proteins, leading to the 380 

regulation of oxidative stress gene targets bearing MAF recognition elements (Zhang et al., 381 

2018). One such target, HMOX1, can be rapidly induced in monocytes by inflammatory 382 

stimuli (Yachie et al., 2003), and in fact we recognized induction and expression of HMOX1 383 

in CD14+ and CD16+ monocytes over the processing delay in our data (Figure 7D). BACH1 384 

was identified in our data sets by an increase in plasma protein levels (Figure 7B) and has 385 

previously been recognized as a regulator of HMOX1 in human monocytes (Miyazaki et al., 386 

2010). Consistent with the literature, we found the highest levels of BACH1 transcript were 387 

expressed by monocytes, especially early after blood draw (Figure 7D). However, whereas 388 

nearly all other populations exhibited little to no expression of BACH1 throughout the time 389 

course, both naive and non-naive B cells demonstrated a sharp induction of BACH1 gene 390 

expression. A role for BACH1 in B cells has not been reported aside from potential 391 

redundancy with BACH2 during B cell development (Itoh-Nakadai et al., 2014). Thus, this 392 

observation represents a potential novel aspect of B cell biology under conditions of cellular 393 

stress and highlights the potential for these aligned data sets not only to reveal putative 394 

sources of activation-induced proteins, but to suggest possible cellular networks of 395 

communication. 396 

  397 

Discussion 398 

The human immune system can be biopsied through the collection of peripheral blood 399 

samples, making blood one of the most amenable human tissues for research studies. As a 400 

‘sense and respond’ organ, the immune system tailors its activity to a wide variety of subtle 401 

environmental cues, including ex vivo manipulation (Kelley et al., 1987). We used a 402 

longitudinal multi-modal approach to better understand artifacts from process variability in 403 

the study of whole blood components, providing three important contributions to the study of 404 

the human immune system. First, we showed that a delay in processing venipuncture blood 405 

samples has profound consequences on immune cells. Global effects on the native biology 406 

were identified in multiple assays, in all 10 donors of the study, and in all cell types we 407 

identified. Second, our multi-modal and longitudinal data sets constitute over 10 billion 408 

measurements of immune features in a closed system. These data can be mined for 409 

correlative gene-gene, gene-protein, ligand-receptor, and pathway interactions from which 410 

testable hypotheses can be derived. Furthermore, as these activities relate to potentially 411 

confounding pre-analytical artifacts, these data may enable a qualification of results from 412 

other studies that are subject to variable or sub-optimal processing conditions. Third, the 2-413 

hour time points provide a large, high-quality, multi-modal data set of 10 human donors. 414 

These 2-hour data are temporally close to the in vivo biology, consisting of flow cytometry 415 

for major PBMC populations, single-cell RNA-sequencing of ~8000 quality cells per donor, 416 

targeted plasma proteomics of >1000 targets, and targeted bulk transcript analysis of >600 417 

targets on some donors. Thus, this resource provides various opportunities to investigate a 418 

multi-modal dataset derived from the components of freshly isolated and ex vivo aged 419 

human blood.  420 
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While the data from typical flow cytometry implied that commonly used cell surface proteins 421 

and the cells themselves are stable, both the targeted as well as whole transcriptome 422 

studies confirm large-scale changes in gene regulation. After an 18-hour delay in blood 423 

processing, transcriptional states in all cell types were fundamentally altered. Given the 424 

length of time, this might be expected. But more concerning are the changes occurring after 425 

just 4 and 6 hours post-draw, as evidenced by the changes in cellular state apparent 426 

through single-cell RNA-sequencing. Our findings implicate an up-regulation in inflammation 427 

and stress-activation (NFKBIA, HIF1A, MAP3K8), perhaps in response to deteriorating 428 

environmental conditions (Paardekooper et al., 2018; Rius et al., 2008). Under these 429 

conditions, the appearance of new clusters in tSNE visualization of gene expression data 430 

likely results from a large number of cells altering their gene expression profiles ex vivo 431 

rather than outgrowth of more rare pre-existing cells faithfully representing an in vivo 432 

activation state. If true, this fact underscores the challenges of using tSNE/UMAP 433 

classification of the data as an analysis mode, as cluster occupancy can be confounded by 434 

blood processing delay. The preferred alternative is to identify cellular identity on a per-cell 435 

basis first, and then compare the transcriptomic state of equivalent cell types based on the 436 

experimental variable (e.g. disease state); in this case the sample processing metadata, 437 

such as blood processing delay, must be carefully tracked and corrected for in the analytical 438 

model. 439 

As predicted from our gene expression data, the plasma proteome exhibited dramatic 440 

changes in concert with the PBMC transcriptomics data. Correlation analysis targeted at 441 

identifying induction of transcripts coding for proteins that were coordinately increased 442 

revealed a number of interesting relationships, including some proteins known to be highly 443 

relevant to immunity (PTPN1, NFKBIE, TR, BACH1, CD69). However, it was apparent that 444 

anti-correlations were more prevalent than correlations, perhaps reflecting negative 445 

feedback in the presence of elevated protein signal, positive feed-forward when signal 446 

becomes limiting, or unlinked transcriptional regulation in the context of pre-formed protein. 447 

This result underscores the importance of studying protein pro-forms and post-translational 448 

regulation in order to establish explicit relationships between transcripts and their bioactive 449 

protein products. 450 

Efforts to understand the effect of processing delay on various plasma and serum analytes 451 

have existed for some time (Ignjatovic et al., 2019; Ono et al., 1981), though typically limited 452 

to individual proteins or metabolites of known clinical interest. We have generated a unique 453 

public human proteomic data set, consisting of over 62,000 data points linked to PBMC flow 454 

cytometry and transcriptomics. The clearest signal in the targeted proteomics relates to 455 

platelet biology. This includes CD40L, PDGFβ, ANGPT1, STK4, and others, supportive of a 456 

hypothesis of early and ongoing platelet activation which likely results in either direct and 457 

indirect protein release or increased platelet contamination in the plasma isolation. Blood for 458 

the proteomics studies was drawn into K2-EDTA tubes, the recommended anticoagulant for 459 

the assay and consistent with common practice. EDTA has previously been reported to elicit 460 

aggregation of platelets in vitro (Pegels et al., 1982). Of note, platelet aggregation in whole 461 

plasma is also not inhibited by heparin (Saba et al., 1984), such that the platelet response to 462 

blood draw or hemostasis may elicit or potentiate divergence from native biology. Therefore, 463 

our data suggests that some of the most severe changes in plasma proteomics result from 464 

the basic process of obtaining the sample. This activity has the potential for cascading 465 

effects on PBMC response, including by binding to and activating various leukocytes, 466 

serving as a physical mark of inflammation, and providing key signals such as CD40 ligand, 467 

CCL5, and CXCL4 (Gaertner and Massberg, 2019). These changes are exacerbated by 468 

time delay, thus highlighting the need for rapid and consistent processing. 469 

In order to mitigate these confounding effects, the optimal solution is to process the samples 470 

consistently and with as little delay as possible. Previous studies on bulk PBMC have 471 

suggested that storing samples on ice may mitigate the effects of delayed blood processing 472 
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(Goods et al., 2018), and so to test this hypothesis we kept some of the whole blood 473 

samples at 4°C in a parallel experiment (data not shown). We found this mitigation effort to 474 

have mixed results, with an unexpected decrease in PBMC yield and hemolysis occurring in 475 

some samples. Therefore, our data indicates processing within 4 hours should become 476 

standard practice for assays using human blood components, particularly those employing 477 

deep transcriptional or proteomic profiling. This may not be possible in all cases. In these 478 

situations, our data provide a comprehensive set of landmarks to qualify the analysis for 479 

processing delay artifacts. 480 

Embedded within the larger resource provided here, the 2-hour cytometry, proteomic, and 481 

transcriptomic data sets from 10 donors is a substantial resource in its own right, with 482 

minimal and controlled processing delay. The available public cytometry and single-cell 483 

RNA-seq data on human PBMC continue to grow in size and complexity, but to our 484 

knowledge no study integrates these two modalities with deep proteomics at this scale. 485 

Furthermore, though blood processing delay results in immune processes that may 486 

misrepresent or obscure the true biology being studied, we suspect that in many cases this 487 

‘artifactual’ biology echoes physiologic processes. This potential was highlighted by the 488 

broad down-regulation of multiple GIMAP family genes in many cell types. As these are 489 

known to relate to apoptosis in T cells (Filén and Lahesmaa, 2010), this observation is 490 

interesting. However, our data also opens the possibility of a similar role in myeloid cells, for 491 

which there is little existing data (Hellquist et al., 2007; Krücken et al., 1997). Therefore, the 492 

multi-modal data set is a substrate for generating testable hypotheses, so long as the 493 

limitations of an ex vivo artificial system are fully accepted. In particular, blood flow has 494 

ceased and cells may aggregate by settling, there is no regulation of blood gases, and 495 

temperature is well below physiologic range. When approached with an understanding of 496 

the experimental conditions employed, we believe these data can be used productively, for 497 

example in the study of transcriptional co-regulation, correlations among proteins and 498 

between proteins and genes, as well as novel associations of genes with cell types. 499 

Recently, Massoni-Badosa et al. published a complementary effort on the effect of blood 500 

processing delay (Massoni-Badosa et al., 2020), with differences in the assays, cell 501 

numbers, and analyses performed. Our overall conclusions align with theirs, in the clear 502 

risks to data interpretation from processing delay and non-uniformity, though we did not 503 

recognize a global or cell type-specific reduction in transcript levels (Supplemental Figure 504 

S4). Nonetheless, the practical realities of obtaining clinical samples will ultimately dictate 505 

how and when they are processed, and the data generated should be analyzed with an 506 

appreciation for the unknown and/or variable amount of delay in processing. While this 507 

naturally applies to myriad ongoing and historical clinical studies, it is also keenly relevant to 508 

public health imperatives such as the SARS-CoV2 pandemic, for which process 509 

standardization may be outweighed by the benefit of sample acquisition. Accounting for 510 

such practicalities in a data-driven manner will provide broad and on-going benefit for 511 

improving the caliber of putative therapeutic targets, by lowering confidence in those subject 512 

to ex vivo regulation and thereby increasing confidence in the others. We hope these data 513 

will also spur a renewed focus on process standardization and optimization to ultimately 514 

improve data quality and physiologic relevance at the point of data generation. With over 1 515 

billion data points across several -omic platforms, our resource offers a rich data repository 516 

upon which to qualify existing data, benchmark and train subsequent studies, and derive 517 

novel hypotheses. 518 

519 
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Main figure and legends 551 

Figure 1 - Flow cytometry suggests minimal effects from PBMC processing delay  552 

(A) Schematic of the designs of Experiment 1 and Experiment 2. 553 

(B-F) Flow cytometry data from Experiment 2 were gated by traditional methods and the 554 

percent change in frequency was calculated for each population relative to the 2-hour PBMC 555 

processing time point. Because of technical artifacts, the 6-hour time points of donors A and 556 

B were excluded from analysis. 557 

(B) Heat map of the median percent change in frequency across the donors in Experiment 558 

2. 559 

(C-F) The percent change in frequency for selected populations in individual donors as a 560 

function of time of PBMC processing post-blood draw. Data points connected by a line are 561 

from sample aliquots derived of the same blood draw pool. 562 

See also Supplemental Figures S1 and S2. 563 

 564 

Figure 2 - Bulk transcriptomics reveal profound changes in gene activity 565 

PBMC in Experiment 1 were prepared from whole blood at various times after blood draw 566 

and assayed by targeted transcriptomics in bulk using Nanostring nCounter.  567 

(A) Targeted gene expression data colored by normalized counts relative to the mean of 568 

each gene across all samples. Genes (columns) are organized by unsupervised hierarchical 569 

clustering (dendrogram at top), and shown by time point (row groupings) post-blood draw 570 

and donor (rows). The boxes approximate subsets of gene that exhibit a pattern of inversion 571 

of expression between 8 and 18 hours post-blood draw (solid line) or an induction and re-572 

normalization pattern (dashed line). 573 

(B) Volcano plot of all targeted gene expression transcripts in samples from Experiment 1 at 574 

each time point compared to 2 hours post-draw. Adjusted p-value cutoffs of 0.05 (red) and 575 

0.01 (black), and log2 fold changes of |1.5| (blue) are indicated by dashed lines. A selection 576 

of the highest fold change transcripts are labeled with their gene names. 577 

(C-D) Data were analyzed using a generalized linear mixed effects model (details found in 578 

the Methods) and genes exhibiting significant change across the time course were selected 579 

for a similar and consistent pattern of up-regulation (C) or down-regulation (D). Shaded 580 

areas around the line indicate the 95% confidence interval. Changes are significant where 581 

the 95% CI does not include zero (dashed line). 582 

See also Supplemental Figure S3 and Supplemental Table S1. 583 

 584 

Figure 3 - The plasma proteome reflects platelet and immune activation 585 

Plasma proteins were quantitated by a dual-antibody proximity extension assay (Olink). 586 

(A) Data from all 10 donors were combined for analysis using a generalized linear mixed 587 

effects model (GLMEM) and only proteins exhibiting significant change are shown. Proteins 588 

(columns) are organized by unsupervised hierarchical clustering (dendrogram at top), shown 589 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2020.10.18.344663doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.18.344663


15 

by time point (row groupings) post-blood draw and donor (rows), and colored by normalized 590 

change from the mean for each time point relative to the 2-hour time point. 591 

(B-C) All proteins in Experiment 1 (B) and Experiment 2 (C) were plotted for fold change and 592 

adjusted p-value (Benjamini-Hochberg FDR) as calculated using a GLMEM model, and 593 

colored by time point. 594 

(D) A selection of proteins showing the greatest fold change in combined analysis were 595 

plotted by time point and shaded regions indicate the 95% confidence interval. Where both 596 

experiments identified a significant fold change for a given protein but those fold changes 597 

differed between experiments according to the GLMEM model, two lines are shown (dashed 598 

for Experiment 1, dotted for Experiment 2); otherwise a single line (solid) representing data 599 

from both experiments is shown. 600 

See also Supplemental Table S2. 601 

 602 

Figure 4 - PBMC exhibit severe time-dependent changes after blood draw 603 

The single-cell RNA-sequencing normalized gene expression matrices from each sample 604 

were identified for donor and time point and aggregated per experiment (Experiment 1: 605 

donors 2-7; Experiment 2: donors A-D). The multidimensional data was displayed in two 606 

dimensions using tSNE, colored as indicated. The data are overlaid in sequence with the 607 

latest time point (18hr) on top, obscuring some data points. Additional details can be found 608 

in the Methods. 609 

(A-B) tSNE visualizations colored by cell type for Experiment 1 (A) and Experiment 2 (B). 610 

Individual cells were assigned a cell type label independently of clustering or tSNE 611 

visualization. 612 

(C-F) tSNE visualizations colored by time point for Experiment 1 (C) and Experiment 2 (D). 613 

The tSNE maps in (C) and (D) were split out by donor for Experiment 1 (E) and Experiment 614 

2 (F). 615 

See also Supplemental Figures S4 and S5, and Supplemental Table S3. 616 

 617 

Figure 5 - Individual cell types undergo distinct but analogous paths away from the 618 

native transcriptional state over time 619 

Single-cell RNA-sequencing data from Experiment 2 was analyzed as in Figure 4 and the 620 

Methods. 621 

(A-B) Data were isolated based on reference-based cell type, shown on the global tSNE 622 

map (A), and displayed separately based on time point using the same tSNE coordinates 623 

(B). Colors in (A) are assigned by cell type label and are arbitrary. Each color in (B) 624 

represents a different Louvain cluster.  625 

(C) The number of cells occupying each cluster were enumerated and the counts (y-axis) 626 

plotted per cell type relative to the time after blood draw (x-axis) for each donor. Colors 627 

match the Louvain cluster colors in (B). Thicker lines represent the mean for all donors and 628 

thinner lines represent single donors. The 2-4 hour range highlighted in pink shows a period 629 

of apparent stability prior to more extreme divergence in cluster occupancy after 4 hours. 630 
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See also Supplemental Figure S6 and Supplemental Tables S3, S4, and S5. 631 

 632 

Figure 6 - Deconvolution of bulk transcriptomics by paired single-cell RNA-seq 633 

enables identification of cell-type-specific features 634 

(A) Transcripts from bulk transcriptomics data analyzed as in Figure 2 were selected based 635 

upon increasing expression over time and consistent dynamics across all six donors in 636 

Experiment 1. Charts show normalized counts for hours since blood draw for the individual 637 

donors, indicated by color. 638 

(B) Single-cell RNA-seq data (analyzed as in Figure 4) from all 10 donors in both 639 

experiments were queried for transcripts selected in (A) and plotted by cell type. Charts 640 

show the normalized and scaled RNA count (y-axis) for hours since blood draw (x-axis). 641 

Individual donors are indicated by color. 642 

See also Supplemental Tables S1 and S4. 643 

 644 

Figure 7 - Multi-modal analysis reveals unanticipated protein-gene-cell relationships 645 

(A-B) Plasma proteins from proteomics data analyzed as in Figure 3 were selected based 646 

upon increasing expression over time and across all 10 donors in both experiments. 647 

Normalized protein expression (y-axis) over time since blood draw (x-axis) is shown, with 648 

individual donors indicated by color. 649 

(C-D) Single-cell RNA-seq data (analyzed as in Figure 4) from all 10 donors in both 650 

experiments were queried for transcripts encoding TNFSF14 and its receptors (C) or 651 

BACH1 and a selection of its transcriptional targets related to oxidative stress (D), and 652 

plotted by cell type. Charts show the normalized and scaled RNA count (y-axis) for hours 653 

since blood draw (x-axis). Individual donors are indicated by color. 654 

See also Supplemental Figure S7 and Supplemental Table S8. 655 

 656 

 657 
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Supplemental tables 658 

Supplemental Table S1, Related to Figure 2, Figure 6, and Supplemental Figure S3 – 659 

Nanostring bulk transcriptomics 660 

Supplemental Table S2, Related to Figure 3, Supplemental Figure S7, and 661 

Supplemental Table S8 – Olink proteomics 662 

Supplemental Table S3, Related to Figure 4 and Supplemental Figure S4 – single-cell 663 

RNA sequencing, per-cell metrics and metadata 664 

Supplemental Table S4, Related to Figure 5, Figure 6, and Supplemental Figure S5 – 665 

single-cell RNA sequencing, differentially expressed genes relative to the 2-hour time 666 

point, by cell type 667 

Supplemental Table S5, Related to Figure 5 – single-cell RNA sequencing, pathway 668 

analysis 669 

Supplemental Table S6, Related to Supplemental Figure S7, and Supplemental Tables 670 

S2 and S4 – Protein-transcript correlations 671 

Supplemental Table S7 – donor information 672 

Supplemental Table S8, Related to Figure 5 and Supplemental Figure S5 – single-cell 673 

RNA sequencing, differentially expressed genes by cell type classification 674 

 675 

 676 

 677 

Supplemental figure and legends 678 

Supplemental Figure S1, Related to Figure 1 – PBMC yield and viability, flow 679 

cytometry gating 680 

(A-B) PBMC were isolated from whole blood by ficoll separation at the indicated time points 681 

after blood draw and assessed for yield (A) and viability (B). 682 

(C-D) 5x106 PBMC isolated as in panels A-B and frozen in liquid nitrogen were thawed and 683 

assessed for yield (C) and viability (D) prior to downstream assays. “% recovery” was 684 

calculated as the recovery of live PBMC divided by 5x106. 685 

(E-F) Flow cytometry gating schemes for Experiment 1 (E) and Experiment 2 (F). Orange 686 

labels indicate gates used to determine population frequencies. The gate labeled “cleanup” 687 

in Experiment 2 was used to remove dye aggregates. 688 

 689 

Supplemental Figure S2, Related to Figure 1 – Flow cytometry frequencies 690 

Flow cytometry data were gated by traditional methods for major PBMC populations, as in 691 

Supplemental Figure 1. Because of technical artifacts, the 6-hour time points of donors A 692 

and B were excluded from analysis. 693 

(A-B) The percent change in frequency was calculated for each population relative to the 2-694 

hour PBMC processing time point and population medians were calculated. Data are 695 

displayed as a heat map for Experiment 1 (A) or Experiment 2 (B). 696 
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(C-D) Population frequencies are shown per donor as a percent of live cells in Experiment 1 697 

(C) or percent of CD45+ cells in Experiment 2 (D). 698 

 699 

Supplemental Figure S3, Related to Figure 2 and Supplemental Table S1 – Nanostring 700 

bulk transcriptomics principle components analysis 701 

PBMC in Experiment 1 were prepared from whole blood at various times after blood draw 702 

and assayed by targeted transcriptomics in bulk using Nanostring nCounter. The normalized 703 

counts were analyzed by principle components analysis and colored by donor (A) or by time 704 

point (B). 705 

 706 

Supplemental Figure S4, Related to Figure 4 and Supplemental Table S3 – Single-cell 707 

RNA sequencing, technical metrics 708 

Single-cell RNA-sequencing technical metrics were compiled for Experiment 1 (A-D) and 709 

Experiment 2 (E-H) and categorized by cell type, as assigned by Seurat-based reference 710 

alignment (see Methods for details). 711 

The number of quality singlets (A, E), mean mitochondrial DNA (B, F), features (C, G), and 712 

UMI (D, H) were quantified per cell type and colored by donor. 713 

 714 

Supplemental Figure S5, Related to Figure 4 and Supplemental Table S3 – Single-cell 715 

RNA sequencing, tSNE individually by time 716 

The single-cell RNA-sequencing normalized gene expression matrices from each sample 717 

were identified for donor and time point and aggregated per experiment. The 718 

multidimensional data was displayed in two dimensions using tSNE, split out by time post-719 

blood draw for Experiment 1 (A) and Experiment 2 (B), and colored by Louvain cluster. 720 

Additional details can be found in the Methods. 721 

 722 

Supplemental Figure S6, Related to Figure 5 and Supplemental Tables S3, S4, and S5 723 

– Single-cell RNA sequencing, differentially expressed genes 724 

Differential expression in genes at each time point relative to 2 hours post-draw are 725 

represented as log2 fold change (x-axis) vs. log10 adjusted p-value (y-axis) (see the 726 

Methods for details). Blue dashed lines indicate log2 fold change of |1.1| and red dashed 727 

lines indicate adjusted p-values of 0.05 and 0.01. For visualization purposes, adjusted p-728 

values at zero are set to the non-zero minimum of all other adjusted p-values and divided by 729 

two. Cell types not represented did not have differentially expressed genes (after p-value 730 

adjustment). 731 

(A-C) Differential expression in healthy (A) and SLE (B) donors of Experiment 1 and healthy 732 

donors of Experiment 2 (C). The legend in panel (A) also applies to panel (B). 733 

 734 
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Supplemental Figure S7, Related to Figure 7, and Supplemental Tables S2, S4, and S6 735 

– Protein-transcript correlations 736 

Proteins identified in Figure 3 were filtered for significance and directionality across the 737 

entire time course and the corresponding transcripts were similarly assessed by cell type. 738 

(A) Proteins of increasing and decreasing abundance were scored for correlation (black) 739 

with the corresponding transcript in a least one cell type. Protein-transcript pairs that were 740 

not correlated (gray) could be anti-correlated, not significant, or have missing transcript data 741 

(for example, from drop-outs in the single-cell RNA-sequencing data). 742 

(B) To assess whether protein-transcript correlations were common to many cell types or 743 

typically restricted to a limited number of cell types, increasing (orange) and decreasing 744 

(purple) proteins were scored for correlation (solid color) or anti-correlation (hashed color) 745 

with their corresponding transcript in each cell type and the count of each correlation was 746 

tallied across the cell types. Because proteins are scored if they are correlated or anti-747 

correlated in at least one of fourteen populations, a single protein could be scored as both. 748 

(C-D) To assess whether specific cell types had a propensity or bias in their correlations, 749 

correlated (solid color), anti-correlated (hashed color), and not correlated proteins (gray) 750 

were tallied by cell type for proteins increased (C, orange) and decreased (D, purple) over 751 

the time course. 752 

 753 

Supplemental Figure S8, Related to Supplemental Tables S2 and S4 – Analysis of 754 

technical variance in proteomics and single-cell RNA-sequencing assays 755 

(A-B) To assess the technical variance of the plasma protein assay, plasma samples from 756 

six donors from both 2 hours and 6 hours post-blood draw were compared across three 757 

different assay plates. The data are shown as MA plots (A) and the distributions of fold 758 

changes (B) in plate-to-plate comparisons. The red dash lines indicate the log2 fold 759 

change cutoff (0.585) used in the study. 760 

(C-D) To assess the technical variance of the single-cell RNA-sequencing assay, replicate 761 

aliquots of PBMC from a non-study sample were assayed in three different wells (see 762 

Methods/Single Cell Transcriptomics). Average transcript intensities were calculated from 763 

cells with non-zero counts and fold changes between replicates were calculated. The data 764 

are shown as MA plots (A) and the distributions of fold changes (B) in well-to-well 765 

comparisons. The red dash lines indicate the log2 fold change cutoff (1.1) used in the 766 

study.    767 

  768 
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 769 

Methods 770 

Resource availability 771 

Lead Contact 772 

Further information and requests for resources and reagents should be directed to and will 773 

be fulfilled by the Lead Contact, Adam Savage (adam.savage@alleninstitute.org). 774 

Materials Availability 775 

No materials were generated for this study. 776 

Data and Code Availability 777 

Flow cytometry .fcs data files are available on request. Nanostring bulk transcriptomics and 778 

Olink proteomics data are provided in Supplemental Tables S1 and S2, respectively. All 779 

single-cell RNA-sequencing data have been deposited at GEO (GSE156989). 780 

Transcriptomics and proteomics data are available for exploration at 781 

http://bloodprocessingdelay.allenimmunology.org. 782 

Methods Details 783 

Donors and sample handling 784 

Blood samples were obtained from healthy (no diagnosis of disease, donors 2-4 and A-D) 785 

and non-matched donors with systemic lupus erythematosus (SLE, donors 5-7) 786 

(Supplemental Table S7), from the Benaroya Research Institute (Seattle, WA) or 787 

Bloodworks Northwest (Seattle, WA) through protocols approved by the relevant institutional 788 

review boards. Blood was drawn into BD NaHeparin vacutainer tubes (for PBMC; BD 789 

#367874) or K2EDTA vacutainer tubes (for plasma; BD #367863) and, upon arrival at the 790 

processing lab, all NaHeparin tubes for each donor were pooled into a sterile plastic 791 

receptacle to establish one common pool for all time points and stored at room temperature 792 

for the duration. PBMC isolation and plasma processing was started at 2, 4, 6, 8, and 18 793 

hours post-draw (Experiment 1) or 2, 4, 6, 10, 14, and 18 hours post-draw (Experiment 2). 794 

For Experiment 1, each donor sample was processed by a single operator on a separate 795 

day, and thawed PBMC were assayed by cytometry and single-cell RNA-sequencing in 796 

three batches (donor 2, donors 3-4, and donors 5-7). For Experiment 2, all four donors were 797 

processed on the same day by a team of operators, and thawed PBMC were assayed by 798 

cytometry and single-cell RNA-sequencing in one batch. Due to a PBMC processing error in 799 

Experiment 2, flow cytometry and single-cell RNA-sequencing was not available for the 6-800 

hour time point from donors A and B. This resulted in 30 samples of bulk transcriptomics 801 

(Experiment 1 only), 52 samples of flow cytometry and single-cell RNA-sequencing, and 54 802 

samples of plasma proteomics data. 803 

For PBMC isolation, at each time point the pool of blood was gently swirled until fully mixed, 804 

about 30 times, and a volume of blood was removed and combined with an equivalent 805 

volume of room temperature PBS (ThermoFisher #14190235). PBMC were isolated using 806 

one or more Leucosep tubes (Greiner Bio-One #227290) loaded with 15 mL of Ficoll 807 

Premium (GE Healthcare #17-5442-03) to which a 3 mL cushion of PBS had been slowly 808 

added on top of the Leucosep barrier. The 24-30 mL diluted whole blood was slowly added 809 

to the tube and spun at 1000xg for 10 minutes at 20°C with no brake. PBMC were recovered 810 

from the Leucosep tube by quickly pouring all volume above the barrier into a sterile 50 mL 811 

conical tube. 15 mL cold PBS+0.2% BSA (Sigma #A9576; “PBS+BSA”) was added and the 812 

cells were pelleted at 400xg for 5-10 minutes at 4-10°C. The supernatant was quickly 813 

decanted, the pellet dispersed by flicking the tube, and the cells washed with 25-50 mL cold 814 
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PBS+BSA. Cell pellets were combined, if applicable, the cells were pelleted as before, 815 

supernatant quickly decanted, and residual volume was carefully aspirated. The PBMC were 816 

resuspended in 1 mL cold PBS+BSA per 15 mL whole blood processed and counted with a 817 

ViCell (Beckman Coulter) using VersaLyse reagent (Beckman Coulter #A09777) or with a 818 

Cellometer Spectrum (Nexcelom) using Acridine Orange/Propidium Iodide solution. PBMC 819 

were cryopreserved in Cryostor10 (StemCell Technologies #07930) or 90% FBS 820 

(ThermoFisher #10438026) / 10% DMSO (Fisher Scientific #D12345) at 5x106 cells/mL by 821 

slow freezing in a Coolcell LX (VWR #75779-720) overnight in a -80°C freezer followed by 822 

transfer to liquid nitrogen.  823 

For plasma isolation, the K2-EDTA source tube was gently inverted 10 times and the 824 

appropriate volume of whole blood was extracted using an 18-gauge needle and syringe, 825 

and transferred to a similar plastic tube with no additives (Greiner Bio-One #456085). The 826 

blood was centrifuged at 2000xg for 15 minutes at 20°C with a brake of 1, and 80-90% of 827 

the plasma supernatant was removed by careful pipetting for immediate freezing at -80°C. 828 

Plasma was assayed after the first freeze/thaw. 829 

Flow cytometry 830 

PBMCs were removed from liquid nitrogen storage and immediately thawed in a 37°C water 831 

bath. Cells were diluted dropwise with 37°C AIM V media (Thermo Fisher Scientific 832 

#12055091) up to a final volume of 10 mL. A single wash was performed in 10 mL of 833 

PBS+BSA, pelleting cells at 400xg for 5-10 minutes at 4-10°C. PBMCs were resuspended 2 834 

mL in PBS+BSA, counted on a ViCell or Cellometer Spectrum, as above, and 1x106 cells 835 

were incubated sequentially or together with Human Trustain FcX (BioLegend #422302) and 836 

Fixable Viability Stain 510 (BD #564406), on ice and according to manufacturer’s 837 

instructions. Cells were washed with PBS+BSA and stained with a master mix cocktail of 838 

antibodies on ice for 25-30 minutes. Experiment 1 and Experiment 2 were assayed by flow 839 

cytometry using a 12-target panel and a 24-target panel, respectively (Key Resources 840 

Table). Cells were washed with PBS+BSA and fixed with 4% paraformaldehyde (Electron 841 

Microscopy Sciences #15713) for 12-15 minutes at room temperature. Cells were washed 842 

with PBS+BSA, resuspended in PBS+BSA, and collected on a BD Symphony cytometer. 843 

After compensation, cytometry data was pre-processed to remove unrepresentative events 844 

due to instrument fluidics variability (time gating), to exclude doublets (by FSC-H and FSC-845 

W), and to exclude cells exhibiting membrane permeability (live/dead gating) prior to 846 

quantification using BD FlowJo software. Gating examples are provided in Supplemental 847 

Figure 1E-F. The percent change in frequency was calculated per cell type to quantify the 848 

observed cell frequency changes along the variable of time, along with the corresponding 849 

change in median frequencies across all samples. 850 

Bulk transcriptomics 851 

For Experiment 1, 2x105 fresh PBMC were pelleted, resuspended in Qiagen buffer RLT 852 

(Qiagen #79216), and quick frozen immediately at -80°C for assay on the Nanostring 853 

nCounter platform, performed as a fee-for-service by Nanostring using their standard 854 

protocols for the nCounter Gene Expression – Hs Immunology v2 CodeSet assay. 855 

Proteomics 856 

Plasma samples were assayed using the Olink Proximity Extension assay, run on the 857 

Fluidigm Biomark system. They were submitted to Olink Boston (Experiment 1) or Olink 858 

Sweden (Experiment 2). Patient samples were distributed evenly across plates, and all 859 

timepoints per patient were run on the same plate, with randomized well locations. Samples 860 

were assayed using the Olink Discovery Assay which encompasses all proteins across 13 861 

panels (Cardiometabolic (V.3603), Cardiovascular II (V.5006), Cardiovascular III (V.6113), 862 
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Cell Regulation (V.3701), Development (V.3512), Immune Response (V.3202), Inflammation 863 

(V.3021), Metabolism (V.3402), Neuro Exploratory (V.3901), Neurology (V.8012), Oncology 864 

II (V.7004), Oncology III (V.4001), Organ Damage (V.3311)). Data were normalized by Olink 865 

using an Olink-provided plasma plate bridging control, three positive controls, and three 866 

background controls. Samples reported below the stated Limit of Detection were removed 867 

from our analysis. 868 

Single Cell Transcriptomics 869 

PBMC were thawed as described in the Methods for flow cytometry and the same vial of 870 

cells was used for flow cytometry and single-cell RNA-sequencing. Single-cell RNA-seq 871 

libraries were generated using the 10x Genomics Chromium 3’ Single Cell Gene Expression 872 

assay (#1000075 or #1000121) and Chromium Controller Instrument according to the 873 

manufacturer’s published protocol. 16,000 cells from each PBMC sample were loaded into a 874 

separate Chromium Single Cell Chip B (10x Genomics #1000073) well targeting a recovery 875 

of 10,000 cells. Gel Beads-in-emulsion (GEMs) were then generated using the 10x 876 

Chromium Controller. The resulting GEM generation products were then transferred to strip 877 

tubes and reverse transcribed on a C1000 Touch Thermal Cycler programmed at 53°C for 878 

45 minutes, 85°C for 5 minutes, and then held at 4°C. Following the reverse transcription 879 

incubation, GEMs were broken and the pooled single-stranded cDNA fractions were 880 

recovered using Silane magnetic beads (Dynabeads MyOne SILANE #37002D). Purified 881 

barcoded, full-length cDNA was then amplified with a C1000 Touch Thermal Cycler 882 

programmed at 98°C for 3 minutes, 11 cycles of (98°C for 15 seconds, 63°C for 20 seconds, 883 

72°C for 1 minute), 72°C for 1 minute, and then held at 4°C. Amplified cDNA was purified 884 

using SPRIselect magnetic beads (Beckman Coulter #22667) and a 1:10 dilution of the 885 

resulting cDNA was run on a Bioanalyzer High Sensitivity DNA chip (Agilent Technologies 886 

#5067-4626) to assess cDNA quality and yield. A quarter of the cDNA sample (10 ul) was 887 

used as input for library preparation. Amplified cDNA was fragmented, end-repaired, and A-888 

tailed in a single incubation protocol on a C1000 Touch Thermal Cycler programmed at 4°C 889 

start, 32°C for 5 minutes, 65°C for 30 minutes, and then held at 4°C. Fragmented and A-890 

tailed cDNA was purified by performing a dual-sided size-selection using SPRIselect 891 

magnetic beads (Beckman Coulter #22667). A partial TruSeq Read 2 primer sequence was 892 

then ligated to the fragmented and A-tailed end of cDNA molecules via an incubation of 893 

20°C for 15 minutes on a C1000 Touch Thermal Cycler. The ligation reaction was cleaned 894 

using SPRIselect magnetic beads (Beckman Coulter #22667). PCR was performed to 895 

amplify the library and add the P5 and indexed P7 ends (10x Genomics #1000084), using a 896 

C1000 Touch Thermal Cycler programmed at 98°C for 45 seconds, 13 cycles of (98°C for 897 

20 seconds, 54°C for 30 seconds, 72°C for 20 seconds), 72°C for 1 minute, and then held at 898 

4°C. PCR products were purified by performing a dual-sided size-selection using SPRIselect 899 

magnetic beads (Beckman Coulter #22667) to produce final, sequencing-ready libraries. 900 

Final libraries were quantified using Picogreen and their quality was assessed via capillary 901 

electrophoresis using the Agilent Fragment Analyzer HS DNA fragment kit and/or Agilent 902 

Bioanalyzer High Sensitivity chips. Libraries were sequenced on the Illumina NovaSeq 903 

platform using S4 flow cells. Read lengths were 28bp read1, 8bp i7 index read, 91bp read2. 904 

Computational Analysis 905 

Nanostring model 906 

The Nanostring platform was run on all timepoints from Experiment 1 (Subjects 2-7, 907 

Timepoints 2, 4, 6, 8, 18 hours). The data were normalized to Nanostring-provided control 908 

genes using the NanoStringNorm package (Waggott et al., 2012) and log-transformed (base 909 

2). Genes with zero expression in more than 20% of samples were removed from further 910 

analysis. Generalized linear mixed effect models (GLMEM) were fit to the expression data of 911 

individual genes, controlling for the fixed effects of sex (male vs. female) and binary 912 
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processing timepoints (4, 6, 8, 18 hours vs. 2-hour baseline), and subject-level random 913 

effects to account for individuals’ inherent variability, using Gaussian family distribution. All 914 

the models were built in the R library glmmTWB version 1.0.1. The log2 fold change from 915 

the baseline was evaluated by the corresponding time-related effect estimates. Multiple 916 

tests correction was applied to the p-values to control the false discovery rate (FDR) using 917 

Benjamini & Hochberg procedure (Benjamini and Hochberg, 1995). 918 

Proteomics 919 

Proteomics Model 920 

Plasma from Experiment 1 and Experiment 2 were submitted to Olink (Uppsala, Sweden) in 921 

one batch per experiment. All 2-hour samples from Experiment 1 were included in both 922 

batches as bridging controls. Proteins below the reported Limit of Detection or that exhibited 923 

more than 20% missingness or ranked in the lowest 20% among all proteins in expression 924 

(as defined by the sum of the corresponding normalized expression values) were 925 

disregarded from further evaluation. As recommended by Olink, expression values for each 926 

protein in Experiment 2 were subtracted by the corresponding protein-specific normalization 927 

factor, which was the median of the corresponding pair-wise expression difference as 928 

measured on the bridging controls between the two experiments. 929 

A protein-specific GLMEM was fit to each normalized protein, controlling for the fixed effects 930 

of sex (male vs. female), age (35-55 years old vs. 25-35 years old), disease status (SLE vs. 931 

healthy), study id (Experiment 2 vs. Experiment 1) and continuous processing delay (time 932 

point), and accounting for an individual’s inherent variability through subject-level random 933 

effects. To capture the study specific non-linear temporal effects, the cubic, quadratic or 934 

linear effect of processing time and its interaction with study id were evaluated in a step-935 

down approach using a likelihood ratio test. The dispersion was modeled as a function of 936 

plate, disease status and study id to allow non-constant variability. All the models were built 937 

in the R library glmmTWB version 1.0.1. We reported the average log2 fold-change in 938 

proteomic expression between later processing time points and the first time point (2-hour) 939 

along with the corresponding two-sided 95% CIs. Wald tests were conducted to assess 940 

significance of the change estimates and associated p-values. When a significant difference 941 

was found in the change estimates between the two studies due to experimental conditions 942 

unaccounted for, we reported study-specific change estimates. Multiple tests correction was 943 

applied to the p-values to control the FDR using Benjamini & Hochberg procedure 944 

(Benjamini and Hochberg, 1995). 945 

Proteomics Technical Precision 946 

Plasma samples from the six donors in Experiment 1 from the 2-hour and 6-hour post-blood 947 

draw time points were analyzed by Olink on three separate plates to determine the technical 948 

variance of the assay. The obtained abundance of each protein was corrected for plate 949 

effects by aligning the corresponding medians. The average and the log2 fold change of 950 

protein abundance were calculated between any two plates and summarized in 951 

Supplemental Figure 8. 952 

Single-Cell Transcriptomics 953 

scRNA-seq Pre-processing 954 

Binary Base Call (BCL) files were demultiplexed using the mkfastq function in the 10x Cell 955 

Ranger software (version 3.1.0), producing fastq files. Fastq files were then checked for 956 

quality (FastQC version 0.11.3) and run through the 10x Cell Ranger alignment function (cell 957 

ranger count) against the human reference annotation (Ensembl GRCh38). Mapping was 958 

performed using default parameters. Additional information about Cell Ranger can be found 959 
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at https://support.10xgenomics.com/single-cell-gene-expression/software. Upon completion, 960 

Cell Ranger produced an output directory per file that contains the following: bam file (binary 961 

alignment file), HDF5 file (Hierarchical Data Format) with all reads, HDF file containing just 962 

the filtered reads, summary report (html and csv), cloupe.cloupe (a file for the 10x Loupe 963 

visual browser). HDF5 files (filtered) were then uploaded into the R statistical programming 964 

language (version 3.6.0) using the Seurat package (version 3.0) where normalization, 965 

scaling, integration and reference-based label transfer was performed for cell 966 

typing/classification. 967 

scRNA-seq Cell Classification 968 

Individual HDF5 files were loaded into the R statistical programming language (version 969 

3.6.0) using Bioconductor (version 3.1.0) and the Seurat package (version 3.1.5). For 970 

simplicity, sample names were captured as a list in R and iteratively processed within a loop 971 

(refer to https://satijalab.org/seurat/ for more information). Within the loop, samples were 972 

normalized with the NormalizeData function followed by the FindVariableFeatures function 973 

with parameters: vst selection method and 2000 features. Label transfer was performed 974 

using previously published procedures (Stuart et al., 2019). Data was labeled with the 975 

Seurat reference dataset and checked for expected DEG by cell type (Supplemental Table 976 

S8). Labeling included the FindTransferAnchors and TransferData functions performed in 977 

the Seurat package. Labeling was performed in specified sequence where information 978 

acquired from the previous labeling was accumulated then set as anchors for the next 979 

sample, looping by time point across patients. The time point to time point variation first 980 

observed within the Nanostring data was used as the basis for this labeling strategy. 981 

After label transfer was complete, we calculated read depth, mitochondrial percentage, and 982 

number of UMIs per sample. Despite normalization being performed during the label transfer 983 

process, the raw counts were stored with cell labels. After labeling and metrics were 984 

recorded, samples were merged together in Seurat using the merge function. The merged 985 

data structure was normalized (using NormalizeData and FindVariableFeatures functions) 986 

and then saved as an RDS for further analysis. For confirmation of cell types, we used the 987 

FindMarkers function (Seurat) and the MAST package to identify DEGs for each identified 988 

cell type against all other cell types. Unsupervised cell clustering was also performed 989 

separately for Experiment 1 and Experiment 2 using the Louvain / KNN-based method in the 990 

Seurat package. 991 

scRNA-seq Differential Gene Expression Analysis 992 

Differential expression analysis from later timepoints compared to two hours was conducted 993 

on a per reference-based cell type basis and for selected timepoints on a per Louvain-994 

cluster basis using the MAST package (https://pubmed.ncbi.nlm.nih.gov/26653891/) and the 995 

FindMarkers function from the Seurat package (version 3.1.5). Because they were 996 

sequenced in different batches, differential expression was run separately for Experiment 1 997 

Healthy Donors, Experiment 1 SLE Donors, and Experiment 2 Healthy Donors.  998 

scRNA-seq Pathway Analysis 999 

Pathway analysis was performed on single-cell transcriptomics data from Experiment 2. 1000 

Individual cells were labeled by cell type and clustered as indicated in Methods/Single-Cell 1001 

Transcriptomics/Cell Classification. As an example of pathway analysis, two clusters 1002 

exhibiting extreme and inverse time-dependent bias (e.g. present in a cell type at 2 hours 1003 

but not present for the same cell type at 18 hours, and vice versa) were selected and the 1004 

corresponding data was submitted to Ingenuity Pathway Analysis (Qiagen, release: Summer 1005 

2020) using log2 fold change values and adjusted p-values calculated by differential gene 1006 

expression analysis. The clusters selected for analysis were (colors as shown in Figure 5B): 1007 
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magenta (“early”) and teal (“late”) from CD14+ Monocytes and, separately, pink (“early”) and 1008 

brown (“late”) from CD4+ memory T cells. 1009 

scRNA-seq Technical Precision 1010 

Three replicate aliquots of a non-study PBMC sample (Bloodworks Northwest, Seattle, 1011 

WA) were analyzed in three wells on a Chromium Single Cell Chip B to study the precision 1012 

of the technology. The average transcript intensity was calculated for each well from cells 1013 

detected in the well and having nonzero counts. The obtained transcript intensity was 1014 

corrected for well effects by aligning the corresponding medians of all transcripts. The 1015 

average and the log2 fold change of transcript intensity were calculated between any two 1016 

wells and summarized in Supplemental Figure 8.  1017 

Protein-transcript correlations 1018 

A total of 233 plasma proteins showed significant changes in any time point, of which 184 1019 

were unambiguously mapped to a single gene and detected by scRNA. The changes of 1020 

these 184 proteins were then modeled as linear functions of time (linear mixed models, fixed 1021 

effects: intercept and slope, random effects: intercept and slope). A total of 159 proteins 1022 

showed significant slope for time (p < 0.05 after multi-testing correction). Afterwards the 1023 

corresponding RNA expressions of the 159 proteins were modeled as linear functions of the 1024 

proteins for each cell type (linear mixed models, fixed effects: intercept and slope, random 1025 

effects: intercept and slope). The p values for the slope were then adjusted for both the 1026 

number of proteins (159) and the number of cell types (14) and thus a total of 2226 tests. 1027 

RNA and protein were considered as strongly correlated or anticorrelated if the adjusted p < 1028 

0.05. Benjamini & Hochberg procedure (Benjamini and Hochberg, 1995) was used for multi-1029 

testing correction.  1030 
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