
Phylogenetic placement of short reads
without sequence alignment

Matthias Blanke1,3 and Burkhard Morgenstern1,2,3

1University of Göttingen, Institute of Microbiology and Genetics,
Department of Bioinformatics,

2Campus-Institute Data Science (CIDAS),
Goldschmidtstr. 1, 37077 Göttingen, Germany

3International Max Planck Research School for Genome Science,
Am Fassberg 11, 37077 Göttingen, Germany

October 19, 2020

Abstract

Phylogenetic placement is the task of placing a query sequence
of unknown taxonomic origin into a given phylogenetic tree of a set
of reference sequences. Several approaches to phylogenetic placement
have been proposed in recent years. The most accurate of them need a
multiple alignment of the reference sequences as input. Most of them
also need alignments of the query sequences to the multiple alignment
of the reference sequences. A major field of application of phylogenetic
placement is taxonomic read assignment in metagenomics.

Herein, we propose App-SpaM, an efficient alignment-free algo-
rithm for phylogenetic placement of short sequencing reads on a tree
of a set of reference genomes. App-SpaM is based on the Filtered
Spaced Word Matches approach that we previously developed. Unlike
other methods, our approach neither requires a multiple alignment of
the reference genomes, nor alignments of the queries to the reference
sequences. Moreover, App-SpaM works not only on assembled refer-
ence genomes, but can also take reference taxa as input for which only
unassembled read sequences are available.
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The quality of the results achieved with App-SpaM is comparable
to the best available approaches to phylogenetic placement. However,
since App-SpaM is not based on sequence alignment, it is between one
and two orders of magnitude faster than those existing methods.

Background

Phylogeny reconstruction is a fundamental field of research in bioinformat-
ics [12]. Here, the basic task is to reconstruct a phylogenetic tree for a
set of nucleic-acid or protein sequences, representing their evolutionary his-
tory. With the amount of sequence data now available, and with the existing
knowledge about phylogeny, however, it is often neither necessary nor desir-
able to construct phylogenetic trees from scratch. If a reliable phylogenetic
tree is already known for a subset of the input sequences, then it is more
reliable and more efficient to find the position of the remaining sequences
within this existing tree. This procedure is called phylogenetic placement;
a number of algorithms have been proposed for this task during the last
years [25, 28, 7, 3].

In metagenomics studies, DNA from environmental samples is directly
sequenced to study microbial communities, without cultivating the sequenced
microbes [9, 35]. A fundamental step in metagenomics data analysis is to
assign sequencing reads from an environmental sample to known taxa. This
task is known as taxonomic read assignment. Numerous approaches have
been proposed for taxonomic read assignment, e.g. [34, 27, 33, 10] see [6] for
review.

Earlier approaches to taxonomic read assignment relied on database search
programs such as BLAST [1]. This idea has been implemented, for example
in the widely-used program MEGAN [15, 17, 16]. Since using BLAST became
too slow for the large sets of reads produced in metagenomic projects, k-mer
based programs have been developed, such as TETRA [37, 36], Kraken [38,
39] or CLARK-S [31]. This has been generalized to using so-called spaced-
words instead of contiguous k-mers [8, 14]. Most of the above methods classify
reads at predefined taxonomic levels, e.g. at the species or genus level. This
way, reads can be correctly classified, in principle, if reference genomes from
the corresponding taxonomic group are used. In metagenomics experiments,
however, it is common that reads from unknown species are sequenced, for
which no reference genomes are available from the same species or genus.
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In this case, reads should be assigned to deeper nodes or edges of the ref-
erence tree. This leads to the problem of phylogenetic placement of read
sequences [4].

Two recent approaches to this task are pplacer [26] and EPA [4]. These
programs are based on probabilistic models of nucleotide substitutions. For a
set of reference genomes, they require a multiple alignment of these genomes
– the reference MSA –, together with the reference tree. For each query
read, pplacer evaluates the posterior probability of its placement on each
edge in the reference tree with regard to the reference MSA. It uses several
heuristics to speed up the process and has a run time linear with respect
to the number of reference taxa, number of queries, and sequence lengths.
Similar to pplacer, the program EPA calculates the likelihood for each query
read at each possible edge in the reference tree. EPA-ng [3] is a newer version
of EPA that improves on and greatly accelerates EPA.

A more recently developed algorithm for phylogenetic placement of metage-
nomic reads is RAPPAS [23]. As the above mentioned programs, RAPPAS
needs a reference tree and a reference multiple alignment as input. Unlike
these previous methods, however, it does not align the read sequences to the
reference sequences or alignment. RAPPAS uses so-called phylo-k-mers, that
are calculated based on the reference tree and alignment in a preprocessing
step. For each column i of the reference alignment, for each edge e of the
reference tree and for each possible k-mer w, the program calculates the prob-
ability to see w at the corresponding position i in a hypothetical sequence
that would branch off from the reference tree at the edge e. If this probability
is above some threshold, the k-mer w is called a phylo-k-mer. In a prepro-
cessing step, RAPPAS assembles a database with all phylo-k-mers. Aligning
query reads to a reference alignment is a time-consuming step and has, in
addition, the potential to introduce errors. The alignment of reads against
the reference MSA is often performed with hmmalign [11, 13]. Alternatively,
phylogeny-aware alignment algorithms such as PaPaRa [5] or SEPP [28] can
be used.

In contrast to the above three methods, the recently proposed algorithm
APPLES [2] is a distance-based approach. APPLES does not require a MSA
of the reference sequences; in addition, it can take sets of unassembled reads
instead of assembled reference genomes as input. The program chooses place-
ment positions based on calculated distances between the reference genomes
and the query read sequences. The optimal placement position of a query is
the one that minimizes the least squares optimization between the calculated
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query-reference distances and the distances present in the tree.
In this paper, we present a new approach to phylogenetic placement of

metagenomic reads that we call Alignment-free phylogenetic placement al-
gorithm based on Spaced word Matches (App-SpaM). App-SpaM performs
phylogenetic placement without the need for aligned or assembled reference
or query sequences. It uses an approach that was originally implemented in
the program Filtered Spaced-Word Matches (FSWM) [21] to estimate phylo-
genetic distances between a query and the reference sequences. For two input
DNA sequences, FSWM estimates the average number of nucleotide substi-
tutions per position, since the two sequences have evolved from their last
common ancestor, based on so-called spaced-word matches, defined as simple
gap-free alignments of a fixed length, with matching nucleotides at certain
positions, defined by a binary pattern, and possible mismatches elsewhere.
This concept has already been extended to calculate distances between an
assembled genome from one species and a set of unassembled reads from a
second sequence, or between sets of unassembled reads from two genomes.
This adaptation of the program is called Read-SpaM [19].

For a set of reference genomes, a reference tree for these genomes and a
set of reads from a metagenomics experiment, App-SpaM uses spaced-word
matches to estimate pairwise distances between every query and every ref-
erence sequence. It can then use several fast heuristics to perform phyloge-
netic placement, based on phylogenetic distances calculated from spaced-word
matches, and based on the number of identified spaced-word matches. In ad-
dition to different versions of App-SpaM that we implemented, we used the
distances calculated from the spaced-word matches as input for APPLES.

Methods

As input, our approach takes a set of N reference sequences, an edge-weighted
phylogenetic tree T – the reference tree – with N leaves, where each leaf is la-
belled with one of the reference sequences, and a set of query read sequences.
Our algorithm can be divided into three consecutive steps: 1) First, we find
so-called spaced-word matches between every query and every reference se-
quence; 2) then we estimate the phylogenetic distance between every query
and reference sequence based on a ‘filtered’ subset of the identified spaced-
word matches 3) at last, we determine the optimal placement position for
each query sequence in the reference tree T .
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Definitions

For a set Σ of ‘characters’ called the ‘alphabet’, a sequence over Σ is an
ordered list of elements of Σ. For a sequence S, its length is denoted by
|S|, and for i ∈ {1, . . . , |S|}, the i-th element of S is denoted by S[i]. The
set of sequences of length n over Σ is denoted by Σn. In the following,
we are considering sequences over the set {0, 1} – so-called patterns –, over
the nucleotide alphabet A = {A,C,G, T} and over the extended nucleotide
alphabet A∗ = A∪ {∗}. Here, ‘∗’ is a symbol not contained in A, a so-called
wildcard character.

A spaced word is defined with respect to a given binary pattern P ∈
{0, 1}` of length `. A position j in the pattern is called a match position
if P [j] = 1 and a don’t care positions if P [j] = 0. The number of match
positions in a pattern P is called the weight of P . A spaced word W over
A with respect to P is defined as a sequence of length |P | over A∗, with
W [i] ∈ A if and only if i is a match position of P . We say that a spaced
word W occurs in a sequence S over A at some position i – or that (W, i) is
a spaced-word occurrence in S – if S[i+ j−1] = W [j] for all match positions
j of P .

For two sequences S1 and S2 and positions i1 and i2 in S1 and S2, respec-
tively, we say that there is a spaced-word match (SpaM) between S1 and S2

at (i1, i2), if S1[i1 + j − 1] = S2[i2 + j − 1] for all match positions j of P . In
other words, there is a SpaM at (i1, i2), if there is a spaced word W , such
that (W, i1) is a spaced-word occurrence in S1 and (W, i2) is a spaced-word
occurrence in S2. A spaced-word match with respect to P can, thus, be seen
as a local gap-free alignment of length |P | with matching nucleotides at the
match positions of P and possible mismatches at the don’t-care positions,
see Fig. 1 for an example. Furthermore, for a substitution matrix assigning a
score to any two symbols of the nucleotide alphabet A, we define the score of
a spaced word match as the sum of all substitution scores of nucleotide pairs
aligned to each other at the don’t care positions of P . Spaced-word matches
– called spaced seeds in this context – have been originally introduced in
sequence-database searching [24]; later they were applied in alignment-free
sequence comparison, to estimate phylogenetic distances between DNA and
protein sequences [30, 21, 20, 32], see [29] for a review.
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P : 1 1 0 1 0 0 1

S1 : T G A T T G A C C A C T C

S2 : A C G A T C G A T C G A

P : 1 1 0 1 0 0 1

Figure 1: Spaced-word match (SpaM) between two DNA sequences S1 and S2

at (3, 4) with respect to a binary pattern P = 1101001, representing match
positions (‘1’) and don’t-care positions (‘0’). The same spaced word AT*G**C

occurs at position 3 in S1 and at position 4 in S2. A SpaM corresponds to
a local gap-free pairwise alignment with matching nucleotides at all match
positions of P , while mismatches are allowed at the don’t-care positions.

Spaced-word matches between query and reference se-
quences

In a first step, we rapidly identify all spaced-word matches between the query
reads and the reference sequences. This can be done by extracting all spaced-
word occurrences from the reference and the query sequences and by storing
them in two lists L1 (references) and L2 (queries) that are both sorted in
lexicographic order. Then, for each possible spaced word W , all occurrences
of W in the read and reference sequences would appear as consecutive blocks
in the lists L1 and L2, respectively.

Once the sorted lists L1 and L2 have been established, they can be tra-
versed simultaneously, such that for each spaced word W , the blocks with
the occurrences of W in L1 and L2 are processed at the same time. Each pair
of occurrences (W, i1) in L1 and (W, i2) in L2 corresponds to a spaced-word
match at (i1, i2) between a reference sequence and a query read. For each
such spaced-word match, we calculate its score, and we discard (‘filter out’)
all spaced-word matches with a score smaller or equal to some threshold t,
since low-scoring spaced-word matches can be considered to be background
or random spaced-word matches. As in FSWM, the threshold has a default
value of t = 0, but can be adapted by the user. All spaced words with score
larger than t are regarded as homologous matches.

There is a difference, however, between App-SpaM and the original pro-
gram FSWM. In FSWM, each spaced-word occurrence (W, i1) in sequence
S1 can be involved in at most one of the selected (‘filtered’) spaced-word
matches. By contrast, a spaced-word occurrence in a read sequence can be
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matched with multiple spaced-word occurrences in a reference sequence –
and vice versa – in App-SpaM, as long as the corresponding scores are larger
than t.

For each query read Q and each reference sequence S, we store the number
s(Q,S) of spaced-word matches between Q and S with score larger than t.
Additionally, we calculate the proportion of mismatches at the don’t care
positions of all filtered spaced-word matches between Q and S, and we esti-
mate the phylogenetic distance d(Q,S) between Q and S using the well-known
Jukes-Cantor formula [18].

In practice, we compute the list L1 of space-word occurrences from the
reference sequences once and hold it in main memory. To limit the number
of spaced-word occurrences that are to be held in memory, however, we do
not process all spaced-word occurrences from the query reads simultaneously.
Instead, we consider a chunk of queries at a time; by default we use chunks
100,000 query sequences. The list L2 of spaced-word occurrences in the query
sequences is then calculated and processed for each chunk separately. This
limits the peak usage of main memory while reducing the overhead that we
would have if we would process the query reads one-by-one, generating the
list L2 for each query separately.

Choosing a position for a read in the reference tree

In the following, we propose four heuristics to find a suitable position in
our reference tree T , where a query read sequence Q is added to T . For an
edge e in an edge-weighted tree, let l(e) denote the length (‘weight’) of e.
For each query Q, we first select an edge eQ in T and insert a new internal
node into this edge, thereby splitting eQ into two new edges e1 and e2 with
l(e1) + l(e2) = l(eQ). Then, we add a new leaf that is labelled with Q,
together with a new edge e′Q that connects this new leaf with the newly
generated internal node. Finally, a length l(e′Q) is assigned to the newly
generated edge e′Q.

To find a suitable edge eQ for a query sequence Q, and to assign lengths
to the newly generated edges, we are using either the phylogenetic distances
d(Q,S) or the number s(Q,S) of spaced-word matches with scores larger
than t between Q and all reference sequences S. A detailed description how
we determine the edge lengths for e1, e2, and the newly inserted edge e′Q is
given in the supplementary material. In the rare case that we find no spaced
word matches for a query read to any reference sequence, the query is placed
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at the root. As a fifth approach, in addition to four versions of App-SpaM,
we used the distance values d(Q,S) as input for the program APPLES.

MIN-DIST – In this approach, we first select the reference sequence S
that minimizes the distance d(Q,S) over all reference sequences, and we
define eQ to be the edge in T that is adjacent to the leaf labelled with S.
If multiple references have the same smallest distance to Q, one of them is
chosen randomly.

SpaM-COUNT – This works like the previous approach, but instead of
selecting the reference sequence S that minimizes the distance to Q, we select
the reference S that maximizes the number s(Q,S) of spaced-word matches
with score > t between S and Q.

LCA-DIST – Here, we identify the two reference sequences S1 and S2

with the lowest distances d(Q,S1) and d(Q,S2) to Q. Let v be the lowest
common ancestor in T of the two leaves that are labelled with S1 and S2,
respectively. The edge eQ is then defined as the edge in T that connects v
with its parental node.

LCA-COUNT – This is the same as the previous approach, but instead
of using reference sequences S1 and S2 minimizing the distance with Q, we
select the two references S1 and S2 with the maximal number of spaced-word
matches to Q with scores larger than t.

SpaM+APPLES: In addition to the four versions of App-SpaM, we
used the distances d(Q,S) between a query Q and the reference sequences S,
calculated as explained above, as input for APPLES [2]. APPLES performs
a least squares optimization to find the position in the tree that fits the
calculated distances best. For a reference tree T , a query sequence Q and
input distances between the reference and read sequences, it finds a position
for Q in T , such that the sum of the squared differences between the input
distances and the distances in the resulting tree are minimized.

Evaluation

To evaluate the accuracy and run time of App-SpaM, we used the Placement
Evaluation WOrkflows (PEWO) [22] that have been recently developed to
evaluate the accuracy of methods for phylogenetic placement. For a given
reference data set, consisting of a set of reference sequences, a reference
MSA of these sequences and a reference tree in which the leaves are labelled
with the reference sequences, the pruning-based accuracy evaluation (PAC)
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used by PEWO evaluates the placement accuracy of an evaluated method
as follows: First, a subtree of the reference tree is randomly chosen and
removed (‘pruned’) from the reference tree, and the sequences at the leaves
of the chosen subtree are removed from the reference MSA. Then, simulated
reads are generated by splitting the removed sequences into segments of a
given length; these reads are then used as query sequences. An algorithm
under evaluation is then used to place the queries onto the reference tree,
and the accuracy of the placements is measured.

To measure the accuracy of a placement method, PEWO uses the so-called
node distance (ND). Here, for each query sequence Q, the distance between
proposed placement position of Q and the edge where the subtree was pruned
is measured by counting the number of nodes on the corresponding path.
The average of these distances over all query sequences is then a measure
of accuracy for one pruning event. This is repeated with randomly sampled
subtrees and PEWO uses the average accuracy over all sampled subtrees as
the overall accuracy of the evaluated method.

PEWO also provides a so-called resources evaluation (RES) workflow to
measure the run time and memory usage of programs. This includes the
alignment of queries against the MSA of references for those methods that
are based on sequence alignments, or corresponding preprocessing steps, such
as the ancestral state reconstruction that is used in RAPPAS.

Evaluation procedure

We used the PEWO PAC workflow to evaluate the placement accuracy of
the four versions of App-SpaM that we outlined above, namely MIN-DIST,
SpaM-COUNT, LCA-DIST, LCA-COUNT. In addition, we evaluated the
combination of SpaM and APPLES. In these test runs, we also used different
values for the weight w in App-SpaM, i.e. the number if match positions in
the underlying pattern P .

We also used the PAC workflow to compare the accuracy of our ap-
proaches to all programs that are included in PEWO, using a variety of data
sets with different number and length of the reference sequences, and with
different degrees of similarity between the reference sequences. At present,
the programs pplacer, EPA, EPA-ng, RAPPAS, and APPLES are included
in the PEWO package. A quick overview of the reference data sets that
we used is given in Tab. 1, a more detailed overview can be found in the
supplementary material. For the programs included in PEWO, we used mul-
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name number of ref. seq. mean ref. length read length

bac-150 150 1256 150

hiv-104 104 9096 150, 500

neotrop-512 512 1766 150, 300

tara-3748 3748 1406 150, 300

bv-797 797 1341 150

epa-218 218 1483 150

epa-628 628 780 150

epa-714 714 1169 150

CPU-652 652 1315 150

CPU-512 512 1766 150

Table 1: Data sets used for evaluation. In the following we will refer to each
data set by the given name. The other columns show the number of reference
sequences in the data set, the mean sequence length of these references, and
the simulated read lengths used during evaluation. The first eight data sets
are used in the PAC workflow, the last two in the RES workflow. More
detailed information is given in the supplementary materials.

tiple parameter combinations as proposed in PEWO; a detailed description
of these parameters is given in the supplementary materials.

For each reference data set we performed 100 test runs with randomly
sampled subtrees and recorded the average node distance (ND). As default,
we used a read length of 150 for the simulated queries from the removed
references. For some of the data sets we also test additional longer read
lengths. To measure the run time and memory efficiency of the evaluated
methods, we used PEWO’s RES workflow on two data sets of differing sizes,
and we recorded the average run time and peak memory usage for different
parameter combinations over 5 repeats.

We also performed test runs using (simulated) unassembled sequencing
reads as references, instead of contiguous reference sequences. Here, we
used different values for the sequencing depth or coverage and compared the
placement accuracy with our results on contiguous (’assembled’) reference
sequences. In these experiments, we used the hiv-104 data set that consists
of HIV genomes with an average lengths of 9,096 bp. We used simulated
reads of length 150 and 500, and values for the sequencing depth of 4, 2, 1,
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SpaM+APPLES SpaM-COUNT MIN-DIST LCA-COUNT LCA-DIST
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Figure 2: Mean accuracy over n = 100 pruning experiments with PEWO,
measured as node distance (ND), of the four different versions of App-SpaM
and the combination of SpaM and Apples. We used three different values, 8,
12 and 16, for the pattern weight w, i.e. for the number of match positions
in the underlying binary pattern.

0.5, 0.25, 0.125 and 0.0625.

Results

Fig. 2 shows the accuracy of the different versions of App-SpaM, together with
the combination of SpaM and Apples, with different values of the weight w
of the underlying pattern. We used the bac-150 data set, with a query read
length of 150. On average, MIN-DIST performed worst and LCA-COUNT
best among our methods; this is consistent across different values of w. In
general, w seems to have little influence on the placement accuracy of App-
SpaM, but there is no value of w that performs best in all situations. On other
data sets we observed comparable results, see supplementary material. The
next best placement mode of App-SpaM is LCA-DIST which is on average
0.77 nodes worse than LCA-COUNT, closely followed by SpaM-COUNT and
SpaM+APPLES.

Fig. 3 compares the performance of App-SpaM to five existing placement
methods, based on the node distance (ND) quality measure, for query read
lengths of 150. We used App-SpaM with LCA-COUNT and with a pattern
weight of w = 12. All other programs were ran with the respective op-
timal parameter settings. Results for other versions of App-SpaM and for
other parameter settings are given in the supplementary material. As seen
in Fig. 3, on most data sets the accuracy of App-SpaM is comparable to the
accuracy of methods that are based on Maximum Likelihood. On average,
pplacer performed best on the data sets with an average node distance of ND
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Figure 3: Mean accuracy, measured as in Fig. 2, for App-SpaM/LCA-COUNT
with a pattern weight w = 12, compared to existing placement methods that
are included in PEWO, on six different reference data sets. Each of the
competing methods was run with the respective optimal set of parameter
values. Standard deviations across the n = 100 test runs are shown as black
lines.

= 5.56, followed by RAPPAS (ND = 5.59), App-SpaM (ND = 5.7), EPA (ND
= 5.72), EPA-ng (ND = 5.79), and APPLES (ND = 9.88). App-SpaM per-
formed slightly worse on the data sets with fewer references (bac-150, hiv-104,
and epa-218). On the three data sets that comprise a larger number of ref-
erence sequences, our method performed similarly (on neotrop-512, bv-797)
or slightly better (on tara-3748, epa-628) than the competing methods.

Fig. 4 compares the performance of the evaluated methods for two differ-
ent lengths of the simulated reads that we used as query sequences. Here, we
used the data sets hiv-104, neotrop-512, and tara-3748. As expected, gener-
ally all programs are more accurate when longer query reads are used. With
a read length of 500, the node distance ND improves on average by 0.96 for
hiv-104, by 1.52 for neotrop-512, and by 2.41 for tara-3748, compared to a
read length of 150.

App-SpaM performs best with the placement heuristic LCA COUNT. On
average, the best choice for the weight is w = 12, but on some data sets,
w = 8 or w = 16 performed slightly better. The number of don’t care
positions in the underlying pattern was set to d = 32 in all of our test
runs. Preliminary results indicate, however, that d has little influence on
the placement results; we obtained similar results for d = 24 and d = 32.
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Figure 4: Mean accuracy (ND) of best performing parameter combination for
each program for different read lengths. Standard deviation across prunings
(n = 100) shown as black lines.

APPLES performs best with the weighted least squares method FM (k = 2)
and least squares phylogenetic placement (MLSE) on nearly all data sets.
The performance of RAPPAS is strongly dependent on the size of the k used
to build the reference data-base of phylo-k-mers. Higher values of k increase
the run times but consistently lead to better results. For all other programs,
i.e. pplacer, EPA, and EPA-ng the performance is nearly identical for all
tested parameter settings.

The accuracy of App-SpaM on unassembled reference sequences is shown
in Fig. 5 for different values of the sequencing coverage, for two different read
lengths of the reference sequences (150 and 500), and for different values of
the pattern weight w. For a coverage of 1, the ND distances are around 1.5
worse than for assembled references. Run time results for two data sets are
shown in Tab. 2. We report the run times for preprocessing steps, the place-
ment itself, and the total sum of preprocessing and placement in seconds.
Note, that for some programs the run times may vary greatly depending on
the chosen parameters. App-SpaM with a pattern weight of 12 performs 30-60
times faster than the next fastest software with a similar accuracy (EPA-ng).
Increasing the pattern weight further reduces the run time again. When
placing multiple queries on the same references, RAPPAS average speed will
decrease significantly because the time-consuming preprocessing step has to
be executed only once.
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Figure 5: Placement accuracy on unassembled reference sequences of different
coverage on the hiv-104 data set for App-SpaM with placement mode LCA-
COUNT. Results for read lengths of 150 and 500 as well as a pattern weight
of 8 and 12 are shown in red and blue. The black line serves as reference for
the accuracy of App-SpaM on the same assembled data.

App-SpaM RAPPAS APPLES EPA-ng EPA pplacer

w = 12 w = 16 k = 6 k = 8

CPU-652

preproc. - - 651 7253 3437 3437 3437 3437

placement 152 79 710 454 15226 1315 194338 9257

total 152 79 1361 7707 18663 4752 197775 12694

CPU-512

preproc. - - 1070 12144 1879 1879 1879 1879

placement 34 22 254 185 2220 127 6626 1976

total 34 22 1324 12329 4099 2006 8505 3855

Table 2: Comparison of run times for all tested programs on two datasets.
All run times are shown in seconds. For each data set, we show the time
for preprocessing (preproc.), placement, and the total sum of preprocessing
and placement. Preprocessing includes generating the query alignment or
building the phylo-k-mer data base for RAPPAS. If no parameters are given,
the same values as for Fig. 3 were used (see supplementary material).
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Discussion

In this paper, we proposed the new method Alignment-free phylogenetic
placement algorithm based on Spaced word Matches (App-SpaM) for the task
of phylogenetic placement of sequencing reads from metagenomic projects.
Phylogenetic placement is the assignment of a query sequence to a position
in a reference tree. In contrast to the task of read assignment, where a query
read is assigned to one of the reference sequences, phylogenetic placement
places reads at arbitrary taxonomic levels and directly incorporates them
into the reference tree by inserting new branches and leaves to which the
query sequences are assigned. As a result, phylogenetic placement can not
only be used to precisely taxonomically classify the reads, but also to update
an existing phylogeny one species at a time, as an efficient alternative to
de-novo reconstruction of the whole tree.

Existing programs for phylogenetic placement are mostly based on the
maximum likelihood (ML) principle and therefore require a multiple sequence
alignment (MSA) that has to be calculated in a preprocessing step. The
query sequences are then aligned against this reference MSA. Both steps are
not only time consuming, but also pose limitations on the applicability of
phylogenetic placement. At present, only RAPPAS does not require a MSA
of the reference sequences, and APPLES is the only program that is capable
of phylogenetic placement without aligned or assembled reference sequences.
Our new method App-SpaM performs phylogenetic placement without de-
pending on aligned or assembled input sequences. App-SpaM reaches nearly
the accuracy of alignment-based programs, while it is one to two orders of
magnitude faster than existing programs.

App-SpaM relies on so-called spaced-word matches (SpaM), simple gap-
free local alignments based on a binary pattern of match and don’t-care posi-
tions. Based on these spaced word matches, App-SpaM estimates the average
number of nucleotide substitutions per position that occurred since two se-
quences diverged from their last common ancestor in evolution. Spaced-word
matches can be utilized to estimate distances not only between assembled
genomic sequences, but also between sets of unassembled reads. This gives
App-SpaM distinct advantages over existing programs: First, the reference
sequences do not need to be available as a MSA which is required by all other
PP tools except APPLES. On its own, calculating the reference MSA is a
time-consuming step that can be an additional source of error in the process
of phylogenetic placement. Also, some reference sequences might be too long
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and can not be aligned globally in any meaningful way which completely pre-
vents phylogenetic placement by existing methods. Second, App-SpaM does
not need assembled reference sequences. It is sufficient to supply a set of
unassembled reads for each reference. Fig. 5 shows that App-SpaM produces
still reasonable results even for low levels of sequencing coverage. Being in-
dependent from the availability of assembled references yields additional use
cases for phylogenetic placement and greatly simplifies the procedure for all
data sets when an approximate estimate of the placement position is suf-
ficient. Third, the preprocessing step of aligning query reads against the
reference MSA is omitted in App-SpaM, skipping another potentially error-
prone procedure. This results in faster run times and a readily accessible
software that does not depend on further tools and can be directly executed
on the available input data.

Our extensive evaluation showed that App-SpaM’s accuracy is close to the
accuracy of ML-based methods on most datasets. In some data sets we even
achieve comparable placement accuracy with the best programs, but with
much shorter run times. The placement heuristic LCA-COUNT was clearly
the best on all data sets and is therefore used as the default in App-SpaM.
An important parameter in our spaced-words approach is the weight of the
underlying binary pattern, i.e. the number of match positions. Our program
evaluation shows that the results obtained with App-SpaM are rather robust
for different values of the pattern weight. Several other internal parameters
such as the filtering threshold for spaced word matches, the number of don’t
care positions, and the number of simultaneously used patterns have default
values that perform well for a broad number of data sets and should only be
changed with care.

In this study, we implemented a number of simple and fast placement
heuristics for determining the query positions within the reference phylogeny.
Still, we achieved a high placement accuracy, nearly as good as for the best
existing alignment-based ML methods. The placement heuristics that we
used, depend either on the number of spaced word matches or the calculated
phylogenetic distances between a query read and the references. However,
both sources of information might complement one another, potentially lead-
ing to overall improved placement results if used properly. Additionally, when
using the currently optimal heuristic LCA-COUNT, no query placements di-
rectly above a reference are possible. This is not only unrealistic but also
limits our accuracy performance considerably. Hence, we are continuing to
work on additional placement heuristics that use all available information to
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fully utilize the spaced word matches approach in phylogenetic placement.
The most basic idea would be to calculate a score for every branch in

the tree that reflects the likeliness that the query is placed there based on
a combined measure of number of spaced word matches and phylogenetic
distances to all references below. In theory such a placement method could
also be used to express placement uncertainty similar to the likelihood-weight
ratios of ML-based methods.

While the run time of App-SpaM is already fast, the current implemen-
tation is not yet optimized for speed and memory efficiency and multiple
strategies to further decrease the run time are possible: First of all, decreas-
ing the run time for large datasets can already be achieved by using a higher
weight of the underlying pattern and overall fewer patterns via the available
parameter options. Furthermore, all spaced words are completely held in
main memory instead of referencing the corresponding positions in the input
sequences. This significantly increases the run time and main memory usage
and can be improved by more efficient data handling.

Given the test results shown in this study, App-SpaM should be a useful
tool for one of the most basic tasks in metagenomics data analysis, and efforts
should be made to further improve its efficiency.

Data availability

The source code of App-SpaM is freely available through the website Github:

https://github.com/matthiasblanke/App-SpaM
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[14] Lars Hahn, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and
Burkhard Morgenstern. rasbhari: optimizing spaced seeds for database
searching, read mapping and alignment-free sequence comparison. PLOS
Computational Biology, 12:e1005107, 2016.

[15] Daniel H. Huson, Alexander F. Auch, Ji Qi, and Stephan C. Schuster.
MEGAN analysis of metagenomic data. Genome Research, 17:377–386,
2007.

[16] Daniel H. Huson, Sina Beier, Isabell Flade, Anna Górska, Mohamed El-
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