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Abstract: 16 

Several evolutionary forces are thought to maintain genetic variation for fitness-related traits, such 17 

as lifespan, but experimental support is limited. Using a powerful experimental design, we 18 

identified lifespan-associated variants by exposing outbred Drosophila melanogaster to standard 19 

and high-sugar diets and tracking genome-wide allele frequency changes as the flies aged. We 20 

mapped alleles associated with early vs late life tradeoffs, late-onset effects, and genotype-by-21 

environment (GxE) interactions – all of which are predicted by long-standing theories to maintain 22 

genetic variation for lifespan. We also validated an environmentally-dependent role for nAChRα4 23 

in regulating lifespan; the ortholog of this gene is one of the few lifespan-associated genes in 24 

humans (CHRNA3). Our results provide insight into the highly polygenic and context-dependent 25 

genetic architecture of lifespan, as well as the evolutionary processes that shape this key trait.  26 

  27 

Main text: 28 

Lifespan, a major component of fitness and a key life history trait, has a genetic basis: it is 29 

modestly heritable in humans and other organisms (h2~10%) (1) and dozens of lifespan-reducing 30 

alleles have now been identified (2, 3). However, the fact that genetic variation for lifespan exists 31 

at all presents an evolutionary puzzle, as it is expected that natural selection will purge fitness-32 

reducing alleles from the gene pool. Evolutionary theory provides several potential, non-mutually 33 

exclusive explanations for this conundrum. Lifespan-reducing alleles may persist because: (i) they 34 

are only deleterious in late-life, when selection is relatively weak (the mutation accumulation 35 

theory (4)), (ii) they provide benefits early in life that outweigh their late-life costs (the antagonistic 36 

pleiotropy theory (5)), and (iii) their effects vary across environments (genotype-by-environment, 37 

GxE) making them difficult to purge through purifying selection.  38 

 39 
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Notably, a special class of GxE interactions, driven by evolutionarily recent changes in human 40 

diet and lifestyle (6–8), are thought to be particularly important for human disease. Specifically, it 41 

has been proposed that complex diseases are caused by alleles that evolved under stabilizing or 42 

positive selection throughout human history, but are now “mismatched” to obesogenic diets and 43 

other aspects of modern life (6–9). While this explanation is compelling, empirical data is limited 44 

due to the difficulty of identifying GxE interactions at genome-wide scale with high power (but see 45 

(10)). As a result, the degree to which exposure to evolutionarily novel environments alters the 46 

relationship between genetic variation and fitness-related traits remains unclear.  47 

 48 

To address this question, we leveraged the tractable experimental and genomic tools of 49 

Drosophila melanogaster to map loci that affect lifespan in two environments. Specifically, we 50 

exposed an outbred population of flies to two diets: a standard laboratory diet and a high sugar 51 

diet containing more sucrose than flies would encounter in nature and that is known to cause 52 

obesity, diabetes, and reduced lifespan in this species (11, 12). Drawing inspiration from a recent 53 

study of human longevity (13), we tracked genome-wide allele frequency changes in age-matched 54 

flies across their entire adult life. Using this high-powered experimental approach (Figure 1A-B), 55 

we were able to identify thousands of lifespan-reducing alleles that decrease in frequency as 56 

individuals grow older, as well as to classify them into: (i) GxE alleles that have stronger effects 57 

on lifespan on one diet, potentially due to risk alleles being exposed by the novel high sugar diet, 58 

(ii) alleles with tradeoffs between early and late life that first increase and then decrease 59 

(antagonistic pleiotropy theory), and (iii) late-onset alleles that only decrease at late ages 60 

(mutation accumulation theory). Together, our study provides insight into the genetic architecture 61 

and environmental sensitivity of a major life history trait, and experimentally addresses long-62 

standing theories for why fitness-reducing alleles abound in nature. 63 

 64 

 65 
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Sex and genotype have environment-specific effects on lifespan 66 

To identify loci associated with lifespan variation and evaluate their context-dependence, we 67 

exposed large, replicate populations of age-matched outbred flies to standard laboratory (from 68 

now on “control” or “CTRL”) and high sugar (“HS”) diets for one generation (n=3 replicates of 69 

~10,000 flies per diet; Figure 1A). To prevent overlapping generations, the food containers where 70 

flies also lay eggs were exchanged every three days. We drew a random sample of ~2000 flies 71 

at the beginning of the experiment (T0), and continued to sample ~500 flies from each population 72 

at regular intervals. When only the ~500 longest-lived flies were left in a given replicate cage, we 73 

collected a final sample (TN) (Table S1,2). In total, 10,637 flies were genotyped using individually 74 

barcoded low-coverage genome sequencing (Fig. S1) to estimate age-specific genome-wide 75 

allele frequencies on each diet.  76 

 77 

While all replicates for the two diets started from a common pool of standing genetic variation at 78 

the beginning of the experiment (Figure 1C; Table S3), we observed a consistent ~1.6 fold 79 

reduction in lifespan for flies on the HS diet, as expected (12). We also observed substantial and 80 

unexpected interactions between diet and sex: while the sex ratio remained roughly 1:1 as flies 81 

aged on the HS diet, males far outlived females on the CTRL diet resulting in a sex ratio of ~100:1 82 

by the end of the experiment (Figure 1D; Table S4). We replicated this observation in independent 83 

experiments where time-to-death of individual flies was quantified, suggesting that it is a 84 

repeatable characteristic of the fly population used here (Cox proportional hazards: p(sex-by-diet) 85 

= 0.026) (Fig. S2, Table S5). While others have also observed that sex-specific lifespans in flies 86 

are sometimes environmentally-dependent (14, 15), future work is necessary to uncover the 87 

proximate mechanisms at play here. 88 

 89 

We estimated allele frequencies at 291,319 common SNPs (MAF>0.05) and tested for alleles that 90 

exhibited a significantly lower frequency at the end of the experiment (TN; n=1443 and 1866 91 
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sequenced flies for CTRL and HS, respectively) compared to the beginning of the experiment (T0; 92 

n=2104 sequenced flies). Such decreases in frequency indicate that individuals carrying a focal 93 

allele die at younger ages relative to individuals carrying the alternative allele (Figure 1B). We 94 

identified 4294 genetic variants that fit this pattern distributed among 2425 genes (FDR<1%, beta-95 

binomial model; Figure 2, Table S6, Fig. S3). The average absolute decrease in allele frequency 96 

(between TN and T0) for these lifespan-associated SNPs was 0.08, with most changes falling 97 

between 0.05-0.11 (Fig. S4). The majority of these lifespan-associated variants (2812; 66%) had 98 

similar or “shared” effect sizes between environments (defined as FDR<1% in one environment 99 

and p<0.05 in the other). However, many lifespan-associated SNPs (1482; 34%) exhibited 100 

evidence for GxE interactions, and had stronger effects on lifespan on one diet relative to the 101 

other (“GxE” defined as FDR<1% in one environment and p>0.05 in the other environment, which 102 

our simulations suggest picks up a conservative set of SNPs with environmentally-dependent 103 

effect sizes; Fig. S5). Strikingly, out of the 1482 SNPs with GxE effects on lifespan, 91% had 104 

larger effects on the HS diet, indicating that their effects are magnified under dietary stress (Figure 105 

2). These results suggest that a substantial amount of genetic variation that appears to have little 106 

effect on phenotypic variation under one set of conditions might indeed play a fundamental role 107 

in new or stressful environments.  108 

 109 

Given the striking sex-by-diet interaction on overall mortality patterns (Figure 1D), we also 110 

evaluated the degree to which the genetic basis of lifespan differs between the sexes using two 111 

approaches. First, we tested for allele frequency differences between males and females at T0. 112 

We do not expect any sex differences at T0 unless there are loci with sex-specific effects on 113 

viability during development (e.g., loci that have genetic incompatibilities with the Y chromosome 114 

or that interact with X chromosome dosage (16). We found 663 SNPs with viability effects (beta-115 

binomial model, FDR<1%; Figure 3A, Table S7). Two notable examples fall near nAChRα4, the 116 

ortholog of CHRNA3 which has sex-specific effects on longevity in humans (3, 13). Second, we 117 
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tested for alleles with time (TN vs T0) by sex interactions which would point to SNPs with sex-118 

specific effects on lifespan. For this analysis we used data from the HS replicates only; the 119 

absence of females at TN  in the CTRL replicates prevented their use for this purpose (Figure 1D). 120 

Only 29 SNPs showed significant sex-dependent effects on lifespan (beta-binomial model, 121 

FDR<1%; Table S8). Because we found only modest evidence that sex modifies the genetic 122 

architecture of lifespan in adult flies, we combined both sexes for most subsequent analyses.  123 

 124 

Biological and functional insight into the genetic basis of lifespan 125 

To understand the biology of loci that contribute to lifespan similarly on both diets (n=2812 126 

“shared” SNPs) or more so on one diet (n=136 and 1346 SNPs with stronger effects on the CTRL 127 

and HS diets, respectively) we first asked whether shared or GxE lifespan-associated SNPs were 128 

enriched in particular genomic features. We found that both SNP groups are enriched in protein-129 

coding regions (Fisher’s exact test: odds ratio=1.15 and 1.12, p=2.7x10-4 and p=0.039, for shared 130 

and GxE SNPs, respectively; Table S9). Nevertheless, using RNA-seq data generated from an 131 

independent replicate of the main experimental set up (n=162, Figure 4A Table S10, Fig. S6), we 132 

found that lifespan-associated SNPs were 1.4x more likely to fall near genes differentially 133 

expressed between old (TN) and young (T0) flies (relative to SNPs not associated with lifespan; 134 

Fisher’s exact test, p=4.4x10-11). This suggests that while lifespan-altering genetic variation is 135 

slightly biased toward protein-coding regions, it likely also plays an important regulatory role for 136 

genes relevant to aging. 137 

 138 

Second, we asked whether genes harboring shared or GxE lifespan-associated SNPs were 139 

enriched for any particular molecular processes. We found that while both gene sets were strongly 140 

enriched for genes identified in previous studies of D. melanogaster longevity (Figure 4B, Table 141 

S12), they were not significantly enriched for any particular molecular pathway nor for “canonical” 142 

longevity genes (FDR<1%; Table S12). Restricting our analyses to genes that both contain 143 
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longevity alleles and are differentially expressed with age did uncover some enrichment, 144 

particularly for oogenesis and neuronal related processes (FDR<1%; Table S13). However, these 145 

results more generally support a highly polygenic model in which genetic variation segregating in 146 

wild-derived populations of D. melanogaster does not localize to the canonical biological 147 

pathways associated with aging and lifespan (17, 18), as was also observed by (14).  148 

 149 

Many of the lifespan-associated genes we identified perform essential functions. For example, 150 

midway, involved in fat metabolism and oogenesis (19), and lovit, involved in neurophysiology 151 

(20), both contain lifespan-associated SNPs. Using loss-of-function mutant lines, we validated 152 

their effects on lifespan (lovit: p-value = 0.042; midway: p-value < 10-16), and show that midway 153 

acts in an environment-dependent manner (p-value = 7x10-4, Figure 4C-D, Table S14). We also 154 

used loss-of-function mutant lines to investigate nAChRα4 – the ortholog of a key human longevity 155 

gene, CHRNA3 – for which our main experiment revealed complex sex-by-diet-by-genotype 156 

interactions (Fig 3C-D). Our follow up experiments confirmed this three-way interaction: wild type 157 

males maintained a large survival advantage over nAChRα4 mutants on both diets, while in 158 

females this effect was modest on a CTRL diet and completely reversed on a HS diet (Fig. 3C-D, 159 

Table S14). These results are in agreement with human studies where variants near CHRNA3 160 

have stronger effects on lifespan in males (3, 13); however, they also suggest that dampened 161 

CHRNA3-lifespan associations in human females may be driven by environmental interactions 162 

that obscure main effects of genotype.  163 

 164 

Testing evolutionary theories of aging and longevity 165 

Fitness-reducing alleles are thought to largely be governed by mutation-selection balance, in 166 

which mutation continuously generates deleterious alleles and purifying selection eliminates them 167 

(21). In support of this idea (22), we find that the minor allele reduces lifespan 98% of the time. 168 

That said, these risk alleles are by no means rare in the population (mean frequency +/- SD at T0 169 
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= 0.363 +/- 0.121; Table S6), suggesting that other evolutionary forces maintain them at moderate 170 

frequencies. Our results establish GxE interactions as one such key factor. We next asked if two 171 

additional forces, antagonistic pleiotropy and mutation accumulation, may also be important 172 

contributors to this feature of the data. Specifically, we estimated allele frequencies at several 173 

time points between T0 and TN to determine the trajectory of lifespan-reducing alleles (Figure 1A, 174 

Table S1,2). We then asked whether these alleles exhibited (i) a U-shaped pattern indicative of 175 

trade-offs and differential fitness effects at young versus old ages, as predicted by antagonistic 176 

pleiotropy theory (5); (ii) evidence for fitness-effects only at old ages, as predicted by mutation 177 

accumulation theory (4); or (iii) an evolutionary “null” model of constant fitness-effects at all ages 178 

(Figure 5A).  179 

 180 

Of the 4294 SNPs with shared or GxE effects on lifespan, we confidently assigned 61 to one of 181 

the three trajectories described above (ΔAIC between the best and second-best trajectory > 99% 182 

of permutations). 49% of these 61 SNPs followed an antagonistic pleiotropy pattern, and 46% a 183 

pattern consistent with mutation accumulation theory. Importantly, only 3 SNPs exhibited constant 184 

changes in frequency with age, a pattern that does not correspond to any of the evolutionary 185 

models we have considered (Figure 5, Table S15). In further support of antagonistic pleiotropy 186 

theory, we also find that genes near any shared or GxE lifespan-associated SNPs (not just the 61 187 

with assigned trajectories) significantly overlap with a previous study of age-specific fertility in flies 188 

(Figure 4B; Table S12; (23)). This overlap further indicates that many longevity-reducing alleles 189 

are maintained because they provide other benefits, for example to fertility in early adulthood, that 190 

outweigh their late life costs.  191 

 192 

The evolution of alleles with GxE effects on lifespan 193 

We have shown evidence that lifespan-reducing alleles are maintained at intermediate 194 

frequencies in outbred flies through several evolutionary forces, namely GxE interactions, 195 
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mutation accumulation, and antagonistic pleiotropy. Strikingly, we find that exposing flies to 196 

unusually high sugar concentrations reveals many previously hidden/cryptic fitness-associated 197 

variants, as has been predicted repeatedly (6) but rarely tested experimentally. This result has 198 

implications for human health, as it is thought that rapid shifts in human diet and lifestyle following 199 

the Industrial Revolution have caused previously adaptive or neutral alleles to become 200 

“mismatched” or “maladaptive”, such that they are currently associated with diseases that impact 201 

lifespan (Figure 5E; (6, 7, 10)). 202 

 203 

Both the standard lab (CTRL) and the HS diets represent substantial dietary changes for our 204 

experimental flies, compared to conditions “in the wild”. Thus, it is likely that alleles under selection 205 

to maximize longevity in wild conditions are not optimally matched to either of the diets in our 206 

experiment. This is especially likely of the HS diet for which we observed a substantially shortened 207 

lifespan. If the variants contributing to lifespan differences on the two diets in our experiment were 208 

previously neutral, we would expect no bias with regard to whether variants causing lifespan 209 

differences are associated with the ancestral or derived allele. Contrary to this expectation, we 210 

find that, for both shared and GxE SNPs, lifespan-reducing alleles are more likely to be derived. 211 

This pattern is most dramatic for HS-specific risk alleles: 67% of lifespan-reducing alleles are 212 

derived compared to background expectations of 52% (estimated using 1000 randomly drawn 213 

pools of non-significant SNPs) (Figure 5F). Thus, it is clear that lifespan-reducing alleles are 214 

unlikely to be neutral, and their high frequencies in the source population also make it unlikely 215 

that they reflect mutation-selection balance. We speculate that directional selection in response 216 

to spatial and temporal environmental heterogeneity has resulted in high frequency-derived 217 

alleles that contribute to reduced longevity in new environments (24).  218 

 219 

 220 
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Implications for understanding the genetic basis of lifespan variation 221 

Long-standing population genetic and evolutionary theories have proposed several forces at play 222 

in the maintenance of genetic variation for fitness-related traits (4–6, 8). However, the predictions 223 

of these theories have rarely been experimentally tested, due to the difficulty of mapping fitness-224 

related genetic effects. For example, a recent human study using a similar approach to ours but 225 

a 10-fold larger sample size found only two lifespan-associated loci near the APOE and CHRNA3 226 

genes (13). Instead, we identified thousands of lifespan-associated loci, many of which have 227 

larger effects on the HS diet, uncovering a highly polygenic and context-dependent architecture. 228 

We estimate that in the absence of environmental heterogeneity, both studies have similar 229 

statistical power (Fig. S7); the fact that we find orders of magnitude more lifespan-associated 230 

SNPS here highlights the utility of well-controlled experimental designs in model organisms for 231 

the study of complex traits. Because our high-powered design allowed us to identify many 232 

lifespan-reducing alleles, we could evaluate the generality of long-standing theories for why 233 

alleles that shorten lifespan persist in nature and how they evolve. Specifically, we identified GxE 234 

interactions, as well as mutation accumulation and antagonistic pleiotropy, as factors maintaining 235 

genetic variation for lifespan. We also provide experimental insight into how interactions between 236 

derived genetic variation and novel environmental conditions may shorten lifespan. 237 

  238 
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 512 

 513 

Fig. 1   Experimental design to detect GxE interactions modulating lifespan. 514 

(A) D. melanogaster flies caught in Princeton, NJ were used to generate a synthetic outbred 515 

population that was kept under laboratory conditions for over a year, and split in two replicate 516 

cages prior to the beginning of the experiment (A and B). ~1000 flies were collected from A and 517 

B at the start of the experiment (T0, 2±1 days old) and the rest were distributed into 6 replicate 518 

cages of ~10,000 flies each (3 cages = standard lab diet (CTRL), blue; 3 cages = high sugar diet, 519 

orange). ~500 flies were sampled every 3-7 days from a given cage and a last sample was taken 520 

when only ~500 flies were left (TN) (Table S1-2); sampling schedule are noted by vertical dashed 521 

lines for the CTRL1 and HS1 cages. Identical schedules were followed for all other cages within 522 

a treatment group. To prevent pupae from the new generation from eclosing inside the 523 

experimental cages, food containers were replaced every three days. (B) Individually barcoded 524 

DNA-seq libraries were prepared from 10,635 individual flies sampled from T0, TN, and the 525 

intermediate time points. Each library was sequenced at ~1x depth to estimate allele frequencies 526 

and test for frequency changes across time (Fig. S1). (C) Expected patterns of frequency change 527 

are shown for alleles that reduce lifespan in both diets (shared) or more so on the HS diet (GxE). 528 

(D) The allelic composition of cages A (solid line) and B (dashed line) is very similar at T0 529 

(n=291,319 SNPs). Inset shows the per-site correlation between the alternate allele frequency 530 

(AAF) estimated for cage A versus B at T0. (E) Log2 ratio of males to females at different timepoints 531 

during the experiment. The number of flies sexed at each time point is provided in Table S4. 532 
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 534 

 535 

Fig. 2 GxE interactions determine lifespan. 536 

(A, B) Manhattan plots highlighting significant lifespan-associated SNPs with GxE effects. Plots 537 

show the -log10 p-value for tests for allele frequency differences between TN and T0 on a (A) CTRL 538 

and (B) HS diet; colored points passed our significance filters for GxE effects (see methods). (C) 539 

Comparison of model-estimated effect sizes for a genetic effect on lifespan on CTRL versus HS 540 

diets (positive values indicate the alternate allele increases in frequency at TN versus T0). Only 541 

SNPs with significant evidence for GxE effects are colored. (D, E) Allele frequency changes 542 

across replicates for (D) an example SNP (3L:2208596) associated with lifespan in both dietary 543 

conditions and (E) an example SNP (2L:4287424) with larger effects on lifespan on the HS diet. 544 

The estimated alternate allele frequency is shown for each replicate cage, with bars representing 545 

the standard error. The two T0 bars correspond to cage A and B. The inset shows the mean 546 

alternate allele frequencies at TN and T0, for each replicate CTRL (blue) and HS (orange) cage, 547 

using the same x and y axes as in Figure 1B.  548 

  549 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.346312doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 550 

 551 

Fig. 3 Sex differences in viability associated with the nAChRα4 gene.   552 

(A) Histogram of the difference in alternate allele frequency between males and females for SNPs 553 

with significant sex differences at T0. Arrows indicate the effect size for SNPs in nAChRα4; the 554 

human ortholog -CHRNA3- has also been associated with lifespan/viability. Inset shows that the 555 

genome-wide distribution of alternate allele frequency differences between males and females at 556 

T0 is centered at 0. (B) Allele frequency changes across replicates and time points for one of the 557 

nAChRα4 SNPs (3L:23223270). The estimated alternate allele frequency is shown, with bars 558 

representing the standard error. (C, D) Survival curves for control lines versus loss-of-function 559 

nAChRα4 mutants estimated for (C) males and (D) females, respectively. Kaplan-Meier survival 560 

curves for the control lines include data from four WT lines (DGRP 439, DGRP 181, Canton-S, 561 

and yw) (Table S14). 562 
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 564 

Fig. 4 Properties of lifespan-associated genes. 565 

(A) Genes differentially expressed more so on a CTRL (blue) or HS (orange) diet. Axes show the 566 

estimated log-fold change (LFC) in expression between young and old flies on each diet. Positive 567 

values indicate higher expression in older flies. (B) Genes in or near (<1kb) SNPs with shared 568 

(grey) or GxE (blue) effects on lifespan in this experiment overlap with lifespan and fecundity 569 

genes identified in previous studies (identified by first author’s last name). The degree of overlap 570 

is represented as fold enrichment from a Fisher’s exact test, and light bars indicate non-significant 571 

overlap. Studies represent several types: GWAS for fecundity measured during weeks 1-7 in 572 

inbred lines (23); selection for extended lifespan in outbred flies (25–28); analyses of standing 573 

variation associated with lifespan in inbred lines (14); and “canonical” longevity genes from the 574 

GenAge database (29). Light bars indicate non-significant overlap. (C, D) Kaplan-Meier survival 575 

curves for two candidate genes, with p-values from a Cox proportional-hazards model testing for 576 

an effect of the gene on survival as well as a GxE effect. Survival curves for the control lines 577 

include data from four WT lines (DGRP 439, DGRP 181, Canton-S, and yw). 578 
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 579 

 580 

Fig. 5 Evolutionary insight from longevity-associated SNPs.  581 

(A) Allele frequency trajectories across time according to the antagonistic pleiotropy and 582 

mutation accumulation theories, and a constant trajectory not expected under evolutionary 583 

models. We asked whether each lifespan-associated SNP could be confidently assigned to one 584 

of these trajectories. (B) ΔAIC between the best and second-best model for each tested SNP. HS 585 

and CTRL cages were analyzed separately due to the different age distributions within each 586 

treatment (See Figure 1A). SNPs with ΔAIC values >99% of the null distribution are confidently 587 

assigned to a given trajectory and their ΔAIC values are plotted as individual points. (C-D) 588 

Examples of a (C) quadratic trajectory SNP (2R:15614667) in HS suggesting antagonistic 589 

pleiotropy and (D) a breakpoint trajectory SNP (2R:19203991) in the standard lab environment 590 

(CTRL) suggesting mutation accumulation dynamics. Points represent the mean alternate allele 591 

frequency for a given age estimated across all cages, while bars represent the standard error of 592 

the estimate. (E) Potential predictions from mismatch theory: alleles that evolved more recently 593 

in the focal population (derived alleles) are neutral (black line) or advantageous (dashed line) in 594 

the “home” environment they evolved in; however, they become deleterious in a “novel” 595 

environment. (F) The derived allele is more likely than the ancestral allele to reduce lifespan 596 

relative to chance expectations. For lifespan-associated SNPs shared between environments or 597 

with stronger effects in HS or CTRL, the proportion of SNPs for which the derived allele is the 598 

lifespan-reducing allele is noted with an arrow. The two arrows for shared SNPs represent the 599 

proportion estimated using effect sizes from the CTRL (dark blue solid arrow) or HS (dark blue 600 

dashed arrow) conditions, respectively. Null expectations were derived by performing the same 601 

calculations on effect sizes from individual CTRL or HS cages across 1000 randomly drawn pools 602 

of non-significant SNPs. 603 
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