1 Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the

2 plasma membrane

- 3
- 4 Takuma Kishimoto¹*, Tetsuo Mioka¹, Eriko Itoh¹, David E. Williams², Raymond J.
- 5 Andersen², Kazuma Tanaka¹*
- 6
- ⁷ ¹ Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University
- 8 Graduate School of Life Science, Sapporo, Hokkaido, Japan
- 9 ²Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of
- 10 British Columbia, Vancouver, BC V6T 1Z1, Canada
- 11
- 12 *Corresponding Author
- 13 E-mail: <u>kishitaku@igm.hokudai.ac.jp</u> (TK), <u>k-tanaka@igm.hokudai.ac.jp</u> (KT)
- 14
- 15 Short title: Plasma membrane ergosterol retained by phospholipid flippases and Sfk1

17 Abstract

18	Sterols are important lipid components of the plasma membrane (PM) in eukaryotic cells, but
19	it is unknown how the PM retains sterols at a high concentration. Phospholipids are
20	asymmetrically distributed in the PM, and phospholipid flippases play an important role in
21	generating this phospholipid asymmetry. Here, we provide evidence that phospholipid
22	flippases are essential for retaining ergosterol in the PM of yeast. A mutant in three flippases,
23	Dnf1-Lem3, Dnf2-Lem3, and Dnf3-Crf1, and a membrane protein, Sfk1, showed a severe
24	growth defect. We recently identified Sfk1 as a PM protein involved in phospholipid
25	asymmetry. The PM of this mutant showed high permeability and low density, and many
26	nutrient transporters failed to localize to the PM. Staining with the sterol probe filipin and the
27	expression of a sterol biosensor revealed that ergosterol was not retained in the PM. Instead,
28	ergosterol accumulated in an esterified form in lipid droplets. We propose that ergosterol is
29	retained in the PM by the asymmetrical distribution of phospholipids and the action of Sfk1.
30	Once phospholipid asymmetry is severely disrupted, sterols might be exposed on the
31	cytoplasmic leaflet of the PM and actively transported to the endoplasmic reticulum by sterol
32	transfer proteins.
33	

34 Introduction

35 Heterogeneity in the distribution of membrane phospholipids and sterols is essential for the

36	diverse functions of cells. In the plasma membrane (PM) of eukaryotic cells,
37	phosphatidylcholine (PC), sphingolipids, and gangliosides are predominantly distributed in
38	the extracellular leaflet, whereas phosphatidylethanolamine (PE), phosphatidylserine (PS),
39	and other charged lipids are mainly localized to the cytoplasmic leaflet [1-3]. This
40	asymmetric distribution of phospholipids is controlled by three types of lipid translocators:
41	flippase, catalyzing inward phospholipid translocation (flip) [4-6]; floppase, catalyzing
42	outwards phospholipid translocation (flop) [5, 7, 8]; and scramblase, catalyzing bidirectional
43	phospholipid translocation [9].
44	Accumulating genetic and biochemical evidence indicates that flippases are
45	integrally linked to phospholipid asymmetry of the organelle membrane from yeast to
46	mammalian cells. Flippases, which are type 4 P-type ATPases (P4-ATPases), have the ability
47	to translocate phospholipids from the extracellular leaflet of the PM or luminal leaflet of
48	endomembranes to the cytoplasmic leaflet [6]. At the cellular level, flippases are associated
49	with diverse physiological functions. Flippases in endomembranes function primarily in
50	membrane trafficking processes [10-18], whereas those located in the PM are involved in
51	multiple cellular processes: membrane trafficking [10, 12, 13, 19], apoptosis signaling [20],
52	mating signaling [21], the apical membrane barrier [22], cell polarity [23-25], and cell
53	migration [26].

Flippases form heterodimeric complexes with noncatalytic subunits of the Cdc50

55	family. Budding yeast has five P4-ATPases: Drs2, Dnf1, Dnf2, Dnf3, and Neo1 [27] and
56	three Cdc50 family member proteins: Cdc50, Lem3, and Crf1 [13, 14]. Drs2 and Dnf3
57	interact with Cdc50 and Crf1, respectively, and are mainly localized to the endomembrane,
58	such as the trans-Golgi network (TGN) and endosomes. On the other hand, both Dnf1 and
59	Dnf2 form complexes with Lem3 and are mainly localized to the PM [12, 28]. Except for
60	Neo1, interactions between the P4-ATPases and Cdc50 subunits are essential for endoplasmic
61	reticulum (ER) exit and proper subcellular localization of the complexes but may also
62	contribute to their lipid translocase activity and functions [13, 14, 29-32]. Thus, phenotypes
63	in P4-ATPase mutants are phenocopied by their subunit mutants [13, 14].
64	Dnf1/2-Lem3 complexes are endocytosed but recycled back to the PM through the
65	endocytic recycling pathway [13, 14], maintaining the localization of these complexes to the
66	PM. Genetic analyses suggested that the Dnf1/2-Lem3 complexes have PE and PS
67	translocation activity [12, 28, 33, 34]. Considering the localization and activity of
68	Dnf1/2-Lem3 complexes, they maintain phospholipid asymmetry predominantly at the PM.
69	Compared to the other four P4-ATPases, little is known about the activity and function of the
70	Dnf3-Crf1 complex. However, the deletion of <i>DNF3</i> increases the sensitivity of the $dnf1\Delta$
71	$dnf2\Delta$ double mutant to the PE-binding peptide duramycin [21], and Dnf3 is implicated in the
72	translocation of PS across the PM [35], suggesting possible functions of the Dnf3-Crf1
73	complex in PM phospholipid translocation.

74	In addition to Dnf1/2-Lem3, some regulators are involved in phospholipid asymmetry
75	of the PM. Serine/threonine kinases Fpk1/2 upregulate Dnf1/2 flippase activity via
76	phosphorylation [36]. Pdr5p and Yor1p, two multidrug ABC transporters [12, 37], and Opt2,
77	a member of the oligopeptide transporter family [38], are implicated in the flop of
78	phospholipids. Recently, we isolated Sfk1 as a multicopy suppressor of the $lem3\Delta$ mutant;
79	overexpression of Sfk1 suppressed PE and PS exposure in the PM [39]. Sfk1 is a conserved
80	transmembrane protein belonging to the TMEM150/FRAG1/DRAM family [40]. From
81	genetic analyses, we proposed that Sfk1 might negatively regulate the transbilayer movement
82	of phospholipids irrespective of direction in an unprecedented way. The $lem3\Delta sfk1\Delta$ double
83	mutant exhibits more severe defects in PE and PS asymmetry in the PM than the $lem3\Delta$
84	mutant, and the <i>lem3</i> Δ <i>sfk1</i> Δ mutant exhibits increased permeability of the PM [39]. However,
85	these mutations do not affect cell growth. Given that PM phospholipid asymmetry is
86	commonly observed in eukaryotes, it may be speculated that phospholipid asymmetry plays
87	an important role (e.g., is essential for cell growth). Thus, there might be a gene that
88	functions redundantly with LEM3 and SFK1 to control phospholipid asymmetry.
89	Another important feature of the PM is that this membrane is rich in sterols. Sterols
90	such as mammalian cholesterol and the fungal ergosterol are essential membrane components
91	with tightly controlled homeostasis [41]. At the cellular level, the PM contains approximately
92	30-40 mol% cholesterol in PM lipids, whereas ER contains approximately 5 mol%

93	cholesterol [42, 43]. Sterols are inserted into lipid membranes through the interaction
94	between 3-hydroxyl groups and hydrocarbon rings of sterols and polar head groups and
95	hydrocarbon chains of phospholipids, respectively [44]. Each phospholipid has a different
96	affinity for sterols, which determines the strength of their interaction with sterols [45, 46].
97	Sphingolipids, PC, and PS interact strongly with sterol, whereas phospholipids with small
98	polar head groups and unsaturated fatty acyl tails exhibit weaker interactions [47-49].
99	Numerous studies have suggested that these interactions contribute to the properties of the
100	PM, including tight packing, high rigidity, and low permeability. However, it is unclear how
101	the PM retains such a high concentration of sterols and whether the asymmetric distribution
102	of PE and PS is involved in retaining sterols in the PM.
103	In this study, we searched for genes that functionally interact with LEM3 and SFK1 by
104	synthetic lethal genetic screening and identified <i>dnf3</i> and <i>crf1</i> as interacting partners. The
105	conditional crf1 lem3 sfk1 triple mutant cannot maintain ergosterol in the PM and instead
106	accumulates esterified ergosterol in the lipid droplet (LD). Our results suggest that
107	Dnf1/2-Lem3 and Dnf3-Crf1 flippases and Sfk1 function cooperatively to maintain the
108	phospholipid asymmetry of the PM, which is essential for sterol retention in the PM and thus
109	for the homeostatic control of sterol.

Results

112 Dnf3-Crf1 flippase is involved in PM phospholipid asymmetry together with

113 Dnf1/2-Lem3 flippases and Sfk1

- 114 To isolate genes involved in the regulation of phospholipid asymmetry of the PM in
- 115 conjunction with Lem3 and Sfk1, we searched for mutations that display synthetic lethality
- 116 with $lem3 \Delta sfk1 \Delta$ mutations at 30°C. We isolated a new allele of the flippase noncatalytic
- subunit *crf1* (Fig 1A). To confirm this synthetic lethality, we crossed the *crf1* Δ *lem3* Δ mutant
- 118 to the $lem3\Delta sfkl\Delta$ mutant, followed by tetrad analysis (Fig 1B). The $crfl\Delta lem3\Delta sfkl\Delta$
- triple mutant did not germinate at 30°C but germinated at 25°C despite severe growth defects
- 120 (Fig 1B), which allowed us to obtain the $crf1\Delta lem3\Delta sfk1\Delta$ triple mutant for further analysis.
- 121 We next tested the growth of the $crfl \Delta lem 3 \Delta sfkl \Delta$ triple mutant at 30 and 37°C. The triple
- 122 mutant grew very slowly at 30°C and showed lethality at 37°C (Fig 1C). The deletion of
- 123 DNF3, which encodes the catalytic subunit of Crf1 [13], also grew poorly when combined
- 124 with *lem3* Δ *sfk1* Δ (Fig 1D).

125 Dnf3 is mainly localized to endosomal/Golgi membranes [10, 12], but it was

- suggested that Dnf3 also functions at the PM [35]. To examine whether Dnf3-Crf1 is
- transported to the PM, we used the endocytosis-deficient $vrp1\Delta$ mutant [50]. Both
- 128 Dnf3-3xGFP (triple tandem green fluorescent protein [GFP]) and Crf1-GFP were localized to
- 129 intracellular structures but were barely detectable in the PM of the wild-type. However, they
- 130 were observed in the PM when endocytosis was inhibited (Fig 1E). This result indicates that

131	the Dnf3-Crf1 flippase is transported between the PM and endomembranes, similar to
132	Drs2-Cdc50 [14]. These results raise the possibility that the synthetic growth defect of the
133	$crfl \Delta lem 3 \Delta sfkl \Delta$ mutant is caused by defects in the PM, and this point was analyzed
134	further.
135	
136	Fig 1. Synthetic growth defects of the $crf1\Delta$ lem 3Δ sfk 1Δ mutant.
137	(A) Growth profiles on 5-fluoroorotic acid (5-FOA) plate medium. The $crf1\Delta lem3\Delta sfk1\Delta$
138	mutant harboring pRS316-SFK1 was transformed with YCplac111 (pCon), YCplac111-LEM3
139	(pLEM3), YCplac111-CRF1 (pCRF1), or pRS315-SFK1 (pSFK1). Transformants were
140	streaked onto an SD-Leu + 5-FOA plate and grown at 30°C for 3 d. The cells that require
141	pRS316-SFK1 for growth are sensitive to 5-FOA because pRS316 contains the URA3 gene
142	[51]. (B) Tetrad dissection analysis. Diploid cells with the indicated genotype were sporulated,
143	dissected, and grown at either 30 or 25°C for 4 d. Colonies were replica-plated onto selective
144	media to determine the segregation of the marked mutant alleles. Tetrad genotypes (TT,
145	tetratype; PD, parental ditype; and NPD, nonparental ditype) are indicated, and the identities
146	of the triple mutant segregants are shown in parentheses (red circles). (C) Growth profiles by
147	spot growth assay. As described in the "Materials and Methods", tenfold serial dilutions of
148	cell cultures were spotted onto YPDA and grown for 1.5 d at 30 or 37°C. (D) Synthetic
149	growth defects of the $dnf3\Delta$ lem 3Δ sfk 1Δ mutant. Tetrad analysis was performed as in (B).

150	(E) Localizations of Dnf3-3xGFP (triple tandem GFP) and Crf1-GFP in the endocytosis
151	defective $vrp1\Delta$ mutant. Cells were grown to mid-log phase in YPDA medium at 30°C.
152	Arrows indicate the cells showing the PM localization of examined proteins. Bar, 5 μ m. DIC,
153	differential interference contrast.
154	
155	We attempted to perform phenotypic analysis of the $crf1\Delta lem3\Delta sfk1\Delta$ triple mutant.
156	However, the expression of some GFP-fused proteins resulted in lethality in the $crf1 \Delta lem3 \Delta$
157	<i>sfk1</i> Δ background. Thus, we constructed temperature-sensitive (ts) mutants of <i>SFK1</i> by
158	random mutagenesis in the $lem3\Delta crf1\Delta$ background as described in the "Materials and
159	Methods". The $crf1 \triangle lem3 \triangle sfk1-2$ mutant exhibited acceptable growth at 30°C but a severe
160	growth defect at 37°C (Fig 2A). From the growth profiles of the $crf1\Delta lem3\Delta sfk1-2$ mutant
161	at 30 and 37°C (S1 Fig), we determined that phenotypes of the triple mutant were analyzed
162	after culturing for 6 h after the shift to 37°C. DNA sequencing of the <i>sfk1-2</i> mutant allele
163	revealed that <i>sfk1-2</i> contained one mutation that resulted in an amino acid substitution W16R
164	(Fig 2B), which was located in the N-terminal transmembrane region. Wild-type Sfk1-3xGFP
165	was localized to the PM, whereas the mutant Sfk1-2-3xGFP exhibited a lower signal in the
166	PM and the ER at 30°C and was barely detectable at 37°C (Fig 2C).
167	Phospholipid asymmetry defects cause the exposure of PS and PE to the extracellular
168	leaflet of the PM. The exposed PS and PE can be indirectly measured by examination of the

169	growth sensitivities of the mutants to the PS-binding cyclodepsipeptide papuamide B (PapB)
170	and PE-binding tetracyclic peptide duramycin. We previously reported that the <i>lem3</i> Δ <i>sfk1</i> Δ
171	double mutant exhibited high sensitivities to both peptides [39]. Thus, we first tested the
172	growth sensitivity of the $crfl\Delta lem3\Delta sfk1-2$ triple mutant to these peptides at 30°C (Fig 2D).
173	The addition of either the $crfl\Delta$ or $dnf3\Delta$ mutation to the $lem3\Delta$ mutant elevated the
174	sensitivities to both peptides (S2A Fig), consistent with a previous report on the $dnf1\Delta dnf2\Delta$
175	$dnf3\Delta$ mutant [21]. The $crf1\Delta$ lem 3Δ sfk1-2 mutant did not grow at the concentrations at
176	which the $crf1 \Delta lem3 \Delta$ and $lem3 \Delta sfk1-2$ double mutants could grow (Fig 2D), suggesting
177	that the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant exposed more PS and PE even at the permissive
178	temperature than did the double mutants. To further confirm the defect in phospholipid
179	asymmetry in the triple mutant, we next visualized the PE exposed to the extracellular surface
180	using the PE-binding biotinylated Ro 09-0198 peptide (Bio-Ro). Fluorescence signals were
181	not detected in either the wild-type or $crf1 \Delta sfk1 \Delta$ double mutant but were detected in both
182	the $crf1 \Delta lem3 \Delta$ (45%) and $lem3 \Delta sfk1 \Delta$ double mutants (58%) (Fig 2E, left and middle
183	panels). In the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant, the proportion of cells with fluorescent
184	signals increased to 85%. Furthermore, the average signal intensity in the triple mutant was
185	1.35-fold higher than that in the <i>lem3</i> Δ <i>sfk1</i> Δ mutant (Fig 2E, right panel).
186	Next, we examined PS distribution in the cytoplasmic leaflet of the PM in the $crf1\Delta$
187	<i>lem3</i> Δ <i>sfk1-2</i> triple mutant. To visualize PS, we expressed PS biosensors, the C2 domain of

188	lactadherin (Lact-C2) [52] and the pleckstrin homology (PH) domain of evectin-2 (evt-2PH)
189	[53]. GFP-Lact-C2 was mainly distributed in the PM of the examined cells, but intracellular
190	localization was also observed in the triple mutant (Fig 2F, left panel, S2B Fig). In contrast,
191	GFP-evt-2PH was normally distributed only to the PM in the wild-type and double mutants
192	(more than 96% of cells with PM distribution), whereas the GFP-evt-2PH signal was lost or
193	significantly reduced from the PM in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant (59% of cells with
194	PM distribution) (Fig 2F, middle and right panels, S2C Fig). We speculate that Lact-C2 has a
195	higher affinity for PS, resulting in the detection of a lower level of PS at the PM. Taken
196	together, these results suggest that the asymmetric distribution of PE and PS was most
197	disturbed in the $crf1 \Delta lem3 \Delta sfk1$ triple mutants.
198	As the Dnf3-Crf1 complex was mainly localized to endosomal/TGN compartments
199	(Fig 1E) [10, 12], the $crf1 \triangle lem3 \triangle sfk1-2$ mutant may exhibit a defect in membrane
200	trafficking. We examined the localization of the endocytic recycling marker GFP-Snc1,
201	which is mainly localized to polarized PM sites [54], but its localization was not affected in
202	the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant at 37°C (Fig 2G). Similarly, two PM proteins, Pdr5-GFP
203	(ABC transporter) [55] and Pma1 (H ⁺ -ATPase) [56], were normally transported to the PM in
204	the $crf1\Delta lem3\Delta sfk1-2$ triple mutant (Fig 2G). We also examined endocytosis in the $crf1\Delta$
205	<i>lem3</i> Δ <i>sfk1-2</i> triple mutant by uptake of the lipophilic dye FM4-64 [57]. The FM4-64 signal
206	was well colocalized to the vacuole membrane marker Vph1-3xGFP [58] in both the

207	wild-type and $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant after 30 min of incubation, suggesting that the
208	triple mutant did not have obvious defects in endocytosis (Fig 2H). These results suggest that
209	the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant is not defective in membrane trafficking to or from the
210	PM.
211	
212	Fig 2. The $crf1 \triangle lem3 \triangle sfk1$ triple mutants show severe defects in phospholipid
213	asymmetry but not in membrane trafficking.
214	(A) Isolation of the <i>sfk1-2</i> ts mutant. Tenfold serial dilutions of cell cultures were spotted
215	onto a YPDA plate, followed by incubation at 30 or 37°C for 1.5 d. (B) Amino acid
216	substitution of the Sfk1-2 mutant protein. The W16R substitution occurs in the first
217	transmembrane domain of Sfk1-2. (C) Localization of the Sfk1-2 mutant protein fused with
218	3xGFP. Cells were grown in YPDA medium to mid-log phase at 30°C and then shifted to
219	37°C, followed by incubation for 6 h. (D) The $crf1\Delta lem3\Delta sfk1-2$ triple mutant was sensitive
220	to PapB and duramycin. Tenfold serial dilutions were spotted onto a YPDA plate containing
221	PapB or duramycin, followed by incubation at 30°C for 2 d. (E) PE was most exposed in the
222	$crf1\Delta lem3\Delta sfk1\Delta$ mutant. Left panels: cells were cultured in YPDA at 30°C, and exposed
223	PE was visualized by staining with Bio-Ro and Alexa Fluor 488-labeled streptavidin. Dashed
224	lines indicate cell edges. Middle panel: the percentages of cells showing PE exposure were
225	determined and are expressed as the mean \pm standard deviation (S.D.) of three independent

226	experiments ($n > 81$ cells in total for each strain). An asterisk indicates a significant
227	difference, as determined by the Tukey–Kramer test (p < 0.05). <i>Right panel</i> : fluorescence
228	intensity at the PM was quantitated as described in the "Materials and Methods". The ratio of
229	the fluorescence at the PM (F_{pm})/that of whole cell ($F_{whole \ cell}$) was determined and expressed
230	in a boxplot (whiskers: maximum and minimum values; box: first quartile, median, and third
231	quartile; circle: average). The numbers of cells analyzed were 23, 38, and 35 for the wild-type,
232	<i>lem3</i> Δ <i>sfk1</i> Δ , and <i>crf1</i> Δ <i>lem3</i> Δ <i>sfk1</i> Δ , respectively. An asterisk indicates a significant
233	difference, as determined by the Tukey–Kramer test ($p < 0.05$). (F) GFP-evt-2PH was
234	mislocalized in the $crf1\Delta lem3\Delta sfk1-2$ mutant. Cells were cultured as in Fig 2C. Right panel:
235	the percentage of cells with GFP-evt-2PH at the PM was determined and is expressed as the
236	mean \pm S.D. of three independent experiments (n >154 cells in total for each strain). An
237	asterisk indicates a significant difference, as determined by the Tukey–Kramer test ($p < 0.05$).
238	(G) Normal localization of PM proteins in the $crf1\Delta lem3\Delta sfk1-2$ mutant. Cells were
239	cultured as in Fig 2C. Pma1 was detected by immunostaining as described in the "Materials
240	and Methods". (H) Endocytosis was not significantly affected in the $crf1 \Delta lem3 \Delta sfk1-2$
241	mutant. Cells expressing the vacuole membrane marker Vph1-3xGFP were cultured as in Fig
242	2C. Then, cells were incubated with FM4-64 on ice for 30 min, followed by incubation at
243	37°C for 30 min. Arrows indicate the colocalization of FM4-64 and Vph1-3xGFP. Bars, 5
244	μm.

245

247	Multiple functions of the PM are impaired in the $crf1 \triangle lem3 \triangle sfk1$ triple mutants
248	Phospholipid asymmetry defects may have a profound effect on PM functions. Previously,
249	we showed that the $lem3\Delta sfk1\Delta$ double mutant exhibits an increase in membrane
250	permeability by measuring rhodamine dye uptake [39]. This experiment was performed in the
251	$crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant, and the results suggest that the permeability is further
252	enhanced in the triple mutant compared with that in the $lem3\Delta sfk1\Delta$ double mutant (Fig 3A).
253	The large increase in membrane permeability prompted us to examine whether the lipid
254	composition changes in the PM of the $crf1 \triangle lem3 \triangle sfk1-2$ triple mutant. We performed
255	sucrose density gradient fractionation to isolate the PM. In wild-type, PM markers, both
256	Pdr5-GFP [55] and Pma1 [59, 60], were recovered in high-density fractions, whereas Kex2,
257	which is localized to endosomal/TGN compartments [54, 61], peaked at a lower density (Fig
258	3B). However, in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant, Pdr5-GFP, Pma1, and Kex2 were
259	recovered together in lower density fractions (fractions 4-8) (Fig 3B). Pdr5-GFP and Pma1
260	were normally localized to the PM in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant in microscopic
261	analysis (Fig 2G), suggesting a decrease in PM density, which makes PM isolation from the
262	triple mutant technically challenging. Thus, we measured the phospholipid composition in the
263	total cellular lipids. No significant difference in lipid composition was found in the double

and triple mutants (S3 Fig).

265	The PM integrity defects may impact critical functions of the PM, such as
266	localization of PM transporters involved in nutrient uptake. We analyzed the localization of
267	PM transporters in the $crf1 \Delta lem3 \Delta sfk1-2$ mutant. In the wild-type and double mutants,
268	incubation at 37°C had little effect on the PM localization of amino acid transporters
269	Can1-GFP and Hip1-GFP [56, 62]; more than 94% of the cells displayed PM localization
270	(Fig 3C and 3D, S4A Fig). However, both transporters were not localized to the PM and
271	instead were only localized to the vacuole in many of the $crfl \Delta lem3 \Delta sfk1-2$ mutant cells;
272	the percentage of Can1-GFP and Hip1-GFP at the PM decreased to 58% and 41%,
273	respectively (Fig 3C and 3D). Other amino acid transporters (Alp1, Lyp1, Tat1, and Ptr2)
274	and hexose transporters (Hxt2-4) [62-65] also failed to localize to the PM in the $crfl \Delta lem3 \Delta$
275	sfk1-2 mutant (S4B Fig). To test whether these transporters once reached the PM before
276	being transported to the vacuole, we next examined Can1-GFP and Hip1-GFP localizations
277	in cells treated with Latrunculin-A (LAT-A), which inhibits actin-dependent endocytic
278	internalization by interfering with actin patch assembly [66]. In the triple mutant, LAT-A
279	treatment increased the number of cells showing PM localization of Can1-GFP (67%) and
280	Hip1-GFP (63%) compared with the control DMSO treatment (Can1-GFP, 32%; Hip1-GFP,
281	38%) (S4C Fig). We conclude that the $crf1\Delta lem3\Delta sfk1$ triple mutants cannot maintain PM
282	integrity, causing multiple defects in PM function.

284	Fig 3. Multiple defects in the PM of the $crf1 \triangle lem3 \triangle sfk1$ triple mutants.
285	(A) Rhodamine uptake is increased in the $crf1\Delta lem3\Delta sfk1\Delta$ triple mutant. Cells were
286	cultured in YPDA medium at 30°C, preincubated in SD medium with 1 mM sodium azide for
287	30 min at 30°C, and incubated with rhodamine 6G for 60 min at 30°C. Rhodamine
288	accumulation was measured as described in the "Materials and Methods". Values represent
289	the mean \pm S.D. from three independent experiments. Asterisks indicate a significant
290	difference, as determined by the Tukey–Kramer test ($p < 0.05$). (B) Sucrose density gradient
291	centrifugation analysis of PM proteins, Pdr5-GFP and Pma1, and a TGN/endosome protein,
292	Kex2, in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. Cells were cultured as in Fig 2C. Cell lysates
293	were prepared from the wild-type and the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant expressing
294	Pdr5-GFP and fractionated in 27-60% sucrose step density gradients as described in the
295	"Materials and Methods". Equivalent volumes from each fraction were subjected to sodium
296	dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and proteins were detected
297	by immunoblotting. (C and D) The distributions of GFP-fused amino acid transporters,
298	Can1-GFP (C) and Hip1-GFP (D), were analyzed in the wild-type and the $crf1 \Delta lem3 \Delta sfk1-2$
299	triple mutant. Cells were cultured as in Fig 2C. Bar, 5 µm. Right panels: the percentage of
300	cells with Can1-GFP or Hip1-GFP at the PM was determined and is expressed as the mean \pm
301	S.D. of three independent experiments (n>170 cells in total for each strain). An asterisk

302 indicates a significant difference, as determined by the Tukey–Kramer test (p < 0.05).

303

304	Isolation of <i>KES1</i> as a multicopy suppressor of the $crf1 \triangle lem3 \triangle sfk1-2$ mutation
305	To explore the essential functions of phospholipid asymmetry in the PM, we screened for
306	multicopy suppressors of the ts growth defect of the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. We
307	found that overexpression of KES1 suppressed the growth defect (Fig 4A). Kes1, also known
308	as Osh4, is an oxysterol-binding protein (OSBP) homolog (Osh) that is implicated in sterol
309	transport within cells [67]. Budding yeast contains seven Osh homologs, Osh1-7, that
310	exchange specific lipids between organelles [68]. We next tested whether overexpression of
311	other Osh proteins, except for OSH1, which localizes to the nucleus-vacuole junction [69],
312	could suppress the growth defect of the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. Only KES1
313	overexpression suppressed the ts growth defect of the $crf1\Delta lem3\Delta sfk1-2$ triple mutant (Fig
314	4A). Increased rhodamine uptake and Can1-GFP mislocalization were also suppressed by
315	<i>KES1</i> overexpression in the <i>crf1</i> Δ <i>lem3</i> Δ <i>sfk1-2</i> triple mutant (Fig 4B and 4C).
316	Kes1 interacts with phosphatidylinositol (PI) -4-phosphate (PI(4)P), and this
317	interaction is implicated in sterol transport [67]. However, Sfk1 was implicated in the
318	function of a PI 4 kinase, Stt4 [70, 71]. We thus examined the distribution of PI(4)P by using
319	the PI(4)P-specific biosensor Osh2-PH in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. However, the
320	localization of Osh2-PH-GFP was not significantly affected (S5A Fig). The mammalian

321	homolog of Sfk1, TMEM150A, interacts with PI 4 kinase type III α via its C-terminal domain
322	[40, 71]. However, the C-terminally truncated SFK1 Δ C-GFP did not show synthetic growth
323	defects with $crf1\Delta lem3\Delta$ mutations (S5B Fig). These results suggest that the defects in the
324	$crf1 \Delta lem3 \Delta sfk1$ triple mutants may not be closely related to PI(4)P.
325	We next examined whether the sterol-binding activity of Kes1 is required to suppress
326	the growth defect of the $crf1\Delta$ lem 3Δ sfk1-2 triple mutant. Overexpression of KES1 ^{E117A} ,
327	KES1 ^{L111D} , and KES1 ^{Y97F} , which abolishes the binding of Kes1 to sterols [72], did not
328	suppress the growth defect of the triple mutant (Fig 4D). Correspondingly, overexpression of
329	KES1 ^{L111D} did not suppress rhodamine accumulation (Fig 4B, pKes1m). These results suggest
330	that the $crf1\Delta lem3\Delta sfk1-2$ triple mutant may have a defect in intracellular sterol transport.
331	We next examined the subcellular localization of Kes1 in the $crf1 \Delta lem3 \Delta sfk1-2$
332	triple mutant (Fig 4E). Wild-type and double mutants displayed the diffuse distribution of
333	Kes1-GFP in the cytosol with a few puncta (Fig 4E, S6A Fig). In contrast, the $crf1\Delta lem3\Delta$
334	sfk1-2 triple mutant showed Kes1-GFP localization in abnormal membranous structures (Fig
335	4E). Because they appeared to be localized around the nucleus, we examined the localization
336	of the ER marker GFP-ER (GFPenvy-Scs2 ²²⁰⁻²⁴⁴) [73]. Abnormal ER structures close to the
337	perinuclear ER were observed specifically in the triple mutant at a frequency similar to that
338	of the abnormal Kes1-GFP structures (56%, n=210 cells) (Fig 4F, S6B Fig). Coexpression of
339	KES1-GFP and the ER marker SEC63-mRFP1 (monomeric red fluorescent protein 1

340	[mRFP1]) demonstrated that Kes1-GFP colocalized with Sec63-mRFP1 in the abnormal
341	structures but not in the perinuclear ER in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant (Fig 4G). This
342	colocalization was observed in 90% of the $crf1\Delta lem3\Delta sfk1-2$ triple mutant displaying
343	abnormal Kes1-GFP structures (n=450 cells). Taken together, these results suggest that the
344	$crf1 \Delta lem3 \Delta sfk1-2$ triple mutant may have a defect in ergosterol homeostasis.
345	
346	Fig 4. Overexpression of <i>KES1</i> partially suppresses the phenotypes in the <i>crf1</i> Δ <i>lem3</i> Δ
347	<i>sfk1-2</i> triple mutant.
348	(A) Suppression of the growth defect. Cell growth was examined in the $crf1\Delta lem3\Delta sfk1-2$
349	triple mutant carrying pRS316-SFK1, YEplac195, or YEplac195-OSH2-7. YEplac195 is a
350	multicopy plasmid. After cells were cultured in SDA-U medium at 30°C overnight, tenfold
351	serial dilutions were spotted onto a YPDA plate, followed by incubation for 2 d at 30 or 37°C.
352	(B) Suppression of high membrane permeability. Rhodamine uptake was examined in the
353	wild-type and $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant harboring YEplac195 (pCon),
354	YEplac195-KES1 (pKes1), or YEplac195- KES1 ^{L111D} (pKes1m). Cells were cultured as in Fig
355	2C, except that SDA-Ura medium was used. The rhodamine uptake assay was performed as
356	described in the "Materials and Methods". Rhodamine uptake is represented as a relative
357	value of that (100%) in the wild-type harboring YEplac195 incubated at 30°C. Values
358	represent the mean \pm S.D. from three independent experiments. Asterisks indicate a

359	significant difference, as determined by the Tukey–Kramer test ($p < 0.05$). (C) Suppression of
360	the mislocalization of Can1-GFP. CAN1-GFP-expressing cells harboring
361	YEplac195-KES1-KanMX6 or YEplac195-KanMX6 are shown. Cells were cultured as in Fig
362	2C, except that YPDA medium containing G418 was used. Bar, 5 µm. Right panel: the
363	percentage of cells with Can1-GFP at the PM was determined and is expressed as the mean \pm
364	S.D. of three independent experiments ($n > 263$ cells in total for each strain). An asterisk
365	indicates a significant difference, as determined by the Tukey–Kramer test ($p < 0.05$). (D)
366	Overexpression of ergosterol-binding deficient KES1 mutants does not suppress ts growth of
367	the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. Cell growth was examined in the triple mutant
368	transformed with pRS316-SFK1, YEplac195, YEplac195-KES1, or YEplac195-KES1 mutants
369	(E117A, L111D, and Y97F). Cells were spotted and grown as in (A). (E) Kes1-GFP is
370	localized to abnormal structures in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. Left panel: cells
371	were cultured as in Fig 2C. Bar, 5 µm. Middle panel: enlarged images of dotted red squares in
372	the left panel. Bar, 2 μ m. <i>Right panel</i> : the percentage of cells harboring abnormal structures
373	of Kes1-GFP was determined and is expressed as the mean \pm S.D. of three independent
374	experiments (n > 210 cells in total for each strain). An asterisk indicates a significant
375	difference, as determined by the Tukey–Kramer test ($p < 0.05$). (F) Abnormal ER structures
376	in the $crf1 \triangle lem3 \triangle sfk1-2$ triple mutant. The ER was visualized by the expression of
377	GFPenvy-Scs2 ²²⁰⁻²⁴⁴ (GFP-ER). Cells were cultured as in Fig 2C. An arrow indicates

378	abnormal ER structures. Bar, 5 μ m. (G) Colocalization of Kes1-GFP with Sec63-mRFP1 in
379	the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. Cells were cultured as in Fig 2C. The abnormal ER
380	structures in squares 1 and 2 are enlarged in the lower panel. Arrows represent Kes1-GFP
381	puncta colocalized with Sec63-mRFP1. Bars, 2 μ m (upper panel) and 0.4 μ m (lower panel).
382	
383	Ergosterol is reduced in the PM of the $crf1 \triangle lem3 \triangle sfk1$ triple mutants
384	We examined the distribution of ergosterol in the $crf1 \Delta lem3 \Delta sfk1$ triple mutants. Filipin is a
385	polyene antibiotic that binds to cholesterol and ergosterol and is used as a probe for cellular
386	sterol distribution [74, 75]. Wild-type and double mutants were evenly labeled with filipin at
387	the PM (Fig 5A, S7 Fig). However, the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant drastically decreased
388	filipin labeling to the PM and instead showed the enhancement of intracellular labeling (Fig
389	5A). This labeling pattern was similar to that of Kes1-GFP, but costaining experiments could
390	not be performed because the fixation step for filipin staining diminished the GFP
391	fluorescence. Eighty-three percent of the $crf1\Delta lem3\Delta sfk1\Delta$ triple mutant cells clearly
392	displayed the loss or reduction of filipin signal in the PM (n=98 cells). Quantitative analysis
393	of fluorescence images further confirmed the decrease in filipin intensity on the PM in the
394	triple mutant (Fig 5A).
395	We also examined another sterol biosensor, D4H. A bacterial protein toxin,

perfringolysin O, binds to cholesterol via its domain 4 (D4) [76, 77]. A D4 derivative, D4H

397	(D4 ^{D434S}), has been developed as a more sensitive probe; it binds to liposomes containing
398	20-30% cholesterol mole concentration [48, 77]. Although D4H has recently been used to
399	detect the PM sterol in fission yeast [78], D4H has not been applied to budding yeast. We
400	generated two fluorescent protein-conjugated D4Hs, GFP-D4H and GFPenvy-D4H, in which
401	GFPenvy is a photostable dimeric GFP derivative [79, 80]. When expressed in wild-type cells,
402	GFP-D4H was localized to the PM in 35% of the cells (Fig 5B). In contrast, GFPenvy-D4H
403	was localized to the PM in 94% of the cells. Interestingly, GFPenvy-D4H showed a
404	characteristic localization pattern; it preferentially localized to daughter cells compared to
405	mother cells. This localization pattern is described in the last part of "Results" in more detail.
406	We next examined the binding activity of recombinant GFP-D4H and GFPenvy-D4H
407	to ergosterol in vitro by liposome sedimentation assay using
408	1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes containing either 50%
409	cholesterol or 50% ergosterol. Consistent with a previous report [81], GFP-D4H bound to
410	ergosterol liposomes at an efficiency of 20% of that to cholesterol liposomes (Fig 5C). On the
411	other hand, GFPenvy-D4H bound to ergosterol liposomes at an efficiency of 56% of that to
412	cholesterol liposomes (Fig 5C), consistent with the results in living cells. The affinity of
413	GFPenvy-D4H to ergosterol was examined with DOPC liposomes containing different
414	concentrations of ergosterol from 10 to 60 mol %. Binding was detected when the ergosterol
415	concentration was 25% or higher (Fig 5D). These results are comparable to the affinity of

416 D4H to cholesterol [48]. The higher affinity of GFPenvy-D4H to ergosterol than GFP-D4H

417 might be because GFPenvy forms a dimeric structure	[80].	
--	-------	--

418	We next confirmed that GFPenvy-D4H binds to ergosterol in living cells. The ERG11
419	gene encodes lanosterol demethylase, which is essential for ergosterol synthesis [82]. Both
420	the shut-off of ERG11 gene expression and treatment with the Erg11 inhibitor fluconazole
421	inhibited GFPenvy-D4H distribution to the PM (Fig 5E, S8A Fig). We also examined the
422	localization of GFPenvy-D4H in mutants of genes involved in the late steps of the ergosterol
423	biosynthesis pathway (ERG2-6) [83, 84]. GFPenvy-D4H was not localized to the PM except
424	for $erg4\Delta$, which catalyzes the last step (S8B Fig). These results suggest that GFPenvy-D4H
425	is localized to the PM by binding to ergosterol.
426	We examined the distribution of GFPenvy-D4H in the $crf1 \Delta lem3 \Delta sfk1-2$ triple
427	mutant. The localization of GFPenvy-D4H to the PM decreased to some extent in the $lem3\Delta$
428	<i>sfk1-2</i> and <i>crf1</i> Δ <i> lem3</i> Δ double mutants, but it drastically decreased to 16% in the <i>crf1</i> Δ
429	<i>lem3</i> Δ <i>sfk1-2</i> triple mutant (Fig 5F, S8C Fig). Together with the results of filipin staining, we
430	concluded that ergosterol is significantly lost from the PM in the $crf1\Delta lem3\Delta sfk1$ triple
431	mutants. Kes1 overexpression increased the PM localization of GFPenvy-D4H from 25% to
432	55% in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant (S8D Fig). These results suggest that the
433	increased Kes1 enhances ergosterol transport to or inhibits loss of ergosterol from the PM in
434	the triple mutant and that loss of ergosterol from the PM causes phenotypes of the triple

435 mutant, including the growth defect.

437	Fig 5. Ergosterol is decreased in the PM of the $crf1\Delta$ lem 3Δ sfk1 triple mutants.
438	(A) Staining of ergosterol with filipin in the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant. Cells were
439	grown in YPDA at 30°C, and filipin staining was performed as described in the "Materials
440	and Methods". Right panel: fluorescence intensity at the PM was quantitated as described in
441	the "Materials and Methods". The ratio of the fluorescence at the PM (F_{pm})/that of whole cell
442	$(F_{whole \ cell})$ was determined and expressed with a boxplot (whiskers: maximum and minimum
443	values; box: first quartile, median, and third quartile; circle: average). The numbers of cells
444	analyzed were 100, 100, 99, 97, and 98 for the wild-type, $lem3\Delta sfk1\Delta$, $crf1\Delta sfk1\Delta$, $crf1\Delta$
445	<i>lem3</i> Δ , and <i>crf1</i> Δ <i>lem3</i> Δ <i>sfk1</i> Δ , respectively. An asterisk indicates a significant difference, as
446	determined by the Tukey–Kramer test ($p < 0.05$). (B) The distribution of GFP- and
447	GFPenvy-D4H in wild-type cells. Cells harboring pRS316-GFP-D4H or -GFPenvy-D4H
448	were grown in SDA-Ura medium at 30°C to the mid-log phase. <i>Right panel</i> : the percentage
449	of cells with GFP- or GFPenvy-D4H at the PM was determined and is expressed as the mean
450	\pm S.D. of three independent experiments (n > 155 cells in total for each strain). An asterisk
451	indicates a significant difference, as determined by the Tukey–Kramer test ($p < 0.05$). (C)
452	GFPenvy-D4H binds to ergosterol in vitro. The liposome sedimentation assay was performed
453	as described in the "Materials and Methods". Proteins were incubated with liposomes

454	composed of DOPC or DOPC and 50% (mol) ergosterol (Ergo) or cholesterol (Chol) (with
455	corresponding reduction in DOPC), followed by pelleting by centrifugation. Supernatant
456	(Sup) and pellet (Ppt) fractions were separated by SDS-PAGE, followed by staining with
457	Coomassie Brilliant Blue. Arrowheads indicate GFP-D4H or GFPenvy-D4H. A lower band
458	appears to be an incomplete fragment. Right panel: proteins bound to liposomes were
459	quantitated by an image analyzer. The percentage of the bound protein was determined as a
460	relative value of that bound to cholesterol liposomes and is expressed as the mean \pm S.D. of
461	three independent experiments. Asterisks indicate a significant difference, as determined by
462	the Tukey–Kramer test (p < 0.05). (D) GFPenvy-D4H binds to DOPC liposomes containing
463	more than 25% ergosterol. A liposome sedimentation assay was performed as in (C) with
464	DOPC liposomes containing the indicated mol % ergosterol. An arrowhead indicates
465	GFPenvy-D4H. A lower band appears to be an incomplete fragment. The amount of protein
466	bound to liposomes is expressed as a relative value (percentage) of that bound to 60%
467	ergosterol liposomes. Values represent the mean \pm S.D. of three independent experiments. "S"
468	and "P" indicate supernatant and pellet fractions, respectively. Asterisks and "n.s" indicate
469	significant and no significant differences as determined by the Tukey–Kramer test (* $p < 0.05$),
470	respectively. (E) The PM localization of GFPenvy-D4H was dependent on ergosterol. ERG11
471	was expressed under the control of the glucose-repressible P_{GALI} promoter. Cells were grown
472	in SGA-Ura medium to the mid-log phase at 30°C and then inoculated into fresh galactose

473	(SGA-Ura) or glucose (SDA-Ura) medium, followed by incubation for 12 h at 30°C. Right
474	panel: the percentage of cells with GFPenvy-D4H at the PM was determined and is expressed
475	as the mean \pm S.D. of three independent experiments (n > 108 cells in total for each
476	condition). An asterisk indicates a significant difference, as determined by the Tukey-Kramer
477	test (p < 0.05). (F) GFPenvy-D4H was not localized to the PM in the $crf1 \Delta lem3 \Delta sfk1-2$
478	triple mutant. Cells were cultured as in Fig 2C, except that SDA-Ura medium was used. Right
479	panel: the percentage of cells with GFPenvy-D4H at the PM was determined and is expressed
480	as the mean \pm S.D. of three independent experiments (n > 253 cells in total for each strain).
481	An asterisk indicates a significant difference, as determined by the Tukey–Kramer test (p <
482	0.05). Bars, 5 μm.
483	

484	We next examined whether exogenously added ergosterol would suppress the growth defect
485	in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. We used strains carrying the gain-of-function
486	mutation of a transcription factor UPC2, upc2-1 (G888D), which results in increased uptake
487	of exogenous ergosterol under aerobic conditions [85, 86]. The exogenously added ergosterol,
488	which was sufficient to suppress the growth defect of the ergosterol-deficient $hem 1 \Delta$ mutant
489	[87], did not suppress the growth defect of the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant even when
490	KES1 was overexpressed (Fig 6A). We presumed that the triple mutant cannot retain
491	exogenously added ergosterol in the PM. Thus, we monitored the distribution of exogenously

492	added TopFluor-cholesterol (TF-Chol), a fluorescent dye-conjugated cholesterol analog [88].
493	TF-Chol was retained in the PM of the wild-type and double mutants containing upc2-1 but
494	was not in the $crf1 \triangle lem3 \triangle sfk1-2 upc2-1$ mutant; only 23% of the triple mutant showed
495	TF-Chol in the PM (Fig 6B, S9 Fig). TF-Chol appeared to be internalized into the cell to be
496	incorporated into cytoplasmic punctate structures in the $crf1 \Delta lem3 \Delta sfk1-2 upc2-1$ mutant
497	(Fig 6B). These results suggest that ergosterol is not retained in the PM and that it is
498	transported to intracellular punctate structures in the $crf1 \Delta lem3 \Delta sfk1-2$ mutant.
499	
500	Fig 6. Exogenously added ergosterol appears to not be retained in the PM of the $crf1\Delta$
504	
501	$lem3\Delta sfk1-2 upc2-1$ mutant.
501	(A) Exogenous ergosterol did not suppress ts growth in the $crfl \Delta lem 3 \Delta sfk1-2 upc2-1$
502	(A) Exogenous ergosterol did not suppress ts growth in the $crfl \Delta lem 3 \Delta sfk1-2 upc2-1$
502 503	(A) Exogenous ergosterol did not suppress ts growth in the $crf1\Delta lem3\Delta sfk1-2 upc2-1$ mutant. The $crf1\Delta lem3\Delta sfk1-2$ mutant with or without the $upc2-1$ mutation was transformed
502 503 504	(A) Exogenous ergosterol did not suppress ts growth in the $crf1\Delta lem3\Delta sfk1-2 upc2-1$ mutant. The $crf1\Delta lem3\Delta sfk1-2$ mutant with or without the $upc2-1$ mutation was transformed with pRS315- <i>SFK1</i> , YEplac181, or YEplac181- <i>KES1</i> . After cells were cultured in
502 503 504 505	(A) Exogenous ergosterol did not suppress ts growth in the $crf1\Delta lem3\Delta sfk1-2 upc2-1$ mutant. The $crf1\Delta lem3\Delta sfk1-2$ mutant with or without the $upc2-1$ mutation was transformed with pRS315- <i>SFK1</i> , YEplac181, or YEplac181- <i>KES1</i> . After cells were cultured in SD-Ura-Leu medium at 30°C overnight, tenfold serial dilutions were spotted onto a YPDA
502 503 504 505 506	(A) Exogenous ergosterol did not suppress ts growth in the $crf1 \Delta lem3 \Delta sfk1-2 upc2-1$ mutant. The $crf1 \Delta lem3 \Delta sfk1-2$ mutant with or without the $upc2-1$ mutation was transformed with pRS315- <i>SFK1</i> , YEplac181, or YEplac181- <i>KES1</i> . After cells were cultured in SD-Ura-Leu medium at 30°C overnight, tenfold serial dilutions were spotted onto a YPDA plate containing 0.5% Tween-80 and 0.5% ethanol with or without 50 µg/mL ergosterol,
502 503 504 505 506 507	(A) Exogenous ergosterol did not suppress ts growth in the $crf1 \Delta lem3 \Delta sfk1-2 upc2-1$ mutant. The $crf1 \Delta lem3 \Delta sfk1-2$ mutant with or without the $upc2-1$ mutation was transformed with pRS315- <i>SFK1</i> , YEplac181, or YEplac181- <i>KES1</i> . After cells were cultured in SD-Ura-Leu medium at 30°C overnight, tenfold serial dilutions were spotted onto a YPDA plate containing 0.5% Tween-80 and 0.5% ethanol with or without 50 µg/mL ergosterol, followed by incubation for 1.5 d at 30 or 37°C. (B) TF-Chol is not retained in the PM of the

511	independent experiments ($n > 290$ cells in total for each strain). An asterisk indicates a
512	significant difference, as determined by the Tukey–Kramer test ($p < 0.05$).
513	
514	Ergosterol is esterified and accumulated in LDs in the $crf1 \triangle lem3 \triangle sfk1-2$ mutant
515	The loss of ergosterol in the PM raises a question: where does ergosterol distribute in the
516	cell? We performed thin-layer chromatography (TLC) analysis of total sterols extracted from
517	the cells. In double mutants, the free ergosterol level was approximately 80-85% of that in the
518	wild-type, but it decreased to 50% in the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant (Fig 7A). TLC
519	analysis also showed a large increase in esterified ergosterol in the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple
520	mutant. We confirmed that this spot was observed in the wild-type at the stationary phase, but
521	not in the acyl-CoA:sterol acyltransferase deficient $are1\Delta are2\Delta$ mutant (S10 Fig) [89].
522	Because esterified ergosterol is the main component of LDs, these results suggest that LDs
523	are increased in the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant. To confirm this, we stained LDs with
524	the lipophilic dye Nile red, which stains neutral lipids in LDs, triacylglycerol and esterified
525	ergosterol [90]. Neither the wild-type nor the double mutants showed obvious staining of
526	Nile red, whereas the $crf1 \Delta lem3 \Delta sfk1 \Delta$ triple mutant exhibited a clear increase in cells
527	showing Nile red puncta (Fig 7B, S11A Fig). We further examined the localization of
528	GFP-tagged LD-related proteins, Tgl1 (steryl ester lipase) [91] and Faa4 (long-chain
529	fatty-acid-CoA ligase) [92]. The wild-type and the double mutants contained a few puncta of

530	these proteins, whereas the numbers of Tgl1-GFP and Faa4-GFP puncta increased 2.5- and
531	2.8-folds, respectively, in the $crfl \Delta lem 3 \Delta sfk1-2$ triple mutant compared to those in the
532	wild-type (Fig 7C, S11B Fig). We confirmed that Tgl1-GFP and Faa4-GFP puncta were
533	colocalized with Nile red-positive puncta; 85% of Tgl1-GFP (n=377) and 88% of Faa4-GFP
534	(n=453) puncta were colocalized with Nile red in the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant (Fig
535	7C). These results suggest that a substantial amount of ergosterol was esterified and
536	accumulated in LDs in the $crf1 \Delta lem3 \Delta sfk1$ triple mutants.
537	TF-Chol was also detected in intracellular puncta in the $crf1\Delta lem3\Delta sfk1-2 upc2-1$
538	mutant (Fig 6B). We next examined whether TF-Chol colocalizes with Faa4-mCherry in the
539	triple mutant. The $crf1 \Delta lem3 \Delta sfk1-2 upc2-1$ mutant contained approximately 9~14 TF-Chol
540	puncta per cell, and 88% of these puncta (n=603) were colocalized with Faa4-mCherry (Fig
541	7D).
542	Taken together, these results suggest that ergosterol is not retained in the PM and is
543	transported to LDs in an esterified form, probably via the ER, in the $crf1 \Delta lem3 \Delta sfk1$ triple
544	mutants.
545	
546	Fig 7. LDs were increased in the $crf1 \triangle lem3 \triangle sfk1$ triple mutants.
547	(A) TLC analysis of total sterols. Ergosterol contents were analyzed by TLC as described in
548	the "Materials and Methods". Right panel: the percentage of free ergosterol relative to that of

549	the wild-type was determined and is expressed as the mean \pm S.D. derived from the analysis
550	of six independent samples. An asterisk indicates a significant difference, as determined by
551	the Tukey–Kramer test (p < 0.05). (B) Increase in Nile red-positive puncta in the $crf1\Delta lem3\Delta$
552	<i>sfk1</i> Δ triple mutant. Cells were cultured in YPDA medium to the mid-log phase at 30°C,
553	followed by Nile red staining. Nile red staining was performed as described in the "Materials
554	and Methods". Right panel: the percentage of cells with more than three Nile Red puncta was
555	determined and is expressed as the mean \pm S.D. of three independent experiments (n > 315
556	cells in total for each strain). An asterisk indicates a significant difference, as determined by
557	the Tukey–Kramer test (p < 0.05). (C) Increase in LD marker (Tgl1-GFP and
558	Faa4-GFP)-containing structures in the $crf1\Delta lem3\Delta sfk1-2$ triple mutant. Cells were cultured
559	as in Fig 2C, followed by Nile red staining. <i>Right panel</i> : the numbers of Tgl1-GFP or
560	Faa4-GFP puncta were counted in a single focal plane of each cell and expressed with
561	boxplots (whiskers: maximum and minimum values; box: first quartile, median, and third
562	quartile; circle: average). The number of cells analyzed was 51 and 50 (wild-type) and 53 and
563	51 (triple mutant) for Tgl1-GFP and Faa4-GFP, respectively. Asterisks indicate a significant
564	difference, as determined by the Tukey–Kramer test ($p < 0.05$). (D) Colocalization of
565	TF-Chol puncta with Faa4-mCherry in the $crf1 \Delta lem3 \Delta sfk1-2 upc2-1$ mutant. Cells were
566	cultured as in Fig 2C, except that YPDA medium containing TF-Chol was used. Bars, 5 μ m.
567	

568 The inhibition of sterol esterification partially suppresses growth defects and sterol

retention in the PM of the $crf1 \triangle lem3 \triangle sfk1-2$ mutant

- 570 We examined whether inhibition of sterol esterification by mutations in ARE1/ARE2
- 571 suppresses the phenotypes of the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant. The growth defect of the
- triple mutant was partially suppressed by the $are2\Delta$ mutation but not by the $are1\Delta$ mutation
- 573 (Fig 8A). Consistently, Are2 accounts for 65–75% of total cellular acyl-CoA:sterol
- acyltransferase activity [93, 94]. The growth defect of the triple mutant was not suppressed
- by either the $dgal\Delta$ or $lrol\Delta$ mutation, which abolishes the synthesis of triacylglycerol
- 576 [95-97], the other major lipid in LDs (S12A Fig). We then examined whether the $are2\Delta$
- 577 mutation restored sterol retention in the PM in the $crfl \Delta lem 3 \Delta sfkl-2$ triple mutant. The
- 578 $are2\Delta$ mutation increased the number of cells showing the PM localization of GFPenvy-D4H
- from 17% to 60% in the $crf1 \Delta lem3 \Delta sfk1-2$ mutant (Fig 8B). A TF-Chol uptake experiment
- could not be performed because the $are2\Delta upc2-1$ double mutant showed a severe growth
- defect (S12B Fig). These results are consistent with our notion that loss of ergosterol from the
- 582 PM is responsible for the growth defect of the $crfl \Delta lem 3 \Delta sfkl 2$ triple mutant.
- 583

Fig 8. The *are2* Δ mutation partially restores ergosterol in the PM of the *crf1* Δ *lem3* Δ 585 *sfk1-2* triple mutant.

586 (A) Suppression of the growth defect. Tenfold serial dilutions were spotted onto a YPDA

587	plate, followed by incubation for 1.5 d at 30 or 37°C. (B) Restoration of GFPenvy-D4H
588	localization to the PM. Cells were cultured as in Fig 2C except that SDA-Ura medium was
589	used. Bar, 5 µm. Right panel: the percentage of cells with GFPenvy-D4H at the PM was
590	determined and is expressed as the mean \pm S.D. of three independent experiments (n > 219
591	cells in total for each strain). Asterisks and "n.s" indicate significant and no significant
592	differences as determined by the Tukey–Kramer test (* $p < 0.05$), respectively.
593	
594	Overexpression of Sfk1 alters the localization of GFPenvy-D4H
595	The molecular function of Sfk1 remains to be clarified, but our results described above may
596	suggest that Sfk1 is functionally related to ergosterol in the PM. We examined whether a
597	mutation or overexpression of SFK1 affects the localization of GFPenvy-D4H.
598	GFPenvy-D4H exhibited polarized localizations in many wild-type cells; it was localized to
599	daughter cells (buds) or near the bud neck in medium- or large-budded cells (Fig 9A, yellow
600	and pink arrows). These results suggest that the accessibility to ergosterol is different
601	between bud and mother PMs because filipin, which was used in fixed cells, evenly stained
602	ergosterol in daughter and mother cells. Interestingly, Sfk1 was mainly localized to mother
603	cells but not to daughter cells, as described previously [71], showing a localization pattern
604	opposite that of GFPenvy-D4H (Fig 9B and 9C). The GFPenvy-D4H localizations in
605	large-budded cells were categorized into three patterns: (1) localized throughout the PM (not

606	polarized), (2) localized to the bud and mother cell PM near the bud neck (partially polarized),
607	and (3) localized only to the bud (polarized). These differences may be because
608	GFPenvy-D4H was expressed from a centromeric plasmid. The fluorescence intensity
609	profiles of Sfk1-3xmCherry and GFPenvy-D4H are shown for the "polarized" (Fig 9C) and
610	"partially polarized" (S13A Fig) patterns. The proportion of these localization patterns was
611	not changed in the <i>sfk1</i> Δ mutant (Fig 9A and 9D).
612	We then examined the effect of SFK1 overexpression by using a multicopy plasmid
613	carrying SFK1-mCherry. Expression from a multicopy plasmid generates heterogeneity in the
614	level of gene expression among individual cells because of variation in plasmid copy number
615	[98]. We took advantage of this expression characteristic to examine the correlation between
616	the Sfk1 expression level and the D4H localization pattern. Cells were categorized into high
617	and low expression groups based on the fluorescent intensity of Sfk1-mCherry. The relative
618	expression level of SFK1-mCherry in highly expressing cells was more than 3-fold that in
619	lowly expressing cells (S13B Fig). In cells lowly expressing Sfk1-mCherry, the
620	GFPenvy-D4H localization pattern was not changed (Fig 9E, cyan arrows, and 9F). The
621	mother cell-specific localization pattern of Sfk1-mCherry was not changed in highly
622	expressing cells (Fig 9E, yellow arrows). Interestingly, in cells highly expressing
623	Sfk1-mCherry, GFPenvy-D4H distribution was restricted exclusively to the daughter cells,
624	and those cells that showed the "polarized" pattern were largely increased to 74% (Fig 9F). In

625	these cells, the fluorescence intensity of GFPenvy-D4H was weak in the mother cell PM but
626	increased sharply near the bud neck (Fig 9G). These results suggest that Sfk1 might maintain
627	ergosterol in a state that is inaccessible to GFPenvy-D4H, although its function may be
628	redundant with that of an unknown protein.
629	
630	Fig 9. Overexpression of Sfk1 excludes GFPenvy-D4H from the mother cell PM.
631	(A) The polarized distribution of GFPenvy-D4H. Wild-type or $sfk1\Delta$ cells carrying
632	pRS316-GFPenvy-D4H were grown in SD-Ura medium to the mid-log phase at 30°C.
633	"Polarized", "partially polarized", and "not polarized" localizations of GFPenvy-D4H are
634	indicated with pink, yellow, and green arrows, respectively. (B) Complementary localization
635	of GFPenvy-D4H and Sfk1-3xmCherry to daughter (bud) and mother cells, respectively.
636	Wild-type cells expressing these proteins were grown at 30°C. To show endogenously
637	expressed Sfk1-3xmCherry clearly, the brightness was adjusted to make it brighter. (C)
638	Fluorescence intensity profile of a cell showing the "polarized" pattern of GFPenvy-D4H.
639	Fluorescence signals were quantified along the dotted line from the mother cell to the bud.
640	The brightness of Sfk1-3xmCherry was adjusted as in (B). (D) Quantification of three
641	GFPenvy-D4H localization patterns. The cells in (A) were examined. The percentage of cells
642	showing "polarized", "partially polarized", and "not polarized" localizations of
643	GFPenvy-D4H was determined as described in the "Materials and Methods" and is expressed

644	as the mean \pm S.D. of three independent experiments (n > 150 cells in total for each strain).
645	"n.s," indicates no significant difference between all combinations as determined by the
646	Tukey-Kramer test. (E) Heterogeneous (high and low) expression of Sfk1-mCherry by a
647	multicopy plasmid. Wild-type cells carrying pRS316-GFPenvy-D4H and
648	YEplac181-SFK1-mCherry were grown in SD-Leu-Ura medium to the mid-log phase at 30°C.
649	The brightness was not adjusted after background subtraction. Arrows indicate cells highly
650	(yellow) and lowly (cyan) expressing Sfk1-mCherry. (F) High expression of Sfk1-mCherry
651	significantly increased the "polarized" pattern of GFPenvy-D4H. Cells were examined and
652	categorized as in (D). Low or high expression of Sfk1-mCherry was determined as described
653	in the legend of S13B Fig. Bars: No, control plasmid; Endo, endogenous expression of
654	Sfk1-3xmCherry; Low, multicopy plasmid of SFK1-mCherry but low expression of
655	Sfk1-mCherry; High, multicopy plasmid of SFK1-mCherry and high expression of
656	Sfk1-mCherry. The percentage of cells showing indicated patterns is expressed as the mean \pm
657	S.D. of three independent experiments ($n > 103$ cells in total for each strain). An asterisk
658	indicates a significant difference, as determined by the Tukey–Kramer test ($p < 0.05$), in the
659	"polarized" and "not polarized" patterns. (G) GFPenvy-D4H was exclusively distributed to
660	the bud in a cell highly expressing Sfk1-mCherry. The brightness is not adjusted after
661	background subtraction. The right panel represents the fluorescence intensity profile
662	quantified as in (C). Bars, 3 µm.

663

664 Discussion

- 665 More than two decades have passed since the first report on the asymmetric distribution of
- 666 phospholipids in the PM [3], but our understanding of its physiological significance is still
- 667 limited. Our genetic screening reveals that the loss of Dnf1/2-Lem3 and Dnf3-Crf1 flippases
- and Sfk1 results in severe growth defects, provably due to loss of ergosterol from the PM.
- 669 Dnf3 was shown to be involved in some PM functions, including mating pheromone
- signaling [21] and pseudohyphal growth [35], but this is the first demonstration of Dnf3
- 671 involvement in essential cell function in a vegetative cell.

Disruption of phospholipid asymmetry is one main reason for the loss of ergosterol

- 673 from the PM in the triple mutant. Phospholipids interact with sterol via their headgroups and
- acyl chains, which contributes to ordering membrane lipids and securing lipid packing [99].
- 675 In the $crf1 \Delta lem3 \Delta sfk1$ triple mutants, PS and PE are more exposed to the extracellular
- leaflet than in the double mutants, and the level of PS in the cytoplasmic leaflet appears to be
- 677 decreased. Sterols have a higher affinity to phospholipids containing saturated acyl chains
- than those containing unsaturated acyl chains [99], and PS and PE species in the PM are more
- abundant in those containing saturated acyl chains than in other organelles in budding yeast
- [100]. In addition, according to the umbrella model [99], phospholipid head groups in the
- 681 membrane shield nonpolar cholesterol bodies from the aqueous phase. PS with a large

682	headgroup has a higher affinity for cholesterol than other phospholipids [48, 101]. Therefore,
683	ergosterol, which is also enriched in the cytoplasmic leaflet [102], loses favorable interacting
684	partners in the triple mutant. This would result in a vast increase in "active ergosterol", which
685	may be actively removed from the PM by sterol transfer proteins (STPs) (see below).
686	Although Sfk1 is implicated in the regulation of phospholipid asymmetry (Fig 2) [39],
687	its protein function remains unknown. Our results that overexpression of Sfk1 excludes
688	GFPenvy-D4H from the mother cell PM suggest that Sfk1 may be functionally relevant to
689	ergosterol. GFPenvy-D4H preferentially localized to the daughter cell PM. However, the
690	ergosterol contents in the cytoplasmic leaflet did not seem to be significantly different
691	between daughter and mother cell PMs because filipin uniformly stained both membranes
692	and because ergosterol is predominantly localized to the cytoplasmic leaflet of the PM,
693	including mother cells [102]. Thus, the differential GFPenvy-D4H localization might reflect
694	different physical states of ergosterol. When sterol levels exceed the interacting capacity of
695	phospholipids in the membrane, a sterol molecule is predicted to be exposed to the surface of
696	the membrane, which increases the chance of its interaction with sterol-sensing proteins. The
697	model defines this behavior as the chemical activation of cholesterol [99, 103-107]. It has
698	been suggested that the D4-containing domain of perfringolysin O preferentially interacts
699	with active cholesterol [104]. Thus, we propose that the chemical activity of ergosterol is
700	higher in the PM of daughter cells than in that of mother cells. The PM of daughter cells is

701	mainly made from newly synthesized lipids by polarized vesicle transport [108]. In this
702	membrane, PE and PS are exposed, and Dnf1/2-Lem3 flippases actively flip these
703	phospholipids to the cytoplasmic leaflet [12, 28]. Thus, phospholipid asymmetry seems to be
704	more established in the PM of mother cells. Sfk1, which is mainly localized to the mother
705	cell PM, might be involved in the maintenance of phospholipid asymmetry; our previous
706	results suggest that Sfk1 represses spontaneous transbilayer movement of phospholipids [39].
707	This is consistent with the notion that Sfk1 may promote lipid packing in the PM. An
708	interesting possibility is that Sfk1 enhances interactions between ergosterol and
709	phospholipids, and thus, Sfk1 decreases active ergosterol.
710	The main localization sites were different between Dnf1/2-Lem3 and Sfk1, and the
711	localization of Dnf3-Crf1 in the PM has not been clearly shown in the wild-type. However,
712	simultaneous loss of these proteins leads to severe disorganization of the PM, in which active
713	ergosterol would be highly increased due to a reduced shielding effect by phospholipids and
714	reduced lipid packing. The ergosterol in the triple mutant appears to be highly accessible and
715	easily extracted by STPs, resulting in the loss of ergosterol from the PM. Some STPs,
716	including those yet to be identified, seem to be involved in sterol transfer from the PM. These
717	include oxysterol binding protein homologs (Osh) and lipid transfer proteins anchored at a
718	membrane contact site (LAMs) with StARkin domains [67, 109].
719	Our finding that ergosterol lost from the PM accumulated in LDs as esterified

720	ergosterol is consistent with studies using exogenously added ergosterols [87, 110]. The PM
721	has a much higher ergosterol concentration than the ER, but ergosterol transport by STPs
722	between these membranes is kept in equilibrium because the active ergosterol concentration
723	seems to be similar in these membranes; the ER membrane contains less saturated
724	phospholipids, and thus ergosterol in the ER is not shielded by surrounding phospholipids
725	[109]. In the $crf1 \Delta lem3 \Delta sfk1$ triple mutants, a vast increase in active ergosterol occurs in the
726	PM, and STPs transport these ergosterols to the ER, in which ergosterol is esterified by
727	Are1/Are2 to form LDs, until the active ergosterol concentration in the PM is balanced with
728	that in the ER. The $are2\Delta$ mutation increases active ergosterol in the ER due to defective
729	esterification, and this ergosterol would be transferred to the PM, resulting in the partial
730	suppression of growth defects in the triple mutant. Interestingly, in the triple mutant,
731	abnormal ER structures accumulated around the perinuclear ER, and Kes1-GFP was localized
732	to these structures. Because overexpression of Kes1 partially suppressed the growth defect of
733	the triple mutant, those Kes1-GFP signals might reflect Kes1 in the transport cycle of
734	ergosterol between the ER and the PM.
735	How sterols are maintained at a high concentration in the PM has been a longstanding
736	question in membrane biology. Phospholipid asymmetry, a conserved feature in the PM, has
737	been implicated in this role [6], but genetic analyses of flippases did not clearly demonstrate
738	that they function in the retention of sterols in the PM. Our results have revealed that

739	flippases actually play an essential role in retaining ergosterol in the PM, but the
740	identification of an additional factor, Sfk1, which is totally different from flippases, was
741	essential. Our work indicates that unbiased genetic screening is a powerful approach to
742	understanding cellular mechanisms that are regulated by a different set of proteins. Because
743	Sfk1 is conserved as TMEM150A in mammalian cells [40], cholesterol might be retained in
744	the PM via a similar mechanism.
745	
746	Materials and Methods
747	Media and chemicals
748	General chemicals were purchased from Wako Pure Chemicals Industry (Osaka, Japan)
749	unless otherwise stated. Papuamide B was from the collection of R. Andersen. Duramycin
750	was purchased from Sigma-Aldrich (St. Louis, MO, U.S.A). Yeast strains were grown in
751	YPDA-rich medium (1% yeast extract [Difco Laboratories, Detroit, MI, U.S.A.], 2%
752	Bacto-peptone [Difco], 2% glucose, and 0.01% adenine). Strains carrying plasmids were
753	grown in SD synthetic medium (0.67% yeast nitrogen base without amino acids [Difco] and
754	2% glucose) that contained the required nutritional supplements [111]. The SDA medium
755	was SD medium that contained 0.5% casamino acid (Difco). For the induction of the GAL1
756	promoter, 3% galactose and 0.2% sucrose were used as carbon sources (YPGA and SGA-Ura

757 media).

758

759	Yeast strain manipulations and plasmid construction
760	The yeast strains and plasmids used in this study are listed in S1 and S2 Table, respectively.
761	Standard genetic manipulations of yeast strains were performed according to previously
762	described methods [112]. The polymerase chain reaction (PCR)-based procedure was used to
763	construct yeast strains carrying a complete gene deletion or a gene fusion with either GFP,
764	mCherry, or mRFP1 [113-115]. The amplified DNA fragments were introduced into
765	appropriate strains, and transformants were selected on appropriate plate media. Yeast
766	transformations were performed using the lithium acetate method [116, 117]. All constructs
767	that were produced by the PCR-based procedure were verified by colony PCR to confirm that
768	the replacement or insertion occurred at the expected locus.
769	When the cell growth phenotype was examined by spot assay, cells were cultured in
770	appropriate medium overnight, adjusted to $OD_{600} = 0.64$, and then 10-fold serial dilutions
771	were spotted onto the indicated plates.
772	Strains carrying 3xGFP or 3xmCherry at genomic loci were constructed as follows.
773	pBluescript SK+ (pBSK)-3xGFP-Candida albicans URA3 (CaURA3) was constructed by
774	subcloning 3xGFP from pBSK-SJL2-3xGFP [118, 119] (a gift from Drubin, D. G.), ADH1
775	terminator, and CaURA3 into pBSK. Then, a DNA fragment of SFK1, VPH1, or DNF3,

which encodes the C-terminal region, was inserted upstream of 3xGFP in

	DOLL A CED C LIDIA	TT 1.1 1		.
777	pBSK-3xGFP-CaURA3.	The regulting placmic	is were linearized h	v cutting at a unique.
111	$\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}$	The resulting plasmic	is were initialized o	y culling at a unique

- restriction enzyme site in the target gene, followed by transformation into yeast strains.
- 779 Stable URA⁺ transformants were selected and screened for proper targeting by colony PCR.
- 780 pBSK-*SFK1-3xmCherry-CaURA3* was constructed by replacing *3xGFP* with *3xmCherry*.
- 781 After stable SFK1-3xmCherry::CaURA3 transformants were obtained, CaURA3 was replaced
- with the *KanMX6* cassette by marker fragment transformation.
- 783 GFP-evt-2PH, GFP-ER (*GFPenvy-SCS2*²²⁰⁻²⁴⁴), and *upc2-1* were cloned into
- pRS306-based vectors and expressed at the URA3 locus as follows.
- pRS306- P_{TPII} -GFP-evt-2PH- T_{ADHI} was constructed by replacing mCherry of
- pRS306- P_{TPII} -mCherry-evt-2PH- T_{ADHI} [120] with GFP. The GFP-ER fragment was
- generated by PCR with the 3' primer containing the $SCS2^{220-244}$ coding region using
- pColdI-GFPenvy-D4H as a template and inserted into pRS306- P_{TPII} - T_{ADHI} . The upc2-1
- (G888D) mutant fragment (-800 to +380 bp of the UPC2 gene) was generated by the standard
- two-step PCR mutagenesis technique and inserted into pRS306. These plasmids were
- ⁷⁹¹ linearized by cutting at a unique restriction enzyme site in URA3 and inserted into the URA3
- 792 locus.
- 793 To express *OSH* genes on a multicopy plasmid, DNA sequences encoding *OSH* genes
- were amplified by PCR and subcloned into either YEplac195, YEplac195-KanMX6, or
- 795 YEplac181 plasmids. Sterol binding-deficient KES1 mutants [72] were generated by the

796	standard two-step PCR mutagenesis technique and subcloned into YEplac195. To express the
797	SFK1-mCherry fusion gene on a multicopy plasmid, the SFK1-mCherry fragment was
798	generated by overlap extension PCR and subcloned into YEplac181.
799	To express GFP-D4H and GFPenvy-D4H in <i>Escherichia coli</i> , the D4H (D4 ^{D434S})
800	mutant fragment was generated by the standard two-step PCR mutagenesis technique using
801	pColdI-mCherry-D4 as a template [121]. The GFP and D4H fragments were inserted into
802	pColdI (Takara bio, Shiga, Japan) to construct pColdI-GFP-D4H. To construct
803	pColdI-GFPenvy-D4H, GFPenvy DNA [79] was newly synthesized with codon optimization
804	for S. cerevisiae (GeneArt TM Strings, Thermo Scientific, Carlsbad, CA, U.S.A.) and amplified
805	by PCR. pColdI-GFPenvy-D4H was constructed by replacing GFP in pColdI-GFP-D4H with
806	this GFPenvy fragment. To express GFP-D4H and GFPenvy-D4H in yeast, the corresponding
807	DNA fragments were inserted into pRS316- P_{TPII} - T_{ADHI} .
808	Schemes detailing the construction of plasmids are available on request.
809	
810	Isolation of temperature-sensitive mutations of SFK1
811	The ts sfk1-2 strain was constructed by PCR-based random mutagenesis as follows. The
812	approximately 1.2 kbp SFK1 DNA fragment, which corresponds to the region between the
813	40-bp upstream and 197-bp downstream sequences of the SFK1 gene, was PCR-amplified
814	under a mutagenic condition [122] using the genomic DNA of the wild-type (YKT38) as a

815	template. On the other hand, the <i>Kluyveromyces lactis LEU2</i> (<i>KlLEU2</i>) cassette DNA
816	fragment was PCR-amplified under standard conditions using pUG73 (Euroscarf) as a
817	template. In these PCRs, the primers contained additional sequences, so the SFK1 and
818	KILEU2 fragments had overlapping sequences at their 3' and 5' regions, respectively. Then,
819	these fragments were used for overlap extension PCR with 5' (SFK1) and 3' (KILEU2)
820	primers to generate the SFK1-KILEU2 fragment. This fragment was introduced into
821	YKT2386 (<i>MAT</i> a <i>crf1</i> Δ :: <i>HphMX4 lem3</i> Δ :: <i>TRP1 SFK1-GFP::KanMX6</i>), and the
822	transformants were selected at 30°C for LEU^+ first and then for G418-sensitive phenotypes.
823	Of these transformants, 265 clones were screened for those that showed growth defects at
824	37°C. Eight clones were isolated and backcrossed with YKT2332 (MAT α crf1 Δ ::HphMX4
825	<i>lem3</i> Δ :: <i>TRP1</i>) three times. The <i>crf1</i> Δ :: <i>HphMX4 lem3</i> Δ :: <i>TRP1 sfk1-2</i> :: <i>KlLEU2</i> , which
826	exhibited the tightest ts phenotype, was chosen for further analyses. Sequences of PCR
827	primers used are available on request.
828	
829	Isolation of mutants synthetically lethal with the <i>lem3</i> Δ <i>sfk1</i> Δ mutations
830	Mutants synthetically lethal with $lem3\Delta sfk1\Delta$ were isolated according to the procedures
831	described previously [123]. From 1×10^4 mutagenized cells screened, three single recessive
832	mutations were identified by genetic analyses, and the corresponding wild-type genes were
833	cloned. These genes encode CRF1, DNF3, and ANY1/CFS1 [124, 125]. Null mutations of

these genes were confirmed to be synthetically sick or lethal with $lem3\Delta sfk1\Delta$.

835

836	Isolation of multicopy suppressors of the $crf1\Delta$ lem 3Δ sfk1-2 mutant
837	The $crf1\Delta$ lem3 Δ sfk1-2 mutant (YKT2340) was transformed with a yeast genomic DNA
838	library constructed in the multicopy plasmid YEp24 [126]. Transformants were selected on
839	SDA-Ura plates. The plates were incubated at 25°C for 2 d and then shifted to 37°C,
840	followed by incubation for 3 d. Approximately 1×10^6 transformants were screened, and 186
841	clones were isolated. To exclude clones that carried LEM3 or SFK1, the sensitivity of the
842	clones to duramycin and cycloheximide was examined [39]. Plasmids were recovered from
843	yeast and reintroduced into the original mutant to confirm the suppression of growth defects.
844	As a result, ten different genomic regions were found to be responsible for suppression by
845	DNA sequencing. The clones that contained a gene relevant to phospholipid asymmetry or
846	lipid metabolism were further analyzed, and KES1, CHO1, and CFS1 were identified as
847	suppressors.
848	
0.40	Minnessenie ale compliante

849 Microscopic observations

For observation of proteins fused to a fluorescent protein in living cells, cells were grown under the indicated conditions to mid-log phase (OD_{600} of 0.8–1.2), collected, mounted on a microslide glass, and immediately observed. Cells were observed under a Nikon ECRIPS E800 microscope (Nikon Instech, Tokyo, Japan) as described previously [14].

854	Staining of PE exposed to the extracellular leaflet of the PM was performed using the
855	Bio-Ro as described previously [39]. Immunofluorescence staining of Pma1 was performed
856	as described previously [127]. For staining with filipin, cells were grown in YPDA to mid-log
857	phase and fixed with 3.8% formaldehyde for 10 min at room temperature. The fixed cells
858	were washed twice with phosphate-buffered saline (PBS) and resuspended in PBS containing
859	2.5 mg/mL filipin complex (Sigma-Aldrich). After incubation at room temperature for 15 min
860	in the dark, cells were washed with PBS once and observed with a UV filter set. For TF-Chol
861	labeling, the cells harboring the upc2-1 mutation were precultured overnight in YPDA and
862	diluted into YPDA containing 0.5% Tween-80, 0.5% ethanol, and 10 $\mu\text{g/mL}$ TF-Chol (Avanti
863	polar lipids, Inc. Alabaster, AL, U.S.A.). The cells were incubated at 30°C for 3 h and then
864	shifted to 37°C, followed by 6 h of incubation. Cells were collected, washed twice with fresh
865	SD medium, resuspended in SD medium, and observed with a GFP filter set. Nile red
866	staining of LDs was performed as described previously with minor modifications [128]. Five
867	OD_{600} units of cell culture were collected and resuspended in 100 µL PBS containing 50
868	μ g/mL Nile red (Sigma-Aldrich). After brief mixing, the cell suspension was incubated for 15
869	min at room temperature in the dark. Cells were collected, washed five times with PBS,
870	resuspended in PBS, and observed with a G-2A filter set.

871 Endocytosis was examined by internalization of FM4-64 as described previously with

872	minor modifications [123]. Cells were incubated in YPDA at 30°C for 3 h and then shifted to					
873	37°C, followed by 6 h of incubation. Four OD_{600} units of the cells were labeled with 32 μM					
874	FM4-64 (Invitrogen, Madison, WI, U.S.A.) in YPDA on ice for 30 min and then washed once					
875	with ice-cold YPDA. Internalization of FM4-64 was initiated by the addition of prewarmed					
876	YPDA, and the cells were incubated at 37°C for 30 min, followed by microscopic					
877	observation.					
878						
879	Image analysis					
880	Microscopy image analysis was performed with ImageJ. When the Kes1-GFP-positive					
881	abnormal structures were examined, the diameter of the Kes1-GFP signal was measured, and					
882	cells with structures larger than approximately 800 nm were classified as having Kes1					
883	abnormal structures.					
884	The PM fluorescence intensity (filipin, Bio-Ro, and Sfk1-mCherry) was analyzed					
885	using programmed Macros in ImageJ as follows. (1) The background was subtracted, (2) a					
886	cell was selected and its mean fluorescence intensity was quantified ($F_{whole cell}$), (3) the cell					
887	periphery (0.2 μ m width, 2 pixels) was selected as the PM and its mean fluorescence					
888	intensity was quantified (F_{pm}), and (4) the signal ratio of the mean $F_{pm}/F_{whole cell}$ was					
889	calculated.					

To analyze the intensity profile of GFPenvy-D4H, the cell periphery was traced with a

891	2 pixel-wide freehan	d line tool along t	the PM of the b	oud and mother cell.	Then, the
-----	----------------------	---------------------	-----------------	----------------------	-----------

892	fluorescence intensity	was measured and	plotted. The GFPenv	y-D4H localization	pattern was
-----	------------------------	------------------	---------------------	--------------------	-------------

- 893 categorized into three patterns as follows. The PM of budded cells was divided into three
- regions, the bud PM (bud), the mother cell PM proximal to the bud neck (proximal to bud),
- and the mother cell PM distal to the bud neck (distal to bud), and the mean fluorescence
- 896 intensity of each region was calculated as F_{bud}, F_{proximal to bud}, and F_{distal to bud}, respectively. Then,
- the cells were categorized as "polarized" (F_{proximal to bud} is smaller than 20% of F_{bud}), "partially
- 898 polarized" (F_{proximal to bud} is larger than, but F_{distal to bud} is smaller than, 20% of F_{bud}), or "not
- 899 polarized" ($F_{distal to bud}$ is larger than 20% of F_{bud}).
- 900

901 Rhodamine uptake assay

- 902 The rhodamine uptake assay was performed essentially as described previously [39].
- 903

904 Sucrose density gradient fractionation

- 905 Sucrose density gradient fractionation was performed as described previously [13, 87] with
- 906 minor modifications. Cells were grown at 30°C to mid-log phase in 200 mL YPDA medium
- 907 and collected. Cells were converted to spheroplasts with zymolyase (Nacalai Tesque, Kyoto,
- 908 Japan) and broken using a multi-bead shocker (Yasui-Kikai, Osaka, Japan) in break buffer

909	(1.2 M sorbitol, 20 mM HEPES at pH 7.5, 1 mM EDTA, and protease inhibitor cocktail
910	[Nacalai Tesque]). After a 1,000 g spin for 10 min, the resulting supernatant was additionally
911	spun at 13,000 g for 20 min to generate pellet. The step gradient of sucrose was prepared with
912	the following concentrations: 1 mL 60%, 2.5 mL 50%, 2.5 mL 47%, 2 mL 44%, 1 mL 40%, 1
913	mL 37%, 1 mL 32%, and 0.5 mL 27% (wt/wt) sucrose in a gradient buffer (10 mM $$
914	HEPES-KOH at pH 7.2 and 1 mM EDTA). The pellet was resuspended in 0.5 mL of the
915	gradient buffer and loaded on the top of the gradient and then centrifuged at 200,000 g in the
916	P40ST rotor (Hitachi, Tokyo, Japan) for 16 h at 4°C. Fractions (0.9 mL) were manually
917	collected from the top of the samples. Pdr5-GFP, Pma1, and Kex2 were detected in each
918	fraction by Western blotting with anti-GFP (Nacalai Tesque), anti-Pma1 (a gift from Serrano
919	R.), and anti-Kex2 antibodies (a gift from Nothwehr S.), respectively.
920	
921	Lipid analysis
922	Cells were grown at 30°C to mid-log phase in 250 mL YPDA medium and collected. Total

923 lipids were extracted by the Bligh and Dyer method [129]. Phospholipid amounts were
924 determined by phosphorus assay [130]. For the phospholipid analysis, samples containing
925 200 nmol phosphates were subjected to thin-layer chromatography (TLC) plates (Merck,
926 Darmstadt, Germany), and phospholipids were detected as described previously [39]. To
927 detect free and esterified ergosterol, lipid extracts containing 20 nmol phosphates were

928	subjected to high-performance TLC (Merck) separation with hexane/diethyl ether/formic acid
929	(40:10:2, v:v:v). Ergosterols were stained with a mixture of ferric chloride/sulfuric acid/acetic
930	acid by heating [131], and the spots were scanned by an image analyzer. The ergosterol
931	content was determined by TLC-densitometric analysis using ImageJ.
932	
933	Liposome sedimentation assay
934	Recombinant GFP-D4H and GFPenvy-D4H proteins were prepared from Escherichia coli as
935	described previously [121]. The protein concentrations were determined by BCA assay.
936	Multilamellar liposomes were prepared by combining
937	1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC, NOF Corporation, Tokyo, Japan) with
938	cholesterol or ergosterol from chloroform stocks. The lipid mixture was evaporated under a
939	stream of nitrogen gas. Then, liposome buffer (0.1 M sucrose, 20 mM HEPES at pH 7.5, 100
940	mM KCl, and 1 mM EDTA) was added to the dry lipids, and the suspension was vortexed to
941	produce liposomes. D4H binding to liposomes was analyzed as described previously [132]
942	with minor modifications. Recombinant GFP- or GFPenvy-D4H protein (200 nmol) was
943	incubated with liposomes (final total lipid concentration is 100 μ M) in HEPES-buffered
944	saline (pH 7.5) for 30 min at room temperature. Then, the mixtures were centrifuged at
945	21,600 g for 10 min at 25°C. The pellets were washed with HEPES-buffered saline twice.
946	The pellets were subjected to SDS-PAGE followed by Coomassie Brilliant Blue staining. For

947 the quantification of the protein, the stained gel was scanned and analyzed by ImageJ.

948

949 Statistical analysis

- 950 To compare the means of multiple groups, statistical analyses were performed using one-way
- 951 ANOVA followed by Tukey-Kramer multiple comparisons. A p-value <0.05 was regarded as
- 952 significant. The dataset containing the numerical data and statistical analysis used in this
- study is listed in S3 Table.

954

955 Acknowledgments

956 We thank Shan Gao for her contribution to the initial stage of this work. We also would like

- 957 to thank David G Drubin (University of California, Berkeley) and Toshihide Kobayashi
- 958 (University of Strasbourg) for plasmids, Ramon Serrano (Polytechnic University of Valencia)
- 959 for the anti-Pma1 antibody, and Steven F Nothwehr (University of Missouri) for the
- 960 anti-Kex2 antibody. We thank Masato Umeda (Kyoto University) for providing Bio-Ro and
- 961 Tomohiko Taguchi (Tohoku University) for his helpful comments on evt-2PH. This work was
- 962 supported by the Japanese Society for the Promotion of Science (JSPS) KAKENHI grants
- 963 JP18K06104 (T.K.), JP18K14645 (T.M.), and JP19K06536 (K.T.). This work was partly
- 964 supported by the Photo-excitonix Project at Hokkaido University.
- 965

966 **References**

968	1.	van Meer	G. Dyna	mic transbi	layer lij	oid as	ymmetry	v. Cold S	pring	g Harb	Perspe	ect Bio	١.
-----	----	----------	---------	-------------	-----------	--------	---------	-----------	-------	--------	--------	---------	----

- 969 2011; 3(5): a004671. doi: 10.1101/cshperspect.a004671.
- 970 2. Murate M, Abe M, Kasahara K, Iwabuchi K, Umeda M, Kobayashi T. Transbilayer
- 971 distribution of lipids at nano scale. J Cell Sci. 2015; 128(8): 1627-38. doi:
- 972 10.1242/jcs.163105.
- 973 3. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry
- 974 and movement. Biochem J. 1993; 294 (Pt 1): 1-14. doi: 10.1042/bj2940001.
- 975 4. Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS.
- 976 P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol.
- 977 2016; 7: 275. doi: 10.3389/fphys.2016.00275.
- 978 5. Hankins HM, Baldridge RD, Xu P, Graham TR. Role of flippases, scramblases and
- transfer proteins in phosphatidylserine subcellular distribution. Traffic. 2015; 16(1): 35-47.
- 980 doi: 10.1111/tra.12233.
- 981 6. Panatala R, Hennrich H, Holthuis JC. Inner workings and biological impact of
- 982 phospholipid flippases. J Cell Sci. 2015; 128(11): 2021-32. doi: 10.1242/jcs.102715.

- 983 7. Neumann J, Rose-Sperling D, Hellmich UA. Diverse relations between ABC
- transporters and lipids: An overview. Biochim Biophys Acta Biomembr. 2017; 1859(4):
- 985 605-18. doi: 10.1016/j.bbamem.2016.09.023.
- 986 8. Quazi F, Molday RS. Lipid transport by mammalian ABC proteins. Essays Biochem.
- 987 2011; 50(1): 265-90. doi: 10.1042/bse0500265.
- 988 9. Nagata S, Sakuragi T, Segawa K. Flippase and scramblase for phosphatidylserine
- 989 exposure. Curr Opin Immunol. 2020; 62: 31-8. doi: 10.1016/j.coi.2019.11.009.
- 990 10. Hua Z, Fatheddin P, Graham TR. An essential subfamily of Drs2p-related P-type
- 991 ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar
- 992 system. Mol Biol Cell. 2002; 13(9): 3162-77. doi: 10.1091/mbc.e02-03-0172.
- 993 11. Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, et al. Transport
- through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase.
- 995 EMBO J. 2015; 34(5): 669-88. doi: 10.15252/embj.201489703.
- 996 12. Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC.
- 997 Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation
- across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell. 2003;
- 999 14(3): 1240-54. doi: 10.1091/mbc.e02-08-0501.

1000	13.	Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K. Endocytic

- 1001 recycling in yeast is regulated by putative phospholipid translocases and the
- 1002 Ypt31p/32p-Rcy1p pathway. Mol Biol Cell. 2007; 18(1): 295-312. doi:
- 1003 10.1091/mbc.e06-05-0461.
- 1004 14. Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K. Cdc50p, a
- 1005 protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in
- 1006 phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell. 2004; 15(7): 3418-32.
- 1007 doi: 10.1091/mbc.e03-11-0829.
- 1008 15. Chen CY, Ingram MF, Rosal PH, Graham TR. Role for Drs2p, a P-type ATPase and
- 1009 potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol. 1999;
- 1010 147(6): 1223-36. doi: 10.1083/jcb.147.6.1223.
- 1011 16. Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, et al. Drs2p-dependent
- 1012 formation of exocytic clathrin-coated vesicles in vivo. Curr Biol. 2002; 12(18): 1623-7. doi:
- 1013 10.1016/s0960-9822(02)01148-x.
- 1014 17. Mioka T, Fujimura-Kamada K, Tanaka K. Asymmetric distribution of
- 1015 phosphatidylserine is generated in the absence of phospholipid flippases in Saccharomyces
- 1016 cerevisiae. Microbiologyopen. 2014; 3(5): 803-21. doi: 10.1002/mbo3.211.
- 1017 18. Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, et al. The

- 1018 phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to
- 1019 the plasma membrane. Mol Biol Cell. 2016; 27(24): 3883-93. doi:
- 1020 10.1091/mbc.E16-08-0586.
- 1021 19. Hachiro T, Yamamoto T, Nakano K, Tanaka K. Phospholipid flippases Lem3p-Dnf1p
- and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast. J
- 1023 Biol Chem. 2013; 288(5): 3594-608. doi: 10.1074/jbc.M112.416263.
- 1024 20. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S.
- 1025 Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine
- 1026 exposure. Science. 2014; 344(6188): 1164-8. doi: 10.1126/science.1252809.
- 1027 21. Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid
- 1028 flippase function is required for signaling competence in the yeast mating pheromone
- 1029 response pathway. Mol Biol Cell. 2015; 26(1): 134-50. doi: 10.1091/mbc.E14-07-1193.
- 1030 22. Paulusma CC, Groen A, Kunne C, Ho-Mok KS, Spijkerboer AL, Rudi de Waart D, et
- al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic
- 1032 bile salts and impairs bile salt transport. Hepatology. 2006; 44(1): 195-204. doi:
- 1033 10.1002/hep.21212.
- 1034 23. Saito K, Fujimura-Kamada K, Hanamatsu H, Kato U, Umeda M, Kozminski KG, et
- 1035 al. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell

1036 growth via Rga GTPase-activating proteins. Dev Cell. 2007; 13(5): 743-51. doi:

1037 10.1016/j.devcel.2007.09.014.

1038	24.	Das A, Slaughter BD, Unruh JR, Bradford WD, Alexander R,	Rubinstein B.	et al.

- 1039 Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic
- 1040 maintenance of cell polarity. Nat Cell Biol. 2012; 14(3): 304-10. doi: 10.1038/ncb2444.
- 1041 25. Iwamoto K, Kobayashi S, Fukuda R, Umeda M, Kobayashi T, Ohta A. Local
- 1042 exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell
- 1043 polarity. Genes Cells. 2004; 9(10): 891-903. doi: 10.1111/j.1365-2443.2004.00782.x.
- 1044 26. Kato U, Inadome H, Yamamoto M, Emoto K, Kobayashi T, Umeda M. Role for
- 1045 phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J Biol
- 1046 Chem. 2013; 288(7): 4922-34. doi: 10.1074/jbc.M112.402701.
- 1047 27. Tanaka K, Fujimura-Kamada K, Yamamoto T. Functions of phospholipid flippases. J
- 1048 Biochem. 2011; 149(2): 131-43. doi: 10.1093/jb/mvq140.
- 1049 28. Kato U, Emoto K, Fredriksson C, Nakamura H, Ohta A, Kobayashi T, et al. A novel
- 1050 membrane protein, Ros3p, is required for phospholipid translocation across the plasma
- 1051 membrane in Saccharomyces cerevisiae. J Biol Chem. 2002; 277(40): 37855-62. doi:
- 1052 10.1074/jbc.M205564200.

1053	29.	Noji T, Yamamoto T, Saito K, Fujimura-Kamada K, Kondo S, Tanaka K. Mutational
------	-----	---

- analysis of the Lem3p-Dnf1p putative phospholipid-translocating P-type ATPase reveals
- novel regulatory roles for Lem3p and a carboxyl-terminal region of Dnf1p independent of the
- 1056 phospholipid-translocating activity of Dnf1p in yeast. Biochem Biophys Res Commun. 2006;
- 1057 344(1): 323-31. doi: 10.1016/j.bbrc.2006.03.095.
- 1058 30. Takahashi Y, Fujimura-Kamada K, Kondo S, Tanaka K. Isolation and
- 1059 characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p
- 1060 phospholipid flippase. J Biochem. 2011; 149(4): 423-32. doi: 10.1093/jb/mvq155.
- 1061 31. Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JC. CDC50
- 1062 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol
- 1063 Chem. 2010; 285(52): 40562-72. doi: 10.1074/jbc.M110.139543.
- 1064 32. Puts CF, Panatala R, Hennrich H, Tsareva A, Williamson P, Holthuis JC. Mapping
- 1065 functional interactions in a heterodimeric phospholipid pump. J Biol Chem. 2012; 287(36):
- 1066 30529-40. doi: 10.1074/jbc.M112.371088.

- 1068 DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine
- 1069 flip across the plasma membrane of Saccharomyces cerevisiae. J Biol Chem. 2008; 283(50):
- 1070 35060-9. doi: 10.1074/jbc.M802379200.

^{1067 33.} Stevens HC, Malone L, Nichols JW. The putative aminophospholipid translocases,

1071	34.	Parsons AB, Lo	pez A, Givoni IE,	Williams DE, C	Gray CA, I	Porter J, et al. Ex	ploring
------	-----	----------------	-------------------	----------------	------------	---------------------	---------

1072 the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell.

```
1073 2006; 126(3): 611-25. doi: 10.1016/j.cell.2006.06.040.
```

- 1074 35. Frøsig MM, Costa SR, Liesche J, Østerberg JT, Hanisch S, Nintemann S, et al.
- 1075 Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid
- 1076 flippases. J Cell Sci. 2020; 133(15): jcs.235994. doi: 10.1242/jcs.235994.
- 1077 36. Nakano K, Yamamoto T, Kishimoto T, Noji T, Tanaka K. Protein kinases Fpk1p and
- 1078 Fpk2p are novel regulators of phospholipid asymmetry. Mol Biol Cell. 2008; 19(4): 1783-97.
- 1079 doi: 10.1091/mbc.E07-07-0646.
- 1080 37. Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A. ATPase
- and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol
- 1082 Chem. 1998; 273(20): 12612-22. doi: 10.1074/jbc.273.20.12612.
- 1083 38. Yamauchi S, Obara K, Uchibori K, Kamimura A, Azumi K, Kihara A. Opt2 mediates
- 1084 the exposure of phospholipids during cellular adaptation to altered lipid asymmetry. J Cell
- 1085 Sci. 2015; 128(1): 61-9. doi: 10.1242/jcs.153890.
- 1086 39. Mioka T, Fujimura-Kamada K, Mizugaki N, Kishimoto T, Sano T, Nunome H, et al.
- 1087 Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to
- 1088 low permeability of the plasma membrane. Mol Biol Cell. 2018; 29(10): 1203-18. doi:

1089 10.1091/mbc.E17-04-0217.

1090	40.	Chung J, Nakatsu F, Baskin JM, De Camilli P. Plasticity of PI4KIIIalpha interactions
1091	at the p	lasma membrane. EMBO Rep. 2015; 16(3): 312-20. doi: 10.15252/embr.201439151.
1092	41.	Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem
1093	Phys Li	ipids. 2016; 199: 74-93. doi: 10.1016/j.chemphyslip.2016.02.003.
1094	42.	Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of
1095	SREBF	P-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell
1096	Metab.	2008; 8(6): 512-21. doi: 10.1016/j.cmet.2008.10.008.
1097	43.	Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis.
1098	Nature.	2014; 510(7503): 48-57. doi: 10.1038/nature13474.

1099 44. Ali MR, Cheng KH, Huang J. Assess the nature of cholesterol-lipid interactions

1100 through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad

1101 Sci U S A. 2007; 104(13): 5372-7. doi: 10.1073/pnas.0611450104.

1102 45. Almeida PF. Thermodynamics of lipid interactions in complex bilayers. Biochim

1103 Biophys Acta. 2009; 1788(1): 72-85. doi: 10.1016/j.bbamem.2008.08.007.

1104 46. Lange Y, Steck TL. Cholesterol homeostasis and the escape tendency (activity) of

1105 plasma membrane cholesterol. Prog Lipid Res. 2008; 47(5): 319-32. doi:

1106 10.1016/j.plipres.2008.03.001.

1107	47. Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered
1108	membrane domains. Biochim Biophys Acta. 2006; 1758(12): 1945-56. doi:
1109	10.1016/j.bbamem.2006.05.020.
1110	48. Maekawa M, Fairn GD. Complementary probes reveal that phosphatidylserine is
1111	required for the proper transbilayer distribution of cholesterol. J Cell Sci. 2015; 128(7):
1112	1422-33. doi: 10.1242/jcs.164715.
1113	49. Lange Y, Tabei SM, Ye J, Steck TL. Stability and stoichiometry of bilayer
1114	phospholipid-cholesterol complexes: relationship to cellular sterol distribution and
1115	homeostasis. Biochemistry. 2013; 52(40): 6950-9. doi: 10.1021/bi400862q.
1116	50. Munn AL, Stevenson BJ, Geli MI, Riezman H. end5, end6, and end7: mutations that
1117	cause actin delocalization and block the internalization step of endocytosis in Saccharomyces
1118	cerevisiae. Mol Biol Cell. 1995; 6(12): 1721-42. doi: 10.1091/mbc.6.12.1721.

- 111951.Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking
- 1120 orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol
- 1121 Gen Genet. 1984; 197(2): 345-6. doi: 10.1007/BF00330984.
- 1122 52. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. Membrane

1123 phosphatidylserine regulates surface charge and protein localization. Science. 2008;

- 1124 319(5860): 210-3. doi: 10.1126/science.1152066.
- 1125 53. Uchida Y, Hasegawa J, Chinnapen D, Inoue T, Okazaki S, Kato R, et al. Intracellular
- 1126 phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc Natl
- 1127 Acad Sci U S A. 2011; 108(38): 15846-51. doi: 10.1073/pnas.1109101108.
- 1128 54. Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR. Specific
- retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell. 2000;
- 1130 11(1): 23-38. doi: 10.1091/mbc.11.1.23.
- 1131 55. de Thozee CP, Cronin S, Goj A, Golin J, Ghislain M. Subcellular trafficking of the
- 1132 yeast plasma membrane ABC transporter, Pdr5, is impaired by a mutation in the N-terminal
- nucleotide-binding fold. Mol Microbiol. 2007; 63(3): 811-25. doi:
- 1134 10.1111/j.1365-2958.2006.05562.x.
- 1135 56. Malinska K, Malinsky J, Opekarova M, Tanner W. Distribution of Can1p into stable
- 1136 domains reflects lateral protein segregation within the plasma membrane of living S.
- 1137 cerevisiae cells. J Cell Sci. 2004; 117(Pt 25): 6031-41. doi: 10.1242/jcs.01493.
- 1138 57. Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics
- and endocytosis in yeast. J Cell Biol. 1995; 128(5): 779-92. doi: 10.1083/jcb.128.5.779.

1140 58. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A. T	frans-complex
--	---------------

- formation by proteolipid channels in the terminal phase of membrane fusion. Nature. 2001;
- 1142 409(6820): 581-8. doi: 10.1038/35054500.
- 1143 59. Serrano R, Kielland-Brandt MC, Fink GR. Yeast plasma membrane ATPase is
- essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature.
- 1145 1986; 319(6055): 689-93. doi: 10.1038/319689a0.
- 1146 60. Bagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires
- raft association for surface delivery in yeast. Mol Biol Cell. 2001; 12(12): 4129-38. doi:
- 1148 10.1091/mbc.12.12.4129.
- 1149 61. Brickner JH, Fuller RS. SOI1 encodes a novel, conserved protein that promotes
- 1150 TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function
- 1151 of two TGN localization signals. J Cell Biol. 1997; 139(1): 23-36. doi: 10.1083/jcb.139.1.23.
- 1152 62. Popov-Celeketic D, Bianchi F, Ruiz SJ, Meutiawati F, Poolman B. A Plasma
- 1153 Membrane Association Module in Yeast Amino Acid Transporters. J Biol Chem. 2016;
- 1154 291(31): 16024-37. doi: 10.1074/jbc.M115.706770.
- 1155 63. Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Soldner R.
- 1156 Patchwork organization of the yeast plasma membrane into numerous coexisting domains.
- 1157 Nat Cell Biol. 2012; 14(6): 640-8. doi: 10.1038/ncb2487.

1158	64. Zhao Y, Macgurn JA, Liu M, Emr S. The ART-Rsp5 ubiquitin ligase network
1159	comprises a plasma membrane quality control system that protects yeast cells from
1160	proteotoxic stress. Elife. 2013; 2: e00459. doi: 10.7554/eLife.00459.
1161	65. Scharff-Poulsen P, Pedersen PA. Saccharomyces cerevisiae-based platform for rapid
1162	production and evaluation of eukaryotic nutrient transporters and transceptors for
1163	biochemical studies and crystallography. PLoS One. 2013; 8(10): e76851. doi:
1164	10.1371/journal.pone.0076851.
1165	66. Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG. High rates of
1166	actin filament turnover in budding yeast and roles for actin in establishment and maintenance
1167	of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol. 1997; 137(2):
1168	399-416. doi: 10.1083/jcb.137.2.399.
1169	67. Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off
1170	PI(4)P to Transport Cholesterol. Annu Rev Biochem. 2018; 87(1): 809-37. doi:
1171	10.1146/annurev-biochem-061516-044924.
1172	68. Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev
1173	Mol Cell Biol. 2010; 11(10): 739-50. doi: 10.1038/nrm2971.
1174	69. Manik MK, Yang H, Tong J, Im YJ. Structure of Yeast OSBP-Related Protein Osh1
1175	Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole

1176 Junction. Structure. 2017; 25(4): 617-29 e3. doi: 10.1016/j.str.2017.02.010.

1177	70.	Fairn GD, Curwin AJ, Stefan CJ, McMaster CR. The oxysterol binding protein

- 1178 Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proc Natl Acad
- 1179 Sci U S A. 2007; 104(39): 15352-7. doi: 10.1073/pnas.0705571104.
- 1180 71. Audhya A, Emr SD. Stt4 PI 4-kinase localizes to the plasma membrane and
- 1181 functions in the Pkc1-mediated MAP kinase cascade. Dev Cell. 2002; 2(5): 593-605. doi:
- 1182 10.1016/s1534-5807(02)00168-5.
- 1183 72. Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. Structural mechanism for sterol
- sensing and transport by OSBP-related proteins. Nature. 2005; 437(7055): 154-8. doi:
- 1185 10.1038/nature03923.
- 1186 73. Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, et al.
- 1187 Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid
- 1188 regulation. PLoS Biol. 2018; 16(5): e2003864. doi: 10.1371/journal.pbio.2003864.
- 1189 74. Beh CT, Rine J. A role for yeast oxysterol-binding protein homologs in endocytosis
- and in the maintenance of intracellular sterol-lipid distribution. J Cell Sci. 2004; 117(Pt 14):
- 1191 2983-96. doi: 10.1242/jcs.01157.
- 1192 75. Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular

- 1193 landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta.
- 1194 2016; 1861(8 Pt B): 812-29. doi: 10.1016/j.bbalip.2016.03.013.
- 1195 76. Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y. The C-terminal domain of
- 1196 perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich
- 1197 microdomains. Eur J Biochem. 2002; 269(24): 6195-203. doi:
- 1198 10.1046/j.1432-1033.2002.03338.x.
- 1199 77. Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP. Modifications in
- 1200 perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding.
- 1201 Biochemistry. 2012; 51(16): 3373-82. doi: 10.1021/bi3003132.
- 1202 78. Marek M, Vincenzetti V, Martin SG. Sterol biosensor reveals LAM-family
- 1203 Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. J Cell Biol. 2020; 219(6):
- 1204 e202001147. doi: 10.1083/jcb.202001147.
- 1205 79. Slubowski CJ, Funk AD, Roesner JM, Paulissen SM, Huang LS. Plasmids for
- 1206 C-terminal tagging in Saccharomyces cerevisiae that contain improved GFP proteins, Envy
- 1207 and Ivy. Yeast. 2015; 32(4): 379-87. doi: 10.1002/yea.3065.
- 1208 80. Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, et al. Improving
- 1209 brightness and photostability of green and red fluorescent proteins for live cell imaging and
- 1210 FRET reporting. Sci Rep. 2016; 6(1): 20889. doi: 10.1038/srep20889.

	1211	81.	Savinov SN,	Heuck AP.	Interaction of	of Cholesterol	l with l	Perfringolysin	O:	What I	Have
--	------	-----	-------------	-----------	----------------	----------------	----------	----------------	----	--------	------

1212 We Learned from Functional Analysis? Toxins (Basel). 2017; 9(12): 381. doi:

1213 10.3390/toxins9120381.

- 1214 82. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular
- 1215 biology of lipids of Saccharomyces cerevisiae. Yeast. 1998; 14(16): 1471-510. doi:
- 1216 10.1002/(sici)1097-0061(199812)14:16<1471::Aid-yea353>3.0.Co;2-y.
- 1217 83. Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. Specific sterols
- required for the internalization step of endocytosis in yeast. Mol Biol Cell. 1999; 10(11):
- 1219 3943-57. doi: 10.1091/mbc.10.11.3943.
- 1220 84. Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H. Multiple
- 1221 functions of sterols in yeast endocytosis. Mol Biol Cell. 2002; 13(8): 2664-80. doi:
- 1222 10.1091/mbc.e02-04-0186.
- 1223 85. Crowley JH, Leak FW, Jr., Shianna KV, Tove S, Parks LW. A mutation in a purported
- 1224 regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae. J Bacteriol.
- 1225 1998; 180(16): 4177-83. doi: 10.1128/JB.180.16.4177-4183.1998.
- 1226 86. Lewis TL, Keesler GA, Fenner GP, Parks LW. Pleiotropic mutations in
- 1227 Saccharomyces cerevisiae affecting sterol uptake and metabolism. Yeast. 1988; 4(2): 93-106.
- 1228 doi: 10.1002/yea.320040203.

- 1229 87. Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. Osh
- 1230 proteins regulate membrane sterol organization but are not required for sterol movement
- 1231 between the ER and PM. Traffic. 2011; 12(10): 1341-55. doi:
- 1232 10.1111/j.1600-0854.2011.01234.x.
- 1233 88. Barajas D, Xu K, de Castro Martin IF, Sasvari Z, Brandizzi F, Risco C, et al.
- 1234 Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication
- sites via membrane contact sites. PLoS Pathog. 2014; 10(10): e1004388. doi:
- 1236 10.1371/journal.ppat.1004388.
- 1237 89. Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014; 14(3):
- 1238 369-88. doi: 10.1111/1567-1364.12141.
- 1239 90. Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for
- 1240 intracellular lipid droplets. J Cell Biol. 1985; 100(3): 965-73. doi: 10.1083/jcb.100.3.965.
- 1241 91. Jandrositz A, Petschnigg J, Zimmermann R, Natter K, Scholze H, Hermetter A, et al.
- 1242 The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast,
- 1243 Saccharomyces cerevisiae. Biochim Biophys Acta. 2005; 1735(1): 50-8. doi:
- 1244 10.1016/j.bbalip.2005.04.005.
- 1245 92. Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, et al. Obese
- 1246 yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem.

1247 2006; 281(1): 491-500. doi: 10.1074/jbc.M508414200.

- 1248 93. Yu C, Kennedy NJ, Chang CC, Rothblatt JA. Molecular cloning and characterization
- 1249 of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem.
- 1250 1996; 271(39): 24157-63. doi: 10.1074/jbc.271.39.24157.
- 1251 94. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, et al. Sterol
- esterification in yeast: a two-gene process. Science. 1996; 272(5266): 1353-6. doi:
- 1253 10.1126/science.272.5266.1353.
- 1254 95. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, et al.
- 1255 Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the
- 1256 acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U
- 1257 S A. 2000; 97(12): 6487-92. doi: 10.1073/pnas.120067297.
- 1258 96. Sorger D, Daum G. Synthesis of triacylglycerols by the acyl-coenzyme
- 1259 A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces
- 1260 cerevisiae. J Bacteriol. 2002; 184(2): 519-24. doi: 10.1128/jb.184.2.519-524.2002.
- 1261 97. Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL. A
- 1262 lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J
- 1263 Biol Chem. 2000; 275(21): 15609-12. doi: 10.1074/jbc.C000144200.

1264	98.	Caunt P, Impoolsup A, Greenfield PF. Stability of Recombinant Plasmids in Yeast.
------	-----	--

- 1265 Journal of Biotechnology. 1988; 8(3): 173-92. doi: Doi 10.1016/0168-1656(88)90001-6.
- 1266 99. Mesmin B, Maxfield FR. Intracellular sterol dynamics. Biochim Biophys Acta.
- 1267 2009; 1791(7): 636-45. doi: 10.1016/j.bbalip.2009.03.002.
- 1268 100. Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, et al.
- 1269 Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid
- 1270 molecular species composition of yeast subcellular membranes reveals acyl chain-based
- 1271 sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell
- 1272 Biol. 1999; 146(4): 741-54. doi: 10.1083/jcb.146.4.741.
- 1273 101. Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols
- 1274 for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019;
- 1275 116(2): 296-307. doi: 10.1016/j.bpj.2018.11.3135.
- 1276 102. Solanko LM, Sullivan DP, Sere YY, Szomek M, Lunding A, Solanko KA, et al.
- 1277 Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic.
- 1278 2018; 19(3): 198-214. doi: 10.1111/tra.12545.
- 1279 103. Nelson LD, Johnson AE, London E. How interaction of perfringolysin O with
- 1280 membranes is controlled by sterol structure, lipid structure, and physiological low pH:
- insights into the origin of perfringolysin O-lipid raft interaction. J Biol Chem. 2008; 283(8):

- 1282 4632-42. doi: 10.1074/jbc.M709483200.
- 1283 104. Flanagan JJ, Tweten RK, Johnson AE, Heuck AP. Cholesterol exposure at the
- 1284 membrane surface is necessary and sufficient to trigger perfringolysin O binding.
- 1285 Biochemistry. 2009; 48(18): 3977-87. doi: 10.1021/bi9002309.
- 1286 105. Steck TL, Lange Y. Cell cholesterol homeostasis: mediation by active cholesterol.
- 1287 Trends Cell Biol. 2010; 20(11): 680-7. doi: 10.1016/j.tcb.2010.08.007.
- 1288 106. McConnell HM, Radhakrishnan A. Condensed complexes of cholesterol and
- 1289 phospholipids. Biochim Biophys Acta. 2003; 1610(2): 159-73. doi:
- 1290 10.1016/s0005-2736(03)00015-4.
- 1291 107. Maxfield FR, Menon AK. Intracellular sterol transport and distribution. Curr Opin
- 1292 Cell Biol. 2006; 18(4): 379-85. doi: 10.1016/j.ceb.2006.06.012.
- 1293 108. Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized
- 1294 growth and organelle segregation in yeast. Annu Rev Cell Dev Biol. 2004; 20: 559-91. doi:
- 1295 10.1146/annurev.cellbio.20.010403.103108.
- 1296 109. Menon AK. Sterol gradients in cells. Curr Opin Cell Biol. 2018; 53: 37-43. doi:
- 1297 10.1016/j.ceb.2018.04.012.
- 1298 110. Li Y, Prinz WA. ATP-binding cassette (ABC) transporters mediate nonvesicular,

1299 raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J

- 1300 Biol Chem. 2004; 279(43): 45226-34. doi: 10.1074/jbc.M407600200.
- 1301 111. Rose M. Methods in yeast genetics: a laboratory course manual. In: Winston F,
- 1302 Hieter P, editors. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press;

1303 1990.

- 1304 112. Guthrie C, Fink GR. Guide to Yeast Genetics and Molecular Biology. San Diego:
- 1305 Academic Press; 1991.
- 1306 113. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY.
- 1307 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp.
- red fluorescent protein. Nat Biotechnol. 2004; 22(12): 1567-72. doi: 10.1038/nbt1037.
- 1309 114. Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al.
- 1310 Additional modules for versatile and economical PCR-based gene deletion and modification
- 1311 in Saccharomyces cerevisiae. Yeast. 1998; 14(10): 953-61. doi:
- 1312 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U.
- 1313 115. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, et al. A
- 1314 monomeric red fluorescent protein. Proc Natl Acad Sci U S A. 2002; 99(12): 7877-82. doi:
- 1315 10.1073/pnas.082243699.

1316	116.	Gietz RD, Schiestl RH.	Quick and easy year	st transformation	using the LiAc/SS
------	------	------------------------	---------------------	-------------------	-------------------

- 1317 carrier DNA/PEG method. Nat Protoc. 2007; 2(1): 35-7. doi: 10.1038/nprot.2007.14.
- 1318 117. Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded
- 1319 carrier DNA/polyethylene glycol method. Methods Enzymol. 2002; 350: 87-96. doi:
- 1320 10.1016/s0076-6879(02)50957-5.
- 1321 118. Sun Y, Carroll S, Kaksonen M, Toshima JY, Drubin DG. PtdIns(4,5)P2 turnover is
- 1322 required for multiple stages during clathrin- and actin-dependent endocytic internalization. J
- 1323 Cell Biol. 2007; 177(2): 355-67. doi: 10.1083/jcb.200611011.
- 1324 119. Lee WL, Oberle JR, Cooper JA. The role of the lissencephaly protein Pac1 during
- nuclear migration in budding yeast. J Cell Biol. 2003; 160(3): 355-64. doi:
- 1326 10.1083/jcb.200209022.
- 1327 120. Miyasaka M, Mioka T, Kishimoto T, Itoh E, Tanaka K. A complex genetic
- 1328 interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate
- 1329 Golgi functions. PLoS One. 2020; 15(7): e0236520. doi: 10.1371/journal.pone.0236520.
- 1330 121. Kishimoto T, Tomishige N, Murate M, Ishitsuka R, Schaller H, Mely Y, et al.
- 1331 Cholesterol asymmetry at the tip of filopodia during cell adhesion. FASEB J. 2020; 34(5):
- 1332 6185-97. doi: 10.1096/fj.201900065RR.

- 1333 122. Toi H, Fujimura-Kamada K, Irie K, Takai Y, Todo S, Tanaka K. She4p/Dim1p
- 1334 interacts with the motor domain of unconventional myosins in the budding yeast,
- 1335 Saccharomyces cerevisiae. Mol Biol Cell. 2003; 14(6): 2237-49. doi:
- 1336 10.1091/mbc.e02-09-0616.
- 1337 123. Kishimoto T, Yamamoto T, Tanaka K. Defects in structural integrity of ergosterol
- and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic
- 1339 membranes, onto which actin patches are assembled in yeast. Mol Biol Cell. 2005; 16(12):
- 1340 5592-609. doi: 10.1091/mbc.e05-05-0452.
- 1341 124. van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, et al.
- 1342 Exploring genetic suppression interactions on a global scale. Science. 2016; 354(6312):
- 1343 aag0839. doi: 10.1126/science.aag0839.
- 1344 125. Yamamoto T, Fujimura-Kamada K, Shioji E, Suzuki R, Tanaka K. Cfs1p, a Novel

1345 Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in

1346 Yeast. G3 (Bethesda). 2017; 7(1): 179-92. doi: 10.1534/g3.116.035238.

- 1348 Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant
- 1349 DNA experiments. Gene. 1979; 8(1): 17-24. doi: 10.1016/0378-1119(79)90004-0.
- 1350 127. Martinez-Munoz GA, Kane P. Vacuolar and plasma membrane proton pumps

^{1347 126.} Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, et al.

- 1351 collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem. 2008; 283(29):
- 1352 20309-19. doi: 10.1074/jbc.M710470200.
- 1353 128. Verstrepen KJ, Van Laere SD, Vercammen J, Derdelinckx G, Dufour JP, Pretorius IS,
- 1354 et al. The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid
- 1355 particles. Yeast. 2004; 21(4): 367-77. doi: 10.1002/yea.1100.
- 1356 129. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J
- 1357 Biochem Physiol. 1959; 37(8): 911-7. doi: 10.1139/o59-099.
- 1358 130. Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic
- 1359 separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.
- 1360 Lipids. 1970; 5(5): 494-6. doi: 10.1007/BF02531316.
- 1361 131. Lowry RR. Ferric chloride spray detector for cholesterol and cholesteryl esters on
- thin-layer chromatograms. J Lipid Res. 1968; 9(3): 397.
- 1363 132. Ishitsuka R, Saito T, Osada H, Ohno-Iwashita Y, Kobayashi T. Fluorescence image
- 1364 screening for chemical compounds modifying cholesterol metabolism and distribution. J
- 1365 Lipid Res. 2011; 52(11): 2084-94. doi: 10.1194/jlr.D018184.
- 1366

1367 Supporting Information

1368

1369 S1 Fig. Growth curves of wild-type and $crf1 \triangle lem3 \triangle skf1-2$ cells.

Cells were precultured in YPDA medium to the mid-log phase at 30°C. Then, the cells were
reinoculated in YPDA at time 0 and cultured at 30 or 37°C. Optical density was measured
every 1.5 h. Values represent the mean \pm S.D. from three independent experiments.
S2 Fig. Phospholipid distributions in the double mutants of <i>lem3</i> Δ , <i>crf1</i> Δ , <i>dnf3</i> Δ , and
sfk1-2 mutations.
(A) The $crf1\Delta$ and $dnf3\Delta$ mutations increased the sensitivity to PapB and duramycin in the
$lem3\Delta$ mutant. Tenfold serial dilutions of the indicated cell cultures were spotted onto a
YPDA plate containing PapB or duramycin, followed by incubation at 30°C for 2 d. (B) GFP
-Lact-C2 was normally localized to the PM in the <i>lem3</i> Δ <i>sfk1-2</i> , <i>crf1</i> Δ <i>sfk1-2</i> , and <i>crf1</i> Δ
<i>lem3</i> Δ double mutants. Cells were cultured as in Fig 2C. (C) GFP-evt-2PH was normally
localized to the PM in the <i>lem3</i> Δ <i>sfk1-2</i> , <i>crf1</i> Δ <i>sfk1-2</i> , and <i>crf1</i> Δ <i>lem3</i> Δ double mutants. Cells
were cultured as in Fig 2C. Bars, 5 µm.
S3 Fig. Analysis of phospholipid composition.
PC, PI, PS, and PE are quantified as a mol percentage of total phospholipids. The data
represent the mean \pm S.D. derived from the analysis of four to five independent samples. "n.s,"

1387 indicates no significant difference between all combinations as determined by the

1388 Tukey–Kramer test.

1389

1390	S4 Fig. Nutrient transporters fail to localize to the PM in the triple but not in the double
1391	mutants.
1392	(A) Can1-GFP (upper panel) and Hip1-GFP (lower panel) were localized to the PM in the
1393	<i>lem3</i> Δ <i>sfk1-2</i> , <i>crf1</i> Δ <i>sfk1-2</i> , and <i>crf1</i> Δ <i>lem3</i> Δ double mutants. Cells were cultured as in Fig
1394	2C. (B) Nutrient transporters failed to localize to the PM in the $crf1 \Delta lem3 \Delta sfk1-2$ triple
1395	mutant. Amino acid transporters (Alp1-, Lyp1-, Tat1-, and Ptr2-GFP) and glucose
1396	transporters (Hxt2-, 3-, and 4-GFP) were examined. Cells were cultured as in Fig 2C. (C)
1397	Can1-GFP and Hip1-GFP were mislocalized to the vacuole by endocytosis in the $crf1\Delta$
1398	<i>lem3</i> Δ <i>sfk1-2</i> triple mutant. Cells were cultured in YPDA at 37°C for 5.5 h, followed by
1399	additional incubation for 30 min in the presence (LAT-A) or absence (DMSO) of 100 μM
1400	LAT-A. Right panel: the percentage of cells with Can1-GFP or Hip1-GFP at the PM was
1401	determined and is expressed as the mean \pm S.D. of three independent experiments (n>168
1402	cells in total for each strain). Asterisks indicate a significant difference, as determined by the
1403	Tukey–Kramer test (p < 0.05). Bars, 5 μ m.
1404	

1405 S5 Fig. The defects in the $crf1 \triangle lem3 \triangle sfk1-2$ mutant may be independent of PI(4)P. 1406 (A) The distribution of the Osh2-PH-GFP PI(4)P biosensor was not altered in the $crf1 \triangle$

1407	<i>lem3</i> Δ <i>sfk1-2</i> triple mutant. Cells were cultured as in Fig 2C. Bar, 5 µm. <i>Right panel</i> : The
1408	localization of Osh2-PH-GFP was categorized into four patterns. The percentages of cells
1409	with these patterns were determined and expressed as the mean \pm S.D. of three independent
1410	experiments (n > 142 cells in total for each strain). "n.s," indicates no significant difference
1411	between all combinations as determined by the Tukey-Kramer test. (B) The C-terminal
1412	truncation of <i>SFK1</i> did not affect the growth of the $crf1 \Delta lem3 \Delta$ double mutant. The
1413	SFK1 Δ C-GFP mutant in which the C-terminal cytoplasmic region was deleted [39] was
1414	combined with $crfl \Delta lem 3 \Delta$ mutations. Tenfold serial dilutions were spotted onto a YPDA
1415	plate, followed by incubation for 1.5 d at 30 or 37°C.
1416	
1417	Se Fig Normal leading tions of Kes1 CED and CED ED in the law 24 after 2 art 1 & after 2
	S6 Fig. Normal localizations of Kes1-GFP and GFP-ER in the <i>lem3</i> Δ <i>sfk1-2</i> , <i>crf1</i> Δ <i>sfk1-2</i> ,
1418	and $crf1 \Delta lem3 \Delta$ double mutants.
1418 1419	
	and $crf1 \Delta lem3 \Delta$ double mutants.
1419	and $crf1 \Delta lem3 \Delta$ double mutants. The localizations of Kes1-GFP (A) and GFP-ER (B) in the double mutants are shown. Cells
1419 1420	and $crf1 \Delta lem3 \Delta$ double mutants. The localizations of Kes1-GFP (A) and GFP-ER (B) in the double mutants are shown. Cells
1419 1420 1421	and $crf1\Delta$ lem3 Δ double mutants. The localizations of Kes1-GFP (A) and GFP-ER (B) in the double mutants are shown. Cells were cultured as in Fig 2C. Bars, 5 µm.

1426 S8 Fig. Ergosterol-dependent PM localization of GFPenvy-D4H.

1427	(A) Fluconazole treatment inhibits the GFPenvy-D4H distribution to the PM. Wild-type cells
1428	harboring pRS316-GFPenvy-D4H were grown in SDA-Ura medium to the mid-log phase at
1429	30°C and then treated with 100 μ M fluconazole or mock treated, followed by incubation for 6
1430	h at 30°C. Right panel: the percentage of cells with GFPenvy-D4H at the PM was determined
1431	and is expressed as the mean \pm S.D. of three independent experiments (n > 257 cells in total
1432	for each condition). An asterisk indicates a significant difference, as determined by the
1433	Tukey–Kramer test ($p < 0.05$). (B) The distribution of GFPenvy-D4H in mutants of genes
1434	encoding the enzymes in the late steps of ergosterol biosynthesis (ERG2-6). Cells were
1435	cultured in SDA-Ura medium at 30°C to the mid-log phase. (C) GFPenvy-D4H was localized
1436	to the PM in the <i>lem3</i> Δ <i>sfk1-2</i> , <i>crf1</i> Δ <i>sfk1-2</i> , and <i>crf1</i> Δ <i>lem3</i> Δ double mutants. Cells were
1437	cultured as in Fig 2C, except that SDA-Ura medium was used. (D) The PM localization of
1438	GFPenvy-D4H was partially recovered by <i>KES1</i> overexpression in the $crf1\Delta lem3\Delta sfk1-2$
1439	triple mutant. Cells harboring pRS316-GFPenvy-D4H and either YEplac181-KES1 or
1440	YEplac181 were cultured as in Fig 2C except that SD-Leu-Ura medium was used. Arrows
1441	indicate the PM localization of GFPenvy-D4H. Right panel: the percentage of cells with
1442	GFPenvy-D4H at the PM was determined and is expressed as the mean \pm S.D. of three
1443	independent experiments (n > 121 in total for each strain). An asterisk indicates a significant
1444	difference, as determined by the Tukey–Kramer test (p < 0.05). Bars, 5 μ m.

1445

1446 S9 Fig. TF-Chol is retained in the PM of the *lem3* Δ *sfk1-2*, *crf1* Δ *sfk1-2*, and *crf1* Δ *lem3* Δ

- 1447 double mutants.
- 1448 Cells were cultured and labeled with TF-Chol as described in the "Materials and Methods".
- 1449 Bar, 5 μm.

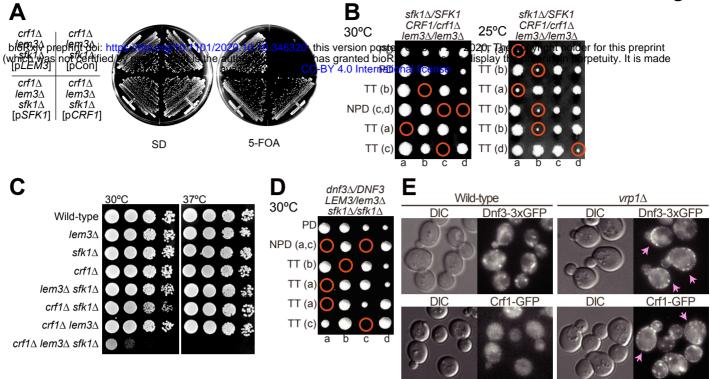
1450

- 1451 S10 Fig. Identification of esterified ergosterol.
- 1452 TLC analysis of total sterols was performed as in Fig 7A. To detect esterified ergosterol, total
- 1453 lipids were extracted from cells in the stationary phase.

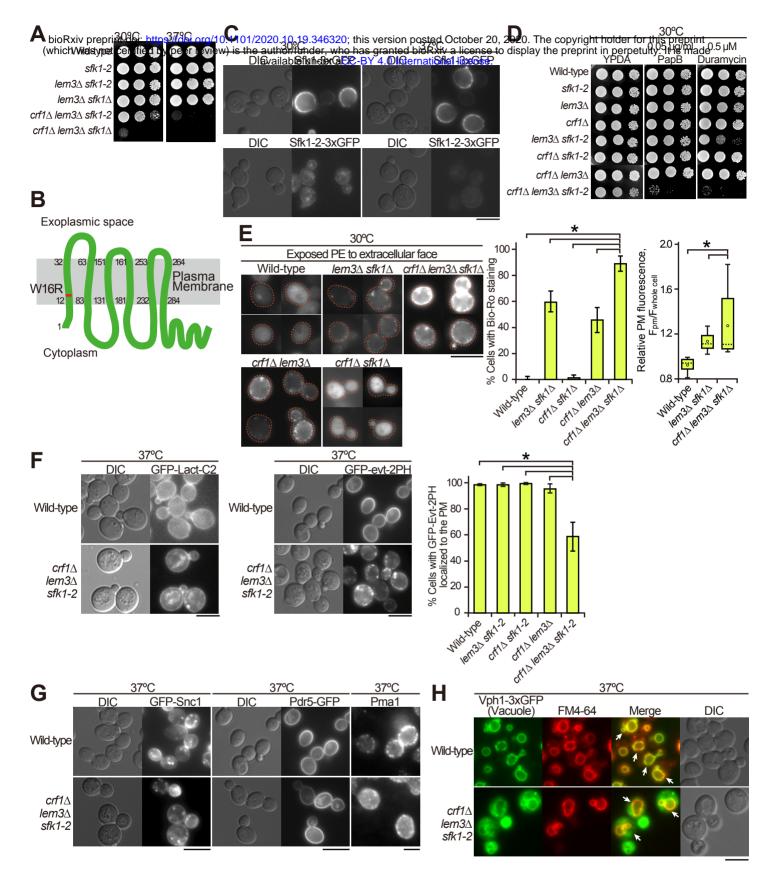
1454

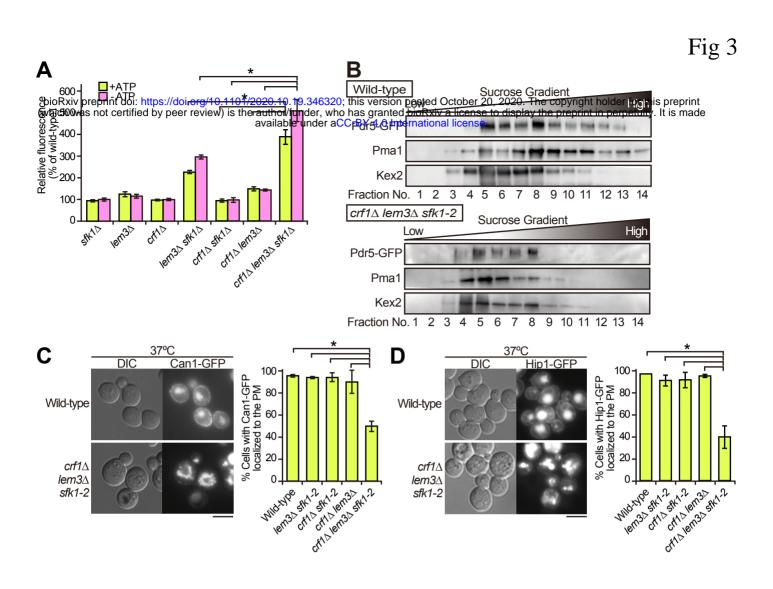
1455 S11 Fig. Lipid droplets are increased in the $crf1\Delta$ lem 3Δ sfk1-2 triple mutant.

- 1456 (A) Nile red staining in the $lem3\Delta sfk1\Delta$, $crf1\Delta sfk1\Delta$, and $crf1\Delta lem3\Delta$ double mutants. Cells
- 1457 were cultured in YPDA medium to the mid-log phase at 30°C, followed by Nile red staining.
- 1458 Nile red staining was performed as described in the "Materials and Methods". (B)
- 1459 Accumulation of Tgl1-GFP (left) and Faa4-GFP (right) puncta in the $crf1\Delta lem3\Delta sfk1-2$
- triple mutant. Cells were cultured as in Fig 2C. All images were acquired and processed
- 1461 under the same conditions for comparison of fluorescence intensity. Bars, $5 \,\mu m$.


1462

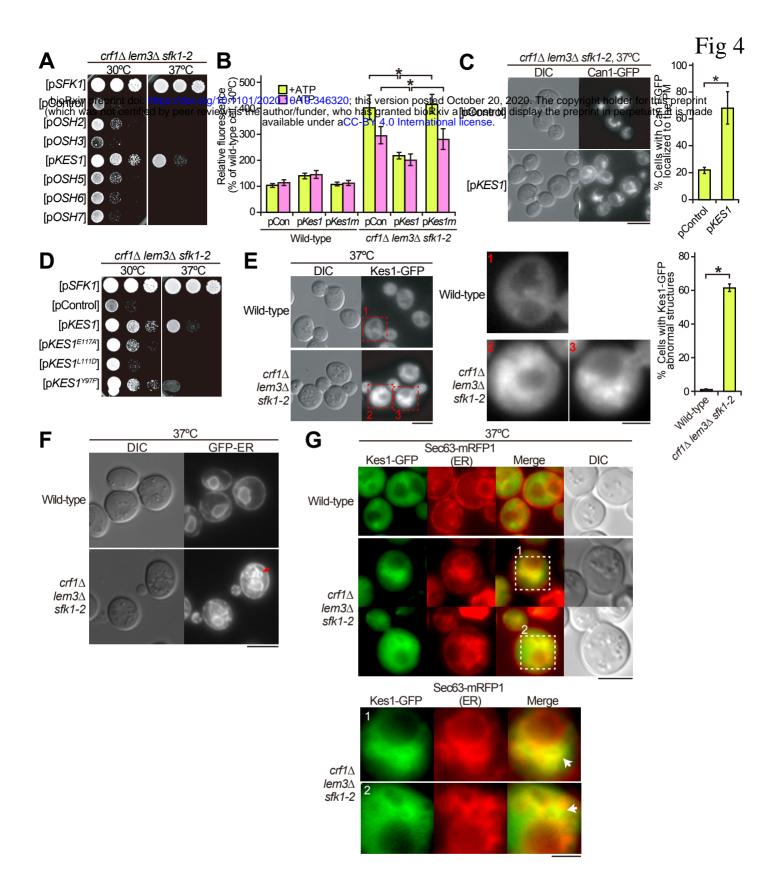
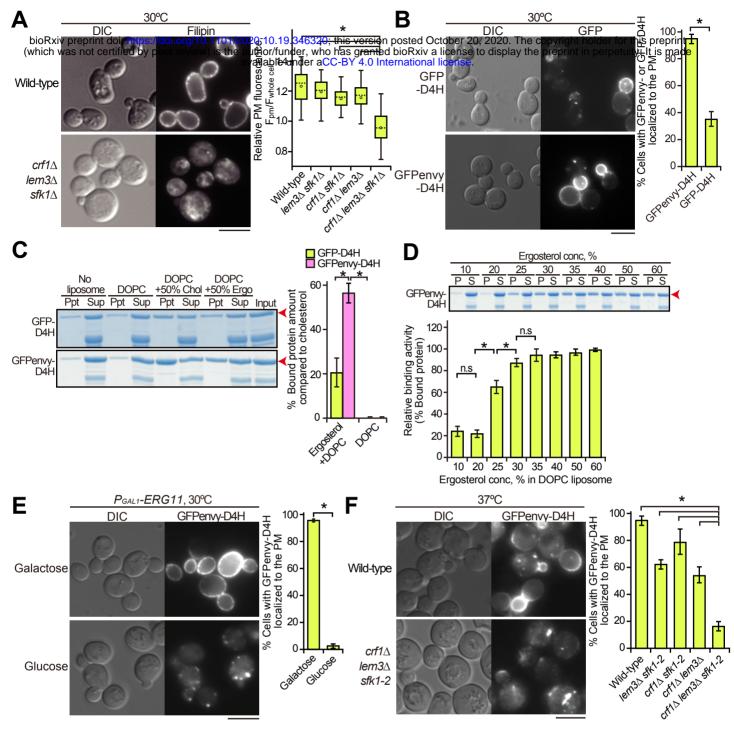
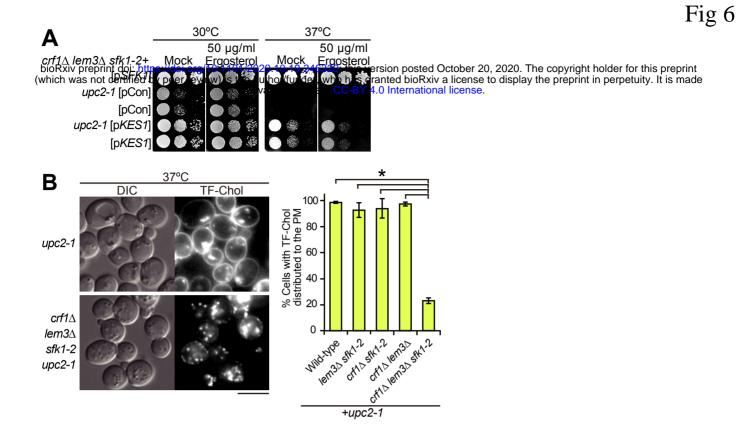
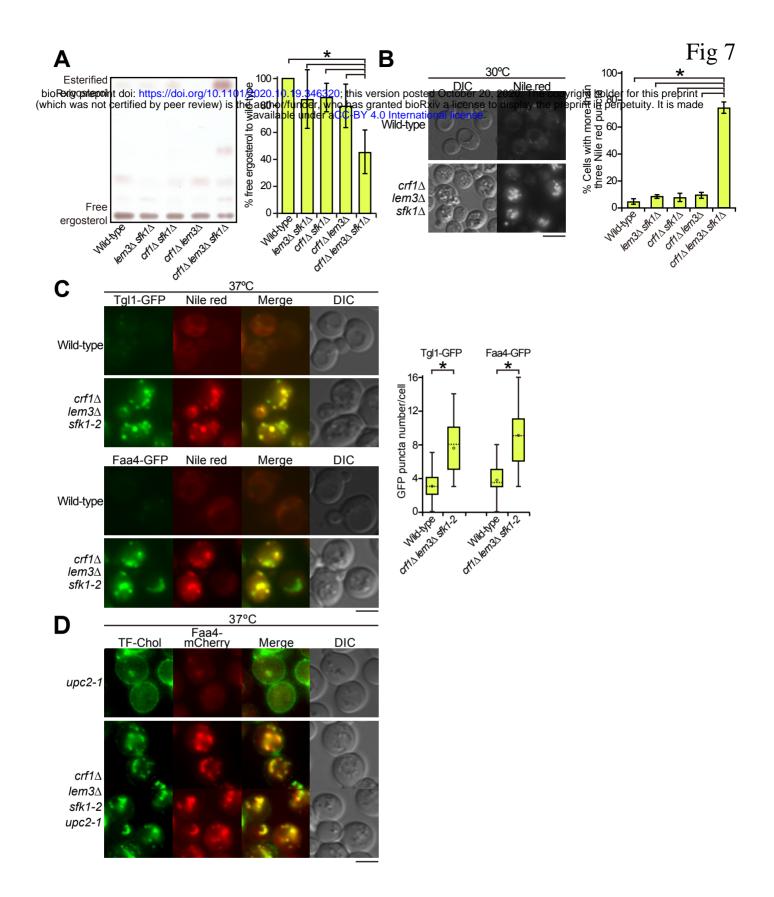
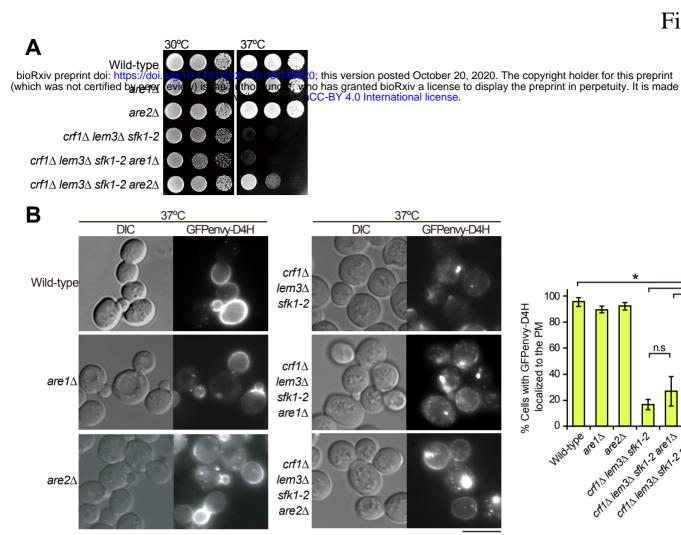
1463 S12 Fig. The growth defect in the $crf1 \triangle lem3 \triangle sfk1-2$ triple mutant is independent of

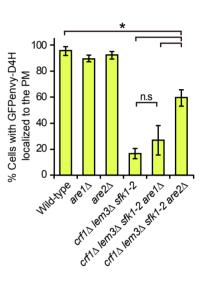

1464 triacylglycerol.


1465	(A) The growth defect of the $crf1 \Delta lem3 \Delta sfk1-2$ triple mutant is not suppressed by either the
1466	$dgal\Delta$ or $lrol\Delta$ mutation. Tenfold serial dilutions were spotted onto a YPDA plate, followed
1467	by incubation for 1.5 d at 30 or 37°C. (B) Synthetic growth defects in the $are2\Delta upc2-1$
1468	mutant. Diploid cells with the indicated genotype were sporulated, dissected, and grown at
1469	30°C for 4 d. Tetrad genotypes were determined as in Fig 1B, and the identities of the double
1470	mutant segregants are shown in parentheses (red circles).
1471	
1472	S13 Fig. Classification of Sfk1-mCherry-expressing cells with low or high expression
1473	patterns.
1474	(A) Fluorescence intensity profile of a cell showing the "partially polarized" pattern of
1475	GFPenvy-D4H. Fluorescence signals were quantified along the dotted line from the mother
1476	cell to the bud. The brightness of Sfk1-3xmCherry was adjusted as in Fig 9B. Bar, 3 μ m. (B)
1477	Classification of Sfk1-mCherry-expressing cells with low or high expression patterns. The
1478	cells in Fig 9E were examined. Low or high expression of Sfk1-mCherry was determined for
1479	each cell on the basis of our threshold value, which was set at 300% of the fluorescence
1480	intensity of endogenously expressed Sfk1-3xmCherry. Fluorescence intensity at the PM was
1481	quantitated as described in the "Materials and Methods". The ratio of the fluorescence at the
1482	PM (F_{pm})/that of whole cell ($F_{whole cell}$) was determined and expressed with a boxplot

1483	(whiskers: maximum and minimum values; box: first quartile, median, and third quartile;
1484	circle: average). Bars: Endo, endogenous expression of Sfk1-3xmCherry; Low, multicopy
1485	plasmid of SFK1-mCherry but low expression of Sfk1-mCherry; High, multicopy plasmid of
1486	SFK1-mCherry and high expression of Sfk1-mCherry. The numbers of cells analyzed were
1487	13, 34, and 22 for Endo, Low, and High, respectively. An asterisk indicates a significant
1488	difference, as determined by the Tukey–Kramer test ($p < 0.05$).
1489	
1490	S1 Raw Images. Raw images underlying figures.
1491	From Figs. 5C, 5D and 7A and S10 Fig.
1492	
1493	S1 Table. Saccharomyces cerevisiae strains used in this study.
1494	
1495	S2 Table. Plasmids used in this study.
1496	
1497	S3 Table. Excel spreadsheet containing the numerical data and statistical analysis for
1498	Figs 2E, 2F, 3A, 3C, 3D, 4B, 4C, 4E, 5A, 5B, 5C, 5D, 5E, 5F, 6B, 7A, 7B, 7C, 8B, 9C, 9D,
1499	9F, and 9G, S1, S3, S4C, S5A, S8A, S8D, S13A and S13B Figs.

Fig 2


Fig 5

