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Abstract: The B3 superfamily is a plant-specific family, which involves in growth and development process. By 
now, the identification of B3 superfamily in pineapple (Ananas comosus) has not reported. In this study, 57 B3 
genes were identified and further phylogenetically classified into five subfamilies, all genes contained B3 domain. 
Chromosomal localization analysis revealed that 54 of 57 AcB3 genes were located on 21 chromosomes.Collinearity 
analysis indicated that the segmental duplication was the main event in the evolution of B3 gene superfamily and 
most of them were under purifying selection. Moreover, there were 7 and 39 pairs of orthologous B3s were identified 
between pineapple and Arabidopsis or rice, respectively, which indicated the closer genetic relationship between 
pineapple and rice. Most genes had cis-element of abscisic acid, ethylene, MeJA, light, and abiotic stress. qRT-PCR 
showed that the expression level of most AcB3 genes were up-regulated within 1 d after ethephon treatment and 
expressed high level in flower bud differentiation period in stem apex. This study provide a comprehensive 
understanding of AcB3s and a basis for future molecular studies of ethephon induced pineapple flowering.
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Introduction

Transcription factor (TF) is a protein with special structure which regulating gene expression by binding to 
transcriptional regulatory regions, also known as trans-acting factors [1-2]. There are about 2000 TFs in Arabidopsis 
thaliana, they play the role mainly in biotic and abiotic stress response, organ development such as flowering, 
hormone signal response, cell growth and differentiation [3]. Flowering is an important process, which has a direct 
impact on the reproduction and yield of plants [4]. Many TFs are involved in flowering: AP2, bHLH, bZIP, MADS 
and B3 [5-6]. 

The B3-type DNA binding domain (DBD) was first found in VIVIPAROUS1 (VP1) from Zea mays, all 
members of the B3 superfamily contain this domain, and this kind of TF is only exist in plant [7-8]. The number of 
B3 superfamily gene differs in different plant, there are 118, 91, 81, 108 B3 genes in Arabidopsis thaliana, Oryza 
sativa, Zea mays, Glycine max, respectively [9-10]. Base on the structure and function of protein, the B3 superfamily 
can be devided into five members: auxin response factor (ARF), Leafy Cotyledon 2 (LEC2)-Abscisic Acid Insensitive 
3(ABI3)-VAL(LAV), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive 
meristem (REM) [11-12]. In Arabidopsis thaliana, ABI3 (one B3 domain), HIS (one B3 domain and zf-CW domain), 
ARF (one B3 domain, auxin response factor and AUX/IAA domain), RAV (one B3 domain and AP2 domain) and 
REM (two B3 domains) have different typical domains [13]. The B3 superfamily plays an important role in plant 
growth and development as well as stress response [14-15]. ARFs have the function in development of flowers and 
leaves, vascular tissue differentiation and root initiation [16-17]. In Arabidopsis thaliana, arf1 and arf2 mutant plant 
exhibit development delay, including initiation of flowering and rosette leaf senescence [18]. The double mutant 
arf7 arf19 influenced the growth of root and leaf expansion [19]. The study of LAV is few, it mainly participates in 
regulation of seed germination, embryo development and stress response [20-23]. AtABI3 induced lateral root 
primordia by auxin, the root of loss-of-function abi3 alleles show insensitivity to auxin [24]. The LEC2 induces the 
somatic embryo formation and promotes the accumulation of seed storage protein and oil bodies [25]. As a 
transcriptional repressor, HIS has a function to repress the seed maturation genes [26]. Recently, a study showed 
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HSI2 repress AGL15 (relate to seed development) by the PRC2 component MSI1, thereby regulating seed 
maturation [27]. Many studies showed the RAV is related to stress response, for example, overexpression of cotton 
RAV1 Gene in Arabidopsis increased the sensitivity of salinity and drought stresses [28]. On the other hand, TEM 
(TEMPRANILLO) gene (a member of RAV family) downregulate the expression of FT, so as to repress flowering 
[29]. The REM is latest studied and little is known about its function. AtREM34 is the first gene be identified but 
VRN1 (VERNALIZATION1/REM5) is the first to be functionally characterized, VRN1 is related to vernalization and 
promote flowering [6, 30]. Recently, a study silenced REM34 and REM35 genes and influenced the female and male 
gametophyte development [31]. These indicate that REMs play roles in flowering.

Pineapple (Ananas comosus (Linn.) Merr) is the herbaceous plant of Bromeliaceae family. It is one of the four 
tropical fruits in the world, which is planted in more than 80 countries or regions [32]. There are mainly two ways 
to induce pineapple flowering: natural flowering induction and artificial flowering induction. Natural flowering 
induction needs short day-length and cool night temperatures to produce endogenous ethylene, artificial flowering 
induction use chemicals like ethephon or calcium carbide to release ethylene [33-35]. However, in natural flowering 
induction, the uniformity of flowering is often inconsistent or pineapples in the planting area cannot be centralized 
in the market. Artificial flowering induction usually used in commercial production, it can effectively improve 
flowering regularity and flowering rate, and effectively plan the time to market, so as to achieve the purpose of 
improving pineapple planting efficiency [36]. There are many genes related to ethylene or flowering which studied 
in pineapple, but the mechanism of ethylene induces pineapple flowering is unclear.

The articles about B3 superfamily is little by now, just in several plant species, meanwhile, the genome-wide 
analyses about B3 superfamily in pineapple hasn’t been reported. The members of B3 superfamily play roles on 
flowering, it’s unclear whether the B3 superfamily genes involve in pineapple ethylene response and flowering. In 
this study, 57 pineapple B3 genes were identified. We did comprehensive analysis of gene duplications, 
chromosome distribution, gene structure and cis-acting regulatory elements. Phylogeny were analysed with the B3 
genes of Arabidopsis and rice. The expression patterns of AcB3 genes after ethephon treatment were showed by 
RNA-Seq data. Expression profiles after ethephon treatment were evaluated by qRT-PCR to analyse the relationship 
between B3 and ethephon. This study provided reference for further understanding of the physiological function 
and mechanism of B3 genes in ethephon induced pineapple flower formation.

Materials and methods

Identification and analysis of B3 genes in pineapple

To identify AcB3 genes, The genome of Ananas comosus were downloaded from the PGD (Pineapple 
Genomics database)(http://pineapple.angiosperms.org/pineapple/html/index.html). The HMM (hidden Markov 
model) matrix of B3 domain (PF02362) was downloaded from Pfam, and then B3 genes were retrieved by Hmmer 
3.0 software. These predicted B3 proteins were further confirmed and analyzed using the CD-search 
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and SMART (http://smart.embl-heidelberg.de) web server. 
All pineapple B3 genes contained B3 domain.

Chromosomal locations and synteny analysis 

The physical locations of AcB3 genes were obtained from the PGD. The location images of AcB3 genes were 
drawed by MapChart software [37]. Multiple Collinearity Scan toolkit (MCscanX) was used to analyse the tandem 
and segmental duplications of B3 genes [38]. The diagrams of synteny analysis were drawed by Tbtools [39]. The 
value of Ks and Ka were calculated by using DnaSP 5 [40] software.

Phylogenetic analysis

Multiple sequence alignments and phylogenetic tree of full-length B3 proteins from pineapple, Arabidopsis 
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and rice were performed using PhyML 3.0 with maximum likelihood (ML) method, ‘AIC’ criterion and ‘aLRT 
Chi2-based’ as fast likelihood-based method [41]. The classifications of AcB3s were given according to the lists of 
AtB3 and OsB3 genes came from previous study [13]. The sequences of AtB3 and OsB3 genes were downloaded 
from Phytozome 12.1.6 (https://phytozome.jgi.doe.gov/pz/portal.html).

Structural and motif analyses of AcB3 genes

The exon/intron organizations picture of the AcB3 genes were drawed by TBtools. The conserved motifs were 
analyzed using MEME (http://meme-suite.org/tools/meme) [42], searching up to 20 conserved motifs and each 
motif was set from 6 to 50 residues. Protein domains were identified using the NCBI CD-search and SMART.

Analysis of cis-acting elements and gene ontology

The 2kb promoter region upstream of the start codon of each gene was downloaded from PGD to analyse the 
possible cis-acting elements of B3 genes by PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/) online server. WEGO (http://wego.genomics.org.cn/) was used to analyse Gene ontology of B3 proteins.

Plant materials and treatments

The pineapple hybrid variety was "Tainong 16" is cultivated in the pineapple planting base of Chengmai 
County, Hainan Province, China. The temperature, humidity and other environmental conditions in the greenhouse 
which controlled in the appropriate range for pineapple flowering. The pineapple which growed 25 mature 
leaves(more than 30 cm in length) were treated by 300 fold solution of 40% Ethephon (1600 mg/L), and were 
sampled at 1h, 3h, 6h, 1, 6, 10, 15, 22 and 31 days after treatment, including leaves, stem apex. The sample treated 
with water of the same volume as the contrast, all of them were frozen in liquid nitrogen and stored in refrigerator 
at -80℃ until used.

RNA isolation and AcB3 genes expression analysis

Total RNA was extracted from samples using Total RNA was extracted from samples using a universal plants 
RNA extraction kit for Hua Yueyang, according to the manufacturer’s guidelines. 1 μg RNA were used to synthesize 
the first-strand cDNA by MonScript™ RTIII All-in-One Mix with dsDNase. Primers were designed for real-time 
quantitative PCR (qRT-PCR) using Primer 5.0 software, and the primer sequences were shown in detail in S7 Table. 
The cDNA was used as the template, AcEF1 as the internal reference gene, and each sample was repeated three 
times for real-time fluorescence quantitative PCR analysis. The reaction was carried out on Roche Lightcyler® 480 
instrument using SYBR Green Master Mix (Roche). The reaction system of real-time quantitative PCR was 10 μL, 
including 1 μL of cDNA, 5 μL of SYBR Green I master, 0.5 μL of 10 μmol/L of forward and reverse primers, and 
3 μL of ddH2O. The data were analyzed by 2-ΔΔ CT method [43], and by Excel and Graphpad prism 7.0 softwares. 
The transcripts of the similar sequences were found by local blast, and the fragments per kilobase of exon model 
per million mapped reads (FPKM values) were calculated, finally the heatmap was drawn by pheatmap software 
base on the log2 (FPKM+1) values. The transcriptome data were uploaded to NCBI (PRJNA639649).

Results

Identification and characterization

To comprehensively identify the candidate B3 proteins in pineapple, 62 AcB3 genes were found by HMMER 
3.0. Removing repetitive (Aco026957 and Aco017311) and short sequences (Aco017668 and Aco017067), the CD-
search and SMART analyses ware used to verify the presence of the B3 domains later, one (Aco015073) didn’t 
contain B3 domain. Finally, 57 pineapple B3 proteins were identified.
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Gene characteristics, including the protein properties, protein secondary structure and and the subcellular 
localization were analyzed (S1 Table). Among the 57 B3 proteins, the longest protein is 997 aa and the shortest is 
137 aa with molecular weights (MWs) from 15.71KDa to 111.32KDa. The isoelectronic point (PI) values ranged 
from 4.61 to 9.9, all of them are hydrophobic proteins. The prediction of subcellular localization shows they are 
mainly located in nuclear (42), chloroplast (8), cytoplasmic (5), extracellular (1), vacuole (1). 

Genomic location and gene duplication analysis

Chromosomal location analyses (Fig 1) showed that 54 pineapple B3 genes were distributed on 21 out of the 
25 Linkage Groups (LG), the rest (Aco030005, Aco030007 and Aco030008) were located on scaffold_1004. The 
distribution was uneven, LG14 contained the largest number of 8 B3 genes followed by 7 on LG01 while only one 
B3 gene was found on LG5, 6, 8, 9, 12, 13, 15, 18. Seven genes were highly concentrated on 9.94Mb to 10.24Mb 
of LG14.

To investigate the potential duplication events of B3, both BLASTP and MCScanX method were used to 
identify the collinearity of the B3 gene family in pineapple. 8 segmental duplication events were identified (Fig 2), 
and the synteny blocks of B3 were on 12 LGs (LG01, 03, 05, 11, 12, 14, 15, 16, 17, 19, 21 and 24). 5 tandem 
duplication events were also identified in LG14 and scaffold_1044 (S2 Table). Calculating the nonsynonymous 
(Ka) and synonymous (Ks) substitution rates is useful for the study of evolutionary, Ka/Ks=1, indicates neutral 
mutation; Ka/Ks>1, indicates negative (purifying) selection; Ka/Ks<1, indicates positive (diversifying) selection.In 
these 13 duplication B3 gene pairs, 2 of them were “Ka/Ks>1”, implying that those had evolved under the effect of 
positive selection; 10 of them were “Ka/Ks<1”, implying that those had evolved under the effect of purifying 
selection; the only one pair had Ks value equal to 0 and the Ka value is very small, implied they may be the redundant 
gene.

To further study the potential evolutionary mechanisms of the pineapple B3 genes superfamily, the collinear 
relationship between pineapple and other two species Arabidopsis (dicotyledon) and rice (monocotyledon) was 
analyzed (Fig 3). We identified 7 collinear B3 gene pairs between pineapple and Arabidopsis, 39 collinear B3 gene 
pairs between pineapple and rice. The details were showed in S3 Table. The number of orthologous events of AcB3s-
OsB3s was far more than that of AcB3s-AtB3s, which indicated the genetic relationship between pineapple and rice 
is closer than that Arabidopsis.
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Fig 1. Distribution of AcB3 genes on linkage groups. All 57 B3 genes are mapped onto 21 linkage groups and one 
scaffold. “LG number” indicated the chromosome number. The scale is in megabases (Mb).

Fig 2. Collinearity analysis of B3 genes in pineapple. Gray lines suggest all segmental duplications and the red lines 
suggest duplicated B3 gene pairs. The chromosome number and gene ID are showed.
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Fig 3. Collinearity analysis of B3 genes between pineapple, Arabidopsis and rice. Gray lines indicated the collinear 
blocks between pineapple and two other plants, the red lines meant the syntenic B3 gene pairs.

Phylogenetic analysis among the pineapple, arabidopsis and rice B3 proteins

To study the evolutionary relationship of B3s among pineapple, Arabidopsis and rice, we constructed a 
phylogenetic tree using MEGA 6.0, an unrooted phylogenetic tree was created. In this study, 87 B3 proteins from 
Arabidopsis [13], 86 from rice [13], 57 from pineapple were utilized for the phylogenetic analysis.

As shown in Fig 4, these proteins can be divided into five distinct groups. 27 AcB3 genes were belonged to 
REM, making it the largest subclass, followed by 19 AcB3 genes belonged to ARF, RVA, HSI and LAV subfamily 
had 6, 3 and 2 AcB3 genes, respectively. 

Structural and motif analysis

To investigate the structural diversity of AcB3 genes, the structures of AcB3 genes were analysed. 57 B3 genes 
were divided into 5 groups according to Fig 4. Different subfamily had different number of exons, ranging from 2–
15 and 1–8 in ARF and REM families, respectively. Most ARF subfamily genes had more than 11 exons and more 
than half REM subfamily genes had 3-5 exons. The LAV subfamily genes have 6-8 exons, the HSI subfamily genes 
have 12 or 13 exons, and 1 or 2 exons in RAV subfamily genes (Fig 5B).

To investigate the protein sequence features of AcB3s, we identified 20 different motifs (Fig 5C). Most motifs 
are 28-50 amino acids in length, and the details of 20 motifs were presented in S4 Table. As the result showed all 
AcB3 genes had motifs which annotated as B3 domain. The same group had the similar motifs, while motifs were 
diverse among different groups. For example, both HSI genes had motif2 and 10, while all ARF genes had motif3 
and 4. Meanwhile, the motif12, 13, 14 16, 17 and motif19 were only existed in REM (Fig 5C). The special motifs 
in groups may imply diverse functions of AcB3 superfamily.
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Fig 4. The phylogenetic tree of B3 proteins from pineapple (Ac), Arabidopsis (At) and rice (Os). The different color 
area indicated different groups, the white asterisk indicated B3 genes from pineapple.
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Fig 5. The exon-intron structure and motif organization of AcB3 genes. (A) Phylogenetic relationships of AcB3 
genes. (B) The intron and exon structure of B3 genes. The green and yellow boxs represent exon and UTR, 
respectively, the line which go through the boxs represent intron. (C) The motif identification analysis of AcB3 
proteins using MEME.The detailed information of 20 motifs are listed in S4 Table.

Cis-acting elements and gene ontology analysis of B3 genes

To investigate the potential regulatory role of B3 genes, we analysed promoters which were 2000bp in length 
before ATG, The cis-elements related to plant hormones were showed in Fig 6. There were 42, 26, 40, 28, 35, 15 
AcB3 genes promoters had cis-elements related to abscisic acid, auxin, ethylene, gibberellin, methyl jasmonate and 
salicylic acid, respectively. Aco009528 and Aco000403 didn’t contain these 6 plant hormone related elements. 
Other cis-elements such as light responsiveness element, defense and stress responsiveness element and so on were 
also found, more detials were showed in S5 Table.

We also executed a gene ontology (GO) enrichment analysis of the AcB3 genes(Fig 7). The prediction of 
cellular component suggested AcB3s participated in cell, organelle, protein-containing complex. The prediction of 
biological process suggested most AcB3s participated in DNA binding then transcription regulator or catalytic 
activity. Moreover, the prediction of molecular function suggested AcB3s mainly involved in metabolic process, 
cellular process, regulation of biological process and biological regulation. The terms on level 3 were also analysed 
(S1 Fig; S6 Table), significantly, there was two genes (Aco13950 and Aco006706) involved in the function related 
to flowering.
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Fig 6. B3 promoters cis-elements prediction of hormone related. The promoter is 2.0 kb in length.
  

Fig 7. Gene ontology analysis of AcB3 proteins. Three categories (cellular component, biological process and 
molecular function) and terms on level 2 were showed by different color.

Expression profiles of AcB3 genes in stem apex after ethephon treatment

To investigate if AcB3 genes were regulated by ethephon, the FPKM value of 47 AcB3 genes after ethephon 
treatment were collected from RNA-Seq data and presented in a heatmap. The transcripts of 10 AcB3 genes were 
not detected in RNA-Seq data, indicated these may expressed in other growth period or tissues. As showed in Fig 
8, more than half of AcB3 genes were highly expressed, 16 AcB3 genes were up-regulated compared with CK and 
6 AcB3 genes were down-regulated compared with CK. Aco018978, Aco017965, Aco018061, Aco012988, 
Aco011886, Aco001637 and Aco014831 showed higher level of expression after ethephon treatment. These 
findings indicated that AcB3 genes expressed in response to ethephon.
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Fig 8. Heatmap of AcB3 genes after ethephon treatment in stem apex. The color scale is based on the log2 (FPKM 
+ 1) values

Expression analysis of AcB3 genes after ethephon treatment

We found 31d after ethephon treatment in pineapple, the flower bud differentiation was in progress in previous 
study [44]. In order to identify AcB3 genes resopnsing to ethylene and the functioning on flowering, 20 genes from 
different subfamilies were randomly selected to analyze their expression patterns by qRT-PCR. In general, the 
expression levels of all the selected genes were significantly changed in response to ethylene. In leaves, most genes 
were up-regulated, while Aco010323, Aco001637, Aco018978 and Aco025401 were significantly down-regulated 
through all the time points. The expression levels of some genes like Aco004938, Aco026955, Aco020809 and 
Aco021545 were up-regulated before 1d, and the expression levels of 8 genes were significantly up-regulated in 
31d (Fig 9).In stem apex, the of all 20 genes were up-regulated to different degrees. During 0 to 6d after ethylene 
treatment, all 20 genes were up-regulate, 8 genes reached peak value at 3h, while 11 genes at 6h and 1 gene at 1d 
(Fig 10). what's more, the expression levels of all 20 genes except Aco012957, Aco020809 and Aco013196 were 
significantly up-regulated in 31d. In particularly, the expression levels of Aco012003 and Aco004938 were at high 
level all the time and Aco019552 had a higher level of expression among 20 genes, which indicated these AcB3 
genes may involved in flower bud differentiation.
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Fig 9. Expression analysis of AcB3 genes after ethephon treatment during floral induction period in leaves. The ‘0’ 
was regarded as a standard, and AcEF1 gene was used as internal control. Error bars indicate standard error (SE) 
based on three replicates. Different letters indicated significant difference, LSD test (P≤0.05).
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Fig 10. Expression analysis of AcB3 genes after ethephon treatment during floral induction period in stem apex. 
The ‘0’ was regarded as a standard, and AcEF1 gene was used as internal control. Error bars indicate standard error 
(SE) based on three replicates. Different letters indicated significant difference, LSD test (P≤0.05).

Discussion

Characterization and structure of the pineapple B3 genes superfamily

B3s had various functions include regulating on root, seed and flower development, responses of organisms to 
abiotic stresses, involving in hormone signaling pathways [7, 12]. Genome-wide characterization and expression 
analyses about B3 superfamily had been investigated in some plants [8, 15, 45-46]. In this study, a comprehensive 
genome-wide analysis of the AcB3 superfamily in pineapple was performed for the first time and 57 AcB3 genes 
were identified. The number of AcB3 genes were less than the other species (Arabidopsis and rice), but had same 
five subfamilies, which indicates that parallel evolutionary events of B3 genes existed in dicots and monocots.

Different gene structures have different function and the introns have impacts on genes expression and 
evolution [47]. In this study, most ARF, LAV, REM and RAV genes had 3, 4, 1 or 2 and 0 introns in B3 domain, 
respectively. This number in HSI was 2. These indicated similar B3 structure existed in same subfamily during the 
evolution process. Although 4 motifs were annotated as B3 domain (S4 Table), all 57 AcB3 genes had B3 domain, 
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this supported the characterization of B3 genes. Similar protein architecture may have similar function, in this study, 
most genes had similar classification and number of motifs in the same subfamily, such as REM and ARF. Together, 
these results were similar with those of the phylogenetic analysis, which supported the reliability of our subfamily 
classification.

The evolutionary analysis of the AcB3 genes superfamily

In this study, 57 AcB3 genes were classified into five subfamilies by phylogenetic analysis, the same subfamily 
has similar domains (S2 Fig). Like other species [9], the REM subfamily had the most genes followed by ARF 
subfamily. Previous study showed, there were 20 ARF genes in pineapple [48]. But in this study, we identified 19, 
the gene (Aco015073) didn’t contain B3 domain. Within the ARF subfamily in this study, 14 of them contained B3, 
Aux_resp and Aux_IAA domains, the other 5 have B3 and Aux_resp domain. This indicated during the evolutionary 
process the B3 and Aux_resp domains were more conservative than the Aux_IAA domain. The RAV subfamily 
usually had one AP2 and one B3 domain, but not all RAV protein contained AP2 domain [13, 49]. In this study, 
Aco009779, Aco016748, Aco013227 and Aco016654 don’t contain AP2 domain grouping with RAV genes from 
rice and Arabidopsis belonged to RAV subfamily. The REM subfamily had B3 domains from 1 to 4, multiple B3 
domain may be caused by domain duplication events.

Tandem duplication, segmental duplication, and transposition were the mainly gene duplication events, these 
events promoted the expansion of gene families, and segmental duplication had more proportions than tandem 
duplication [50-51]. In this study, we identified 8 segmental duplication events and 5 tandem duplication events, 
most had the Ka/Ks value less than 1, indicated positive selection happened in these genes. Most genes were from 
REM subfamily, one pair belonged to ARF subfamily (Aco018061 and Aco021382) which Ka/Ks value was more 
than 1, they may have different function. Synteny analysis were also carried out with two other species, Arabidopsis 
and rice, which belonged to dicot and monocot plants, respectively. Syntenic gene pairs between pineapple and 
Arabidopsis, rice were 7 and 39, respectively. This indicated pineapple and rice had closer evolutionary distance 
than pineapple and Arabidopsis, which was consistent with previous publications [52-53]. Moreover, genes in the 
same Syntenic gene pairs between pineapple and rice may had similar structure and function.

Cis-element analysis in the promoters of AcB3s

Cis-element was short in length with a core of only seveal base-pairs, but could regulate gene expression and 
related to the functions of downstream genes [54-55]. The results illustrate that 6 phytohormones-related cis-element 
were existed in AcB3 genes superfamily, include abscisic acid, auxin, ethylene, gibberellin, MeJA and salicylic acid 
responsiveness elements. Most AcARFs (17 of 19), both AcHSIs and all AcLAVs had abscisic acid responsiveness 
elements, and most AcREMs had abscisic acid, ethylene and MeJA responsiveness elements, which indicated they 
were participated in response to abscisic acid and abiotic stress. Pineapple is a special plant, which ethylene could 
promote flowering [56]. There were 40 AcB3s had ethylene responsiveness elements, 26 AcB3s had auxin 
responsiveness elements which related to development, but only 19 AcB3s had both elements, these genes may 
involve in the process of pineapple flowering induced by ethylene. The other elements were showed (S5 Table), 
include anaerobic induction, circadian control, defense and stress, drought inducibility, light and low temperature 
responsiveness element. Most AcB3s (52 of 57) had light responsiveness element followed by anaerobic induction 
element (44 of 57 AcB3s). These results suggest that AcB3s had various functions and researchs shoud be carried 
out for more evidences.

The potential roles of differentially expressed AcB3s

To investigated gene functions, the gene expression patterns could provide important reference. Previous study 
showed, FT gene which overexpression caused early flower, showed high level of expression in stem apex after 
ethephon treatment and the time when flower bud differentiation was in progress. In this study, we found all 20 
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AcB3 genes had responsiveness to ethylene in stem apex within 1d, only 17 AcB3 genes in stem apex showed 
significant up-regulation in 31d. This indicated these may play roles in flower development.

The studies of REM subfamily genes were few, these genes involved in flower development and most of them 
preferentially expressed in reproductive meristem and were the targets of the key floral transcription factors like 
AP1, AP3, PI, LEAFY and SVP [6, 57-58]. In Arabidopsis, AtREM22 was related to stamen development and 
AtREM5 (VRN1) was involved in floweing time control [59-60]. In this study, compared the expression in leaves 
and stem apex, the relative expression of most AcREMs in stem apex were higher than leaves, like REMs in other 
species. High level expression of AcB3s in stem apex and especially in 31d indicated these genes may have functions 
in flowering. AtREM17 (At4g34400) expressed preferentially in flower and was a target of LEAFY [6, 8], 
Aco000403, Aco005629 and Aco020809 have a close genetic distance with At4g34400, they may have similar 
function in flower development.

It was reported that HSI mainly regulated seed maturation [27], but there was exception. AtVAL1 (At2g30470) 
also named as AtHSI2 which was the target of FLC (Flowering Locus C) and may play roles in flowering process 
[61]. Aco001637 changed largely in 6h after ethephon treatment and expressed high level in 31d, this gene was 
classified together with At2g30470 by phylogenetic analysis, indicated similar function in pineapple.

Auxin has important roles on plants growth and development, ARF genes could response to auxin and were 
best studied [62]. ARFs involved in flowering process, for example, AtARF3 regulate floral meristem determinacy 
by AG and AP2 [63]. In tomato, most ARFs had higher expression level in flower buds and flower compared in fruit 
[64]. In this study, ARFs showed low relative expression in leaves but high in stem apex, all of them up-regulated 
significantly in 31d, indicated they may involve in flowering process. Moreover, all of them up-regulated 
significantly in 6h after ethephon treatment, this suggested they may response to ethylene. Arabidopsis ARF6 and 
ARF8 (At5g37020) coordinate the transition from immature to mature fertile flowers [65], Aco012988 classified 
together with At5g37020 may has similar function. Phosphorus was necessary for plant growth and development, 
the concentration of phosphorus had influence on flowering [66]. To adapt low phosphorus environment, ethylene 
can adjust the relative elongation of roots and change the signal transduction pathway of phosphoric acid [67]. As 
a gene of ARF family, OsARF16 (Os06g09660) had diverse function involved in phosphate transport [68]. 
Intriguing, Aco018978 was classified together with Os06g09660, Aco018978 up-regulated significantly after 
ehephon treatment and in 31d, suggested that ethylene may increase the length of root and high expression level of 
Aco018978 may increase phosphate transport to the flower formation in the future.

Conclusions

In this study, 57 AcB3 genes were identified in the pineapple genome for the first time. They are unevenly 
distributed on the chromosomes, and segmental duplications contributed to the expansion of the AcB3 family. It 
was also found that B3 genes from pineapple and rice have closer genetic distance. Phylogeny analysis comparing 
with Arabidopsis and rice classifies these genes into five major classes (REM, ARF, RAV, HSI and LAV). Cis-
element analysis discovered several phytohormone and stresses responsive elements in the promoter region of the 
AcB3s. Moreover, most selected AcB3 genes express in response to ethylene and show high level expression in 
flower bud differentiation period, which disclosed that these have roles in flowering and responsing to ethylene 
signal. Our research provides new insight into the evolution and divergence of AcB3 genes and helps in identifying 
candidate genes for functional characterization in flowering. Furthermore, these results will also serve as a 
foundation and reference for future research regarding the molecular mechanisms in ethylene induced pineapple 
flowering.

Author Contributions

Conceptualization: Cheng Cheng Ruan, Zhe Chen.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345181
http://creativecommons.org/licenses/by/4.0/


Methodology: Cheng Cheng Ruan, Zhe Chen.
Resources: Xianghe Wang, Li Jun Guo.
Software Formal analysis: Hong Yan Fan, Fu Chu Hu. 
Visualization: Zhi Wen Luo.
Writing - Original Draft: Cheng Cheng Ruan.
Writing - Review & Editing: Zhi Li Zhang.
All authors approved the final manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (31960589 and 31260460), Young 
Science and Technology persons Academic Innovation Program of Hainan Association for Science and Technology 
(QCXM201803).

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Inukai S, Kock KH, Bulyk ML. Transcription factor-DNA binding: beyond binding site motifs. Curr. Opin. Genet. 
Dev. 2017; 43:110-119.

2. Wang ZP, Guo YY, Liang MJ. Research progress on related database for animal transcription factors. Anim Husb 
Feed Sci. 2014; 35(12):28-30.

3. Qu LJ, Zhu YX. Transcription factor families in Arabidopsis: major progress and outstanding issues for future 
research. Curr. Opin. Plant Biol. 2006; 9(5):544-549.

4. Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 2006; 
11(11):550-558.

5. Riechmann JL, Ratcliffe OJ. A genomic perspective on plant transcription factors. Curr. Opin. Plant Biol. 2000; 
3(5):423-434.

6. Mantegazza O, Gregis V, Mendes MA, Morandini P, Alves-Ferreira M, Patreze CM, et al. Analysis of the 
arabidopsis REM gene family predicts functions during flower development. Ann. Bot. 2014; 114(7):1507-1515.

7. Swaminathan K, Peterson K, Jack T. The plant B3 superfamily. Trends Plant Sci. 2008; 13(12):647-655.
8. Peng FY, Weselake RJ. Genome-wide identification and analysis of the B3 superfamily of transcription factors in 

Brassicaceae and major crop plants. Theor. Appl. Genet. 2013; 126(5):1305-1319.
9. Wang YJ, Deng DX, Zhang R, Wang SX, Bian YL, Yin ZT. Systematic analysis of plant-specific B3 domain-

containing proteins based on the genome resources of 11 sequenced species. Mol. Biol. Rep. 2012; 39(5):6267-6282.
10. Sun TT, Wang DW, Gong DP, Chen L, Chen YQ, Sun YH. Genome-wide identification and bioinformatic analysis 

of B3 superfamily in tomato. J Plant Genet Res. 2015; 16(4):806-814.
11. Liu YH, Dong ZP. The function and structure of plant B3 domain transcription factor. MolPlant Breed. 2017; 

15(5):1868-1873.
12. Suzuki M, McCarty DR. Functional symmetry of the B3 network controlling seed development. Curr. Opin. Plant 

Biol. 2008; 11(5):548-553.
13. Romanel EA, Schrago CG, Couñago RM, Russo CA, Alves-Ferreira M. Evolution of the B3 DNA binding 

superfamily: new insights into REM family gene diversification. PloS one. 2009; 4(6):e5791.
14. Wu JJ, Yu SC, Liu ZG, Fu Y, Zhou MB. Genome identification and expression pattern analysis of Phyllostachys 

edulis B3 family. Chin J Agric Biotechol. 2019; 27(1):43-54.
15. Verma S, Bhatia S. A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345181
http://creativecommons.org/licenses/by/4.0/


genes in chickpea (Cicer arietinum L.). 3 Biotech. 2019; 9(9):346.
16. Chandler JW. Auxin response factors. Plant, Cell Environ. 2016; 39(5):1014-1028.
17. Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016; 7:47.
18. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. AUXIN RESPONSE FACTOR1 and AUXIN 

RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 2005; 
132(20):4563-4574.

19. Wilmoth JC, Wang SC, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, et al. NPH4/ARF7 and ARF19 promote leaf 
expansion and auxin-induced lateral root formation. Plant J. 2005; 43(1):118-130.

20. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, et al. LEAFY COTYLEDON2 encodes a B3 
domain transcription factor that induces embryo development. P Natl Acad Sci USA. 2001; 98(20):11806-11811.

21. Freitas NC, Barreto HG, Torres LF, Freire LL, Rodrigues LAZ, Diniz LEC, et al. In silico and in vivo analysis of 
ABI3 and VAL2 genes during somatic embryogenesis of Coffea arabica: competence acquisition and developmental 
marker genes. Plant Cell Tiss Org. 2019; 137(3):599-611.

22. Sugliani M, Rajjou L, Clerkx EJ, Koornneef M, Soppe WJ. Natural modifiers of seed longevity in the Arabidopsis 
mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3). New Phytol. 2009; 184(4):898-908.

23. Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud P-F, Pan A, et al. Role of ABA and ABI3 in desiccation 
tolerance. Science. 2010; 327(5965):546-546.

24. Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by 
farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003; 34(1):67-
75.

25. Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, et al. Arabidopsis LEAFY COTYLEDON2 
induces maturation traits and auxin activity: implications for somatic embryogenesis. P Natl Acad Sci USA. 2008; 
105(8):3151-3156.

26. Veerappan V, Wang J, Kang M, Lee J, Tang YH, Jha AK, et al. A novel HSI2 mutation in Arabidopsis affects the 
PHD-like domain and leads to derepression of seed-specific gene expression. Planta. 2012; 236(1):1-17.

27. Chen Nc, Veerappan V, Abdelmageed H, Kang M, Allen RD. HSI2/VAL1 silences AGL15 to regulate the 
developmental transition from seed maturation to vegetative growth in Arabidopsis. Plant Cell. 2018; 30(3):600-
619.

28. Li XJ, Li M, Zhou Y, Hu S, Hu R, Chen Y, et al. Overexpression of cotton RAV1 gene in Arabidopsis confers 
transgenic plants high salinity and drought sensitivity. PLoS One. 2015; 10(2):e0118056.

29. Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to 
trigger flowering. Curr. Biol. 2008; 18(17):1338-1343.

30. Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L, Bernatavichute YV, et al. LHP1, the Arabidopsis 
homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. P Natl Acad Sci USA. 
2006; 103(13):5012-5017.

31. Caselli F, Beretta VM, Mantegazza O, Petrella R, Leo G, Guazzotti A, et al. REM34 and REM35 control female and 
male gametophyte development in Arabidopsis thaliana. Front Plant Sci. 2019; 10:1351.

32. Fassinou Hotegni VN, Lommen WJ, Agbossou EK, Struik PC. Trade-offs of flowering and maturity synchronisation 
for pineapple quality. PloS one. 2015; 10(11):e0143290.

33. Friend D. Effect of night temperature on flowering and fruit size in pineapple (Ananas comosus [L.] Merrill). 
Botanical Gazette. 1981; 142(2):188-190.

34. Friend DJ, Lydon J. Effects of daylength on flowering, growth, and CAM of pineapple (Ananas comosus [L.] Merrill). 
Botanical Gazette. 1979; 140(3):280-283.

35. Cunha GAPd. Applied aspects of pineapple flowering. Bragantia. 2005; 64(4):499-516.
36. Zhang ZL, Fan HY, Hua M, He F. Induction of pineapple flowering and underlying physiological and molecular 

bases. Chin J Trop Crop. 2012; 33(5):950-955.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345181
http://creativecommons.org/licenses/by/4.0/


37. Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002; 93(1):77-
78.

38. Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, et al. MCScanX: a toolkit for detection and evolutionary 
analysis of gene synteny and collinearity. Nucleic Acids Res. 2012; 40(7):e49-e49.

39. Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. TBtools-an integrative toolkit developed for 
interactive analyses of big biological data. Mol Plant. 2020; 13(8):1194-1202.

40. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 
2009; 25(11):1451-1452.

41. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate 
maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010; 59(3):307-321.

42. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and 
searching. Nucleic Acids Res. 2009; 37:W202-W208.

43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT 
method. Methods. 2001; 25(4):402-408.

44. Ruan CC, Nian YW, Hu FC, Wang XH, Fan HY, Wu FZ, et al. Expression and analysis of FT genes in pineapple 
flowering induced by ethephon. J Fruit Sci. 2019; 36(12):1648-1657.

45. Ahmad B, Zhang SL, Yao J, Rahman MU, Hanif M, Zhu YX, et al. Genomic organization of the B3-domain 
transcription factor family in grapevine (Vitis vinifera L.) and expression during seed development in seedless and 
seeded cultivars. Int J Mol Sci. 2019; 20(18):4553.

46. Xia F, Sun TT, Yang SJ, Wang X, Chao JT, Li XX, et al. Insight into the B3 transcription factor superfamily and 
expression profiling of B3 genes in axillary buds after topping in tobacco (Nicotiana tabacum L.). Genes. 2019; 
10(2):164.

48. Su ZX, Wang LL, Li WM, Zhao LH, Huang XY, Azam SM, et al. Genome-wide identification of auxin response 
factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus). Trop Plant 
Biol. 2017; 10:86-96.

49. Alvarez JP, Goldshmidt A, Efroni I, Bowman JL, Eshed Y. The NGATHA distal organ development genes are 
essential for style specification in Arabidopsis. Plant Cell. 2009; 21(5):1373-1393.

50. Gu ZL, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li W-H. Role of duplicate genes in genetic robustness against 
null mutations. Nature. 2003; 421(6918):63-66.

51. Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in 
the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004; 4(1):10.

52. Liu CY, Xie T, Chen CJ, Luan AP, Long JM, Li CH, et al. Genome-wide organization and expression profiling of 
the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics. 2017; 18(1):1-16.

53. Xie T, Chen CJ, Li CH, Liu JR, Liu CY, He YH. Genome-wide investigation of WRKY gene family in pineapple: 
evolution and expression profiles during development and stress. BMC Genomics. 2018; 19(1):490.

54. Rosas U, Mei Y, Xie Qg, Banta JA, Zhou RW, Seufferheld G, et al. Variation in Arabidopsis flowering time 
associated with cis-regulatory variation in CONSTANS. Nat Commun. 2014; 5(1):1-8.

55. Lieberman-Lazarovich M, Yahav C, Israeli A, Efroni I. Deep conservation of cis-element variants regulating plant 
hormonal responses. Plant Cell. 2019; 31(11):2559-2572.

56. Maruthasalam S, Shiu LY, Loganathan M, Lien WC, Liu YL, Sun CM, et al. Forced flowering of pineapple (Ananas 
comosus cv. Tainon 17) in response to cold stress, ethephon and calcium carbide with or without activated charcoal. 
Plant Growth Regul. 2010; 60(2):83-90.

57. Villarino GH, Hu QW, Manrique S, Flores-Vergara MA, Sehra B, Robles L, et al. Temporal and spatial domain-
specific transcriptomic analysis of a vital reproductive meristem in Arabidopsis thaliana. Plant Physiol. 2016; 
171(1):42-61.

58. Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernández-Calvın B, Salinas J, Martınez-Zapater JM. AtREM1, a member 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345181
http://creativecommons.org/licenses/by/4.0/


of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems. Plant Physiol. 
2002; 128(2):418-427.

59. Romanel E, Das P, Amasino RM, Traas J, Meyerowitz E, Alves-Ferreira M. Reproductive Meristem 22 is a unique 
marker for the early stages of stamen development. Int. J. Dev. Biol. 2011; 55(6):657-664.

60. Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. Multiple roles of Arabidopsis VRN1 in vernalization and 
flowering time control. Science. 2002; 297(5579):243-246.

61. Wu BX, Zhang MM, Su SC, Liu HH, Gan JH, Ma JB. Structural insight into the role of VAL1 B3 domain for targeting 
to FLC locus in Arabidopsis thaliana. Biochem Bioph Res Co. 2018; 501(2):415-422.

62. Liu YH, Dong ZP. The function and structure of plant B3 domain transcription factor. Mol Plant Breed. 2017; 
15(5):1868-1873.

63. Liu XG, Dinh TT, Li DM, Shi BH, Li YP, Cao XW, et al. AUXIN RESPONSE FACTOR 3 integrates the functions 
of AGAMOUS and APETALA 2 in floral meristem determinacy. Plant J. 2014; 80(4):629-641.

64. Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato 
and analysis of their role in flower and fruit development. Mol. Genet. Genomics. 2011; 285(3):245-260.

65. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, et al. Auxin response factors ARF6 and ARF8 
promote jasmonic acid production and flower maturation. Development. 2005; 132(18):4107-4118.

66. Scagel C, Schreiner RP. Phosphorus supply alters tuber composition, flower production, and mycorrhizal 
responsiveness of container-grown hybrid Zantedeschia. Plant Soil. 2006; 283:323-337.

67. Ma Z, Baskin TI, Brown KM, Lynch JP. Regulation of root elongation under phosphorus stress involves changes in 
ethylene responsiveness. Plant Physiol. 2003; 131(3):1381-1390.

68. Shen CJ, Wang SK, Zhang SN, Xu YX, Qian Q, Qi Yh, et al. OsARF16, a transcription factor, is required for auxin 
and phosphate starvation response in rice (Oryza sativa L.). Plant, Cell Environ. 2013; 36(3):607-620.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345181
http://creativecommons.org/licenses/by/4.0/

